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ON THE OSCILLATION OF CERTAIN DIFFERENCE EQUATIONS
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Abstract. In this paper we study the oscillation of the difference equations of the form

∆2xn + pn∆xn + f(n, xn−g, ∆xn−h) = 0,

in comparison with certain difference equations of order one whose oscillatory character is
known. The results can be applied to the difference equation

∆2xn + pn∆xn + qn|xn−g|λ|∆xn−h|µ sgn xn−g = 0,

where λ and µ are real constants, λ > 0 and µ � 0.
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1. Introduction

Consider the difference equation

(E) ∆2xn + pn∆xn + f(n, xn−g, ∆xn−h) = 0,

where {pn} is a nonnegative real sequence, 0 � pn < 1, f : �×�2 → � is continuous
for each fixed n, � = {0, 1, 2, . . .}; g and h are in �, ∆ is the first order forward

difference operator, ∆xn = xn+1 − xn.

We assume that there exist an eventually positive real sequence {qn} and real
numbers λ > 0 and µ � 0 such that

(1) f(n, x, y) sgnx � qn|x|λ|y|µ for n � 0 and x y �= 0.

421



By a solution of Eq. (E), we mean a non-constant sequence {xn} satisfying (E) for
n � 0. A solution {xn} is said to be oscillatory if it is neither eventually positive nor
eventually negative, and nonoscillatory otherwise.
In recent years there has been an increasing interest in studying the oscillatory

behavior of difference equations of special cases of type (E) when pn ≡ 0 and con-
dition (1) holds with µ = 0. For recent contributions to this study we refer to the

papers [4]–[9] and the references cited therein. It seems that very little is known
regarding the oscillation of Eq. (E) when f satisfies condition (1) with µ �= 0 and
pn �= 0. Therefore, the purpose of this paper is to present some new criteria for the
oscillation of Eq. (E). Theorems 1 and 2 are concerned with the oscillation of Eq. (E)

via its comparison with the oscillatory character of first order difference equations.
Theorem 3 deals with the oscillation of a special case of Eq. (E) when condition (1)

holds with λ = 1 and µ = 0 and the condition on {pn} introduced in Theorems 1
and 2 is not required or else violated, and Theorems 4 and 5 are concerned with

the oscillatory behavior of the difference of two eventually positive solutions of the
difference equation

(Le) ∆2xn + pn∆xn + qng(xn−g) = en,

where g(x)x > 0 for x �= 0, g′(x) � k and {en} is a sequence of real numbers.
Finally, we remark that this paper is motivated by the analogy between functional

differential equations of the form

(Ec)
d2x(t)
dt2

+ p(t)
dx(t)
dt
+ f

(
t, x(t − g),

dx(t − h)
dt

)
= 0,

where p : [t0,∞)→ [0,∞) and f : [t0,∞)× �
2 → � are continuous and g and h are

real constants, and difference equations of type (E). In fact, discrete versions of some
of the results in [1]–[3] for second order equations have been developed.

2. Preliminaries

We need the following two lemmas. The first is extracted from Lemma 5 in [8]

and the other is Theorem 7.5.1 in [6].

Lemma 1. Assume h : � → � is continuous, xh(x) > 0 and h(x) is nondecreasing

for x �= 0. Let {qn} be a sequence of nonnegative real numbers and k a positive

integer. If the difference inequality

∆xn + qnh(xn−k) � 0
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has an eventually positive solution, then the difference equation

∆xn + qnh(xn−k) = 0

has an eventually positive solution.

Lemma 2. Suppose that {an} is a nonnegative sequence of real numbers and let
k be a positive integer. Then

lim inf
n→∞

[
1
k

n−1∑
i=n−k

ai

]
>

kk

(1 + k)1+k

is a sufficient condition for every solution of the equation

∆xn + anxn−k = 0

to be oscillatory.

3. Main results

Now, we are ready to establish the following criterion for the oscillation of Eq. (E):

Theorem 1. Let condition (1) hold, let

(2) lim
n→∞

n−1∑
k=n0�0

( k−1∏
i=n0

(1− pi)

)
=∞

and

(3)
n+h∑

i=n+1

qi > 0 for sufficiently large n.

If for every ν > 0 the equation

(4) ∆wn + νqn|wn−h|µ sgnwn−h = 0,

is oscillatory, then Eq. (E) is oscillatory.

�����. Let {xn} be a nonoscillatory solution of Eq. (E), say xn > 0 for n �
n0 � 1. First, we claim that {∆xn} is eventually of one sign. To this end, we assume
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that {∆xn} is oscillatory. There exists N � n0+max{h, g} such that ∆xN < 0. Let

n = N in Eq. (E) and then multiply the resulting equation by ∆xN to obtain

∆2xN∆xN = −pN(∆xN )2 − f(N, xN−g, ∆xN−h)∆xN

� −pN(∆xN )2

or

∆xN+1∆xN � (1− pN )(∆xN )
2 > 0,

which implies that
∆xN+1 < 0

By induction, we obtain ∆xn < 0 for n � N , contradicting the assumption that
{∆xn} is oscillatory.
Next, suppose there exists N1 � n0+max{h, g} such that ∆xN1 = 0. Then setting

n = N1 in Eq. (E) leads to

∆2xN1 = −f(N1, xN1−g, ∆xN1−h) � 0,

which implies that

∆xN1+1 � ∆xN1 = 0.

As in the above case, we have seen that this contradicts the assumption that {∆xn}
is oscillatory.
Now, we consider the following two cases:

(I) ∆xn < 0 eventually, (II) ∆xn > 0 eventually.
(I) Suppose that ∆xn < 0 for n � n1 � max{N, N1}. From Eq. (E) it follows that

∆2xn + pn∆xn � 0 for n � n1.

Set zn = −∆xn for n � n1. Then

∆zn + pnzn � 0

or

zn+1 � (1− pn)zn �
n−1∏
i=n1

(1− pi)zn1 ,

where zn1 is an arbitrary constant. Thus,

−∆xk �
k−1∏
i=n1

(1 − pi)zn1 .
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Summing this inequality from n1 to n − 1, we get

xn1 − xn � zn1

n−1∑
k�n1

( k−1∏
i=n1

(1− pi)

)
→ ∞ as n → ∞,

which is a contradiction. Next, we consider the other case
(II) Suppose that ∆xn > 0 for n � n1 � max{N, N1}. There exist n2 � n1 and

α > 0 such that

(5) xn−g � α for n � n2.

Using conditions (1) and (5) in Eq. (E) we obtain

(6) ∆2xn + αλqn(∆xn−h)µ � 0 for n � n2.

Set zn = ∆xn, n � n2. Then (6) assumes the form

∆zn + αλqn(zn−h)µ � 0, n � n2.

Therefore, by Lemma 1, Eq. (4) has an eventually positive solution, which is a con-
tradiction. This completes the proof. �

Next, we present an oscillation theorem for Eq. (E).

Theorem 2. Let conditions (1) and (2) hold and let

(7)
n+τ∑

i=n+1

qi > 0 for all sufficiently large n,

where τ = min{g, h}. If the equation

(8) ∆Vn +
(n − g

2

)λ

qn|Vn−τ |λ+µ sgnVn−τ = 0

is oscillatory, then Eq. (E) is oscillatory.

�����. Let {xn} be a nonoscillatory solution of Eq. (E), say xn > 0 for n �
n0 � 1. As in the proof of Theorem 1, we see that {∆xn} is eventually of one sign
and case (I) is impossible. Next, we consider
Case (II). Suppose that ∆xn > 0 for n � n1 � n0. From the fact that ∆xn is

nonincreasing, we see that

xn − xn1 =
n−1∑
k=n1

∆xk � (n − n1)∆xn−1,
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which implies that

xn � n

2
∆xn for n � n2 � 2n1 + 1.

Then

(9) xn−g �
(n − g

2

)
∆xn−g �

(n − g

2

)
∆xn−τ for n � n2 + g.

Using conditions (1) and (9) in Eq. (E) yields

∆yn +
(n − g

2

)λ

qn|yn−τ |λ+µ � 0 for n � n2 + g,

where yn = ∆xn, n � n2 + g. The rest of the proof is similar to that of Theorem 1

(II) and hence is omitted. �

As an application, we apply Lemma 2 to the equations (4) and (8) appearing in
Theorems 1 and 2 respectively and obtain the following immediate corollaries:

Corollary 1. Let conditions (1)–(3) hold. If
(i) for every constants ν > 0, h > 1 we have

lim inf
n→∞

[
ν

h

n−1∑
i=n−h

qi

]
>

hh

(1 + h)1+h
when µ = 1 and λ > 0

or

(ii)
∞∑

qi =∞ when 0 < µ < 1 and λ > 0,

then Eq. (E) is oscillatory.

Corollary 2. Let conditions (1), (2) and (7) hold. If
(i) τ = min{g, h} > 1, and

lim inf
n→∞

[
1
τ

n−1∑
i=n−τ

( i − g

2

)λ

qi

]
>

ττ

(1 + τ)1+τ
when λ+ µ = 1

or

(ii)
∞∑ ( i − g

2

)λ

qi =∞ when 0 < λ+ µ < 1,

then Eq. (E) is oscillatory.
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The following theorem is concerned with the oscillation of a special case of the

equation
∆2xn + pn∆xn + qn|xn−g|λ|∆xn−h|µ sgnxn−g = 0

when µ = 0 and λ = 1, namely, the linear difference equation

(L) ∆2xn + pn∆xn + qnxn−g = 0,

provided condition (2) is not required.

Theorem 3. Let ∆pn � 0 for n � n0 � 0, g > 1, and

(10)
n+g∑

i=n+1

Qi > 0 and
n+g∑

i=n+1

(i − g)qi > 0 for all large n,

where Qn =

(
n−1∑

i=n−g

qi

)
− pn−g. If the equation

(11) ∆zn + cnzn−g = 0,

where

(12) cn = min
{

Qn,
n − g

2
qn

}
,

is oscillatory, then Eq. (L) is oscillatory.

�����. Let {xn} be a nonoscillatory solution of Eq. (L), say xn > 0 for n �
n0 � 1. As in the proof of Theorem 1, we see that {∆xn} is eventually of one sign.
Next we consider the two cases (I) and (II) as in Theorem 1.
(I) Suppose that ∆xn < 0 for n � n1 � n0. Summing both sides of Eq. (L) from

n − g to n − 1, we obtain

∆xn −∆xn−g +
n−1∑

i=n−g

pi∆xi +
n−1∑

i=n−g

qixi−g = 0,

or

∆xn +

[
pnxn − pn−gxn−g −

n−1∑
i=n−g

xi+1∆pi

]
+ xn−g

n−1∑
i=n−g

qi � 0 for n � n1.

Since ∆pn � 0, we have

∆xn +

[( n−1∑
i=n−g

qi

)
− pn−g

]
xn−g � 0, n � n1,
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and hence, by (12), we get

∆xn + cnxn−g � 0, n � n1.

The rest of the proof is similar to that of Theorem 1 Case II, and hence will be
omitted.

(II) Suppose that ∆xn > 0 for n � n1 � n0. Then Eq. (L) assumes the form

(13) ∆2xn + qnxn−g � 0, n � n1.

As in the proof of Theorem 2 Case II, there exists an n2 � n1 such that (9) holds

for n � n2. Using (9) in (13), we have

∆yn + cnyn−g � ∆yn +
(n − g

2

)
qnyn−g � 0 for n � n2

where yn = ∆xn, n � n2. The rest of the proof is similar to the proof of the above
case and hence is omitted. This completes the proof. �

Finally, we present results for the forced difference equations of the form (Le).

Theorem 4. Let the conditions of Theorem 3 hold with qn being replaced by

k qn. If {un} and {vn} are eventually positive solutions of Eq. (Le), then {un − vn}
is oscillatory.

�����. Let {un} and {vn} be two positive solutions of Eq. (Le) for n � n0 � 1,
and let wn = un − vn for n � n0. From Eq. (Le) we can obtain

∆2wn + pn∆wn + qn [g(un−g)− g(vn−g)] = 0.

To show that {wn} is oscillatory we will assume that {wn} is eventually positive.
The negative case follows analogously.

So, let us suppose that wn > 0 for n � n0 � 1. The Mean Value Theorem implies
that

∆2wn + pn∆wn + k qn∆wn−g � 0.
The rest of the proof is similar to that of Theorem 3 and hence we omit the details.

�

In the case when condition (2) is satisfied, we have the following immediate result.

Theorem 5. Let condition (2) hold and assume that Eq. (8) is oscillatory for
λ = 1, µ = 0, g = τ and qn is replaced by k qn. If {un} and {vn} are two eventually
positive solutions of Eq. (Le), then {un − vn} is oscillatory.
�����. The proof of this theorem follows the lines of proofs of Theorems 4, 3

and 1, and hence is omitted. �
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������ 1. The results of this paper remain valid when pn ≡ 0. On the other
hand, if pn ≡ p is a positive constant, the series in condition (2) is a convergent
geometric series and hence condition (2) is violated. In this case we are (only) able
to describe the oscillatory behavior of the linear difference equation (L) which is a

special case of Eq. (E).

As an application, we present the following criteria for the oscillation of Eq. (L)
when {pn} and {qn} are constant sequences, i.e., for the difference equation

(Lc) ∆2xn + p∆xn + qxn−g = 0

where p � 0 and q > 0 are real constants, p < 1 and g is a positive integer, g > 1.

Corollary 3. If

(14) g q − p >
gg

(1 + g)1+g
,

then Eq. (Lc) is oscillatory.

Corollary 4. If condition (14) holds, {un} and {vn} are two eventually positive
solutions of Eq. (Lc), then {un − vn} is oscillatory.

������ 2. From Corollary 3 we see that the characteristic equation associated
with Eq. (Lc), namely

(15) (m − 1)2 + p (m − 1) + q m−g = 0

has no positive roots provided that condition (14) holds.

������ 3. It would be interesting to obtain results similar to Theorems 1 and
2 without imposing condition (2). Also, to extend Theorems 3–5 to more general

equations of type (E).

	
����
�������. The authors are very grateful to the referee for his valu-
able suggestions.
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