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Abstract. Asymptotic properties of the half-linear difference equation

(∗) ∆(an|∆xn|
α sgn∆xn) = bn|xn+1|

α sgnxn+1

are investigated by means of some summation criteria. Recessive solutions and the Riccati
difference equation associated to (∗) are considered too. Our approach is based on a classi-
fication of solutions of (∗) and on some summation inequalities for double series, which can
be used also in other different contexts.
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1. Introduction

Consider the half-linear difference equation

(1) ∆
(

an|∆xn|α sgn∆xn

)

= bn|xn+1|α sgnxn+1,

where a = {an}, b = {bn} are positive real sequences for n > 1 and α > 0.

The qualitative behavior of solutions of (1) has been investigated, from different

point of view, in several recent papers: see, e.g., [3], [4], [10], [12] and references
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Project 0021622409 of the Ministery of Education of the Czech Republic.
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therein. Clearly, if x = {xn} is a solution of (1), then −x is a solution too. Hence,

for the sake of simplicity, we restrict our study to solutions x for which xn > 0 for

large n. It is easy to show that any nontrivial solution of (1) is nonoscillatory and

for large n monotone, see, e.g., [2, Lemma 1]. More precisely, any nontrivial solution

x of (1) belongs to one of the two classes listed below:

� + = {x solution of (1) : xk > 0, ∆xk > 0 for large k},
�

− = {x solution of (1) : xk > 0, ∆xk < 0 for k > 1}.

Clearly, solutions with initial conditions x1 > 0, ∆x1 > 0 are in the class
� + ; also�

− 6= ∅ as follows, e.g., from [2, Theorem 1] or from [1, Th. 6.10.4], [11], with minor
changes. Since both the classes are nonempty, the set of solutions of (1) presents a

dichotomy.

The aim of this paper is to continue the study started in [4], by characterizing this

dichotomy by means of some summation criteria and by examining the role of the

so-called asymptotically constant solutions. These results can be interpreted also in

the context of recessive and dominant solutions of (1), because in many cases, the

classes
�

−and
� + coincide with these solutions, respectively.

Special attention is given to the corresponding Riccati difference equation

(2) ∆wn − bn +
(

1 − S(an, wn)
)

wn = 0,

where

S(an, wn) =
an

∣

∣(an)1/α + |wn|1/α sgnwn

∣

∣

α sgn
(

(an)1/α + |wn|1/α sgnwn

)

.

Equation (2) is closely related to (1). Indeed, when (1) is nonoscillatory, for any

solution x of (1) the sequence w = {wn}, where

(3) wn =
an|∆xn|α sgn∆xn

|xn|α sgnxn
,

is a solution of (2) for large n.

The paper is organized as follows. Section 2 is devoted to summation inequalities.

They originate from analogous ones involving double integrals and are presented in

an independent form, because they can be applied also in other different contexts,

as it is shown in [6]. In Section 3 a brief review on qualitative behavior of solutions

of (1) is given. Using these results, in Section 4 some summation characterizations

of classes
�

−and
� + are presented jointly with applications to recessive solutions
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of (1). Finally, in Section 5 asymptotic properties of solutions of the generalized

Riccati equation (2) are obtained. Several illustrative examples complete the paper.

We close this section by introducing some notation. For any solution x of (1)

denote by x[1] = {x[1]
n } its quasi-difference, where

x[1]
n = an|∆xn|α sgn∆xn.

Put

W1 = lim
N→∞

N
∑

n=1

bn

( N
∑

k=n

( 1

ak+1

)1/α
)α

, W2 = lim
N→∞

N
∑

n=1

(

1

an

N
∑

k=n

bk

)1/α

Z1 = lim
N→∞

N
∑

n=2

(

1

an

n−1
∑

k=1

bk

)1/α

, Z2 = lim
N→∞

N
∑

n=2

bn

( n−1
∑

k=1

( 1

ak+1

)1/α
)α

and

Ya =

∞
∑

n=1

( 1

an

)1/α

, Yb =

∞
∑

n=1

bn, Yab =

∞
∑

n=1

( 1

an

)1/α
( ∞
∑

k=n

bk

)(1−α)/α

.

�������	��

1. It is easy to verify that the following relations hold:

(i1) If Z1 < ∞, then Ya < ∞.
(i2) If W2 < ∞, then Yb < ∞.
(i3) Z1 < ∞ and W2 < ∞ if and only if Ya < ∞ and Yb < ∞.

2. Series relations

As we have shown in [4], [5], [7], an important tool in the asymptotic theory of half-

linear differential and difference equations is the change of integration and summation

for certain double integrals and series, respectively. This section contributes to this

problem by giving two new summation inequalities which will be useful later.

Let A = {An}, B = {Bn} be two sequences of nonnegative numbers and let λ, µ

be two positive numbers. Denote

(4) Sλ(A, B) = lim
N→∞

N
∑

n=1

Bn

( n
∑

k=1

Ak

)λ

, Tµ(A, B) = lim
N→∞

N
∑

n=1

An

( N
∑

k=n

Bk

)1/µ

.

When λ = µ, it is proved in [4, Theorem 1] that if λ = µ > 1, then for any N > 1

(

N
∑

n=1

An

( N
∑

k=n

Bk

)1/µ
)µ

>

N
∑

n=1

Bn

( n
∑

k=1

Ak

)µ

.

349



Similarly, if λ = µ 6 1, then for any N > 1

N
∑

n=1

Bn

( n
∑

k=1

Ak

)µ

>

( N
∑

n=1

An

( N
∑

k=n

Bk

)1/µ)µ

.

Hence

(5)
Tµ(A, B) < ∞ =⇒ Sµ(A, B) < ∞ when µ > 1,

Sµ(A, B) < ∞ =⇒ Tµ(A, B) < ∞ when µ 6 1.

To extend relations (5) for µ 6= λ, let f , g be two nonnegative functions and

f, g ∈ L1
loc[1,∞). Define

Iλ(f, g) = lim
T→∞

∫ T

1

g(t)

(
∫ t

1

f(s) ds

)λ

dt,

Jµ(f, g) = lim
T→∞

∫ T

1

f(t)

(
∫ T

t

g(s) ds

)1/µ

dt.

If λ = µ = 1, in view of the Fubini theorem we have I1(f, g) = J1(f, g). Further, if
∫

∞

g(t) dt = ∞, then Iλ(f, g) = Jµ(f, g) = ∞. In general, the following holds.

Lemma 1.

(i1) If µ < λ, then

Iλ(f, g) < ∞ =⇒ Jµ(f, g) < ∞.

(i2) If µ > λ, then

Jµ(f, g) < ∞ =⇒ Iλ(f, g) < ∞.

�
�������
. The assertion has been proved in [5, Lemmas 1, 2], under the stronger

assumption that f , g are positive and continuous on [0,∞). In the more general

case considered here, the assertion follows again from [5, Lemmas 1, 2], with minor

changes. �

A similar result for series holds.
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Lemma 2.

(i1) If µ < λ, then

Sλ(A, B) < ∞ =⇒ Tµ(A, B) < ∞.

(i2) If µ > λ, then

Tµ(A, B) < ∞ =⇒ Sλ(A, B) < ∞.

�
�������
. The assertions easily follow from Lemma 1. Claim (i1). Define

f(t) = An, g(t) = Bn, if t ∈ [n, n + 1).

We have

∫ N+1

1

g(t)

(
∫ t

1

f(s) ds

)λ

dt =

N
∑

k=1

∫ k+1

k

g(t)

(
∫ t

1

f(s) ds

)λ

dt

=

N
∑

k=1

Bk

∫ k+1

k

( k−1
∑

i=1

∫ i+1

i

f(s) ds +

∫ t

k

f(s) ds

)λ

dt

6

N
∑

k=1

Bk

∫ k+1

k

( k−1
∑

i=1

Ai + Ak

)λ

dt =

N
∑

k=1

Bk

( k
∑

i=1

Ai

)λ

.

Since Sλ(A, B) < ∞, we have Iλ(f, g) < ∞. Applying Lemma 1, we obtain Jµ(f, g) <

∞. Therefore

JN
µ (f, g) =

∫ N+1

1

f(t)

(
∫ N+1

t

g(s) ds

)1/µ

dt =
N
∑

k=1

∫ k+1

k

f(t)

(
∫ N+1

t

g(s) ds

)1/µ

dt

=

N
∑

k=1

Ak

∫ k+1

k

(
∫ k+1

t

g(s) ds +

∫ N+1

k+1

g(s) ds

)1/µ

dt

=

N
∑

k=1

Ak

∫ k+1

k

(

Bk(k + 1 − t) +

N
∑

i=k+1

Bi

)1/µ

dt.

Since t ∈ [k, k + 1], we have 1 > (k + 1 − t). Hence

JN
µ (f, g) >

N
∑

k=1

Ak

∫ k+1

k

(

Bk(k + 1 − t) + (k + 1 − t)

N
∑

i=k+1

Bi

)1/µ

dt

=

N
∑

k=1

Ak

∫ k+1

k

(k + 1 − t)1/µ

( N
∑

i=k

Bi

)1/µ

dt

=

N
∑

k=1

Ak

( N
∑

i=k

Bi

)1/µ ∫ k+1

k

(k + 1 − t)1/µ dt =
µ

µ + 1

N
∑

k=1

Ak

( N
∑

i=k

Bi

)1/µ

,

which yields Tµ(A, B) < ∞. The claim (i2) follows in a similar way. �
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Notice that the vice-versa of Lemma 2 can fail. To this end, consider the sequences

A = {1}, B =
{

(n2 + n)−1
}

. Then S3(A, B) = ∞, T1/2(A, B) < ∞ and so the

converse of Lemma 2(i1) is not true. Similarly, S1/2(A, B) < ∞, T3(A, B) = ∞ and
so the converse of Lemma 2(i2) is not true, either.

3. Classification of solutions

According to the asymptotic behavior of a solution x of (1) and its quasi-difference

x[1], both classes can be a-priori divided into the following subclasses:

� +
l = {x ∈ � + : lim

n
xn = lx, 0 < lx < ∞},

� +
∞,l = {x ∈ � + : lim

n
xn = ∞, lim

n
x[1]

n = lx, 0 < lx < ∞},
� +

∞,∞ = {x ∈ � + : lim
n

xn = lim
n

x[1]
n = ∞},

�
−

l = {x ∈ � − : lim
n

xn = lx, 0 < lx < ∞},
�

−

0,l = {x ∈ � − : lim
n

xn = 0, lim
n

x[1]
n = −lx, 0 < lx < ∞},

�
−

0,0 = {x ∈ � − : lim
n

xn = lim
n

x[1]
n = 0}.

In [4], solutions in the subclasses of
� + and

�
− have been described in terms of

the convergence or divergence of the seriesWi, Zi (i = 1, 2). More precisely, by using

certain summation inequalities, in [4] it is shown that the possible cases concerning

the mutual behavior of these series are the following:

C1 : Z1 = W1 = Z2 = W2 = ∞;

C2 : Z1 = W1 = ∞, Z2 < ∞, W2 < ∞;

C3 : Z1 < ∞, W1 < ∞, Z2 = W2 = ∞;

C4 : Z1 < ∞, W1 < ∞, Z2 < ∞, W2 < ∞;

C5 : Z1 = W1 = ∞, Z2 < ∞, W2 = ∞ (only if α > 1);

C6 : Z1 = ∞, W1 < ∞, Z2 = W2 = ∞ (only if α > 1);

C7 : Z1 = W1 = Z2 = ∞, W2 < ∞ (only if α < 1);

C8 : Z1 < ∞, W1 = Z2 = W2 = ∞ (only if α < 1).

Notice that for α = 1, i.e. for the linear equation, only the cases C1–C4 are possible.

Thus cases C5–C8 illustrate the difference in passing from the linear equation to the

half-linear one.

The following holds, see [4, Proposition 2, Theorems 2,3].
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Theorem A. For solutions of (1) we have:

if C1 holds, then
� + =

� +
∞,∞ ,

�
− =

�
−

0,0 ;

if C2 holds, then
� + =

� +
∞,l ,

�
− =

�
−

l ;

if C3 holds, then
� + =

� +
l ,

�
− =

�
−

0,l ;

if C4 holds, then
� + =

� +
l ,

�
−

0,0 = ∅, � −

0,l 6= ∅, � −

l 6= ∅.

In addition, when α > 1,

if C5 holds, then
� + =

� +
∞,l ,

�
− =

�
−

0,0 ;

if C6 holds, then
� + =

� +
∞,∞ ,

�
− =

�
−

0,l ;

and, when α < 1,

if C7 holds, then
� + =

� +
∞,∞ ,

�
− =

�
−

l ;

if C8 holds, then
� + =

� +
l ,

�
− =

�
−

0,0 .

The asymptotic behavior of x[1], where x ∈ � +
l ∪ � −

l , is given by the following

result, which will be useful in the sequel.

Lemma 3. If

(6) Ya + Yb = ∞

then every solution x ∈ � −

l satisfies lim
n

x
[1]
n = 0 and every solution x ∈ � +

l satisfies

lim
n

x
[1]
n = ∞.

In the opposite case, i.e.Ya + Yb < ∞, every solution x ∈ �
−

l ∪ � +
l satisfies

lim
n

x
[1]
n = cx, where |cx| < ∞.

�
�������
. Assume (6). In virtue of Remark 1, the case C4 does not occur. Let

x ∈ �
−

l and suppose lim
n

x
[1]
n = −cx < 0. From Theorem A, the possible cases

are C2 or C7 and so, from Remark 1 and (6), Yb < ∞, Ya = ∞. Since x[1] is

negative increasing, we have x
[1]
n < −cx and, by summation from n to ∞, we obtain

a contradiction with the positiveness of x.

Now let x ∈ � +
l and assume xn > 0, ∆xn > 0 for n > n0 > 1. Again from Theorem

A, the possible cases are C3 or C8 and we obtain Ya < ∞, Yb = ∞. Summarizing (1)

from n0 to n we have

x
[1]
n+1 − x[1]

n0
=

n
∑

k=n0

bk(xk+1)
α > (xn0+1)

α
n
∑

k=n0

bk

and the second statement follows.
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Now assume Ya + Yb < ∞. Clearly, if x ∈ �
−

l , then lim
n

x
[1]
n = cx, |cx| < ∞.

Let x ∈ � +
l : summarizing (1) from n0 to n (n0 large) and taking into account the

boundedness of x, we have for some h > 0

x
[1]
n+1 − x[1]

n0
=

n
∑

k=n0

bk(xk+1)
α 6 h

n
∑

k=n0

bk

from where the last statement follows. �

As already mentioned, in [10] the concept of recessive solutions for (1) has been

defined using certain asymptotic properties of solutions of (2). It reads for (1) with

bn > 0 as follows: there exists a unique solution v of (2) with the property

vn < wn for large n

for any other solution w of (2) defined in some neighbourhood of ∞. Solution v is

said to be eventually minimal. The sequence u, where

(7) ∆un =
|vn|1/α sgn vn

(an)1/α
un,

is a solution of (1) and is called a recessive solution of (1). Any nontrivial solution

of (1), which is not recessive, is called a dominant solution. Obviously, recessive

solutions of (1) are determined up to a constant factor.

From Theorem A and Lemma 3 (see also [4]) the following asymptotic character-

ization of recessive solutions of (1) completes that in [4, page 12].

Corollary 1. Let u be an eventually positive solution of (1). Except for the case

C4, the solution u is recessive if and only if u ∈ � − . In addition, recessive solutions

satisfy

lim
n

un = lim
n

u[1]
n = 0 in cases C1, C5, C8;

lim
n

un = lu > 0, lim
n

u[1]
n = 0 in cases C2, C7;

lim
n

un = 0, lim
n

u[1]
n = lu < 0 in cases C3, C6.

In the case C4 u is a recessive solution if and only if lim
n

un = 0 and lim
n

u
[1]
n = lu < 0.
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4. Summation characterizations

As already claimed, the set of solutions of (1) exhibits a kind of dichotomy for

classes
�

− and
� + . In this section we characterize this dichotomy in a unified

way based on summation criteria, jointly with a discussion about the above given

classification C1–C8.

Put

Γu =

∞
∑ 1

a
1/α
n unun+1

;

Λu =

∞
∑ bn

u
[1]
n u

[1]
n+1

;

Ωu =

∞
∑ 1

an|∆un|α−1unun+1
=

∞
∑ |∆un|

|u[1]
n |unun+1

.

Theorem 1. Let u be a nontrivial solution of (1) and assume

(8) Z2 + W2 = ∞.

Then the following holds:

(9) u ∈ � − ⇐⇒ Γu = ∞ ⇐⇒ Λu = ∞ ⇐⇒ Ωu = ∞.

�
�������
. First observe that in view of (8) the only possible cases are C1, C3,

C5–C8.��� ���
1: u ∈ � − ⇐⇒ Γu = ∞. In view of Corollary 1, the assertion follows from

[3, Th. 4].��� ���
2: u ∈ � − ⇐⇒ Λu = ∞. It is easy to verify that the sequence y = u[1]

satisfies the difference equation

(10) ∆
(( 1

bn

)1/α

|∆yn|1/α sgn ∆yn

)

=
( 1

an+1

)1/α

|yn+1|1/α sgn yn+1.

Obviously, u ∈ � − if and only if yny
[1]
n < 0. Then, by applying Step 1 to (10), the

assertion follows.��� ���
3: u ∈ � − =⇒ Ωu = ∞. Let u ∈ � − . Taking into account

(11)
a
1/α
n unun+1

an|∆un|α−1unun+1
= a(1−α)/α

n |∆un|1−α = |u[1]
n |(1−α)/α sgnu[1]

n ,
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if lim
n

u
[1]
n = lu,−∞ < lu < 0, by the comparison criterion, the series Γu and Ωu have

the same behavior. Then, by applying Step 1, the assertion follows. If lim
n

u
[1]
n = 0 and

α > 1, again, by using the comparison criterion, the assertion follows. If lim
n

u
[1]
n = 0

and α < 1, then, in virtue of (8) and Theorem A, the possible cases are C1, C7, C8.

If C1 or C8 occurs, taking into account that u[1] is negative increasing, we have for

large n0

(12)
1

|u[1]
n0
|

∞
∑

n=n0

|∆un|
unun+1

=
1

|u[1]
n0
|

∞
∑

n=n0

∆
( 1

un

)

and so Ωu = ∞. Now assume the case C7. By Corollary 1, lim
n

u
[1]
n = 0. Summing

(1) from n to ∞, we obtain

−u[1]
n =

∞
∑

k=n

bk(uk+1)
α.

Since u ∈ � −

l , we have

−u[1]
n ∼

∞
∑

k=n

bk,

and therefore

|∆un|α−1 ∼
( 1

an

)(α−1)/α
( ∞
∑

k=n

bk

)(α−1)/α

,

where the symbol cn ∼ dn means that lim
n

cn/dn is finite and different from zero.

Then

(13)
|∆un|
|u[1]

n |
=

1

an

1

|∆un|α−1
∼
( 1

an

)1/α
( ∞
∑

k=n

bk

)(1−α)/α

.

Because the case C7 holds, we have Z2 = ∞. Putting λ = α and An = (1/an)1/α,

Bn = bn, from (4) we obtain Sλ(A, b) > Z2 = ∞. Since α < 1, we have α < α/(1−α)

and so, by applying Lemma 2 with µ = α/(1 − α), we obtain

∞ = Tµ(A, b) =

∞
∑

n=1

( 1

an

)1/α
(

∞
∑

k=n

bk

)(1−α)/α

which, in view of (13), gives the assertion.
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��� ���
4: Ωu = ∞ =⇒ u ∈ � − . By contradiction, suppose u ∈ � + . Since u[1] is

positive increasing for large n, there exists a positive constant h such that u
[1]
n > h

for n > n0 > 1. Then

∞
∑

n=n0

|∆un|
|u[1]

n |unun+1

6
1

h

∞
∑

n=n0

|∆un|
unun+1

=

∞
∑

n=n0

∆
( 1

un

)

< ∞,

a contradiction.

From Steps 1–4, the assertion follows. �

In Theorem 1, the condition (8) is assumed. If both the series W2, Z2 are conver-

gent, the possible cases are C2 or C4 and the situation is different.

When the case C2 holds, then

(14) u ∈ � − ⇐⇒ Γu = ∞ ⇐⇒ Λu = ∞,

as can be proved by using [3, Th. 4] and an argument similar to that given in the

proof of Theorem 1. In a similar way, the statement

Ωu = ∞ =⇒ u ∈ � −

continues to hold, but the opposite implication can fail, as the following example

shows.

� ���	�������
1. Consider the equation

(15) ∆
(

|∆xn|1/2 sgn∆xn

)

= (2 −
√

2)2−3/2 2−n/2

(1 + 2−n−1)1/2
|xn+1|1/2 sgnxn+1.

It is easy to verify that the sequence u, where

un = 1 + 2−n,

is a solution of (15) in the class
�

− . Clearly, the case C2 holds and

Ωu ∼
∞
∑

2−n/2 < ∞.

Now consider the case C4. In such a case we have

(16) x ∈ � + =⇒ Γx < ∞, Λx < ∞, Ωx < ∞,

i.e. any of the conditions Γu = ∞, Λu = ∞, Ωu = ∞ yields u ∈ � − .
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To prove this, let x ∈ � + . From [3, Th. 4] we obtain Γx < ∞. Since x[1] is positive

increasing for large n, there exists n0 > 1 such that x
[1]
n x

[1]
n+1 > x

[1]
n0

x
[1]
n0+1 > 0 for

n > n0 and so

(17)

∞
∑

n=n0

bn

x
[1]
n x

[1]
n+1

6
1

x
[1]
n0

x
[1]
n0+1

∞
∑

n=n0

bn.

Since C4 holds, from Remark 1 we have Yb < ∞ and so (17) yields Λx < ∞. Finally,

by the same reasoning as in the proof of Theorem 1, Step 4, we obtain Ωx < ∞.

In addition, in the case C4 also the statement

(18) Γu = ∞ =⇒ Ωu = ∞

continues to hold. Indeed, because Γu = ∞, u is a recessive solution of (1) ([3,

Th. 4]). Then from Corollary 1 we obtain lim
n

u
[1]
n = l 6= 0 and the assertion follows

from (11) by using the comparison criterion for series.

Notice that, when the case C4 occurs, the vice-versa of (16) and (18) are not true,

as the following examples show.

� ���	�������
2. Consider the equation

(19) ∆
(

n(n + 1)3|∆xn|2 sgn∆xn

)

=
n + 1

n(n + 2)2
|xn+1|2 sgnxn+1.

It is easy to verify that the sequence u, where

(20) un =
n + 1

n
,

is a solution of (19) in the class
�

− satisfying lim
n

u
[1]
n < 0. Clearly the case C4 holds

and

Λu =

∞
∑ n + 1

(n + 2)3
< ∞, Γu =

∞
∑ n1/2

(n + 1)3/2(n + 2)
< ∞,

Ωu =
∞
∑ n

(n + 1)2(n + 2)
< ∞.

� ���	�������
3. Consider the equation

(21) ∆
(

n2(n + 1)4|∆xn|4 sgn∆xn

)

=
(2n + 1)(n + 1)2

n2(n + 2)4
|xn+1|4 sgnxn+1.
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Then the sequence u defined by (20) is a solution of (21) such that u ∈ �
− and

lim
n

u
[1]
n = 0. Again the case C4 holds and

Λu =
∞
∑ (2n + 1)(n + 1)4

(n + 2)2
= ∞, Γu =

∞
∑ n1/2

(n + 1)(n + 2)
< ∞,

Ωu =
∞
∑ n2

(n + 1)(n + 2)
= ∞.

Hence the vice versa of (18) does not hold. Notice that in (21) we have α > 1. If

α 6 1, then, by using the comparison criterion for series, it is easy to show that

Ωu = ∞ =⇒ Γu = ∞.

A closer examination of Examples 1–3 shows that the partial lack of equivalency

between statements in (9) originates from the existence of asymptotically constant

solutions of (1) in the class
�

− , i.e. solutions u ∈ � − satisfying

(22) lim
n

un = l 6= 0, lim
n

u[1]
n = 0.

As follows from Theorem A and Lemma 3, these solutions exist when any of the

cases C2, C4, C7 occur. In the case C7 Theorem 1 holds, while the remaining cases

are described in the following theorem.

Theorem 2. Let u ∈ � − satisfy (22).

If C2 holds, then Γu = Λu = ∞ and, when α > 1, Ωu = ∞. If α < 1, we have

Ωu = ∞ if and only if Yab = ∞.
If C4 holds, then Γu < ∞, Λu = ∞ and, when α 6 1, Ωu < ∞. If α > 1, we have

Ωu = ∞ if and only Yab = ∞.
�
�������

. Consider the case C2. As we have noticed above, (14) holds. Concerning

the series Ωu, when α > 1, by using (11) and the comparison criterion for series Γu,

Ωu, we obtain Ωu = ∞. If α < 1, from (13) we obtain

1

an

1

|∆un|α−1unun+1
∼
( 1

an

)1/α
( ∞
∑

k=n

bk

)(1−α)/α

,

which yields Ωu = ∞ if and only if Yab = ∞.

Now consider the case C4. By Remark 1 we have Ya < ∞ and so Γu < ∞. Taking

into account that u is positive decreasing, from (1) we obtain ∆u
[1]
n 6 hbn, where

h = uα
2 , or

bn >
1

h
∆u[1]

n .
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Then

Λu >
1

h

∞
∑ ∆u

[1]
n

u
[1]
n u

[1]
n+1

= − 1

h

∞
∑

∆
( 1

u
[1]
n

)

= ∞.

Concerning the series Ωu, when α 6 1, by using (11) and the comparison criterion

for series, we obtain Ωu < ∞.

If α > 1, applying the argument used in the final part of the previous case, we

have Ωu = ∞ if and only if Yab = ∞. �

Concerning the class
� + , summarizing the above results, we obtain the following.

Corollary 2. If (8) holds, i.e. if any of the cases Ci, i ∈ {1, 3, 5, 6, 7, 8} occurs,
then

x ∈ � + ⇐⇒ Γx < ∞ ⇐⇒ Λx < ∞ ⇐⇒ Ωx < ∞.

If the case C2 holds, then

x ∈ � + ⇐⇒ Γx < ∞ ⇐⇒ Λx < ∞

and, if α > 1,

x ∈ � + ⇐⇒ Ωx < ∞.

If the case C4 holds, then (16) holds.

�
�������
. The assertion follows from Theorems A, 1 and 2. �

�������	��

2. Except for the case C4, solutions in

�
− or

� + are recessive or

dominant, respectively (see, e.g., Corollary 1). Hence the above results can be used

for improving asymptotic properties of recessive and dominant solutions of (1). In

view of Corollary 1, the solutions considered in Theorem 2 are recessive solutions

when C2 occurs, and dominant solutions in the case C4. In the case C4, recessive

solutions belong to
�

−

0,l and in view of (11), (12) and (17) they satisfy

u ∈ � −

0,l =⇒ Γu = ∞, Λu < ∞, Ωu = ∞.

5. Riccati difference equation

In this section we describe asymptotic properties of solutions of (2). Here the

notation f → 0+ means that lim
n

fn = 0, whereby fn > 0 for all large n, and,

similarly, f → 0− means that lim
n

fn = 0 and fn < 0 for all large n.
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Theorem 3. Let v be the minimal solution and w any other solution of (2).

If C2 holds, then w → 0+, v → 0− ;
if C3 holds, then w → ∞, v → −∞;
if C4 holds, then w → cw, cw ∈ � , v → −∞;
if C5 holds, then w → 0+;

if C6 holds, then v → −∞;
if C7 holds, then v → 0−;
if C8 holds, then w → ∞.
�
�������

. First consider the minimal solution v. Since any solution u of (7) is a

recessive solution of (1), from Corollary 1 we have u ∈ � − . From (7) we obtain

(23) vn =
u

[1]
n

|un|α sgnun
,

and so the sequence {vn} is negative. If C2 holds, then by Corollary 1, v → 0−.
Using the same argument, we obtain the assertion of Theorem 3 for v also in the

remaining cases C3, C4, C6 and C7.

Now consider any other solution w of (2) and let x be the solution of

∆xn =
(

|wn|/an

)1/α
xn sgnwn, xN = 1.

Clearly, (3) holds. Moreover, x can be defined for n > 1 and we have

0 <
xn+1

xn
= 1 +

∆xn

xn

and therefore

1 +
|∆xn|α sgn ∆xn

|xn|α sgn xn
> 0,

which implies an + wn > 0 for large n. In view of the quoted result of [10], we have

vn < wn for large n, that is

u
[1]
n

|un|α sgnun
<

x
[1]
n

|xn|α sgn xn
for large n.

Hence, by [3, Theorem 4], x is a dominant solution of (1). Applying Theorem A and

Corollary 1 we have

x ∈ � +
∞,l in the cases C2, C5;

x ∈ � +
l in the cases C3, C8;

x ∈ � +
l ∪ � −

l in the case C4,

and the assertion follows from Lemma 3. �
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In some cases Theorem 3 does not describe the asymptotic behavior of v or w.

The following result is related to the recent ones stated in [1] for α = 1 and gives an

answer under additional assumptions.

Theorem 4. Assume that {an} is bounded and Yb < ∞. Let v be the minimal

solution and w any other solution of (2). If v has a limit, then v → 0−. Similarly, if
w has a limit, then w → 0+.

�
�������
. Reasoning as in the proof of Theorem 3 we obtain that an + vn > 0 for

large n, i.e. {vn} is bounded from below. From Corollary 1 and (23), the sequence
{vn} is negative. Hence lim

n
vn = cw, 0 > cw > −∞. Assume, by contradiction,

cv < 0. By summation of (2) we have

vn − vn0
−

n
∑

i=n0

bi =
n
∑

i=n0

(

S(ai, vi) − 1
)

vi,

which implies that the series

∞
∑

i=n0

(

S(ai, vi) − 1
)

vi

converges. Then lim
i

(

S(ai, vi) − 1
)

vi = 0 and so lim
i

S(ai, vi) = 1. Since for large n

|S(an, vn)|1/α
=

1
∣

∣1 + (|vn|/an)1/α sgn vn

∣

∣

,

we obtain

lim
n

vn

an
= 0,

a contradiction.

It remains to prove that any other solution w, which has a limit, must tend to zero.

Since {an} is bounded, the case C4 does not occur. In virtue of Corollary 1 and (3),

the sequence {wn} is positive for large n. If lim
n

wn = ∞, we have lim
n

S(an, wn) = 0

and from

wn − wN +

n
∑

i=N

(

1 − S(ai, wi)
)

wi −
n
∑

i=N

bi = 0

we obtain a contradiction as n → ∞. Hence lim
n

wn = cw > 0 and the case cw > 0

can be eliminated by the same argument as above. �

362



Theorem 4 provides a partial answer concerning the asymptotic behavior of v in

the case C1 or C5 (α > 1). When C8 (α < 1) holds, Theorem 4 cannot be used,

because in this case it is easy to show that Ya < ∞ and Yb = ∞.
As regards other solutions w of (2), a partial answer concerning lim

n
wn follows

from Theorem 4 if C1 or C7 (α < 1) holds. When C6 (α > 1) holds, Theorem 4

cannot be used, because we have Ya < ∞ and Yb = ∞.
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