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Ck*-SMOOTH APPROXIMATIONS OF LUR NORMS
PETR HAJEK AND ANTONIN PROCHAZKA

ABSTRACT. Let X be a WCG Banach space admitting a C*-Fréchet smooth norm. Then X admits an
equivalent norm which is simultaneously C1-Fréchet smooth, LUR, and a uniform limit of C*-Fréchet
smooth norms. If X = C([0, a]), where « is an ordinal, then the same conclusion holds true with k = oco.

1. INTRODUCTION

The theory of C*-Fréchet smooth approximations of continuous functions on Banach spaces is well-
developed, thanks to the work of many mathematicians, whose classical results and references can be found
in the authoritative monograph [2]. The known techniques rely on the use of C*-Fréchet smooth parti-
titons of unity, resp. certain coordinatewise smooth embeddings into the space cy(I") (due to Torunczyk
[23]). They are highly nonlinear, and even non-Lipschitz in nature. For example, if the given function is
lipschitz or has some uniform continuity, trying to preserve the lipschitzness of the approximating smooth
functions leads to considerable additional technical difficulties (e.g. [10], [11], [12], [13], [18], [19]).

It is well-known that the (apparently harder, and less developed) parallel theory of approximations of
norms on a Banach space by C*-Fréchet smooth renormings requires different techniques.

Several open problems proposed in [2] are addressing these issues. In particular, if a Banach space
admits an equivalent C*-Fréchet smooth renorming, is it possible to approximate (uniformly on bounded
sets) all norms by C*-Fréchet smooth norms? Even in the separable case, the answer is not known in
full generality, although the positive results in [3] and [4] are quite strong, and apply to most classical
Banach spaces. In the nonseparable setting, no general results are known, with a small exception of [7]. In
particular, one of the open problems in [2] is whether on a given WCG Banach space with an equivalent
C*-Fréchet smooth norm, there exists an equivalent locally uniformly rotund (LUR) norm which is a
uniform limit on bounded sets of C*-Fréchet smooth norms. The notion of LUR is of fundamental
importance for renorming theory, and we refer to [2] and the more recent [20] for an extensive list of
authors and results.

Such a result is of interest for several reasons. It can be used to obtain rather directly the uniform
approximations of general continuous operators, by C*-Fréchet smooth ones. Moreover, since LUR norms
form a residual set in the metric space of all equivalent norms on a Banach space, a positive answer is to
be expected. There is a closely related problem of obtaining a norm which shares simultaneously good
rotundity and smoothness properties. By a famous result of Asplund [1], on every separable Asplund
space there exists an equivalent norm which is simultaneously C!-Fréchet smooth and LUR. A clever
proof using Baire category, and disposing of the separability condition on the underlying Banach space,
was devised in [6] ([2], 11.4.3). The theorem holds in particular in all WCG Asplund spaces (in particular
all reflexive spaces). Its proof works under the assumption that the space admits an LUR norm, as well
as a norm whose dual is LUR. It is well-known that dual LUR implies that the original norm is C*-
Fréchet smooth. However, using this approach one cannot in general handle norms with higher degree
of differentiability, even in the separable case. Indeed, by [9] ([2], Proposititon V.1.3), a space admitting

Date: January 2009.

2000 Mathematics Subject Classification. 46B20, 46B03, 46E15.

Key words and phrases. LUR, higher order differentiability, renorming.

Supported by grants: Institutional Research Plan AV0Z10190503, A100190502, GA CR 201/07/0394.

1



C*-SMOOTH APPROXIMATIONS OF LUR NORMS 2

a LUR and simultaneously C2-Fréchet smooth norm is superreflexive. There is not even a rotund and
C?-Fréchet smooth norm on co(T") ([14], [15]). In fact, one cannot even handle the proper case of LUR
and C'-Fréchet smooth norms. Indeed, Talagrand [22] proved that C'([0,w;]) admits an equivalent C'>°-
Fréchet smooth norm, although it admits no dual LUR renorming. The existence of LUR renorming
of this space follows from Troyanski’s theorem [24]. In light of the previous results it is natural to ask
whether this space has a C!-Fréchet smooth and simultaneously LUR renorming. This question was
posed on various occasions, e.g. in [8].

Our main result addresses both of the above mentioned open problems, namely higher smoothness
approximation and simultaneous LUR and C!-smoothness. Under reasonable assumptions (e.g. for
WLD, C(K) where K is Valdivia compact, or C([0,a])), it gives a renorming which is simultaneously
C'-Fréchet smooth and LUR, and admits a uniform approximation on bounded sets by C*-Fréchet norms.
As a corollary we obtain a positive solution to both of the mentioned problems. We should emphasize
that it is unknown whether C'-Fréchet smooth norms are residual, or even dense, in the space of all
equivalent norms on C([0, «]).

The paper is organized as follows. In Section 2, we introduce our notation and we present some
auxiliary lemmata. We include the easy proofs for reader’s convenience. The main result, its corollaries
and the frame of the proof of the main result are gathered in Section 3. Sections 4 and 5 then contain
the details of the construction.

2. PRELIMINARIES

The closed unit ball of a Banach space (X, ||-||) is denoted by B(x .|y, or Bx for short. Similarly, the
open unit ball of X is B(OX-,H-H) = Bg. By I' we denote an index set. Smoothness and higher smoothness
is meant in the Fréchet sense.

Definition 2.1. Let A C ¢*°(T"). We say that a function f : £°(T') — R in A locally depends on finitely
many coordinates (LFC) if for each = € A there exists a neighborhood U of z, a finite M = {~1,...,7,} C
I' and a function g : RIMI — R such that f(y) = g(y(71),--.,y(yn)) for each y € U.

Lemma 2.2. Let X be a Banach space and let h : X — ((T) be a continuous function which is C*-
smooth coordinatewise, k € NU {oo}. Let f : ¢°(T) — R be a C*-smooth function which locally depends
on finitely many coordinates. Then f o h is C*-smooth.

Proof. Let © € X be fixed. Since f is LFC, there is a neighborhood U of h(z), M = {v1,...,7m} C T
and ¢ : RIM — R as in Definition 2.1. The function g is C*-smooth, because f is C¥-smooth. As h is
continuous, there exists a neighborhood V of z such that h(V) C U. Since h is coordinatewise C*-smooth,
it follows that 2(-) [ar:= (R(-)(71),- -+, h(-)(7n)) is CF-smooth from X to R, Finally, we have for each
y € V that f(h(y)) = g(h(y) [m) and the claim follows. O

Lemma 2.3. Let @ : (>°(T") — R and let x € £>°(T") be such that
a) ® is LFC at z,
b) &' (x)x #£0,
c) ®(-) and ®'(-) are continuous at x.

Then there is a neighborhood U of x and a unique function F : U — R which is continuous at x and

satisfies F(x) =1 and @(%) =1 for ally € U. Moreover F is LFC at x.

Proof. The first part of the assertion follows immediately from the Implicit Function Theorem. We
will show that F' is LFC at . From the assumption a) we know that there is a neighborhood V' of
x, M = {v1,...,7} C I, and g : R® — R such that ®(y) = g(y [um) for all y € V. It is obvious
that ¢'(z [am)z [m= @' (x)z so it is possible to apply the Implicit Function Theorem to the equation
g (%) =1to get h: V' — R, where V' is a neighborhood of = [z, such that h(z [a/) = 1 and h is

continuous at x [pr. There is a neighborhood U' C U NV of x such that we may define H : U’ — R by
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H(y) :=h(y [m) fory € U'. Then H(z) =1 and H is continuous at . Also, ® (%) =g ( yla ) =1
The uniqueness of F implies that F' = H on U’ so F is LFC at z.

The following lemma is a variant of Fact 11.2.3(i) in [2].

Lemma 2.4. Let ¢ : X — R be a convex non-negative function, x,.,x € X forr € N. Then the following
conditions are equivalent:

. 2 Ty 2 x r+x,

(i) 7 ( );rw()_wz( +2 ) =0,

(i) limp(z,) = lim p(5) = ().
If ¢ is homogeneous, the above conditions are also equivalent to

(iii) 2p2(z,) + 2¢%*(z) — ¢*(x + ) — 0.
Proof. Since ¢ is convex and non-negative, and y +— y? is increasing for y € [0, +00), it holds

2 2
Pxr) + 9% @) o (et W)+ ) () +elen) ) | (elr) - o)
- ¥ =z — =
2 2 2 2 2

which proves (i) = (ii). The implication (ii) = (i) is trivial and so is the equivalence (i) < (iii). O

Lemma 2.5. Let f,g be twice differentiable, convex, non-negative, real functions of one real variable.
Let F : R? — R be given as F(z,y) := f(z)g(y). For F to be convex in R?, it is sufficient that g is
convez and

(f'(@)*(d' ()* < f"(x) f(2)g" (y)g(y)- (1)
for all (z,y) € R
Proof. Let (x,y) € R? be fixed. Since g is convex, the function F is convex when restricted to the vertical
line going through (z,y). Let s = at + b (a,b € R) be a line going through (z,y), i.e. y = ax +b. The
second derivative at a point (x,y) of F restricted to this line is given as:

f@)g"(y)a® + 2f"(x)g' (y)a + f"(x)g(y).
In order for the second derivative to be non-negative for all a € R, it is sufficient that the discriminant

2f(x)g'(y))? — 4f(x)g" (y)f"(x)g(y) of the above quadratic term be non-positive, which occurs exactly
when our condition (1) holds for (x,y). O

Definition 2.6. We say that a function f : ¢>°(T') — R is strongly lattice if f(x) < f(y) whenever
[z(7)] < [y(y)[ for all y € T

Definition 2.7. Let X be a vector space. A function g : X — ¢°°(T") is said to be coordinatewise
convez if, for each v € T, the function  — g, (z) is convex. Similarly g is coordinatewise non-negative if
gy(z) >0 for all y € T

Lemma 2.8. Let f : £°(T') — R be convex and strongly lattice. Let g : X — €°°(T") be coordinatewise
conver and coordinatewise non-negative. Then fog: X — R is conver.

Proof. Let a,b> 0 and a+ b= 1. Since g is coordinatewise convex and non-negative, we have
0 < gy(az +by) < agy () + by (y)
for each v € I". The strongly lattice property and the convexity of f yield
flglax +by)) < flag(x) + bg(y)) < af(g(x)) + bf(9(y))

so f o g is convex. O

Definition 2.9. Let us define [-] : £°(T') — R by [z] = inf {¢; {7;|z(y)| > ¢} is finite}. Then [-] is
1-Lipschitz, strongly lattice seminorm on (¢*°(I"), ||-||..)-
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Proof. In fact [2] = [|q(@)| = /., » Where g : £2°(I') — £2°(I") /co(I') is the quotient map and |||y ., the
canonical norm on the quotient ¢°°(T")/co(T"). Clearly, [z] = 0 if and only if z € ¢o(T"). Let us assume
that [2] = ¢ > 0. Then, for every 0 < s < t, there are infinitely many v € T" such that |z(y)| > s. It
follows that [|z — yl|,, > s for every y € co(I') and consequently [[¢(z)]|y» /., = . On the other hand, we
may define y € ¢o(T") as

x(y) = tif z(y) > 1,

y(y) = q2() +tif 2(7) < 1,
0 otherwise.

Obviously ||z =yl <, so [|q(@)|se /., < t. The strongly lattice property of [-] follows directly from
the definition. O

Definition 2.10. Let (X, |-||) be a Banach space and let 4 be the smallest ordinal such that |u| =
dens(X). A system {Pa},,<, of projections from X into X is called a projectional resolution of
identity (PRI) provided that, for every o € [w, u], the following conditions hold true

() |1Pal] = 1,

b) P,P3 = PgP, = P, forw <a <3<y,

¢) dens(P,X) < |af,

d) U{Ps+1X : f < a} is norm-dense in P, X,

e) PM = idx.

If {Pa},<a<, 18 a PRI on a Banach space X, we use the following notation: A := {0} U [w, u),
Q- = Py41 — P, for all v € [w, pr) while Qo := P, and Py := Zﬁ/eA @, for any finite subset A of A.

Lemma 2.11. Let X be a Banach space with a PRI {P,}
there is a finite set A%(x) C A such that

(
(
(
(

w<a<u- Then for each x € X, e >0, a € [w, ]
| Pas () — Paz| <e.
We may choose A = A%(x) in such a way that Qpr # 0 for B € A since Py = Z'VGA Q.

Proof. We will proceed by a transfinite induction on a. If o = w, then A¥(x) := {0} for any € > 0. If
a = B+ 1 for some ordinal 3, then A%(z) := AZ(x) U {3} for all ¢ > 0. Finally, if « is a limit ordinal,
we will use the continuity of the mapping v — P,z at « [2, Lemma VI.1.2] to find § < «a such that
|Psx — Pyzx|| < /2. Thus it is possible to set AY(x) := Af/Z(x). O

3. MaAIN RESULT

Theorem 3.1. Let k € NU {oco}. Let (X,]||) be a Banach space with a PRI {P,} such that each

QX admits a C'-smooth, LUR equivalent norm which is a limit (uniform on bounded sets) of C*-smooth
norms. Let X admit an equivalent C*-smooth norm ||-||.

Then X admits an equivalent C'-smooth, LUR norm ||| - ||| which is a limit (uniform on bounded sets)
of C*-smooth norms.

w<asp

Our first corollary provides a positive solution of Problem 8.2 (c) in [8].

Corollary 3.2. Let o be an ordinal. Then the space C([0,a]) admits an equivalent norm which is
C'-smooth, LUR and a limit of C>-smooth norms.

Proof of Corollary 3.2. By a result of Talagrand [22] and Haydon [17], C([0,«]) admits an equivalent
C*°-smooth norm. On the other hand, the natural PRI on C([0, «]) defined as

() = JEB) B <,
(Pyz)(B) {x(v) 5>

has (Py4+1 — Py)X one-dimensional for each v € [wo, @). O
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Theorem 3.3. Let k € NU {co}. Let P be a class of Banach spaces such that every X in P
e admits a PRI{Pu}, <<, such that (Poy1 — Po)X € P,
o admits a C*-smooth equivalent norm.

Then each X in P admits an equivalent, LUR, C*-smooth norm which is a limit (uniform on bounded
sets) of C*-smooth norms.

Proof. We will carry out induction on the density of X. Let X € P be separable, i.e. dens(X) = w. Then
we get the result from the theorem of McLaughlin, Poliquin, Vanderwerff and Zizler [21] or [2, Theorem
V.1.7).

Next, we assume for X € P that dens(X) = p and that every Banach space Y € P with dens(Y) < p
admits a Cl-smooth, LUR norm which is a limit of C*-smooth norms. Let {Patiu<a<, e a PRI on
X such that QX € P for each o € A. Then dens(QoX) < |o+ 1| = |a| < p. Thus the inductive
hypothesis enables us to use Theorem 3.1. O

The above theorem has immediate corollaries for each P-class (see [16] for this notion). The following
Corollary 3.4 solves in the affirmative Problem VIIL.4 in [2].

Corollary 3.4. Let X admit a C*-smooth norm for some k € NUoo. If X is Vasdk (i.e. WCD) or
WLD or C(K) where K is a Valdivia compact, then X admits a C*-smooth, LUR equivalent norm which
is a limit (uniform on bounded sets) of C*-smooth norms.

Proof of Theorem 3.1. Let 0 < ¢ < 1. It follows from the hypothesis that, for each v € A, there are a
C'-smooth, LUR norm [, on @y X and C*-smooth norms ([l ;)ien on @4 X such that

cllzll < llzll, <l (2)

for all # € QX and such that (1 — %) 2], < llzll, ; < llz|l, for all z € @, X.
We seek the new norm on X in the form

llzll|* = N (2)? + J(2)? + |lz]|* -

We will insure during the construction that both N and J are C'-smooth and approximated by C*-
smooth norms. In order to see that ||| - ||| is LUR, we are going to show that ||z — x| — 0 provided
that

2l 2 + 2 eI = Il + 211> = 0 as 7 — oo. 3)
Assuming (3), we will use properties of N to show that for each finite A C A with 0 ¢ {Q,x : v € A}, one
has ||Paz, — Paz|| — 0 (Lemma 4.1). Consequently, properties of J will help us show that for every € > 0
there exists a finite A C A with 0 ¢ {Q 2 : v € A} and such that ||Paz —z| < € and ||Paz, —2,| < ¢
for all but finitely many k € N (Lemma 5.8). With this information at hand, the proof of local uniform
rotundity will be finished easily as

[l = || < |Pazy — Paz| + [|Paz — || + |[Pazr — || -

4. ABouT N

We may and do assume that the equivalent norms |-| and ||-|| satisfy
<l <Cl

for some C' > 1.

The basic properties of PRI [2, Lemma VI.1.2] and the above equivalence of norms yield (||Q~x||)yea €
co(A), and using [|@Q]] < 2C with the second inequality of (2), it follows that T : = € (X,|-||) —
(1@l )ven € (co(A), [I'll) is a 2C-Lipschitz mapping. Similarly for T; : z € X — ([|[@Qyz|, ;)ven €
Co(A).
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For each n € N, we will consider an equivalent norm on c¢o(A) given as

Cal@) = sup |5 a(y)?

MeA, NEM
where A, = {M €2M | M| = n} It is easily seen that ¢, is n-Lipschitz with respect to the usual norm
on co(A). Also, ¢, is obviously strongly lattice, so by Theorem 1 in [7], for each € > 0 there is a C'°-

smooth equivalent norm N,, . on co(A) such that (1 —&)¢u(x) < Ny () < (o) for all z € ¢o(A) with
|||, < 1. Finally, we define

N@?= 3 2n1+m N2, (T(2))
m,neN
Now the norm N(:) is C'-smooth since each N, 1 o T is 2nC-Lipschitz and C'-smooth. The latter
property follows since each NN,, 1 is not only LFC but it depends on nonzero coordinates only (cf. Remark
on page 461 in [17]). This fact is not explicitely mentioned in [7] but follows from the proof there (see [7,
p. 270]). We may define the approximating norms as

Ni(2)? = Z Qn}rmNS%(T%(x))

m,n=1
As a finite sum of C*-smooth norms, N; is C*-smooth. Using ||T;(z) — T(z)||, < 2< for ||z < 1, it is
standard to check that N;(x) — N(z) uniformly for ||z|| < 1.

Lemma 4.1. Let us assume that (3) holds for x,z,. € X, r € N, and let AcCAbea finite set such that
Qyx #0 fory € A. Then |Pjx — Pix,|| — 0 as k — oo.
Proof. Let A := {'y €A @z, = min, 4 ||an||a}. Let n := |A|. We may assume that |||z]|] < 1

which implies ||T'z|| ., < 2C. Using (3) and Lemma 2.4 we may assume that |||z, ||| < 2 thus ||Tz|| < 4C.
The convergence (3) and convexity (see Fact 11.2.3 in [2]) imply that

IN? | (T(x,)) +2N2 4 (T() ~ N2 4 (T(a +2,)) 0
for all m € N. This further yields that
263(T (1)) +2G3(T(2)) = GH(T(z + 1)) = 0
as well. Indeed, let € > 0 be given. We use that N,, 1 — ¢, uniformly on bounded sets of co(A) to find
mo € N such that Ni%(y) - C?l(y)‘ < ¢/6 for all y € 6CB,,(x) and all m > mg. Now let ro € N satisfy
that for all » > rq it holds ZNE,W%O(T@T)) + 2N§%O(T(a:)) - NS%O(T(J‘ +x,)) < €/6. For each r > rq

we obtain 2¢2(T(x,)) + 2¢2(T(z)) — (T (x + z,)) < e.
Let B € A,, be arbitrary and let A, € A,, such that

Yo Q@+ @)l = Gala + 20).

YEA,
Then
202 (T(2,)) + 260 (T(2)) = T (x4 2,)) > 2> Qyall2 +2 Y 1@y ]2 = Y Q4w + )|
YEB YEA, YEA,
=23 @l +2 > Qa2 = > 1@y (x + )2
YEA, YEA, YEA,

+2| D 1Qyzll = Y 10,2l

yEB YEA,
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Since
2 2 2
257 1@l +2 S 10 P = 3 10 + )2 2 0
YEA, YEA, YEA,

we get from (4) that

. 2 2 2

liminf Y Q] = sup q D 1@yl i B € An g = Cu(T(2)) = Y 1Qy2] (5)

YEA, yEB yEA

where the last equality follows from the definition of A. Equation (5) together with the definition of A
show that A = A, for all r sufficiently large. We continue with such r and we choose B := A in (4) to

get that
23 1@yl +2 3 1@yl = 3 1@y + 2l 0.
yEA yEA YEA
Since z — /> ca ||Q,Yx||i is an equivalent LUR norm on P4 X, it follows that ||Pa(x — z,)|| — 0 and,
by continuity of Pz, we obtain the claim of the lemma. O
5. ABour J

Let {¢77}0<n<1 be a system of functions satisfying

(i) ¢y : [0,400) — [0,+00), for 0 < n < 1, is a convex C'*°-smooth function such that ¢, is
strictly convex on [1 — 7, +00), ¢,([0,1 —n]) = {0} and ¢, (1) = 1.
(ii) If 0 < m < ma < 1 then ¢y, (z) < ¢y, (x) for any x € [0,1].
One example of such a system can be constructed as follows: let ¢ : R — R be C°°-smooth such
that ¢(z) = 0if z < 0, ¢(1) = 1 and ¢ is increasing and strictly convex on [0,+0c). We define
bn(z) = qﬁ(#) for all z € [0,1]. Now the system {¢,} satisfies (ii) since 7 — # is increasing
for every z € [0,1) while the validity of (i) follows from properties of ¢.
We define a function ®,, : £°(T") — (—o0, +00] by

®y(z) =Y dllz()]).

yer
Let us define Z,, : £>°(I') — R as the Minkowski functional of the set C' = {x € £>°(I"); ®, () < 1/2}.

Lemma 5.1. Let 0 < n < 1 be fired. Then Z, is a strongly lattice seminorm such that (1 —n)Z,(z) <
x|, and Z, is LFC, C*-smooth and strictly positive in the set

Ap(T) i=A{z € £2(T) = J] < (1 —n) |zl }-
Moreover (1 —n)Zy(z) < ||z| o, for all x € Ay, (T).

Proof. The set C' is symmetric convex with zero as interior point (indeed, (1 —n)Byery C C) so Z, is
1%—Lipschitz and convex.

Let A7 (I') := {z € £>°(T') : [#] <1 —n}. This set is convex and open since [-] is a continuous and
convex (seminorm). The function @, is in A} (T) a locally finite sum of convex C'*°-smooth functions,
thus it is a convex function which is LCF and C'*°-smooth in A7 (T').

Let us fix z9 € A;(I') such that ®,(z0) = 1/2. Then, since ¢, is increasing at the points where it is

not zero, we get Z,(zo) = 1 and @] (z¢)ro > 0. As is usual, we consider the equation &, (%) =1

By the Implicit Function Theorem, this equation locally redefines Z,, and proves that Z, is C°°-smooth
on some neighborhood U of zg since ®,, is. Moreover by application of Lemma 2.3 we get that Z,, is LFC
at xg.

To prove that Z,, is LFC, strictly positive and C*°-smooth in A, (T") it is enough to show that for each
z € Ay(T') there is A > 0 such that Az € A} (T') and ®,(\-x) = 1/2 and then use the homogeneity of Z,,.
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Let € A,(I"). Then [ﬁ—‘ < 1 —n and since A;(I') is convex, it follows that [0, W] c A (D).
We have for such = that ® (H = )>1, ¢,(0- :c) = 0 and the mapping A — &, (A\z) is continuous for
A € [0, =i—]. Hence there must exist A € (0 ) such that Az € A} (') and ®,(\-x) =1/2.

We (‘zlorultlnue showing that Z,, is strongly ?a‘!tlce First observe that ®,, is strongly lattice as ¢y, is
nondecreasing. Let |z| < |y| and Z,(z) = 1. Then x € 0C which implies that [z] = 1—n or ®,(z) = 1/2.
Since both functions [-] and ®,, are strongly lattice, we conclude that [y] > 1 —n or ®,(y) > 1/2 which
in turn implies that Z,(y) > 1. For a general  we employ the homogeneity of Z,, so Z, is strongly
lattice.

Finally, if « € A,(I"), then the above considerations imply that &, (%) = 1/2. This is possible

only if there is some v € I" such that (?)) > 1 — 7, and the moreover claim follows. (]

Lemma 5.2. Let 0 <y < g < 1. Then Z,, (x) < Z,,(z) for every x € A,,(T).

Proof. First of all, if € A,,(T"), then z € A, (T'). So the equivalence Z,,(A\z) =1 & ®,,(A\z) = 1/2
holds for both i = 1,2. Let us assume that Z,, (Az) = 1 for some X\ > 0. Then the ordering of functions
¢y yields 1/2 = @, (Az) < ®,, (Az) which results in Z,, (Az) > 1. O

Lemma 5.3. Let 0 <7 < 1 be given and let z,,x € A, (T") (r € N) be non-negative (in the lattice £>°(I"))
such that
2 2 2
27, (x) +2Z,(xr) — Z(xz + ) — 0 as r — oo.
Then x.(v) — z(y) for any v € T' such that x(v) > Z,(x)(1 —n).
Proof. The assumption and Lemma 2.4 yield

x4+ x,

Zo(1,) = Zy(x) and  Z, ( > — Z,(x). (6)

Let us put & := and &, := % We get from (6) that

Z,,I(z)
2Z2(&) + 22, (&) — Z2(& + &r) — 0.
Since Z,) (%) = Z,(&,) = 1, the above implies that
A= Zp(Z+Z,) — 2.
We may deduce from z, z,. € A,(T) that ®,(z) = 1/2 = &,(%,) for all k € N. Also, ®,( A\ (Z+7,)) =1/2
for all but finitely many k € N. Indeed, if ®,(\,'(Z + &,)) # 1/2, then A\ (% + &) € A} (). Then
in fact [A;N(Z+2,)] =1—n. As & € A)(T), there is £ > 0 such that [Z] + & < 1 —17. By the same
reasoning [Z,| < 1 —n. By the convexity (subaditivity) of [-] and these estimates one has
[+ 2, ] <[2]+ [%] <2(1-n)—¢
Finally, A, < % which can happen only for finitely many r as A\, — 2.
As @, is continuous at Z and A, — 2, it follows
(A — 1)) — 1/2.
Consequently
(L= 2, (A — 1)718) + 2710, (3,) — 0, (A1 (F + 1)) — 0. (")
Let a > 1 — 7. The definition of ¢,, and a compactness argument imply that for each € > 0 there exists
A > 0 such that if for reals r, s, « it holds

0 <7 < dmax {[|Z], ,sup, [|Z+]| .},

a < s < 4dmax{[|z| ,sup, [|Z:[ .},

i <a< %, and

agy(r) + (1 — a)dy(s) — dylar + (1 —a)s) <A,
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then |r — s| < e.

In particular, let @ > 1—n be such that {y € T'; Z(y) > 1 —n} = {v € I';Z(v) > a} and let v € T be such
that #(y) > a. Then for r large enough we have (A, — 1)71Z(y) > a so we may substitute r := Z,(7),
s = (A — 1)7'2(7) and a := A7'. It follows from (7) that one has |(A\, — 1)7*&(7) — Z,(y)| — 0 as
k — oo. Since A, — 2 and using (7), we finally get that z,(y) — z(v) as k — oo. O

At the heart of our construction is the following system of convex functions. We recall that C' > 1 is
the constant of equivalence between the norms || and ||-||, which was introduced in Section 4.

Lemma 5.4. There exist

e a decreasing sequence of positive numbers 6, \, 0; §1 < 2C;
e q decreasing sequence of positive numbers pp \, 0;
o positive numbers knm > 0 such that for each n € N the sequence (Kp,m)m is decreasing and
Kn,m = 0; for each n,m € N one has py, > 2k, m;
o an equi-Lipschitz system of non-negative, C°°-smooth, 1-bounded, convex functions
{gnmi:Dni—R:nmeNIl=1...,n},
where Dy, :=[0,2nC — 6, (n — )] x [0,1 4 2nC, satisfying (with n,m,l € N, Il <n, resp. | <n
in (A2),(45))
(A1) gnm(t,s) =0 iff (¢,s) € [0,18,] x [0,1 4 2nC] =: Ny s
(A2) gn.m.i(t,8) > Gnm,it+1(t, s) + pn whenever (t,8) € Dy \ Noig1;s
(A3) if (t,0) € Dy i \ Ny, then s — gym(t, s) is increasing on [0,1 + 2nC] and
gn,m,l(ta 1+ 2710) - gn,m,l(ta O) < Kn,m;
4) Zf (tv 0) € Dmla then gn,m,l(ta 0) = 9n7m+1,l(t, 0);
5) for all (t,s) € Dy \ Ny, it holds gnm,i(t,s) < gn,m,i+1(t + 1, 8) provided r > 0y,
6) Let (t,5) € Dy \Nny. If (tr,sr) € Dy and t, — t and gnmi(tr, Sr) = Gn,m,i(t,s) as
r — 00, then s, — s.
(A7) The mapping (t,8) — gnm.i(|t],|s]) is strongly lattice.

Proof. Let f: R — [0,400) be defined as

0, for t <0,
f(t) = 1
exp(—yz) for t > 0.

(A
(A
(A

It is elementary (one may use Lemma 2.5) to check that f(t)-(s?+s+1) is convex in the strip (—oo, 1071] x
[0,1071] so the function

g(t,s) :== f(1071) - ((1071s)* + 107 s + 1)
is convex in the strip (—oo, 1] x [0,1]. We take for (d,), just any decreasing null sequence of positive
numbers such that §; < 2C, and we define

o t— 0,1 s
gn,m,l(ta S) =dg <(26,_5n)na n’ml—FQTZCY) .
where 6, ,, € (0, 1) will be chosen later. Now since our functions g, are just shifts and stretches of one
non-negative, C'°°-smooth, 1-bounded, Lipschitz, convex function, it follows that all g, ; share these
properties (with the same Lipschitz constant).
Properties (A1), (A4) and (A5) are straightforward, see also Figure 5. Notice that, when ¢ > 0, the

function s +— g(¢, s) is increasing on [0, 1]. This implies the first part of (A3). In order to satisfy (A2),
we may define p,, as

pr = 10f {gn m.1(t,8) — gnmat1(t,s) : l,m € NJI < n,(t,8) € Dpy \ Noit1}
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which evaluates as pp, = ¢n.1,1(20,,0) = f ((2—6T)n) \, 0 as n — oo. Notice that this p,, does not depend
on the choice of 6,, ,,. On the other hand, in order to fulfill (A3), &, » may be defined as

Enym = SUP {Gn,m1(t, 1+ 2nC) — gn m.i(t,0) : 1 <n,(¢,0) € Dy}

which evaluates as n m = gn,m.n(2nC, 14+nC) — gy m.n(2nC, 0). We see that, by an appropriate choice of
On.,m (in particular, for each n € N, the sequence (6., 1,,)m should be decreasing to zero), one may satisfy
the requirements p,, > 2Ky, m and Ky, \, 0 as m — oo.

For the proof of (A6) let us assume that s, - s. The fact that g, m.i(tr, ) = gn,m,i(,-) uniformly on
[0,1 4+ 2nC] leads quickly to a contradiction.

Finally (A7) follows since g is non-decreasing in each variable. (]

Let us fix, for each 6 > 0, some C'*°-smooth, convex mapping &s from [0, +00) to [0, +00) which satisfies
&5([0,6]) = {0}, &(t) > 0 for t > § and &5(t) =t — 2§ for t > 3§. Such a mapping can be constructed e.g.
by integrating twice a C°°-smooth, non-negative bump.

Lemma 5.5. Let n,m € N be fized and let us define a mapping Hy, » : B(OX,\HI) — (>(F,) where
Fn:{(A,B)GQAXQA:|A|§n,BCA,A7é(Z)7éB} by

Hyma(A, B) := gnm,jal | D &, (1Q42l,), &5, (| Ppz — z]))
YEA

Then H,, ., is a continuous, coordinatewise convex and C'-smooth mapping, and for each x € X such
that ||z|| < 1 it holds Hpmr € Ay ja—r, . (Fn) U{0} (see the definition of the set A, jo_, . (Fn) in
Lemma 5.1).

Notice that, by the definition of &, ., in Lemma 5.4, we have always p,,/2 — kp_m > 0. We will use the
notation 7y, m = pn/2 — Knm-

Proof. When [jz]] < 1, then (2) yields (3, ¢ 4 &, (1Q-21l,). &, (IPsz — 2l))) € [0,142|4] €)x[0,2] 4| €) ©
D, 14| So for each (A, B) € F,, the mapping « — H,, ,z(A, B) is C'-smooth as a composition of such
mappings. Also, {x +— H, nz(A,B): (A, B) € F,} is equi-Lipschitz thus H, ,, is continuous. Each
x — Hy mz(A,B) is convex by application of Lemma 2.8 since gy, is convex and strongly lattice.
Because sup gn,m,i(Dn,a|) < 1 for each | < n, we get that ||Hy nol <1

We are going to prove that [Hy, mz| < [|[Hpme|| (1= pn/2+ Knm) or [|Hymz| = 0. For any 2 € X
and 0 > 0, let A(x,0) := {7 €A |Qyzl, > 5}. Let x € Bg( |- e fixed and let us define a set E' C F,
as B :={(A,B) € F, : AC A(z,d,)}. Since F is finite, it holds

[Hym@] = [Homt 15| < $0p {Homa(A, B) : (A, B) € F, \ E}. (8)

If there is no (A, B) € F,, \ E such that H,, ,,(4,B) > 0, then [H, 2] = 0 and our claim is trivially
true. We proceed assuming that H,, ,,z(A, B) > 0 for some (A, B) € F,, \ E. Then

D &

yEA

Q) &5, (

|Ppx —x||) | & Nua
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which, by (A1) in Lemma 5.4, can happen only if C := AN A(z,d,) # 0. Since (4, B) ¢ E, we have
|C| < |A|. Tt follows from Lemma 5.4 (A2) and (A3) that

Gnmilal | D &, (1Qy2l,) &5, (I1Psz = 2ll) | < gnmijcr | D &6, (1Qy2],), &, (1P —2l) | — pn

YEA yel

< gnamjel | Y &, (1@, &, ([Ppa = z])) | = pn + Finm
yeC

for any D C C. Of course, since A(z,d,) is finite, there are only finitely many couples (C, D) such that
D c C C A(z,0,). We may therefore write

Hnm A;B < Hnm CaD - FPn nmg Hnm 1- n n,m
me(4,B) < | max - Hymt(CD) = prt inm < [ Himllog (1= pn + in,m)

for any (A, B) € F, \ E. This together with (8) gives [Hy, mz] < [[Hpmll (1 = (Pn/2 = Knm))- O
Lemma 5.6. Let 0 # x € B(OX:H-H) and let A be a finite subset of A such that Q x # 0 when v € A. We
claim that, for all n,m € N sufficiently large, there ezists a finite Cy, ,, C A such that

e ACCy ., and

L4 Hnnnx(cn,m; A) > (1 - nn,’m)Znnym(Hn,mx)-
Proof. We start by defining A* := {7 € A:[|Qyzl|, = minaea ||an||a} and we set out for finding C,, ,

so that in fact A* C C,, .
Let us investigate the mapping L, : B(OX - = £ (F,,) defined as

Loy(D, E) = gu1p) | D . (1Qyyll.),0
YED

By the same argument as in the proof of Lemma 5.5, we get that [L,2] < (1 — py) ||Lnz||, or Lyz = 0.
Hence L,z € A, ;2U{0}. If n is large enough, necessarily L,z # 0. It follows that L, attains a nonzero
maximum. For n € N, let C), be such that L,z(C,, D) = ||L,z||, for some (and all) non-empty D C C,.
We claim that, for n sufficiently large, A* C C,.

Let us denote b := min{HQWJ;H,Y iy € A*} — maX{HQVmHW iy € A\A*}. Since Q,z # 0 for all
7 € A, and for the co-nature of ([|Qyx[,)yen, it follows that b > 0. Notice that

by :==&s, (min {||QAYQUHAY iy € A*}) — &, (maux{HQA,:EHW ty €A\ A*}) —basn — oo.

Let n > |A*| be so large that d,, < &5, (min{HQﬂ,wa iy € A*}) and 0, < by.

If A* ¢ C,, there exists y; € A* \ Cy,. If |C,,| < n, then we define C, = {71} U C,. By our choice of
n, we have that &, (/|Q+,[,,) > dn and so by the property (A5) in Lemma 5.4 we get that

gnajon | D &, (1Qqz].),0 < 9n1|G0| > & (1Q4],),0

veChn vel,

contradicting that any couple (Cy,, D) € F,, maximizes L,x. )
If |C,,| = n, then there exists v2 € C,, \ A* and we define C,, := {71} UC), \ 2. Our choice of n yields
that &, ([|Q,2[l.,,) — &, (1Q.zl.,) > 6y so (A5) in Lemma 5.4 implies

In,1,n Z fén(HQ"/‘rH—y)aO < 9n,1,n Z é-d,L(

yeCHh ~eChp

|Qyll,), 0
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once again contradicting that any couple (C,,, D) € F,, maximizes L,z. So A* C C,.

At this moment, we leave n fixed according to the choices above and we start tuning m. First of all, let
us observe that L,x(Cy, A) > Z, ;5(L,x)(1 — p,/2) by the moreover part of Lemma 5.1. Since 1,
pn/2 as m — oo, we deduce that there is some p € N such that L,z(Cpn, A) > Z, ;2(Lnx)(1 = 0n,p).
We will work, for v € F,, with the set M, = {u € (>(F,) : [u(v)| > Z,, j2(u)(1 = 1np) }. The set M, is
open and, in particular, L,z € M,  a)-

Using (A3) and (A4) in Lemma 5.4 we may see that H, ,,x — Lyx in ({>(F,),|[|) as m — oc.
Since L,z is a member of the open set A, /o(F;), so will be Hy, @ for m large enough. Similarly, the
openness of Mc, a) insures that H, n,z € M, a) for m > p and large enough. This means that

Hn,mx(cm A) > an/2(Hn,mx)(1 - nn,p) > Znn,m (Hn)mx)(l - nn,m)

where the second inequality follows from Lemma 5.2 as p,/2 > 0y m and 1y, m > 7y, for all m > p. So
we may define C,, ,,, := C,, for m sufficiently large. O

We came close to the definition of the norm J. First, we choose some decreasing sequence of positive
numbers o; \, 0 and we define J,, ,, : B& n = R as

Jj,n,m(m) = §aj (Znn,m(Hn,mx))~
Next, let J : B(OX,H-H) — R be defined as
- 1
2 o 2 Z 2
J (LU) T ||$|| + 9j+n+m Jj,n,m(x)

j,n,meN
and finally let J : X — R be defined as the Minkowski functional of {x eX:Jx) < 1/2}.

Lemma 5.7. The function J is an equivalent norm on X which is C'-smooth away from the origin.

Proof. By the Implicit Function Theorem, to see the differentiability it is sufficient to show that for each
x € X such that J(z) = 1, the function J is Fréchet differentiable on some neighborhood of z with
J'(x)z # 0.

First of all let us observe that, for each ¢ > 0 and n > 0, the composed function &, o Z,, : {>*°(F,) — R
is C*°-smooth and LFC in A, (F,) U {0}. Of course it is — we know it already for points in A, (F},) and
clearly, there is a neighborhood U of 0 € F}, such that &, o Z,, is constant in U.

Let 2 € X such that J(z) = 1. Then ||z| < 1/2. Tt follows from Lemma 5.5 and from Lemma 2.2
that each J; ., . is Cl-smooth at z. Further we claim that there is a constant K > 0 such that each
Jjn,m is nK-Lipschitz. Indeed, there is a constant K’ > 0 such that H,, ,, is (1 + 2nC') K’-Lipschitz for
all n,m € N; Z, is 2-Lipschitz for each 0 < n < 1/2 and &, is 1-Lipschitz for each ¢ > 0. It follows
that J is K”-Lipschitz for some K” > 0. The calculus rules lead to the conclusion that J is Fréchet
differentiable on a neighborhood of any = € X such that ||z|| < 1; then the convexity of all terms implies
that J'(z)x > 0.

Finally, 2 |jz|| < J(z) < 2K"||z| where the second inequality follows from the K”-Lipschitzness of
J. O

Lemma 5.8. Whenever x,.,x € X, r € N, are such that (3) holds, then for each € > 0 there is a finite
subset A of A such that Qyx # 0 for v € A, ||[Pax —z|| < ¢ and ||Paz, — x.|| < € for all v sufficiently
large.

Proof. We may assume, that J(z) = 1. We start by finding a finite A C A such that ||[Paz — z|| < /2
and such that Q,z # 0 for v € A. This is possible by Lemma 2.11. Now we will just show that
|Pazy — zr|| — [[Paz — z||.
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It follows from (3) and from the uniform continuity of J on bounded sets that

P a) + 12(x) 5 (H;) L 0ask — oo (9)

2

By the convexity of the terms in the definition of .J, we get that
Jj%n;m('rr) + J]%n,m(z) 2 <.T + x,

5 —Jinm 5 ) — 0 as k — oo. (10)
for each j,n,m € N.

Let us borrow the notation L,z from the proof of Lemma 5.6. Let us recall that Hy, ,x > Lyz > 0 (in
the lattice £*°(F},)) for all m € N. There is some ng € N such that for all n > ny we have that L,z # 0.
Hence Z,, , (Hnmz) > Zy, . (Lnx) > Zy,  (Lyx) > 0 for n > n, and m € N. Therefore for each n > ng
there exists j, € N such that for all j > j, and all m € N one has J;,, ,» > 0. Since, for n > ng,m € N
and j > j,, (10) is equivalent to

n,1

. . Ty +x
hin Jimm(@r) = Jjnm(x) = h;n Jjm.m ( 5 )

and & [(5,400) has a continuous inverse, it follows that

72 (Hpm@r) + 22 (Hpma)

n,m n,m Ty +x r
o, ; n —Zfln,m (Hnm( 5 >)_>o

for all n > ng and m € N. Since x — H,, ,z(A, B) is convex and non-negative for each (A, B) € F,, and
since Z, is strongly lattice and convex it follows

MNn,m
0 — Z727n,m (Hn7mx7~) + Z”?n,nl (Hn’mx) _ Z2 H 'T’I“ + x >
2 NMn,m n,m 2 =

Zgn,m (H”vm‘rr) + Z%nm (Hn’mx) 2 Hn,mxr + ]{n,’m']j
Z 2 NMn,m 2 2 0

for every n > ng and m € N. Let us fix n > ng and m € N both large enough in the sense of Lemma 5.6.
We also require that d,, < ||Psx — z||. By application of Lemma 5.6, we obtain a set C), ,,, such that
v := (Cp.m, A) € F, satisfies the assumptions of Lemma 5.3. Thus, using this last mentioned lemma, we
may conclude that H,, 1,2, (Cpom, A) = Hyp m@(Cpom, A) as k — oo.

To finish the argument, we employ Lemma 4.1 to see that

S 6 (1Qual) — S &, (1Qqall,) as T — oo
Y€Cn,m ¥€Cn,m
and we apply Lemma 5.4 (A6) on the function g, . |c,, |- Thisleads to &, (|| Paz, — x.]|) — &, (| Paz — x||)
which means that |Paz, — z,|| — || Paxz — z|| by our choice of n. O

In the end of all we are going to show that J is a limit of C'*-smooth norms. A self-evident choice for
the approximating norms J; is as follows. Let us define

Hy, (A, B) = gnma | D &, (1@, ). &, (1 Ppa =) | |

YEA
Jj7n7m;i(x) = é-o'j (Z777z,'rrz (H:L,mm))’

_ , 1
HOE R Wjin7m,i(x)

1<j,n,m<i
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and J; as the Minkowski functional of {x €X:Ji(z) < 1/2}. As a finite sum of C*-smooth functions,

J; is C*-smooth. The Implicit Function Theorem implies the same about .J;. Moreover 2 ||z < J;(z) <
K" ||z|| as in the proof of Lemma 5.7. Let ¢ > 0 be given. We will show that there is an index ip € N
- - 2
such that |J?(x) — J?(x)| < € whenever |z| < 1 and i > ig. For this it is sufficient that (%) <e/2
and 5
> g <2
max{j,n,m}>ig

because then, for each i > i,

- - 1 1
2 2 2 2 2
B@) - P@| < Y s ami@) = Ban@)+ Y s iam@)
1<j,n,m<i max{j,n,m}>ig
1 201\ °
< DL e (Zz) tef2<e

1<j,n,m<i
where in the second inequality we are using (2) and (1 — %) [zl < lzl,; < [lzll, to estimate the first

term and J; () < 2 for ||z|| < 1. This proves that J; — J uniformly on Bg( D

Now let us observe that, since J(0) = 0, we have the estimate

1 1 -

for all z € X such that J(z) = %, or equivalently such that J(z) = 1.
We assume that there is a sequence (z;) C B(OX,M) such that J;(z;) — J(x;) - 0. Let ¢; > 0, resp.

d; > 0, be such that J(¢;z;) = 1, resp. J;(diz;) = 1. Tt follows that \; := % - 1 so we may and do
assume that there is some & > 0 such that [A; — 1| > 2¢ for all i € N. On the other hand, since ||d;z;|| < §

and since J; — J uniformly on B(OX 1) We get that j()\icixi) — %‘ = ‘j()\icixi) — Ji(diz;)| < e for i
large enough. Thus, having in mind (11), we obtain |A; — 1| < 2e. As a result of this contradiction we
see immediatelly that J; — J uniformly on bounded sets.
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