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ON THE EQUATION ϕ(|xm − ym|) = 2n
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Abstract. In this paper we investigate the solutions of the equation in the title, where
ϕ is the Euler function. We first show that it suffices to find the solutions of the above
equation when m = 4 and x and y are coprime positive integers. For this last equation, we
show that aside from a few small solutions, all the others are in a one-to-one correspondence
with the Fermat primes.
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1. Introduction

For any positive integer k let ϕ(k) be the Euler function of k. In this note, we find
all solutions of the equation

(1) ϕ(|xm − ym|) = 2n,

where x and y are integers and m and n are positive integers such that m � 2.
Let k � 3 be a positive integer. It is well-known that the regular polygon with

k sides can be constructed with the ruler and the compass if and only if ϕ(k) is a

power of 2. In particular, knowing all solutions of equation (1) enables one to find all
regular polygons which can be constructed with the ruler and the compass for which

the number of sides is the difference of equal powers of integers. Some equations
of a similar flavour as (1) were treated in [2] and [3]. In [2], we found all regular

polygons which can be constructed with the ruler and the compass whose number
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of sides is either a Fibonacci or a Lucas number, while in [3] we found all regular

polygons whose number of sides is a binomial coefficient.

Concerning equation (1), we first prove

Proposition. In order to find all solutions of equation (1), it suffices to find
only those for which x > y � 1, gcd(x, y) = 1 and m = 4.

Then we prove

Theorem. Assume that (x, y, m, n) is a solution of equation (1) satisfying the
conditions from Proposition. Then,

(2)

(x, y) =

{
(22

l−1
+ 1, 22

l−1 − 1) where l � 1 and 22l

+ 1 is a prime number or

(22
l

, 1) for l = 0, 1, 2, 3.

2. Reduction of the problem

In this section, we supply a proof of Proposition.

�����. Let C = {k ; ϕ(k) is a power of 2}. It is well-known that a positive
integer k belongs to C if and only if k = 2αp1 . . . pt for some α � 0 and t � 0, where
pi = 22

βi + 1 are distinct Fermat primes. In particular, it follows that the elements
belonging to the set C satisfy the following two properties:

1) If a ∈ C and b|a, then b ∈ C.

2) Assume that a, b ∈ C. Then, ab ∈ C if and only if gcd(a, b) is a power of 2.

Assume that (x, y, m) are such that |xm − ym| ∈ C. We may assume that x �
|y| � 0. We first show that it suffices to assume that gcd(x, y) = 1. Indeed, let
d = gcd(x, y). Write x = dx1 and y = dy1. Then,

|xm − ym| = dm|xm
1 − ym

1 | ∈ C.

Since m � 2, we conclude by 1) and 2) above that |xm
1 − ym

1 | ∈ C and that d is a
power of 2. Conversely, if (x1, y1, m) are such that |xm

1 − ym
1 | ∈ C and if d is a power

of 2, it follows by 2) that

|xm − ym| = dm|xm
1 − ym

1 | ∈ C

as well. Hence, it suffices to find all solutions of equation (1) for which gcd(x, y) = 1.
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Assume first that xy = 0. It follows that y = 0. Since gcd(x, y) = 1 and x > 0,

we conclude that x = 1.
Assume now that x = |y|. Since gcd(x, y) = 1 and ϕ is not defined at 0, it follows

that x = 1, y = −1 and m is odd.

From now on, we assume that x > |y| > 0. We first show that we may assume
m > 2. Indeed, suppose that m = 2. Since m = 2 is even, we may assume that

y > 0. Since
x2 − y2 = (x − y)(x + y) ∈ C,

it follows by 1) above that x− y ∈ C and x+ y ∈ C. Let c1 = x− y and c2 = x+ y.
Since x > y > 0, it follows that c2 > c1 > 0. Moreover, since gcd(x, y) = 1, we

conclude that either both c1 and c2 are odd and gcd(c1, c2) = 1, or both c1 and c2
are even in which case gcd(c1, c2) = 2 and one of the numbers c1 or c2 is a multiple

of 4. Conversely, let c2 > c1 be any two numbers in C satisfying one of the above
two conditions. Then one can easily see that if we denote

x =
c1 + c2
2

and y =
c1 − c2
2

,

then x and y are positive integers, x > y, gcd(x, y) = 1 and x2 − y2 = c1c2 ∈ C.
These arguments show that equation (1) has an infinity of solutions when m = 2

and that all such solutions can be parametrized in terms of two parameters c1 and
c2 belonging to C and satisfying certain restrictions.

From now on, we assume that m > 2. We first show that m is a power of 2.
Assume that this is not the case and let p be an odd prime such that p|m. Replacing
xm/p and ym/p respectively by x and y, we may assume that |xp − yp| ∈ C. From
1), it follows that

up =
|xp − yp|
|x − y| ∈ C.

Since p is odd and gcd(x, y) = 1, it follows that up is odd. In particular, up is
square-free. Let P be a prime dividing up. On the one hand, we have xp − yp ≡
0(modP ). On the other hand, since P � |xy, it follows, by Fermat’s little theorem,
that xP−1 − yP−1 ≡ 1− 1 ≡ 0(modP ). Hence,

(3) P |(xp − yp, xP−1 − yP−1) = x(p,P−1) − y(p,P−1).

Since P ∈ C, it follows that P − 1 is a power of 2. Since p is odd, this implies that
(p, P − 1) = 1. From formula (3), we conclude that P |x − y. Hence, x ≡ y(modP ).

It now follows that

up =
|xp − yp|
|x − y| ≡ |xp−1 + xp−2y + . . .+ yp−1| ≡ pxp−1(modP ).
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Since P |up, it follows that p = P . Since up is square-free, it follows that up = 1 or p.

On the other hand, the sequence

uk =
|xk − yk|
|x − y| for k � 0

is a Lucas sequence of the first kind. From [1] we know that uq is divisible by a prime

Q > q for any prime q > 3. From the above result it follows that p = 3 and that
u3 = 1 or 3. This leads to the equations

x2 ± xy + y2 = 1 or 3.

The only solution (x, y) of the above equations such that x > |y| > 0 is (2,−1) which
does not lead to a solution of equation (1). Hence, m is a power of 2. Since m > 2,

it follows that m is a multiple of 4. We may now replace x and y by xm/4 and ym/4

respectively and study equation (1) only for m = 4. Clearly, since m = 4 is even, we

may assume that y > 0.
Proposition is therefore proved. �

3. The proof of theorem

Since x4 − y4 = (x − y)(x+ y)(x2 + y2) ∈ C, it follows that x − y ∈ C, x+ y ∈ C

and x2 + y2 ∈ C. We distinguish two cases:
Case 1. x ≡ y ≡ 1(mod 2).
In this case, one of the numbers x− y or x+ y is divisible by 4 and the other one

is 2 modulo 4. Moreover, since both x and y are odd, it follows that x2 + y2 is 2

modulo 8. It now follows that there exists ε ∈ {±1} such that

x − εy ≡ 2(mod 4),
x+ εy ≡ 0(mod 4).

Write

(4)

x − εy = 2
I∏

i=1

(22
αi + 1),

x+ εy = 2s
J∏

j=1

(22
βj
+ 1),

x2 + y2 = 2
K∏

k=1

(22
γk + 1),

468



where s � 2, I, J and K are three non-negative integers (some of them may be zero),

0 � α1 < . . . < αI , 0 � β1 < . . . < βJ , 0 � γ1 < . . . < γK and 22
δ

+ 1 is a Fermat
prime whenever δ ∈ {αi}I

i=1 ∪ {βj}J
j=1 ∪ {γk}K

k=1.

Notice first that the three sets {αi}I
i=1, {βj}J

j=1, {γk}K
k=1 are pairwise disjoint.

Indeed, assume for example that δ ∈ {αi}I
i=1 ∩ {βj}J

j=1. It follows that 2
2δ

+ 1|(x −
y, x+ y), which contradicts the fact that x and y are coprime.

Notice also that K > 0 and that γ1 > 0. Indeed, if K = 0 then x2 + y2 = 2,
which is impossible because x > y � 1. If γ1 = 0, it follows that 3 = 22

0
+1|x2 + y2,

which is impossible because x and y are coprime and −1 is not a quadratic residue
modulo 3.

We now use formulae (4) and the identity

(5) 2(x2 + y2) = (x − y)2 + (x+ y)2

to conclude that

4
K∏

k=1

(22
γk + 1) = 4

I∏
i=1

(22
αi
+ 1)2 + 22s

J∏
j=1

(22
βj
+ 1)2

or

(6)
K∏

k=1

(22
γk + 1) =

I∏
i=1

(22
αi + 1)2 + 22(s−1)

J∏
j=1

(22
βj
+ 1)2.

Our main goal is to show that I = J = 0.
Suppose that this is not so. In order to achieve a contradiction, we proceed in

three steps.

���� 1.I. 0 ∈ {αi}I
i=1 ∪ {βj}J

j=1.

Assume that this is not the case.
Suppose first that I > 0. Hence, α1 �= 0. Notice first that

(7)
I∏

i=1

(22
αi
+ 1) =

∑
H⊆{1,...,I}

2

∑
i∈H

2αi

and the sum appearing on the right hand side of identity (7) is precisely the binary
expansion of the product appearing on the left hand side (this is because of the fact

that all exponents appearing on the right hand side of identity (7) have distinct
binary representations, therefore they are all distinct). Since α1 > 0, it follows that

(8)
I∏

i=1

(22
αi + 1)2 = 1 + 22

α1+1 + 22
α1+1

+ higher powers of 2,
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where the higher powers of 2 are missing when I = 1. From formula (6), it follows

that
(9)

1 + 22
γ1
+ higher powers of 2 =

K∏
k=1

(22
γk + 1)

= (1 + 22
α1+1 + higher powers of 2) + 22(s−1)(1 + higher powers of 2).

Clearly, the numbers 2α1+1 and 2(s−1) are distinct because the first is odd and the
second is even. On the one hand, from formula (9) and the fact that 2γ1 is even we
conclude that 2γ1 = 2(s − 1). On the other hand, since the binary representation of
the number given by formula (9) has at least three digits of 1, it follows that K � 2.
If J = 0, then formulae (6) and (9) imply

(10)
1 + 22

γ1
+ 22

γ2
+ higher powers of 2 =

K∏
k=1

(22
γk + 1)

= 1 + 22(s−1) + 22
α1+1 + higher powers of 2.

Formula (10) leads to 2γ2 = 2α1 + 1, which is impossible because α1 > 0.
Suppose now that J > 0. In this case, β1 > 0. Arguments similar to the preceeding

ones yield that

(11)

1 + 22
γ1
+ 22

γ2
+ higher powers of 2 =

K∏
k=1

(22
γk + 1)

= (1 + 22
α1+1 + higher powers of 2)

+ 22(s−1)(1 + 22
β1+1 + higher powers of 2).

From equation (11) and the fact that 2γ1 = 2(s − 1), it follows that at least one of
the following three situations must occur:
1) 2γ2 = 2α1 + 1. This is impossible because α1 > 0.

2) 2γ2 = 2(s − 1) + 2β1 + 1 = 2γ1 + 2β1 + 1. This is impossible because both β1
and γ1 are positive.

3) 2α1 + 1 = 2(s − 1) + 2β1 + 1 or 2α1 = 2(s − 1) + 2β1 = 2γ1 + 2β1, which is
impossible because β1 �= γ1.

This completes the argument in the case I > 0.
Assume now that I = 0. Hence, J > 0 and β1 > 0. Arguments similar to the

previous ones imply that formula (6) reads

(12)
1 + 22

γ1
+ higher powers of 2 =

K∏
k=1

(22
γk + 1)

= 1 + 22(s−1)(1 + 22
β1+1 + higher powers of 2).
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From equation (12), it again follows that 2γ1 = 2(s − 1) and K � 2. Formula (12)
can now be written as

(13)
1 + 22

γ1
+ 22

γ2
+ higher powers of 2 =

K∏
k=1

(22
γk + 1)

= 1 + 22(s−1)(1 + 22
β1+1 + higher powers of 2).

From equation (13), it follows that 2γ2 = 2(s − 1) + 2β1 + 1 = 2γ1 + 2β1 + 1, which
is impossible because both β1 and γ1 are positive.

Step 1.I is therefore proved.

���� 1.II. If I > 0, then α1 �= 0.
Suppose that this is not the case. Assume that I > 0 but α1 = 0. Let t � 1 be

such that αi = i − 1 for i = 1, . . . , t and either I = t or αt+1 � t+ 1. Then

(14)
I∏

i=1

(22
αi + 1) =

t∏
i=1

(22
i−1
+ 1)

I∏
i�t+1

(22
αi + 1) = (22

t − 1)
I∏

i�t+1

(22
αi + 1).

Hence,

(15)

I∏
i=1

(22
αi
+ 1)2 = (1 + 22

t+1 + higher powers of 2)(1 + higher powers of 2)

= 1 + 22
t+1 + higher powers of 2.

From formulae (6) and (15), it follows that

(16)

1 + 22
γ1
+ higher powers of 2 =

K∏
k=1

(22
γk + 1)

= (1 + 22
t+1 + higher powers of 2) + 22(s−1)(1 + higher powers of 2).

Clearly, 2t+1 and 2(s−1) are distinct because the first number is odd and the other
is even. From formula (16), it follows that 2γ1 = 2(s − 1) and that K � 2. Formula
(6) now becomes

(17)

1 + 22
γ1
+ 22

γ2
+ higher powers of 2 =

K∏
k=1

(22
γk + 1)

= (1 + 22
t+1 + higher powers of 2)

+ 22(s−1)(1 + higher powers of 2).
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Suppose first that J = 0. Then 2γ2 = 2t + 1, which is false because t is positive.

Suppose now that J > 0. Since αi = i−1 for i = 1, . . . , t, it follows that β1 � t � 1.
From the arguments employed in Step 1.I, it follows that formula (17) can be written

as

(18)

1 + 22
γ1
+ 22

γ2
+ higher powers of 2 =

K∏
k=1

(22
γk + 1)

= (1 + 22
t+1 + higher powers of 2)

+ 22(s−1)(1 + 22
β1+1 + higher powers of 2).

From equation (18) and the fact that 2γ1 = 2(s − 1), it follows that one of the
following situations must occur:

1) 2γ2 = 2t + 1. This is impossible because t > 0.

2) 2γ2 = 2(s − 1) + 2β1 + 1 = 2γ1 + 2β1 + 1. This is impossible because both γ1
and β1 are positive.

3) 2t+1 = 2(s−1)+2β1+1 or 2t = 2γ1+2β1 , which is impossible because γ1 �= β1.

This completes the proof of Step 1.II.

���� 1.III. If J > 0, then β1 �= 0.

Notice first that Steps 1.I, 1.II and 1.III contradict each other.

Assume that the claim made in Step 1.III does not hold. Let J > 0 and assume

that β1 = 0. Let t � 1 be such that βj = j − 1 for j = 1, . . . , t and either J = t or
J > t and βt+1 � t+ 1. We have

(19)
J∏

j=1

(22
βj
+ 1) =

t∏
j=1

(22
j−1
+ 1)

J∏
j�t+1

(22
βj
+ 1) = (22

t − 1)
J∏

j�t+1

(22
βj
+ 1).

Hence,

(20)
J∏

j=1

(22
βj
+ 1)2 = (22

t − 1)2
J∏

j�t+1

(22
βj
+ 1)2 = 1 + 22

t+1 + higher powers of 2.

From formula (6) it follows that

1 + 22
γ1
+ higher powers of 2 =

K∏
k=1

(22
γk + 1)

= (1 + higher powers of 2) + 22(s−1)(1 + 22
t+1 + higher powers of 2).
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Assume first that I = 0. It follows that

(21)
1 + 22

γ1
+ higher powers of 2 =

K∏
k=1

(22
γk + 1)

= 1 + 22(s−1)(1 + 22
t+1 + higher powers of 2).

From equation (21), it follows that K � 2 and that 2γ1 = 2(s−1). Formula (21) can
now be written as

(22)
1 + 22

γ1
+ 22

γ2
+ higher powers of 2 =

K∏
k=1

(22
γk + 1)

= 1 + 22(s−1)(1 + 22
t+1 + higher powers of 2).

From equation (22) and the fact that 2γ1 = 2(s− 1), it follows that 2γ2 = 2(s− 1)+
2t + 1 = 2γ1 + 2t + 1, which is impossible because both γ1 and t are positive.

Assume now that I > 0. In this case, α1 � t � 1. From formula (6) and the
arguments employed at Step 1.I, it follows that

(23)

1 + 22
γ1
+ higher powers of 2 =

K∏
k=1

(22
γk + 1)

= (1 + 22
α1+1 + higher powers of 2)

+ 22(s−1)(1 + 22
t+1 + higher powers of 2).

Notice that 2α1 + 1 and 2(s − 1) are distinct because the first number is odd and
the other is even. From formula (23), it follows that 2γ1 = 2(s− 1) and that K � 2.
Formula (23) can now be written as

(24)

1 + 22
γ1
+ 22

γ2
+ higher powers of 2 =

K∏
k=1

(22
γk + 1)

= (1 + 22
α1+1 + higher powers of 2)

+ 22(s−1)(1 + 22
t+1 + higher powers of 2).

From equation (24) and the fact that 2γ1 = 2(s − 1), it follows that one of the
following situations must occur:

1) 2γ2 = 2α1 + 1. This is impossible because α1 > 0.

2) 2γ2 = 2(s − 1) + 2t + 1 = 2γ1 + 2t + 1. This is impossible because both γ1 and

t are positive.

3) 2α1 + 1 = 2(s− 1) + 2t + 1 = 2γ1 + 2t + 1. This leads to γ1 = t and α1 = t+ 1.
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In this last case, it follows that α2 � t+ 2 and βt+1 � t+ 2, whenever they exist.

From formulae (6) and (19) we get
(25)

1 + 22
t

+ 22
γ2
+ higher powers of 2 =

K∏
k=1

(22
γk + 1)

= (22
t+1

+ 1)2
I∏

i�2
(22

αi + 1)2 + 22
t

(22
t − 1)2

J∏
j�t+1

(22
βj
+ 1)2

= (22
t+1

+ 1)2 + 22
t

(22
t − 1)2 + higher powers of 2

= 1 + 22
t

+ 22
t+2t+1

+ 22
t+2

+ higher powers of 2.

Equation (25) implies 2γ2 = 2t + 2t+1, which is impossible.

Step 1.III is thus proved.
Steps 1.I, 1.II and 1.III imply that I = J = 0. From formula (6), it follows that

(26)
K∏

k=1

(22
γk + 1) = 1 + 22(s−1).

From equation (26), it follows that K = 1 and 2γ1 = 2(s − 1). Solving the first two
equations of system (4) for x and y we get

(27) x = 22
γ1−1
+ 1 and y = ε(22

γ1−1 − 1),
where 22

γ1 + 1 is a Fermat prime and ε ∈ {±1}. Since y > 0, it follows that ε = 1.

This belongs to the first family of solutions claimed by Theorem.
Case 2. x �≡ y(mod 2).

In this case all three numbers x − y, x+ y and x2 + y2 are odd. Assume that

(28)

x − y =
I∏

i=1

(22
αi + 1),

x+ y =
J∏

j=1

(22
βj
+ 1),

x2 + y2 =
K∏

k=1

(22
γk + 1),

where I, J and K are three non-negative integers (some of them may be zero),
0 � α1 < . . . < αI , 0 � β1 < . . . < βJ , 0 � γ1 < . . . < γK and 22

δ

+ 1 is a Fermat

prime whenever δ ∈ {αi}I
i=1 ∪ {βj}J

j=1 ∪ {γk}K
k=1.

Notice again that the three sets {αi}I
i=1, {βj}J

j=1, {γk}K
k=1 are pairwise disjoint,

K > 0 and γ1 > 0. Notice also that I + J > 0.
We proceed in four steps.
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���� 2.I. K = J and γk = βk + 1 for all k = 1, . . . , K.

From formulae (28) and from the arguments immediately below formula (7), it
follows that

(29)

�log2(x − y)� =
I∑

i=1

2αi ,

�log2(x+ y)� =
J∑

j=1

2βj ,

�log2(x2 + y2)� =
K∑

k=1

2γk .

We now use the following obvious

Lemma.
1) If z is a positive number, then

(30) �log2 z2� ∈ {2�log2 z�, 2�log2 z�+ 1}.

2) If a > b are positive numbers, then

(31) �log2(a+ b)� ∈ {�log2 a�, �log2 a�+ 1}.

From identity (5) and the above Lemma, it follows that

(32)

1 + �log2(x2 + y2)� = �log2(2(x2 + y2))�
= �log2((x+ y)2 + (x − y)2))�
∈ {2�log2(x+ y)�+ u|u = 0, 1, 2}.

From formulae (29) and (32), it follows that

(33) 1 +
K∑

k=1

2γk = u+
J∑

j=1

2βj+1 for some u ∈ {0, 1, 2}.

Since γ1 > 0, it follows that the number appearing on the left hand side of equation

(33) is odd. Hence, u = 1, K = J and γk = βk + 1 for all k = 1, . . . , K.
Step 2.I is thus proved.
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���� 2.II. 0 ∈ {αi}I
i=1 ∪ {βj}J

j=1.

Assume that this is not the case. By Step 2.I, we know that J > 0. In particular,
β1 > 0.

We use formulae (28) and identity (5) to conclude that

(34) 2
K∏

k=1

(22
γk + 1) =

I∏
i=1

(22
αi
+ 1)2 +

J∏
j=1

(22
βj
+ 1)2.

By the arguments employed in Step 1.I, it follows that

(35)

2 + 22
γ1+1 + higher powers of 2 = 2

K∏
k=1

(22
γk + 1)

=
I∏

i=1

(22
αi + 1)2 + (1 + 22

β1+1 + higher powers of 2).

If I = 0, then formula (35) becomes

(36)
2 + 22

γ1+1 + higher powers of 2 = 2
K∏

k=1

(22
γk + 1)

= 1 + (1 + 22
β1+1 + higher powers of 2).

From formula (36), it follows that 2γ1 + 1 = 2β1 + 1 or γ1 = β1, which is impossible.

Suppose now that I > 0. In this case, α1 > 0. By the arguments employed in
Step 1.I, it follows that

(37)

2 + 22
γ1+1 + higher powers of 2 = 2

K∏
k=1

(22
γk + 1)

= (1 + 22
α1+1 + higher powers of 2)

+ (1 + 22
β1+1 + higher powers of 2).

From equation (37), it follows that one of the following situations must occur:

1) 2γ1 + 1 = 2α1 + 1. This implies γ1 = α1, which is impossible.

2) 2γ1 + 1 = 2β1 + 1. This implies γ1 = β1, which is impossible.

3) 2α1 + 1 = 2β1 + 1. This implies α1 = β1, which is impossible.

Step 2.II is thus proved.

���� 2.III. If either I = 0 or α1 �= 0, then x = 2 and y = 1.
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Suppose that either I = 0 or α1 �= 0. By Steps 2.I and 2.II above, it follows that
β1 = 0 and γ1 = 1. We now show that I = 0 and J = 1. Suppose that this is not
the case. Then at least one of the numbers α1 or β2 exists. From formula (34) and
the fact that β1 = 0 and γ1 = 1, it follows that

(38)

2 + 23 + higher powers of 2 = 2
K∏

k=1

(22
γk + 1)

=
I∏

i=1

(22
αi + 1)2 + 32

J∏
j�2
(22

βj
+ 1)2

=
I∏

i=1

(22
αi + 1)2 + (1 + 23)

J∏
j�2
(22

βj
+ 1)2.

It follows that K � 2. Since J = K, it follows that J � 2 as well. Suppose, for
example, that I = 0. From formula (38), it follows that

(39)
2 + 23 + 22

γ2+1 + higher powers of 2 = 2
K∏

k=1

(22
γk + 1)

= 1 + (1 + 23)(1 + 22
β2+1 + higher powers of 2).

From equation (39), it follows that 2γ2 + 1 = 2β2 + 1, which is impossible because
γ2 �= β2.

Assume now that I > 0. From formula (38), it follows that

(40)

2 + 23 + 22
γ2+1 + higher powers of 2 = 2

K∏
k=1

(22
γk + 1)

= (1 + 22
α1+1 + higher powers of 2)

+ (1 + 23)(1 + 22
β2+1 + higher powers of 2).

From equation (40), it follows that one of the following must occur:
1) 2γ2 + 1 = 2α1 + 1. This is impossible because γ2 �= α1.

2) 2γ2 + 1 = 2β2 + 1. This is impossible because γ2 �= β2.
3) 2α1 + 1 = 2β2 + 1. This is impossible because α1 �= β2.

Hence, I = 0, J = K = 1, β1 = 0 and γ1 = 1. It follows that x − y = 1 and
x + y = 3. Hence, (x, y) = (2, 1) = (22

0
, 1) which is one of the solutions claimed by

Theorem.
Step 2.III is thus proved.

Assume now that (x, y) �= (2, 1). By Steps 2.I, 2.II and 2.III, it follows that I > 0
and α1 = 0. The proof of Theorem will be completed once we show
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���� 2.IV. If α1 = 0, then (x, y) = (22
l

, 1) for some l = 1, 2, 3.

Let t � 1 be such that αi = i − 1 for i = 1, . . . , t and either I = t or I > t and

αt+1 � t+ 1. It now follows that

(41)
I∏

i=1

(22
αi + 1) =

t∏
i=1

(22
i−1
+ 1)

I∏
i�t+1

(22
αi + 1) = (22

t − 1)
I∏

i�t+1

(22
αi + 1).

Hence,

(42)
I∏

i=1

(22
αi
+ 1)2 = 1 + 22

t+1 + higher powers of 2.

From equation (34), it follows that

(43)

2 + 22
γ1+1 + higher powers of 2 = 2

K∏
k=1

(22
γk + 1)

= (1 + 22
t+1 + higher powers of 2)

+ (1 + 22
β1+1 + higher powers of 2).

From equation (43) and the fact that γ1 = β1+1 > β1, it follows that 2t+1 = 2β1+1

or β1 = t. Hence, γ1 = t+ 1. Equation (34) now becomes

(44)

2 + 22
t+1+1 + higher powers of 2 = 2

K∏
k=1

(22
γk + 1)

= (22
t − 1)2

I∏
i�t+1

(22
αi
+ 1)2 + (22

t

+ 1)2
J∏

j�2
(22

βj
+ 1)2.

We now show that I = t and J = 1.

Suppose, for example, that I > t and J = 1. Then, from formula (44), it follows
that K > 1, which contradicts the fact that K = J .

Suppose now that I = t and J > 1. Then K = J > 1. Since β2 � t+2, it follows,
by formula (44), that

(45)

2 + 22
t+1+1 + 22

γ2+1 + higher powers of 2 = 2
K∏

k=1

(22
γk + 1)

= (22
t − 1)2 + (22t

+ 1)2 + 22
β2+1 + higher powers of 2

= 2 + 22
t+1+1 + 22

β2+1 + higher powers of 2.
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Equation (45) implies that γ2 = β2 which is impossible.

Finally, suppose that I > t and J > 1. Since β2 � t + 2 and αt+1 � t + 2, it
follows, by formula (44), that
(46)

2 + 22
t+1+1 + 22

γ2+1 + higher powers of 2 = 2
K∏

k=1

(22
γk + 1)

= ((22
t − 1)2 + 22αt+1+1 + higher powers of 2)

+ ((22
t

+ 1)2 + 22
β2+1 + higher powers of 2)

= 2 + 22
t+1+1 + 22

αt+1+1 + 22
β2+1 + higher powers of 2.

Equation (46) implies that one of the following three situations must occur:
1) 2γ2 + 1 = 2αt+1 + 1. This implies γ2 = αt+1, which is impossible.

2) 2γ2 + 1 = 2β2 + 1. This implies γ2 = β2, which is impossible.
3) 2αt+1 + 1 = 2β2 + 1. This implies αt+1 = β2, which is impossible.

The above arguments show that I = t, J = K = 1, αi = i − 1 for i = 1, . . . , t,
β1 = t and γ1 = t+ 1. It now follows that

(47) x − y = 22
t − 1 and x+ y = 22

t

+ 1.

This implies x = 22
t

and y = 1. It remains to show that t � 3. But this comes from
the fact that if t � 4, then x4 − y4 = 22

t+2 − 1 is divisible by 225 + 1 which is not a
Fermat prime (in fact, ϕ(22

5
+ 1) is not a power of 2).

Theorem is thus completely proved.
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