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We describe phenomenologically the sound propagation at ultrasonic and hypersonic frequencies in nematic
and smectic liquid crystals and corresponding isotropic liquid phases. To account for the experimentally
well-established effects the standard hydrodynamic equations should be completed by two nonhydrodynamic
relaxation mechanisms. More specifically, we prove that by a single nonhydrodynamic relaxation mechanism
it is impossible to explain simultaneously both the anisotropy of the sound propagation in the hypersonic
regime and the increase of the elastic constants compared to their values in the ultrasonic range. The possible
origins of these two nonhydrodynamic relaxation mechanisms are briefly disc[S8$663-651X98)14102-§

PACS numbd(s): 64.70.Md, 62.20.Dc

[. INTRODUCTION tigated this problem in detail. Other relaxation processes
have been considered in order to account for or to predict
The dynamics of collective propagation modes at ultra-experimental behaviors of some mesophases. For example,
sonic [1-6] and hypersonid7—13 frequencies has been in the case of nematic side-chain polymers, Pleiner and
studied experimentally in a large number of compoundsBrand[20] introduced the nematic order parameter itself as
Qualitatively, there are two important general features thagh efficient relaxator for providing sound anisotropy in such
characterize the sound propagation in nematic and smectgompounds.
liquid crystals: (i) There is a significant increase of the To our knowledge, a deeper discussion of a general
sound velocity in the hypersonic regime compared to theéscheme, which is supposed to explain the very similar elastic
ultrasonic one both in isotropic liquids and in nematic andProperties of low-molecular-weight nematics and smectics, is
smectic phases of liquid crystalline materials #ingthere is  still lacking. In this paper we intend to fill the gap between
a |arge anisotropy in the propagation of acoustic modes i[ﬁ)l’EViOUSl)/ considered mechanisms and actual properties of a
mesophases at hypersonic frequencies. On the other hand’rather Iarge class of materials. We do not restrict the solution
ultrasonic frequencies, this anisotropy is usually significantlyof the problem to two particular directioripropagation par-
reduced in smectics and practically disappears in nematicdllel or perpendicular to the directorwhich is usually the
Formally, the sound anisotropy can be well described by &ase, and we show that the behavioiGf (which does not
stiffness tensor with effective values of elastic constantgontribute to the propagation velocity in these simple direc-
[7,12,13. Due to the uniaxial symmetry of both nematic- tions) is crucial for understanding the whole process. In order
and smectidA phases, and due to vanishing of the sheai0 obtain satisfactory agreement with experimental results we
components of the strain, only three constants are neededhow that it is necessary to introduce two nonhydrodynamic
namely,Cy;, Cy3, andCas. relaxation processes into the system of usual hydrodynamic
It is well known[12,14) that the hydrodynamic procedure €guations describing the sound propagation; one of the relax-
alone cannot account quantitatively for the observed anisoftors will be identified with the kinetic-energy transfer, as
ropy in liquid crystals and, in addition, the differences be-usual, and the nature of the second one will be discussed and
tween ultrasonic and hypersonic propagation C|ear|y Sugge%@ntaﬂvew attributed to the above-mentioned relaxation of
the existence of relaxation mechanisms in between the ultrghe nematic order parameter.
sonic and hypersonic frequency ranges. A relaxation mecha- We devote the next section of this paper to clarifying the
nism of quite general nature has to play a significant role; irProcess by which a relaxator provides anisotropy using an
particular, it should not be related to either any structuraelementary model. In Sec. Ill, comparing with typical experi-
relaxation process or molecular ordering in liquid crystals agnental data, we show that some important questions remain
pointed out in a number of papditl,15,16. Actually, such ~ unsolved using this model. Finally, in the last section we
a relaxation mechanism is well knoWa7] and consists in show that an appropriate description of the dynamics of lig-
the transfer of the kinetic energy of molecules due to colli-Uid crystals has to involve the participation of a second re-
sions into their vibrational degrees of freedom. This relaxJaxator closely related to the isotropic-mesophase transition.
ation mechanism was studied very thoroughly in liquids and
in isotropic phases of materials showing various mesophasesl. ANISOTROPY INDUCED BY A SINGLE RELAXATOR
(see e.g., Ref$l1, 15, 16, 18. Liu [19] has generalized the
hydrodynamic theory by including slowly relaxing quantities
when treating the nematic—smechAcphase transition and Let us first consider the nematic case. As is kndd],
has remarked that a molecular relaxation would introduceup to the first order in the wave-vector components, the ve-
anisotropic dispersion in liquid crystals but he has not invesiocity field ¢ is not coupled to the director orientation. Then,

A. Nematics
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in the absence of any relaxation process, the equations @fherek cosd andk sin 6 are the parallel and perpendicular

motion for v and for the density fluctuatiop can be ob- components of the wave vector, respectively.

tained from the mass and momentum conservation [246 For w7<<1, the solutions consist of a pair of propagation
We introduce a relaxatoR. Its physical meaning has modes showing an isotropic velocity (w= *vgk) and of a

been mentioned in the introduction, thBRsdescribes the de- diffusive mode [w= —i7(dv)? sinfd co$ok?] which will

viation from the equilibrium value of the population of the not be considered in the following.

excited molecular vibrational state. Let us denQt¢he gen- For w1, the solutions consist of two pairs of propaga-

eralized force conjugate 8. The rate of change d® con-  tion anisotropic modes, corresponding to the quasilongitudi-

sists of the dissipativérreversiblg flux that is proportional nal (+) and to the quasitransverée) waves, respectively. It

to Q and of the reactivéreversible flux. The leading termin  is convenient to introduce effective elastic constants such as

the latter is proportional to the gradient of the velocity field,

sinceR is even in time and since a uniform translation does ~ C(8)=pv2 =3[ Cy; Sir? 6+ Cg; co ¢

not alter the nematic stafd9]. Hence, the equation of mo-

tion for R reads

+/(Cyy Sir? 6—Cgycof )%+ C2, sir? 26],

. (5)
R=—aQ+b; — &
Uoax; where
Since the reactive flux should not contribute to the entropy Cozpovg,
production, it has to be compensated by an additional reac-
tive stress ¢ b;;Q) in the conservation equation of momen- Ci = povix= Co(l+x2),
tum. Finally, the equations of motion are ®)
Cas=pov3.=Co(1+Y?),
. n (9Ui _0
PPO Gx, C13=Co(1+Xy),

. dP aQ . ar ( pR) ar ( pR)
4 p. == with x=+\/—|b, ——/, =\/=—|b——].
povit 7% bj; ax, 0, 2 \V Co | P27 g Y=YV Co \ 7 gr

Notice that ifx andy have the same sigit;; lies between
i =0, C,;andCsg, butC,5is smaller than botiC,; andC3; when
28 x andy have opposite signs. In the first case the angular
) o ) variation of the velocity shows only two extrema, @&t 0
wherep, is the equmbnu_m mass density and yvhére;tands (vs,) and 6=m/2 (v4.). In the second casé)=0 and @
for the pressure fluctuation. We do not take into account the. > correspond to velocity maxima and for some valige

viscous properties of the fluid; in the first order they do not; the[0,7/2] interval there is a minimum equal ©(6y): it
contribute to the sound velocity anisotropy. can be shown thaE (o) =Co.

Due to the uniaxial symmetryy;; has only two indepen-
dent components: b;;=b,,=b, andbs;=Db,. The linear-

. &Ui
R+aQ-b; —

When w7 decreases it follows from E@3) that the quasi-
ized expressions d? andQ are written in terms of the three Ipngltudlnal pair Qf modes always exists: the angl,_llar varia-
tion of the velocity keeps the same behavior but its ampli-

I:g%%gd?::)t?ceélvtag\tle?jﬁg:tgPt/haepr’n%%;ggn/ﬁgl ?S(ejrf)tﬁies tude is continuously reduced down to zero; in addition, there
IPIIR= pedQldp) ' 'is an imaginary damping term, which shows a similar angu-
=Po . . . .
With the above assumptions, it can be easily shown tha@" variation; its amplitude reaches a maximum around

the frequencies of the eigenmodes are solutions of the fol= 1+ Concerning the quasitransverse mode, it rapidly be-
lowing equation: comes overdamped whesr decreases; its significant broad-

ening whenwr is not very large may explain that it often

i iv2 cannot be detected experimentally; thus, the frequent ab-
0+ = 0°— (V2 sirt9+vl, co2f)k?w?— — k2w sence of the quasitransverse line in the spectra, which was
T T interpreted as a consequence of its dramatic angular intensity
+u§( 5v)2 sinf cof0 k*=0, (3) variation[13], can also be partly related to the finite value of
wT.
with The contribution of viscosity can be added to E@; it
does not significantly modify the characteristics of propaga-
pé (bll_bL)zqR tion modes and provides an additional damping.
T= 0~ p— ’ (5 )2_—1
gra Podr Po .
B. Smectics
2 2, Ur Pr|* 2 2, Ur PR|? Even in the absence of any relaxator contribution the
Vi.=Uot o b, - o) ' VU0 by = ar/ smectic hydrodynamic variable (displacement of the smec-

(4)  tic layer9 induces an effective non-negligible stresﬁ’
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[0 =0,p+®3(dul3z), whereo, and @5 have been de-

fined previously{13,27]]. When the relaxator is introduced - c
and when the slow dissipative hydrodynamic contributions = 4 @
are neglected, the equations of motion are written as ; Chs
&
- v 0 (E); 3 Cun
PTPo ax; =Y 0
£
o 1 ¢
., 9P dcld  9Q 0 g2 ’
PoVi Ix; iz " o7 ij &Xj_ ) ﬁ L
(7) , , .
u=v=0, g4 9 ®)
g
. JU; .
R+aQ— b'l (9_)(|:0 g Cyy
j % 3F
3 G
The propagative solutions do not differ from those concern- & Cn
ing the nematics given in the preceding subsection. But now ‘g 5l
C,3andCs3 show an additional frequency-independent term, %
respectively equal te- o, and®3;—20,, which preserves a o Mesophase Tsotropic
nonzero anisotropy whewn— 0. Namely, 1 . L . ! .
0 10 20 30
0—0: C;=Cy, Cy3= Co_ﬂ'p: Temperature (arb. units)

C33=Co—20,+ s, FIG. 1. Two possible types of behavior of the elastic constants

in a one-relaxator model, assuming that the splitting at the
mesophase-isotropic phase transition is continuassalways ob-
served. (a) First-type relaxator: x andy have the same signéh)
Cas= Co(1+y2)_20p+(1)3- second-type relaxator:x andy have opposite signs.

W— 0] C11: C0(1+X2), C13: C0(1+Xy)_0p’

lIl. COMPARISON WITH EXPERIMENTAL DATA ity. This accounts for hardening and anisotropy. The difficul-
. . ) ) ties arise when one tries to interpret this anisotropy in more
As pointed out in the Introduction, most of the published g4l
hypersonic data are well fitted using a tensor of elastic con- 1,0 qualitatively different behaviors are predicted by the
stants with three independent components. In the case @fggel depending on the signsxandy. If x andy have the
nematic quuid_ crystals, one easily calculafgs-x| andCy  ggme sigrfFig. 1(a)], C, is smaller tharCy;, Cys, andCas
from the obtained values @;,, Cy3, andCsz as in the mesophasé.e., the Brillouin and ultrasonic data can
(Cy1—Ci)? differ significantly but, on the other handC,3 has to lie
Co=Cy1— i betweenCq; andCs; [cf., Eq.(6)]. The larger the difference
C111tC33—2Cy3 between ultrasonic and hypersonic data, the closer the value
of Cq3to its upper limityC;,C3s. If X andy have opposite

L b —b = [C11+C33—2Cy3 g signs[Fig. 1(b)] C,5 in the mesophase is smaller than both
ly=x|= c_o| i—by[= Co . ® Ci1 and C; but it is also inferior toC,, which has to be

equal toC(6y) (=C;3) as shown in the preceding section. If
when we assumed thatm>1. the splitting of the elastic constants is continuous at the

Generally, when a compound does exist in both nematiésotropic-mesophase transition, then the difference between
and smectic phases only very weak anomalies are observdgypersonic and ultrasonic data should necessarily vanish in
at the transition between these two phases, which indicatgbe isotropic phase. In the following, we will refer to the
that the hydrodynamic contributions are not predominantrelaxators leading to temperature dependencies shown in
Thus, for the sake of simplicity, we shall neglect them in theFigs. 1@ and Xb) as the relaxators of first and second type,
following discussion which will be based on E@6) and(8). respectively.

When assuming that the general relaxation process lies Experimentally, in every case where both ultrasonic and
between ultrasonic and hypersonic frequency ran@es hypersonic data exist for the same compound, the ultrasonic
shown experimentally by Grammex al. [11]) one under- velocity is smaller than the hypersonic one in both isotropic
stands some differences between the propagation velocitiegd liquid crystalline phases, whatever the direction of
in these two regimes: at ultrasonic frequencies the velocitpropagation is. It means thatandy do have the same signs
is isotropic and, as it clearly appears in E4), the velocities and, consequently, thé&t;; should lie betweel€; andCsg,
for 6=0 (wave vector parallel to the direcjoand 6= /2 in contradiction with most of the experimental results.

(wave vector perpendicular to the diregtare obtained by Concerning the value o3, two situations are found in
adding positive different terms to the low-frequency veloc-the experimentsi) C,3is inferior both toC;; and toCgz as,
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In conclusion, the model developed above fails to simul-

3 o
b taneously account for the observed characteristics of the an-
28 a isotropy in the hypersonic regime and the increase of the
g . elastic constants compared to their values in the ultrasonic
Qos | range. Note that if one supposes thatis finite (but large
§ : enough to allow an anisotropythe results of the discussion
£ 24 u are not qualitatively modified and the above-mentioned dif-
® . ficulties remain.
-%” 22 F
o > b IV. TWO-RELAXATOR MODEL
- Smectic ' Isotropic To overcome the preceding contradiction, we shall intro-
8 3'0 ' 4'0 ' 5'0 Te0 70 duce into the system another relaxator described by the vari-
Temperature (°C) aple R’ and the conjuggte forc_@’. The physical qrigin of _
this second relaxator will be discussed later. Obviously, it is
1 not smart to introduce many unknown material constants and
() therefore, we shall simplify our model as much as possible.
08 - First, we neglect the dynamical coupling between two relax-
ators, i.e., the dissipative flux is proportional to the general-
06| ized force of the corresponding relaxator only. Also, we will
X A neglect the cross derivatives in the expansion® @ndQ’,
= i.e., we putdQ/JdR’=3dQ’'/dR=0.
Since the form of the equation of motion fQ’ is the
same as that fo we immediately get the following high-
02
frequency resultfcompare to Eqs6)]:
L Ca=Co(1x7+x%),
Temperature (°C) Cas= C0(1+y2+y’2),
FIG. 2. (3) Experimental data taken in OBAMBCPE by Bril- C13=Co(1+xy+x'y’), 9

louin scattering; Cg is the calculated value of the low-frequency
elastic constant using E@8) in the one-relaxator mode(b) Cal- ~ Wherex’ andy’ are defined in the same way asandy.
culated temperature dependencies of the paramxeterdy (both In these expressions there are enough independent param-
tend to zero when the phase transition is approached from heloweters to fit the behavior of the elastic constants. However, the
only possibility of describing experiments in a general way,
for example found in CBOOA[9], in B-methyl butyl ie., without any accidental mutual compensations of
pl(p-methyoxy benzylidingaming| cinnamate[7], in 8CB  temperature-dependent parameters, is to admit that the in-
[23], and in OBAMBCPE[13]. Figure 2 illustrates an ex- volved relaxators are of different typédiscussed aboye-
ample of contradiction derived from our recently publishedmore specifically, a relaxator of the first typef., Fig. 1(a)]
Brillouin data concerning OBAMBCPEL3]; in this figure  characterized by the same signsxadndy, which is mainly
we show the variation dfy— x| versus temperature assuming responsible for the hardening of the elastic constants at hy-
that w7 is significantly larger than one. In this caseandy personic frequencies, and a relaxator of the second[isfpe
should have opposite sigfisee Eq(6)] and tend to 0 at the Fig. 1(b)] characterized by the opposite signsxéfandy’,
mesophase-isotropic phase transition. Such a conclusion ¥ghich is responsible for a significant hypersound anisotropy
not correct, since it would mean that the difference betweein the mesophase. It should be emphasized that the relaxator
the ultrasonic and hypersonic propagation velocities shouldf the second type becomes ineffective in the isotropic
vary with temperature and progressively vanish when thghase: it follows immediately from E@9). The relaxatoRRr,
phase transition is approached; this is in contradiction withrelated to the dynamics of the population of excited vibra-
the admitted physical interpretation of the relaxator, namelytional state, is a general only slightly temperature-dependent
with the experimentally verified fadtL1] that it is a nearly  process that is clearly present in ordinary organic liquids. No
temperature-independent proceég). C3 is approximately drastic changes in its characteristics near mesophase-
equal toC;; (which in these cases is always smaller thanisotropic phase transition can be expected. Therefore, we
C35), as found for example in 5CB and 6CB by lgeret al.  identify it with the relaxator of the first type. In addition, it is
[12]. These authors find a large and temperature-independewnéry likely that the anisotropy introduced by this kind of
difference between the elastic constants measured in ultrgrocess is rather smalb(~b,).
sonic and hypersonic frequency ranges. On the other hand, Now the relaxatoR’ has to be necessarily of the second
C,3 remains practically equal t€,; below the isotropic- type. Since it becomes effective just at the isotropic-nematic
nematic transition, which meansf., Eq. (6)] that eitherx (or isotropic-smectictransition, it can be connected with the
=0 orx=y. FromCg;# C,; we deduce that#y and then nematic order parametes; =S(T)(ninj—%5”). We have
necessarilyC,,=C,, in contradiction with the large differ- already mentioned that the hydrodynamic fluctuations of the
ence between ultrasonic and hypersonic measurements. director componenty; practically do not influence the
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propagation of sound in nematics. However, one should alsthe derived sound dispersion relations are essentially the
consider the fluctuations of magnitu@eof the order param- same as in Ref20], where only one nonhydrodynamic vari-
eter, which is not a hydrodynamic varialj24], and in fact  able has been introduced and the explicit angular dependence
we identify it with the second relaxatd®’. Although far  of anisotropic properties is not presented.
away from the isotropic-nematic transition the fluctuations of
the nematic order parameter are usually discaf@&ji be-
cause they relax on a microscopic time scale, we believe that V. CONCLUSION
near the phase transition they are slow enough to be effective
at the hypersonic frequency range. It should be pointed out In order to describe qualitatively the anisotropic propaga-
that just above the isotropic-nematic transition there exists &on of sound in liquid crystals as well as the increase of
semislow motion of nematic clusters that gives rise to severadffective elastic constants at hypersonic frequencies, two
temperature-dependent effects such as pretransitional pheenhydrodynamic relaxation mechanisms should be consid-
nomena. Since even at ultrasonic frequencies no importamred in the conventional hydrodynamic treatment of sound
temperature dependence of elastic constants has been giyopagation. The first mechanism, which is effective also in
served, this type of motion is already clamped and does ndhe isotropic phase, is connected to the energy transfer from
need to be considered explicitly. kinetic to vibrational motion of molecules. The second
The nematic order-parameter modulus as an additionahechanism, which is responsible mostly for the anisotropic
nonhydrodynamic variable has already been introduced exsound propagation in the hypersonic frequency range, might
plicitly into macroscopic dynamic equations for the nematicbe related to the fluctuations of the nematic order-parameter
liquid-crystalline side-chain polymégg0]. In this system, far magnitude. Both of these mechanisms have been treated in-
away from any phase transition, the nematic order-parametetependently at different occasions by previous authors
fluctuations are slowed down by the hindrance due to thé¢11,15,2Q. Our analysis suggests that they should be consid-
backbone. Our system of macroscopic equations as well a&red simultaneously.
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