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TRIBONACCI MODULO 2' AND 11°
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Abstract. Our previous research was devoted to the problem of determining the primitive
periods of the sequences (G, modp')2° ; where (G)52; is a Tribonacci sequence defined
by an arbitrary triple of integers. The solution to this problem was found for the case of
powers of an arbitrary prime p # 2,11. In this paper, which could be seen as a completion
of our preceding investigation, we find solution for the case of singular primes p = 2, 11.
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1. INTRODUCTION

Having a linear recurrence formula of order k with integer coefficients we can
construct the corresponding characteristic polynomial f(z). If f(z) has no multiple
roots then its discriminant is a non zero integer and so it is divisible by only a finite
number of prime divisors. When investigating modular periodicity of the sequences
defined by these formulas, the primes that divide the discriminant of f(z) form ex-
ceptions and have to be considered separately. The exceptional primes p correspond
to the cases of f(x) having multiple roots over the field F, = Z/pZ of residue classes
modulo p. In this paper, which could be seen as an extension of our previous paper
[1], we focus on the Tribonacci case. It is well known, see for example [2, p.310],
that the primes p = 2,11 are the only primes for which the Tribonacci characteristic

3 — 22 — 2 — 1 has multiple roots.

polynomial g(z) = z

Let us now review the notation introduced in [1]. Let (g,)22 ; denote a Tribonacci
sequence defined by the recurrence formula g, 13 = gnt2+ gnt1+ gn and the triple of
initial values [0, 0, 1]. Let further (G, )22 ; denote the generalized Tribonacci sequence
defined by an arbitrary triple [a, b, ¢] of integers. We will denote the primitive peri-

ods of the sequences (g, modm)22; and (G, modm)$>, by h(m) and h(m)la,b, (]
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respectively. In 1978, M. E. Waddill [3, Theorem 8] proved that for any prime p and
teN={1,2,3,...}, we have:

(1.1) If h(p) # h(p®), then h(p') = p'"h(p).

This paper aims at determining the numbers h(p)[a, b, c] and find the relationships
between h(p')[a, b, c] and h(p)|a,b, ] for the primes p = 2,11. The case of p # 2,11
is solved in [1]. The methods used in proofs of this paper will mostly be based on
matrix algebra. As usual, by T" we will denote the Tribonacci matrix

0 10 9n In—1 T gn In+1
(1.2) T=1|0 0 1 and T" = | gpt1 In + 9nt1 gneo | for n>1.
1 1 1

In+2 Gn+1 T 9n+2  Gn+3

Put zy = [a,b,¢]” and x, = [Gni1,Gniy2, Grys]” where 7 denotes transposition.
Then the triple x,, may be expressed by means of z( as follows: z,, = T"xq. Thus
the primitive period of the sequence (G,, modm)$2 , defined by a triple [a, b, ¢| for
an arbitrary module m > 1 is equal to the smallest number h for which T"zy = x
(mod m). By [1, Lemma 2.1], the investigation of the primitive periods of Tribonacci
sequences modulo p’ is restricted to sequences beginning with the triples [a, b, c] #
[0,0,0] (mod p). In the opposite case, for any ¢ € N and 1 < ¢ < ¢, we have
h(p")[p*~ta, p' =, p'~tc|] = h(p')[a, b, c]. For this reason, we will investigate only the
triples satisfying [a, b, c] # [0,0,0] (mod p).

2. TRIBONACCI MODULO 2¢

We can easily calculate h(2) = 4 and h(2?) = 8. By (1.1) we have h(2!) =
2!=1h(2) = 21 and so h(2!)[a, b, c] | 2!+ for any [a, b, c]. For p = 2, the multiplicity
of the root @ = 1 of the polynomial g(x) is greater than char(F3) = 2 and therefore
(G, mod2)°; cannot be expressed as G, mod2 = c; + can + c3n? as usual. The
sequences (1)%°;,(n)2%;, (n?)%°; are dependent over Fy and do not form a basis.
Despite that, for some triples [a, b, ¢] Z [0, 0, 0] (mod 2), the numbers h(2")[a, b, ¢] can
be determined using the results derived in [1]. In the first place, it is proved in [1,

Theorem 3.1] that, if (D(a,b,c),m) =1 where D(a,b,c) is a cubic form defined by
(2.1) D(a,b,c) = a® + 2b° + & — 2abc + 2a2b + 2ab® — 2bc? + a’c — ac?,

then h(m)[a,b,c] = h(m) for any modulus m > 1. The following theorem is an easy
consequence of the above assertions.
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Theorem 2.1. If D(a,b,c) is an odd number, then h(2)[a, b, c] = h(2t) = 2t+1,
Hence, we have h(2%)[a,b,c] = 2=1 - h(2)[a, b, c].

It is easy to verify that the premise of Theorem 2.1 is true if and only if [a, b, ¢]
is congruent modulo 2 with some of the triples [0,0,1], [1,0,0], [1,1,0], [0,1,1].
Therefore it suffices to investigate the cases of the triple [a,b, c] being congruent
modulo 2 with some of the triples [0,1,0],[1,0,1],[1,1,1]. The following assertions
will be important for the proofs of the main theorems 2.4, 2.5 and 2.6.

Lemma 2.2. For any modulus of the form 2t where t > 5, the following congru-
ences hold:
got-1_1 = —1 (mod 2Y),
gor—1 =272 41 (mod 2Y),
gor-141 =0 (mod 2"),
gor-142 =277 (mod 2°),

gor-143 =271 4+1 (mod 2).

Proof. Using methods of matrix algebra, we will prove all the congruences in
(2.2) simultaneously. Let us consider a Tribonacci matrix 7. Due to (1.2), it suffices
to prove that for any ¢ > 5 we have

2241 202 g
0 2t—2 +1 2t—2
2t—2 2t—2 2t—1+1

t—1
T2

1 10
=FE+2"724A(mod?2"), where A= |0 1 1
1 1 2

and E is an identity matrix. Let us first prove the congruence for ¢ = 5. By direct
calculation, we can verify that

1705 2632 3136 241 23 0
T2 = 3136 4841 5768 |=| 0 2541 2 | (mod2%).
5768 8904 10609 23 23 24 +1

Let us further assume that the congruence holds for ¢ >5. Since AE=F A, we have
T2 = (E+2724)? = E+ 271 A (mod 2'*!), which proves (2.2). O
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Consequence 2.3. For any modulus of the form 2' where t > 3, the following
congruences hold:
gor—1 = —1 (mod 2), gor =21 +1 (mod 2%),
(2.3) gorr1 = 0 (mod 2), ggeyo =271 (mod 2Y),
got13 = 1 (mod 2%).

Proof. Fort =3, (2.3) can be verified by direct calculation. For ¢ > 4, (2.3)
follows from (2.2). O

Theorem 2.4. If[a,b,c] =[0,1,0] (mod 2), then for ¢t > 1 we have

(2.4) h(2%)[a,b, ] = 2+,

Proof. Clearly, it is sufficient to prove that zo: # ¢ (mod 2%), that is, that 2¢

T

is not a period. The triple [a, b, ] can be written as xg = [2a1, 1 + 2b1,2¢1]” where

ay,bi,cy € 7. For t = 2 we have

12 2 24, 2+ 24,
T¥20= 2 3 4| |1+2b | = |3+2b | (mod 2?).
4 6 7 201 2+201

Suppose that 72"z = 7o(mod 22). Then we have
[2 + 2a1,3 + 2b1,2 + 2¢1] = [2a1, 1 + 201, 2¢1](mod 22).

Hence [2,3,2] = [0, 1, 0](mod 22), which is a contradiction. If ¢ > 3, then by (2.3) we
have

2=l 41 2t-1 0 2a4 2ay + 2t
T 2= |0 2141 21| 1426 | = | 1+2b +271 | (mod 2°).
2t-1 2t-1 1 2c; 2c; + 271

Suppose that T2 z¢ = ¢ (mod 2!). Then we have
[2a; 4+ 2171, 2871 20y + 2071 = [2a1, 1 + 201, 2¢1] (mod 2°).

By matching terms, we obtain 2¢~! = 0 (mod 2!) and thus a contradiction. O

It is not difficult to rephrase Theorem 2.4 to include the triples [a,b,c] = [1,0,1].
Clearly, there is exactly one triple of the form xzg = [2(c1 — a1 — b1),1 + 2a1,2b1]7
corresponding to each triple z1 = [1 4 2a1,2b1, 1+ 2¢1]". Since T'xg = 1, the triples
xo and x; define sequences with identical primitive periods. By 2.4, this primitive
period equals 271, This proves the following theorem.
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Theorem 2.5. If[a,b,c] =[1,0,1] (mod 2), then for ¢t > 1 we have

(2.5) h(2"[a, b, c] = 28T

We can also use the procedure from 2.4 to prove the following theorem:
Theorem 2.6. If[a,b,c] =[1,1,1] (mod 2), then for t > 1 we have

(2.6) h(2%)[a, b, c] = 2"

Proof. The triple [a,b, ] can be written as g = [142a1, 1+2by,1+2¢;|” where
a1,b1,c1 € Z. Suppose t > 5. Then by Lemma 2.2 we have Ttho = 70 (mod 2?)
and so h(2)[a, b, c] | 2t. Tt is now sufficient to prove that zqi—1 # zg (mod 2¢), that
is, that 2/~! is not a period. By (2.2) we have

2072 41 202 0 1+ 2a;
g1 =T? zo= |0 2072 41 2t=2 1+2b; | (mod 2%).
22 2t=2 2071 1] [1+42¢

It follows that
Ty = [142a1 +2" (1 4ay +b), 1426y 27 (14-by +c1), 1+2¢1 +2 (ag +01)]".
Suppose Zyt-1 =xo(mod 2'). Matching the terms yields that

27 1 +a; +b) =0, 271 4+by +¢1) =0, 27 (ay +b1) =0 (mod 2%).

Hence 1 =0 (mod 2) and a contradiction follows. To prove the cases of t = 2, 3,4 is
easy and can be left to the reader. O

Remark 2.7. Theorems 2.4, 2.5, and 2.6 are true for ¢ > 1. In particular, for
t =1 we have h(2)[1,1,1] = 1 and h(2)[0,1,0] = h(2)[1,0,1] = 2.

Corollary 2.8. Ifa triple [a,b, ¢] is congruent modulo 2 with some of the triples
[0,1,0], [1,0,1], [1,1,1], then for any t > 1 we have h(2")[a,b,c] = 2 - h(2)[a, b, c].
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3. TRIBONACCI MODULO 11°

The determination of primitive periods modulo 11¢ will be somewhat more com-
plicated. We can directly verify that h(11) = 110 and h(112) = 1210. Now it follows
from (1.1) that A(11%) = 10 - 11* for any ¢t € N and thus, for any triple [a,b, c], we
have h(11%)[a,b,c] | 10 - 11 As 2® — 2?2 —2 — 1 = (2 — 9)(z — 7)? (mod 11) and

(9™)22, (7T7)22, (nT™)52, are linearly independent over Fi1, we have

(3.1) Gn=c1-9"+ (c2+c3n)- 7" (mod11),

where the coefficients ¢y, co, c3 are uniquely determined by the triple [a, b, c]. Let
ord;i(e) denote the order of € # 0(mod11) in the multiplicative group of Fqq. It
is easy to see that ord;;(9) = 5 and ord;;(7) = 10. Now yields (3.1) that for any
[a,b,c] # [0,0,0](mod 11), h(11)[a, b, c] is equal exactly to one of the numbers 5,10
and 110. This, together with h(11)[a,b,c] | h(11%)[a,b, ], implies that for [a,b,c] #
[0,0,0](mod 11) the only forms of the periods h(11%)[a, b, ] are 5-11° and 10-11° where
i €{0,1,...,t}. Consequently, there exists no triple [a, b, c] for which h(11%)[a, b, c] =
2 - 11°. In some cases, h(11%)[a,b,c] can be determined using the form D(a,b,c).
However, there are triples for which h(11%)[a,b,c] = h(11') and also D(a,b,c) =
0(mod11). Thus D(a,b,c) cannot be used to determine all the triples for which
h(11%)[a,b, c] = h(11%).

Lemma 3.1. Lett >3 and h = 10 - 11'=2. Then we have the following congru-
ences:
gh1=25-11"7"2 — 1 (mod 11%),
gn =65-11"2 +1 (mod 11%),
(3.2) ghy1 = 261172 (mod 117),
Ghio =116 - 1172 (mod 11%),
gns =86-11""2 +1 (mod 11%).

Proof. By (1.2), it is sufficient to prove that

65-11072 41 90 - 11t2 26 - 112
7101172 _ | g6 qqt-2 91117241 116 - 1112 (mod 11%),
116 - 11t-2 21 - 11t2 8611172 41
ie.
65 90 26
TN = B4 11724 (mod 117), where A= | 26 91 116
116 21 86
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In the first induction step, we verify that the congruence is true for ¢t = 3.

716 990 286
TN =] 286 1002 1276 | = E + 114 (mod 11%).
1276 231 947

Suppose now that the assertion is true for a fixed ¢ > 3 and let us prove it for ¢ + 1.
Since A, E commute, using the binomial expansion we obtain that

11
-1 11 :
TlO-ll = (E + 11t72A)11 = Z < . )(11t2A)Z
=0 v
=F+11"1A+5- 11773 4% (mod 11"1)

and A? = 0 (mod 11) proves (3.2). O

Consequence 3.2. Lett>1and h=10-11'"'. Then for any modulus of the
form 11t the following congruences hold:

gho1=3-11""1 =1 (mod 11Y), gn=10-11""1 +1 (mod 11%),
(3.3)  gnhy1 =4-11""1 (mod 11%), ghi2 =6- 111 (mod 11%),
gnyz =9-11""1 41 (mod 11%).

Proof. Fort =1, (3.3) can be easily verified by direct calculation. For t > 2,
(3.3) follows from (3.2).

Theorem 3.3. For any t € N we have h(11%)[a,b,c] | 10 - 11*71 if and only if
¢ = 3a + 5b (mod 11). Moreover, for any t > 1, if h(11%)[a,b,c] | 10 - 1172 then
[a,b,c] =1[0,0,0] (mod 11).

Proof. Let h(11%)[a,b,c]|10-11*71. Then (3.3) implies

101171 +1 2-1171 41101 a a
411471 3117141 6111 b|=|b]| (mod11%).
611071 10-11¢1 9-111+1] |ec c

A simple modification of the system yields

10 2 4 a 0
4 3 6| |b|=]|0]|(mod11).
6 10 9 c 0
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The congruences of this system are linearly dependent over F1; with the entire system
being equivalent to the single congruence 10a + 2b + 4¢ = 0 (mod 11). Hence, we
have ¢ = 3a + 5b (mod 11).

Let h(11%)[a,b,c] | 10 - 1172, The validity of the implication for ¢ = 2 is not
difficult to verify by direct calculation. If ¢ > 3, then by (3.2) we have

65-11772 +1 90 -11t—2 26-11t—2 a a
26-11t2 91-11*"2 41 116 - 11t72 b|=|b]| (mod 11%).
116 - 11t2 21-11t2 86- 11172 +1 ¢ ¢

This system is equivalent to

65 90 26 a
26 91 116 b
116 21 &6 c

0
0 | (mod 11?).
0

The last system has exactly 121 non-congruent solutions over 7Z/1127 that can be
written as [11r, 11s,11(3r + 5s)] where 7, s are integers. O

Remark 3.4. It follows from 3.3 that, if ¢ > 1 and [a, b, ] # [0,0,0] (mod 11),
then h(11%)[a, b, c] is equal to some of the numbers 5- 111,10 1171 5.11%,10- 11%.
The following lemmas will help us to determine which of the cases will occur for a
given [a, b, c]. We will also prove that there exists no triple for which h(11%)[a, b, c] =
5-11¢.

Lemma 3.5. For any t € N we have

7T 4 6
(3.4) 751" = A(mod 11) where A= | 6 2 10
10 5 1
Moreover, A% = E (mod 11).
Proof. Fort=1, (3.4) is true since
35731770264967  55158741162067  65720971788709 7T 4 6

T5 =1 65720971788709  101452742053676 120879712950776 |=| 6 2 10 |.
120879712950776 186600684739485 222332455004452 10 5 1

Let now (3.4) be true for a fixed t > 1. Then 751" = (7511)11 = All(mod 11)
and it suffices to prove that A = A (mod 11). Since A?> = E (mod 11), we have
A% = (A%t = E' = E (mod 11) for any ¢t € N. Consequently, A = A (mod 11),
which proves 3.5. O
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Lemma 3.6. For any t € N we have det(T°1!" — E) = 0 (mod 11¢+1).

Proof. Ift=1, then
det(T% — E) = 2-11% - 397 - 3742083511 = 0 (mod 11?).

Let the assertion be true for a fixed ¢t > 1. First, it is evident that 751" _ B can

be written as

11

3.5) TN L p o (W _ Ry (B W 2ty plosanty

Now it follows from the induction hypothesis, from (3.5) and from Cauchy’s theorem
that it suffices to prove that

det(E + T8N sty T10'5'11t) =0 (mod 11).

From (3.4) it follows that
BT 425y 408 =y Ay A2 4 4 A =6E+54 (mod 11).
As congruent matrices have congruent determinants, we have

det(E + T2 4 72511 L 4 710511 = qet(6E + 5A4) = 132 = 0 (mod 11).
This proves 3.6. U

Theorem 3.7. For any t € N, the system of congruences
(3.6) (T51' — E)z =0 (mod 117)
has exactly 11'™! solutions and the number of solutions satisfying = # 0 (mod 11) is

equal to 10 - 11t. Moreover, if a1 is a solution of g(z) = 0 (mod 11**1), then each
solution of (3.6) can be expressed as [q, g 41, qai 4], where g € 7.

Proof. Put W = T — E (mod 11*!). From (3.4) it follows that all the
6 4
entries of W, except for w33, are units of the ring 7/11**17Z. Since 11 ¢ det [6 J,
there are coefficients r, s that are also units of the ring Z/11'*17, for which
r(wn, ’wlg) —+ S(’U)Ql, wgg) = (’U)31, ’U)gg) (mod 11t+1).

385



Thus there is a linear combination of the first and second rows of W transforming
Wz =0 (mod 11°T1) to an equivalent form

w1 wiz wiz] [a 0
(37) w21 W22 W23 b 0 (mod 11t+1).
0 0 wis] Le 0

Let us now prove that wj; = 0 (mod 11°!). Multiplying the first row in (3.7) by a
suitable unit and, subsequently, adding it to the second row yields

wir Wiz W13 a 0
(3.8) 0  why whs bl =10]| (mod 11"F1h).
0 0 wisl Le 0

The determinant of the matrix of (3.8) is wyjw)wss and, by Lemma 3.6, we have
wiwhywhs = 0 (mod 11771). Now it follows from (3.4) that wi; and wh, are units
of Z/p'T'7 and thus wj; = 0 (mod 11¢*1). This implies that the system Wz = 0
(mod 11*+1) is equivalent to the system

(3.9) wi1a + wizb + wize = 0 (mod 11771,
. w21a+’UJ22b+UJ23CE 0 (mod 11t+1),

in which all the coefficients are units of 7Z/p!*'7Z. As no subdeterminant of the
system matrix of (3.9) is divisible by 11, any of the unknowns a, b, ¢ can be chosen as
a parameter to express the other unknowns in a unique manner. Thus, each solution
of Wz = 0 (mod 11**1) can be written as [qu1, qua, qus] for a fixed triple of units
u1, U2, ug and a parameter ¢ € Z. Therefore the number of non-congruent solutions
to (3.6) is equal to the number of elements of the ring Z/11'*Z, which is 11**1, and
the number of solutions of the form z # 0 (mod 11) is equal to the number of units
of this ring, which is 10 - 11%.

Let us now prove that the solutions to (3.6) are exactly the triples [q, g 41, god ]
where ¢ € Z. As the number of non-congruent triples [q, g1, go? 1] is equal
to 1171 it suffices to show that h(11°71)[q, qoui1,q0? 1] | 5111 As a = 9 is
a simple root of g(x) = 0 (mod 11), we obtain by Hensel’s lemma, that for each
t € N there is oy, which is uniquely determined modulo 11!, satisfying g(z) =
0 (mod 11*) and such that a; = « and a; = a;_; (mod 11°~1). Let ord;y:(e) for
€ # 0 (mod 11) denote the order of € in the multiplicative group of 7Z/11¢Z. Clearly,
h(11*Y)[q, qout1, qod ] = ordyqeri(ayyr) for any ¢ € 7 where ¢ # 0 (mod 11).
From ordyi(a1) =5 and 41 = a1 (mod 11) it now follows a7, ; =1 (mod 11) for
any t € N and thus of}{" =1 (mod 11*+1). Hence ordyyesi (apqr) | 5- 117 O
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According to Theorem 3.7, the set of all non-congruent solutions to (3.6) can be
written as E(au11) = {[q, qou41,90%1],q € Z/p'T' Z} and viewed as the eigenspace
associated with the eigenvalue ayy.

Remark 3.8. The equality ord;:(c;) = 5-11t71 is a non-trivial consequence of
3.3 and 3.7 for each t € N. See also Lemma 4.6 in [1].

Lemma 3.9. There exists no triple [a,b, c| for which h(11%)[a,b,c] = 5 - 11%.

Proof. It suffices to prove that the systems (7511 — E)z = 0 (mod 11¢) and
(T51" — E)z = 0 (mod 11%) have identical solution sets for any ¢ > 1. Denote by
X the set of all solutions of (7512 — E)z = 0 (mod 11*) and by Y the set of all
solutions of (T5'11t — F)x =0 (mod 11%). The inclusion X C Y follows immediately
from the equality

T5~11‘ —E=(E+ T5'11t_1 + T2'5'11t_1 4.4 T10~5-11t—1) . (T5'11t_1 ~E).

Modifying the proof of 3.7, we can determine that (751 — E)z = 0 (mod 11*) has
11* solutions, thus the same number as (%" — E)z = 0 (mod 11'). The equality
of the sets X and Y follows from their finiteness. O

Now we can summarize our results in the main theorem:

Theorem 3.10. For any triple [a,b, c] # [0,0,0] (mod 11), we have:

If [a,b,c] € E(oy) and ¢ = 3a + 5b (mod 11), then h(11%)[a,b,c] = 10 - 11*71,
If [a,b,c] € E(ay) and ¢ # 3a + 5b (mod 11), then h(11%)[a,b,c] = 10 - 11%.
If [a,b,c] € E(ay), then h(11%)[a, b, ] = ordyy¢(ay) = 5- 11171,
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