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1. Introduction

By the second incompleteness theorem of Godel, a sufficiently rich theory
cannot prove its own consistency. This leaves open the question, if one can
find a feasible proof in T of the statement, say, "there is no proof of
falsehood in T whose length is < 1019", e shall show some bounds to the
length of such proofs in some first order theories.

The main results (Theorems 3.1 and 5.5) can be roughly stated as follows:
Let ConT(x) be a reasonable formalization of "there is no proof of contra-

" Then for reasonable T there exist

diction in T whose length is < x .
€ >0 and k € w such that
(1) any proof of ConTQE) in T has length 2_n€ ;
(2) there exists a proof of ConT(ﬂ) in T with leagth < LI

It had been known that some lower bounds could be detived.TT In fact we
were inspired by a paper of Mycielski [10] and we use an idea of his. The
present knowledge of fragments of arithmetic, which is mainly due to Paris and
Wilkie, enabled us to reduce the assumptions about T 1in the lower bound to
mere containment of Robinson's arithmetic Q . The upper bound is based on a

partial definition of truth. It uses also a technique of writing short

formulas, cf. [5], Chapter 7.

YThis paper was finished while the author was supported by the NSF grant
1-5-34648 at the University of Colorado, Boulder, CO U.S.A.
YTAfter the paper had been typed, I learned that H. Friedman had proved a lower

bound of the form n°© , €20,
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166 P. PUDLAK

Our results may be interesting because of the following reasons. (1) The
lower and the upper bound are only polynomially distant. (2) Some corollaries
of the lower bound, (see Section 4). (3) Relation to some problems in
complexity theory (see Theorem 3.2 and Section 6). Perhaps the most
interesting application of the lower bound is a more than elementary speed-up
for the length of proofs in GB relative to ZF, (Theorem 4.2).

Several important papers that are related to our paper are listed in
references. The papers Ehrenfeucht and Mycielski [4], Gandy {6}, Godel [7],
Mostowski [9] (last chapter), Mycielski [10], Parikh [11],[12], Statman
[161,[17] and Yukami [19] deal with questions about the length of proofs. In
Esenin-Volpin [3], Gandy [6], Mycielski [10] and Parikh [11] the reader can
find the outlines of some finitistic projects.

In this paper we consider a measure which is different from the measures
used in most of the papers mentioned above., Instead of counting just the
number of formulas (i.e. proof lines), we include the length of formulas into
the complexity. More precisely, we assume that proofs are coded by strings in
a finite alphabet and the length of a proof is the length of the correponding
string. This is the most realistic measure. We do not know whether a similar
lower bound holds also for the number of formulas in the proof. Recently J.
Krajidek gave an idea for a lower bound of the number of formulas in the proof

of ConT(E) in T which is of the form constantelog n .

2, Fragments of arithmetic

The weakest fragment of arithmetic that we shall use is Robinson's
arithmetic Q . The language of Q consists of 0, S, +, * ; the axioms are
S(x) = 8(y) »x =y ;0#8(y); x#0+Fy (x=58(y)) ; x+0=x; x+5(y) =

S(x+y) ; x°0 = 0 ; x+S(y) = xy + x . I8 denotes Q plus the scheme of
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induction for bounded arithmetical formulas, i.e. formulas where all

quantifiers are of the form dx t,Vx<t, t some term in the language of
0 (it is sufficient to assume that t 1is just a variable). IAO + exp is

IA° plus an axiom expressing Vxy @z (z = x’) . Exponentiation can be
introduced naturally without using a function symbol for it (namely, Bennett
[1] has shown that exponentiation can be defined by a bounded formula). All
the standard theorems of number theory and finite combinatorics are provable in
16 + exp , (cf. {2]). Syntax can be arithmetized in a natural way even in
some weaker theories, see [13]. The reader can consult these papers for some
information. Let us only remark that onme can prove the scheme of induction

also for exponentially bounded formulas (i.e. formulas with quantifiers of the

form ¥x <t ¥x {t , t term in the language of Q plus exponentiation) in

IAO + exp .

Denote by 1 = 8(0) ,
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a; € {0,1} and

Then the term

(31 + 1) +z-((£2 + 1) + 2(...))

will be denoted by n and called the ath numeral. The usual definition of

the numeral as a term of the form §5...8(0) is not suitable here, since such
a term is too long. 'n' denotes the integral part of logz(n+1) . Hence the
length of a numeral n is proportional to ‘n' . We shall not introduce new
symbols for the formalizations of +, «, 'I , x) etc. If such a symbol is
not in the language of the theory in question, the terms constructed from them

should be understood as abbreviations.
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When we consider the length of proofs in some theory, it is important to
specify the set of axioms. Therefore we shall distinguish two concepts: an
axiomatization A 1is an arbitrary set of sentences, while a theory T 1is a
deductively closed set of sentences. The distinction is more important if T
does not have a finite axiomatization, since if T has a finite axiomatiza-
tion, then the lengths of the shortest proofs in finite axiomatizations differ
only by an additive constant (and we usually use only finite axiomatizationms).

We shall write
AFS ¢

to denote that there exists a proof of ¢ in A whose length (including the
length of formulas) is < n .

The aim of this section is to show that, in spite of the fact that Q is
much weaker than IAo + exp , every numerical instance of a L sentence
provable in IAo + exp has a short proof in Q . This is roughly the content
of the following lemma.

Lemma 2.1

For every exponentially bounded formula ¢(x) (where x is the only free

variable of ¢), there exists a polynomial p such that if
IAo + exp — Vx ¢(x)

then, for every m€ w ,

Q (m]) ¢(m) .
First we prove another useful lemma. Let 23, ZT, 2;,... denote the
9%
X, 2x, 2° ,... . If I(x) 1is a formula with the single free variable x ,

then CutI denotes the following sentence
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1(0) & Vx,y(I(x) & y < x » I(x) & I(s(x)))

If Ak Cut:I , then we say that I 1is a cut in A .

Lemma 2.2
Let I be a cut in A and Q <A . Then there exists a polynomial p

such that, for every k,n €w

AI—LI—‘——( ni,k) I(Zf)

Proof:

Given a cut I one can construct another cut I' such that I' s
closed under addition and for every x from I’ 2* exits and is in I , cf.
[13). In fact it is possible to find a formula JR(x) in the language of

arithmetic plus a unary predicate R such that

(i) QF cut, » [Cut_ & ¥x(J_(x) » J_(2-x) & Ty(y = 2° & R(yIN] .
R JR R R
Starting with I 1instead of R and applying J k-times we get a cut Ik
such that
(ii) AFT (0 +3y(y = 2 & 1(y)
(1ii) A+ Ik(x) > Ik(2-x)

Using a technique for writing short formulas which is described in [5], Chapter

7, we can find JR such that R occurs in it exactly once. Thus the leagth

of I will increase only linearly with k . Now it follows from (i) that the

lengths of proofs of (ii) and (iii) will be only polynomial in k . Using the
fact that Ik is a cut and (iii) we can comstruct a proof of Ik(E) in A

whose length is polynomial in |n| . Combining this proof with the proof of

(ii) we obtain the lemma. O
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Proof of Lemma 2.1:

If ¢(x) 1is a bounded formula, then by Corollary 8.8 of [13]
IAo + exp b Vx ¢(x)
iff for some cut I closed under + and -

Qb I(x) » ¢(x) .

By an inessential modification of the proof we get the same theorem also for
exponentially bounded formulas. Thus to prove ¢(m) it is sufficient to prove
I(m) . The latter one has a proof with length polynomial in lml by Lemma
2.2, (where we set k =0) . ]

In order to be able to arithmetize syntax in some theory, we have to
assume that the theory contains some fragment of arithmetic. Lemma 2.1 enables
us to reduce this assumption to Q . This is because (1) the usual syntactical
concepts are naturally formalized by exponentially bounded formulas, (2) the
basic properties of them are provable in IAo + exp , (3) the sentences that
we shall consider will be exponentially bounded sentences of the form ¢(2) .
Put otherwise, the basic properties of formulas, proofs etc. whose length is
assumed to be < n have proofs polynomial in |n| . The assumption that an
axiomatization A contains Q can be weakened by assuming that A only
interprets Q , (this is really necessary in case of set theories, e.g. ZF

and GB) .
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3. The lower bound

In this section we shall prove the lower bound on the length of proofs of
finitistic consistency statements. The main theorem will be stated using

finitistic counterparts of the well-known derivability conditions for the 20d

Godel incompleteness theorem. Then we shall argue that they are met by natural

arithmetizations. The relation that we shall consider is "y 1is provable by a

proof of lemgth < x “. It will be denoted by PA(x,y) , where A is an
axiomatization. In this section, however, PA is not determined by A , it is
an arbitrary formula satisfying the derivability conditions. 1In order to
stress this fact, we omit the subscript A in Theorem 3.1. Let 1 denote
some standard countradiction, say 0 =1 . Thus — P(n, F-F) , which will be
denoted by ConA(g) later, is a finitistic consistency statement.

It is convenient to assume that formulas and proofs are strings in the two
element alphabet {0,1} . The Godel numbers of formulas and proofs are the
numbers with corresponding diadic expansions. This allows us to use '...'
also to denote the length of formulas and proofs. If ¢ 1is a formula with the
M7 . Again the length of ¢

Gddel number n , then n will be denoted by

is proportional to |¢' . We shall also use the notation

-~

y = rb(g yeersX, )

~k

for an arithmetization of the function (nl,...,nk) — Godel number of 0(34,

n,) , (thus x

ceey are free in rb(x seessX T). We shall assume that
% -1 ~k

100 %y
this arithmetization has the following property: there exists a polynomial »p

such that

0 M“Er“"ﬂk) = ooy,

Why we can make such an assumption will be explained later.
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Theorem 3.1
Let A be a consistent axiomatization, Q < A , let P(x,y) be a formula

and let Py sPy sPy39y 59, be polynomials such that

(0) AF x <x' & P(x',y) + P(x,y) ;
n p, (n)
(D Ab—¢=a+—— P(n,T¢M)
p2( n|,|m )
®3) A p————— P(n,m) + P(il(ﬂ)’ (a,m)") ;

p3(|n|.|¢]: ¥
(3 A F———————P(n,"¢") & P(n, ™ » ¥7) > Plq,(n), )

Then there exists € > 0 such that for no n €
€ [l
AFS = PG, 1D
Proof:

In order to simplify notation, we shall write

n

B el

to denote that for some polynomial p

p(n)

By Diagonalization Lemma, there exists a formula D(x) such that

Qb D(x) +» = P(x,D(x)")
Thus
() Q»—lﬂl-n(g) «r = P(m,D(m)")

hence the same is true also for A . Now, from (1), (i) and the consistency of

A we can easily derive for every m

(ii) not A= D(m)
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Let S{m) denote P(m, D(m) ) . Since
Sm) » (= s(m) »L1)

is a propositional tautology, we get from (0) and (1)
Al o, s > (=5 + L)
Now, several applications of (3) and (0) yield
(iii) aplnl =gy, 1) » [=p(m, s W—pm, T=sm D],

for some polynomial a3 (since 'S(E)' is proportional to 'm') . By (2)

and the definition of S(m) we have
Fap y1

Af—L:-I- s(m) » P(q; (m), S(m)) ,
which together with (i) implies

aHEL —pq @, s
Applying (1) to an implication of (i) we get

-
AI—-lELP(qum‘),rD(EI_) > =s(m)’)

for a polynomial a, implicitly determined by (i) . Thus, if @ is suffi-

ciently large, we have by (0)

aHEL P, D) » —stm)
By (3) and by the definition of S(m)
AH%L S(m) & P(m, Dl@) » =S(m)') * P(g, (@), "~Sm)")
Hence, for m sufficiently large,
aHl s - P(g, (@), "=smw")

By (1) ,
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AI-JEL —=D(m) » S(m)

Thus we get, for m sufficiently large,
(v) A |—|EJ- —'P(gz(g) , "’-'S(ﬂ)_‘ ) > D(m) .

Now (iii), (iv) and (v) implies that for some polynomials p, and a5 and

every sufficiently large m

p, ({m])
AR o —P(q @, L) > p@ .
Thus by (ii)
m-p, (|m|)-|D(m)
A 4 l l I —I -.p(i5(ﬂ),rf)

does not hold for any sufficiently large m . The theorem now follows using an
easy computation and condition (0) . (J

There are several ways in which one can argue that the natural
arithmetization meets the conditions (0)-(3). We shall not construct any such
particular arithmetization. (For some fragments of arithmetic such an
arithmetization is constructed in [13] and can easily be generalized for other
axiomatizations). Instead we shall describe some more general properties which
look natural and imply the conditions of the Theorem 3.1.

We start by observing that from the finitistic point of view it is too
little to know that an axiomatization is recursive. Therefore we shall
consider here NP axiomatizations (which means that the set of axioms can be
accepted by a nondeterministic polynomial time Turing machine). In particular
every finite axiomatization is NP . Now we shall introduce a finitistic

counterpart of the concept of numerability.
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Definition
Let p(xl,...,xk) be a formula, let A be an axiomatization and let

RS mk . We say that p polynomially numerates R in A 1if for some

polynomial p and every n L € w

1

Al p(‘nll,...,|nk') o

R(n L0 ) ®

12 sy 21""’Ek)

Theorem 3.2
Let A be a consistent NP axiomatization such that Q € A and let
Rg mk . Then the following are equivalent:
(1) R is NP ;
(2) R is polynomially numerable in Q ;
(3) R 1is polynomially numerable in A .

Now it is clear that the additional property of the formula

y = ¢(§1,...,§k) is just the polynomial numerability. By Theorem 3.2

a formula exists, since the k+l-ary relation

T "
m the number of ¢(24""’2k)

is NP.

such

The proofs of (2) => (1) and (3) => (1) are trivial. To prove the

converse implications we need first to arithmetize the concept of an NP set,

In [13] this was done using so called R; formulas. Here we briefly sketch

another possibility.

175
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Theorem 3.3

There exists an exponentially bounded formula UNP(t,x) such that, for
every NP subset R of w , there exists k € w such that UNP(E,x)
polynomially numerates R 1in Q . (Moreover, there is a fast algorithm to

compute k for a given NP Turing machine defining R .)

Proof-sketch:

First consider IAO + exp instead of Q . In this theory we formalize
the computations of a universal nondeterministic Turing machine. Thus
UNP(t,x) will mean that the universal nondeterministic Turing machine with the
program t accepts the input word x . We also augment the machine with a

"clock" so that it runs in time S_'x't + t and still it is universal for NP
Turing machines. This enables us to take UNP(t,x) exponentially bounded.
The idea is roughly as follows. A word x 1is accepted with a program t 1if
there exists a matrix M 1in some finite alphabet such that

(1) the first row consists of t, x and a string of O0's ;

(2) M satisfies finitely many local conditions (which describe relation of
to

);

M Mi-1,5-10 Mi-1,30 Pi-1, 54l

(3) the last row codes some accepting configuration (say determined by the
occurrence of some particular symbol).

Finally, the matrix is coded by some £ adic expansion of a natural number.
Let k be the number which codes an NP Turing machine for R . Then

(i) I8, + exp - UNP(k,n) => R(n)
since every sentence provable in IAo + exp 1is true. To prove, for some
polynomial »p ,

(In))

(ii) R(n) => 1A+ exp UNP(k,n)

we have to prove the existence of an accepting computation (the matrix M) via
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a polynomially long proof. It is enough to take m which codes the accepting
computation (the matrix M) and check the conditions (1), (2), (3) for the
numeral m . There are polynomially many in Iml (i.e., also in the length of
input) such conditions, hence we are done.

The proof for Q can be obtained by analyzing the above proof and
applying Lemma 2.1. We omit the details since the proof for IAo + exp was
only sketched. [J

Here we were interested only in the fact that nondeterministic polynomial
time corresponds to polynomial length proofs. But it is clear that a more
explicit relation between these two measures can be found. One can also bound
the length of formulas occurring in proofs using the space bound of the Turing

machine,

Proofs of the remaining implications of Theorem 3.2:

(1) => (2) is a direct consequence of Theorem 3.3. To prove (1) =>(3)
it is enough to show (i) and (ii) from the proof above for A . (ii) is true,
since Q= A and we have (ii) for Q already. (i) holds since for A

consistent, Q< A , every exponentially bounded provable sentence is true. [J

Proposition 3.4
Let A be an axiomatization. Suppose PrfA(x,y) is a polynomial numera-

tion of the relation "z 1is an A-proof of y" in A , suppose that '|z| <x!

is a polynomial numeration of the relation 'zl < x . Let PA(x,y) be
32(":' <x' & PrfA(z,y)) .

Then PA(x,y) satisfies the conditions (0) and (1) of Theorem 3.1. [J
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The proof follows immediately from the definition. If A 1is an NP
axiomatization, then the assumption that PrfA and '|z| < x' are polynomial
numerations is quite natural, since by Theorem 3.2 there are such formulas.

The second derivability condition is usually proved by formalizing the
proof of the first one., This is the case also here. We can use the following
theorem, (cf. Theorem 6.4 of [13], where such a theorem is proved for NP

+

formalized by Rl formulas in a weaker theory).

Theorem 3.5
For a suitable polynomial numeration P.(x,y) of "there exists a Q-proof

Q
of y of length < x " and a polynomial q

I8 + exp b— uNp(e,x) + PQ(q(|x|t + t),[hNP(E,gf Y. 3

This theorem can be proved by formalizing a part of the proof of Theorem
3.3. Using Theorem 3.5 we can prove the derivability condition (2) for PA if
we have the following:

1) PrfA and PA satisfy the assumptions of Proposition 3.4;

(2) A proves that PrfA is NP; more precisely, for some k €uw
AL PrfA(z,x) +> UNP(k,<z,x>) ,

where <...> 1is the usual pairing function;
(3) A proves that '|z| < x' is NP (in the same way);

(4) P, contains P, ; more precisely
A

Q
A ¥2£13141212-PQ(3,EQ > PA(EUEQ’EQ

for some polynomials p,q ;

(5) PQ satisfies the derivability conditions (0),(1),(3) .
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We omit the proofs.
The derivability condition (3) is the simplest one. We can assume, for
instance, that if d 1is a proof of ¢ and e 1is a proof of ¢ + ¢ , then the

concatenation of d, e, ¢ is a proof of ¢y . Thus we have in IAo + exp

P(x,y) & P(x,y"+ z) + P(3x,2) .

Hence using Lemma 2.1 and the assumption Q< A we get (3).

Finally we prove an easy generalization of Theorem 3.1. Let L be some
set of closed arithmetical terms. For t € L , let t be n , where n is
the value of t in the structure of natural numbers; let £(t) denote the

length of ¢t , (’t. would be ambiguous).

Theorem 3.6
Let A2 Q be a consistent axiomatization and suppose that there exists a

polynomial p such that for every t € L
(D) A]g(log £,2(t)) t=t .

Assuming the derivability conditions of Theorem 3.1 there exists & > 0 such

that for no term t€ L

[
(ii) AI——t— Con, () .
(In (i) we can write the bound also in the form p'(|t =£|)).

Proof:

Let n > 0 be so small that

"
(iii) Alb—ct =t

and

"
(iv) Al— con (r)
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imply
€
A b= Con, (1)
€ 1is from Theorem 3,1. Take K so large and 6§, 0 <8 <n so smll

8

L(e) <t & t >R = pllog t,&(t)) £ " s

KG <1 . Now consider the following three cases.

2(e) > el . Then the proof of ConA(t) must have the length at least
8
lCon (t)' >at) >t

t <K . Then (ii) is impossible, since the bound is <1
2(t) S_ts and t > K . Then by (i) and (vi) we get (iii). If (ii) were
in this case, then we would get also (iv) and hence (v), which is

sible by Theorem 3.1, O

4. Applications of the lower bound

ConA
proval
[9]1.

[4] a

insta

next

If A contains a sufficiently strong fragment of arithmetic, then A +
has a speed-up by an arbitrary recursive function for sentences that are
ble in both theories. This theorem goes back to Godel {7) and Mostowski
Later results of this kind were proved e.g. by Ehrenfencht and Mycielski

nd Statman [17]. Gandy [6] has shown that if we consider only closed

nces of elementary predicates, then the speed-up is still very large. The

corollary shows that such a speed-up is achieved on sentences of the form

ConA(E) , for some terms t

.
We denote Vx ConA(x) by Con Recall that ConA(x) is ‘WPA(x, J.)

A C
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Corollary 4.1

Let ACS Q be a consistent axiomatization. Assume the derivability

conditions of Theorem 3.1 for PA(x,y) and that

ar— 22 215 250 o g L pX

Then for some constants €& > 0 and c¢ and every k € w

. 0
(1) A+ con, peCerl) Con, (2) ;

(2° o
(2)  not AI———ConA(ZI)
Proof:
The first part is trivial. The second part follows from Theorem 3.6. To
this end we should prove condition (i) of Theorem 3.6 for the terms 2%,29,...,
which is an easy exercise. In fact it is not difficult to prove it for any

closed term of the alphabet {Q,S,+,-,2x} . 4

Such a speed-up can be achieved also by a conservative extension (cf.

Corollary 4.5 of {l14]).

Theorem 4.2

There exists € > 0 and a polynomial p such that for every k £ w

(k) o
(1) GBl—LConZF(Z;) H

0.e
(Zk) 0
(2) not ZFhb——— ConZF(Zk)
Proof:

It is well-known that there is a cut I in GB such that

GB +— Vx(I(x) + ConZF(x))
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(This is essentially due to R. Solovay, cf. [14]). Applying Lemma 2.2 we get
the first part. The second part is a consequence of the preceding corollary. [
Theorem 4.3
Let A < Q be a consistent axiomatization and assume the derivability
conditions of Theorem 3.1. Then we have:

(1) if I 1is a cut in A , then

A+ Tx(I(x) & -1ConA(x))

is consistent;
(2) if D(x) 1is Ao (i.e., bounded arithmetical) formula and D(0),D(1),...
are true, then there exists k € w such that

A + qx(D(x) & —Con (xk))

is consistent.

Proof:

(1) If AF ¥x(I(x) + ConA(x)) , then in the same way as above we would
get

A (up) ConA(n)

for some polynomial p , which is impossible by Theorem 3.1, since p(ln') <n
for large n .
(2) Let D(x) be a 4, formula and let D(0),D(1),... be true. Then

there is a polynomial P, such that for every n € w

pl(n)
Ap——— D(n)

Hence we can construct a polynomial P, with the property that if



Proofs and Finitistic Consistency Statements in First Order Theories 183

) AR yx(D(x) * Con, (') ,
then
pym,n, k)
(ii) A p——————— ConA(p_).

Take k large so that for €& of Theorem 3.1 we have

(iii) pz(m,n,k)/nk'e +0 for n+ =,

Now suppose that the theory of (2) is inconsistent for this k , i.e. for some
m we have (i). Then we get (ii), hence by (iii) we have
kee
A F— Con (nk) ,

for n sufficiently large. But this is prohibited by Theorem 3.1. (]

(1) has been proved in [l14] (in a different way). It was employed there
to show a speed-up by an arbitrary elementary function of the ordinary logic
over the logical calculi without cut-rules. (2) is an improvement of a theorem

of the same paper.

5. The upper bound

To be able to derive some nontrivial upper bounds to the length of proofs
of finitistic consistency statements we have to assume more than we did in
section 3. We need that finite pieces of information about the universe are

coded in natural numbers. The sequential theories, which we introduced in

[15], have this property. The following definition is different from but

equivalent to the original onme of [15].

Definition
A theory T 1is called sequential if it satisfies the following
conditions:

(1) T 1is a theory with equality,
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(2) Q 1is interpretable in T relativized to N(x) , (N(x) is some formula of
),
(3) there exists a formula, which we denote by x[t] =y , that defines in T

a total function x[t] of two variables x,t such that

T F ¥x,y,t Tz(N(t) > (¥s < t(z[s] = x[s]) & z[t] = y))
Intuitively, (3) means that we have a definition of "y 1is the t-th
element of «x" such.that for a given t we can always replace the t-th
element by an arbitrary one and all the elements which precede it will be

preserved.

Examples of sequential theories.

™
(1) In PA we can take e.g. x[t] = Y, where x = I Pe 2 PyaPysen- is

the series of primes.

(2) In GB we can define

XiT] ® if T 1is a proper class,

X[T] {w‘(w,T> €x} if T is a set

(3) Other examples are IAO, IA0 + exp , ZF, Alternative Set Theory.

It seems to be too difficult even to state the upper bound in such
generality as the lower bound. Therefore we shall be more explicit about the
logical calculus and its formalization. We shall consider a first order
language with finitely many predicate symbols Pd , d=1,2,...,e , one of
which is = , with logical symbols —, +, ¥, and with variables VosVysees
(Thus when we speak about theories which contain function symbols, e.g. Q , we

assume that the function symbols are treated as relation symbols.) The logical

calculus will be the one presented in [8], (it has 5 axiom schemas and the
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rules of modus ponens and generalization). Formulas and proofs are again
strings in {0,1} and the strings are arithmetized via diadic expansions.
Thus PA(x,y) (the formalization of "y has an A proof of length < x") and

ConA(x) is uniquely determined by the numeration of the axiomatization A .

We extend the notation /..' to arbitrary strings of symbols. The
concatenation will be denoted just by juxtaposition.

Since the complete proofs of the Lemmas which follow would be extremely
long and uninteresting, we shall prove only some typical cases, which should
demonstrate sufficiently our proof techniques.

In the following three lemmas we assume that A 1is sequential. In order
to simplify our notation let us assume that the language contains just a

single, say binary, predicate symbol P , Further, let

g = f (==, V2 i(gle] = £le])

an(x) <==>df "x 1is a formula of length < n",

n€ w .

Lemma 5.1
There exists a polynomial p such that for every n € w there exists a
formula Satn(x,f) and there are A-proofs of length < p(n) of

(1) Fm_(x) + {Satn(x,f) -
o [@1,5(x = 'p(vi,vj? & PCELT, E[51)) v
V 3y,z(x = y™*z & (Satn(y,f) + Sat_(z,£))) Vv
V Sy(x =™y & —'Satn(y,f)) v
vV 3i(x = eri_‘ y & Yelg = £+ Satn(y,g)))]} ;

(2) Pm (x) + (Sat (x,f) «> Sat (x, £))
n n n+1
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Proof:

Sato can be an arbitrary formula, since there are no formulas of length
<0 . Denote by Z(Satn) the right hand side of the equivalence in (1). 1In
order to avoid exponential growth of the length of Satn , we replace I by
L' , using a technique of {5], Chapter 7, so that Sat ~ occurs in 2'(Satn)

only once and the equivalence
(1) L(R) + L'(R) ,

where R 1is a new predicate, is provable in the predicate calculus. Now we

can define by induction for n > 1

) .

L
Satn(x,f) s L (Satn

~1

Then the length of such formulas is linear in n , hence also

(ii) Sat (x,f) «» I(Sat_ )
n n

-1
has a proof of length linear in n by (i).
Let On denote the universal closure of (2). We shall describe a proof

of ¢n + ¢ whose shape does not depend on n (i.e. these proofs will be

n+l
instances of a proof schema). Hence the lengths of these proofs will increase

also only linearly. Arguing in A , assume that Qn is true and x 1is a

formula of length < n+l . We have to show that

(iii) Satn+1(x,f) +* Sat 2(x,f) .

+
We can distinguish the cases: x 1is atomic, x 1is an implication etc. E.g.

let x = ™'y . Then 'yl < n, thus by Qn

Satn(y,f) «+ Sat (y,£) .

n+}
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Applying (ii) to n+l and n+2 we get

Satn+l(x,f) > 'WSatn(y,f) ,

Satn+2(x,f) +> —Sat (y,D)

n+l
The last three equivalences yield (iii). Since 00 is trivial and we have the

proofs of °n > ¢ of linear length we get a proof of LI i.e, of (2), of

n+l
polynomial length.

Now we can construct a polynomial proof of (1), i.e. of
Fm_(x) + (Sat (x,f) +> L(Sat ))
n n n
This follows easily from (ii) and (2), since all the formulas to which Sat

is applied in Z(Satn) are of length < n . [

Lemma 5.2

Satn preserves the logical axioms, i.e. there are A-proofs of lengths
polynomial in n of

(n an(x) & "x is a logical axiom" » Satn(x,f) H

Satn preserves the logical rules, i.e. there are proofs of lengths polynomial
in n of

(2) an(xr*ﬁy) & Satn(x,f) & Satn(x’4’y,f) > Satn(y,f) ;

(3) Fm ("W x) & VE Sat_(x,£) » ¥ Sat (Tww'x,£) . O

Proofs of (1) for propositional axioms and the proofs of (2) and (3)
follow directly from Lemma 5.1 (1), The proof of (1) for quantifier axioms

requires an additional lemma, therefore is omitted.
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Lemma 5.3
There exists a polynomial p such that for every n € w and every
formula ¢(vi yee sV ) of length < n (where all free variables of ¢ are

1 m
displayed) there exists an A-proof of length < p(n) of

Sacn(%“,f) - ¢(f[i1],...,f[im])
Proof:
Let Y¥(¢) be the formula above. For ¢ atomic we have such a proof of
¥(¢) from Lemma 5.1 (1). Now it is sufficilent to show that there exists a
polynomial p such that all the following implications have proofs of lengths
< p(n)
¥ & ¥(W) > ¥4 > W), for [ > ¥ <o
¥() > ¥(—¢) , for [—4| <n s

¥(9) » ¥(¥v.9) , for 'Vvi¢' <.

This can be easily derived from Lemma 5.1 (1). E.g. consider the second

implication, then we have, by Lemma 5.1 (1), a polynomial proof of

Satn(r—ﬂéﬂ,f) L -HSatn(r¢1,f) s
which, together with ¥(¢), yields ¥(—¢) . O

Let & be a sentence. Then P{u}(x,y) and Con{a}(y) will denote the

arithmetizations of provability and consistency where the axiomatization {a}

is numerated by the formula x = "a”

Theorem 5.4
Let A be sequential. Then there exists a polynomial p such that for

every n € w and every sentence a , ’a’ i n .

A }—L(Q a + Con o y(n)
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Proof:

[l
By the preceding lemma we have -WSatn( 1 ,£) . Hence it is sufficient to

show that

a & P{a}(HJX) + ¥f Satn(x,f)
has an A-proof of polynomial length. Denote this formula by en . 80 is
trivial, therefore we need only polynomial proofs of en + en+l . So assume

that en and & hold true and w 1is a proof of x , ’w' < n+l . We have to

prove
(1) Vi Satn+1(x,f) .
Now w 1is a sequence of formulas where the last one is x . For every formula

of this sequence, except of x , we have

V£ Satn(y,f)

by en . Using (2) of Lemma 5.1 we get the same for Sat ., . Now we consider
the following two cases:
(a) x is a logical axiom or follows from the preceding formulas of w by

some logical rule. Then (i) has a polynomial proof by Lemma 5.2;

(b) x = Ta' . Then we get a polynomial proof of (i) using the assumption a
and Lemma 5.3. [

By Theorem 5.4, if A 1is a finite axiomatization of a sequential theory,
then in A we have proofs of length polynomial in n of ConA(g) , (assuming
that the numeration of A 1is reasonable). This theorem could be easily
generalized to infinite axiomatizations which are sparse, i.e. for every n

there are only polynomially many axioms of length < n . However this would

not include the theories that we are interested in (PA,ZF) , since they are
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not sparse. Therefore we shall prove a different theorem. The proof of this
theorem is based on the fact that the axiomatizations in question can be

replaced by sparse ones.

Theorem 5.5

Let A = {¥y ¢(¢(y,z))|¢(y,z) formula with two free variables y,z} be
an axiomatization of a sequential theory. Suppose that the variable y 1is not
bounded in the schema & . Suppose that a numeration of A in A 1{is chosen
so that it is provable in A that "a 1is an axiom iff & 1is of the form

Yy ¢(¢(y,z))". Then for some polynomial p and every n € w .
a2 con, (m)

Proof:

Define
Trn(x,y,z) > VE (£[0] =y & £[1) = 2z » Satn(x,f))

Let a denote
n
Yy e(tr (y(0],yl(1],2))

Then e is an instance of the schema, hence A proves that o is an axiom
of A . In fact this proof has length polynomial in the length of Trn , thus
also polynomial in n (we know that Satn has polynomial length). Let B
be the conjunction of finitely many sentences provable in A which ensure the
sequentiality of A . Let Bn be a & B . Since e is an axiom of A ,

Bn has an A-proof of polynomial length. Using Theorem 5.4 we can construct

for every polynomial q another polynomial p such that for every n €w

a R con g 3(g(n))
n
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It suffices to prove now that for a suitable polynomial q we have a

polynomial proof of
(i) PA(EJX) +> P{Bn}(gig),x)

in A. First we shall argue in the metatheory. Let ¢ be a formula |¢' <nm,

let v,,v. be the free variables of ¢ . By Lemma 5.3 we can derive from 8

0’1

sat (7¢7,f) « o(fI0],£I1]) ,

using a proof of polynomial length, (since the theory axiomatized by B8 is

sequential). Further, B also implies
Vy,z 3f (f[0] =y & £[1] = z)
Thus we get a polynomial proof from B8 of

Trn(rbj,y,z) + o(y,z)

Again using the sequentiality of B we find an x such that x[0] = " and

x[1] =y . For this x we have then

Q(Trn(XIg] »,x(11,2)) + ¢(4(y,z))

If we assume moreover a then we can derive Vy ¢(¢(y,z)) . Thus we have
shown that the instance of the schema for arbitrary ¢ , '¢' < n 1is derivable
from Bn (which is e & B) via a proof of polynomial length.

Now let a proof w in A be given and let Iw' <n . We can transform
this proof into a proof w' from a single axiom Bn in such a way that we

replace every axiom of A by the proof of this axiom from Bn . Thus we have

lw" < q('w') for some polynomial gq
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In order to get (i) we have to formalize the above argument in A . It is
clear that this argument can be formalized in IAO + exp, A contains Q ,
hence we can apply Lemma 2.1. O

The usual axiomatizations of PA and ZF are not exactly of this form,
since instead of a single parameter (which is y in Vy ®(¢(y,2z))) they allow
arbitrarily many parameters. Since all sequential theories have a pairing
function, this is an inessential difference. The fact that PA and ZF are
axiomatized by such schemas is provable (for reasonable numerations) already in
IAo + exp . Thus the polynomial upper bounds are true also for PA and ZF .

The theorem of Vaught [18] implies that every recursively axiomatizable
sequential theory is axiomatizable by a schema. We would like to know if it
can be axiomatized by a schema of the form described in Theorem 5.5, (i.e.,

with y free in @).

6. Some problems related to NP = coNP?

So far we have studied only the question of the size of the shortest proof
of ConA(E) in A . But what about the proofs of ConA(E) in weaker

theories? The best that we can say is the following informal proposition.

Proposition 6.1

Let A be a consistent co-NP axiomatization, let Q €SB . Then for a
reasonable numeration of A in B there exists a polynomial p such that for
every n € w

2p(n)
B —— C°“A(E) .

Proof-sketch:
Working in B enumerate all sequences of length < n and check that none

of them is a proof of contradiction in A . O
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Problem 1
Is there a finite consistent axiomatization A , Q € A and a polynomial
p such that

(m)

(1) 4 Con 4 con (n)
A

(2) or A}—BSEL Con (n) ? (Mycielski)
A+ConA(2n)

We conjecture that the answer is no. We have added the finiteness
assumption in order to avoid possible pathological examples, but we do not know
any such example.

The quantifier complexity of the formulas occurring in the proofs of
C°“A(2) that we have constructed in the preceding section increased with n
A truly finitistic proof should have limited quantifier complexity. Such
proofs were used in the proof-sketch of Proposition 6.1, but they were

exponentially long.

Problem 2

Is there a consistent finite axiomatization A , Q S A , a number k and
a polynomial p such that for every n € w there exists a proof of ConA(ﬂ)
in A of length £ p(n) which uses only formulas of complexity Zk ?

Again we conjecture that the answer is no. But we have the following

proposition.

Proposition 6.2

A negative answer to any of the two problems above would imply NP # coNP,

(hence also P # NP) .



194 P. PUDLAK

Proof:
We shall show that such an answer would imply the stronger inequality
NEXP # coNEXP . Sets of numbers which belong to NEXP are exactly those sets
X for which there exists an NP algorithm which accepts 2" iff n€X.
If A is finite, then C°“A(E) , as a predicate on w , is in CcoNEXP .
Proving the counterpositive implications assume that NEXP = coNEXP. Then
for sufficiently large finite part A of the true arithmetical sentences we

have
A |— Con, (x) +> UNP(k,2™)

for some k€ w ; (see the definition of UNP in Section 3). Thus to prove
C°“A(E) in A it is sufficient to find a computation of the Turing machine
with the number k on the input 2" and check in A that it is such a
computation (for the corresponding numeral). The length of this computation is
polynomial in the length of the input, which 1is '2“' = n . Thus the proof of

ConA(x) in A has polynomial length and bounded quantifier complexity.
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