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Abstract. The period function of a planar parameter-depending Hamiltonian system is
examined. It is proved that, depending on the value of the parameter, it is either monotone
or has exactly one critical point.
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1. Introduction

We will consider the second-order differential equation

(1) ẍ = sinx(cos x − γ), x ∈ S1,

which models a motion of a pendulum rotating about its vertical axis. The peri-
odic solutions of this system form two or three one-parameter families (oscillations,

rotations and, for γ < 1, deviated oscillations) separated by homoclinic trajectories.
The question of monotonicity of the period of a one-parameter family of periodic

solutions arises in connection with the study of subharmonic bifurcation ([5], [8],
[15]), and is in many cases difficult to answer. This difficulty is related to the fact

that calculations often lead to elliptic integrals. Some results in particular cases were
obtained, for example, by Brunovský and Chow [2], Chicone [3], Chow and Sanders

[4], Chow and Wang [6].
In this paper we show that

— if γ � 4, then the period function of each family of periodic solutions is
monotone;

— if γ < 4, then the period function of oscillations has exactly one critical point,
while rotations and deviated oscillations have a monotone period.
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Our proof is based upon Picard-Fuchs equations, the method that has been used

by several authors in the study of zeros of abelian integrals, see for example [1], [4],
[7], [11], [13].

The paper is organized as follows. First, the dynamics of (1) is shortly described.
Then we derive Picard-Fuchs equations and a second order differential equation for

the period map T . Also limit properties of T and its derivative are described. Finally,
we determine the number of singular points of the period map in the particular

regions of the γ-h plane, where h denotes the energy level of (1). In the last section,
a brief sketch of numerical computations is given.

2. The phase portrait

The motion of a whirling pendulum is described in [10], p. 272, by the equation

(2) ẍ = − g

L
sinx+ ω2 sinx cosx, x ∈ S1,

where L is the length of the pendulum, x its angle deviation, and ω is a constant
rotation rate. Introducing a new variable y = ẋ and then changing the variables

y → ωy, t → t/ω converts (2) to an equivalent planar system of first-order equations

ẋ = y

ẏ = sinx(cosx − γ),(3)

where γ = g/Lω2 > 0.

This system is hamiltonian with the energy

(4) H(x, y) = 1
2y
2 − γ cosx+ 12 cos

2 x+ γ − 1
2 .

Its levels H−1(h) = Γh correspond to solutions of (3), where h ∈ 〈hm,∞) with

hm =

{ − 1
2 (1− γ)2, if γ < 1,

0, if γ � 1.

Depending on γ, we have two qualitatively different dynamics of (3) (see Fig. 1

and Fig. 2).

For all γ, the point (�, 0) in the x-y phase plane is a saddle with two homoclinic tra-
jectories Γ+ = H−1(2γ)∩{(x, y); y > 0} and Γ− = H−1(2γ)∩{(x, y); y < 0}. They
form boundaries between two families of periodic trajectories: P0 = {H−1(h); h ∈
(0, 2γ)} corresponding to oscillations of the pendulum, and P+ = {H−1(h); h >
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Fig. 1. Phase portrait for γ � 1. Fig. 2. Phase portrait for γ < 1

2γ, y > 0} and P− = {H−1(h); h > 2γ, y < 0}, corresponding respectively to
clockwise and counterclockwise rotations of the pendulum.

The point (0, 0) is also a singular point, but its stability depends on γ. If γ � 1,
then it is a center surrounded by the family P0. If γ < 1, then (0, 0) is a sad-

dle point with two homoclinic loops (symmetric with respect to the y-axis), Γ∗ =
H−1(0) ∩ {(x, y), x > 0} and −Γ∗ = H−1(0) ∩ {(x, y); x < 0}. Inside each loop,
there is a family of periodic solutions (deviated oscillations) P∗ = {H−1(h); h ∈
〈− 12 (1− γ)2, 0), x > 0} and −P∗ = {H−1(h);h ∈ 〈− 12 (1 − γ)2, 0), x < 0}, which
surround centers (arccosγ, 0) and (− arccosγ, 0), respectively.

In the sequel, we will take into consideration only the families P0, P∗ and P+,
since, due to symmetry, the results for −P∗ and P− are analogous. The superscripts
0, + and ∗ will denote which Γh-family is being used; i.e.T 0(h) denotes a function

T (h) restricted to P0.

3. Picard-Fuchs equations for the period function

Let T (h) denote the period of the trajectory Γh on the energy level h and let the

corresponding solution be t �→ (x(t), y(t)). Obviously,

T (h) =
∫
Γ(h)

dx
y

.

We define integrals

In(h) =
∫
Γh

y(cosx)ndx, n = 0, 1, 2.

Note that T (h) = I ′0(h), where
′ stands for the derivative with respect to h.
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Lemma 1. Let us denote v = (I0, I1, I2)�. Then

(5)


 1 0 0
0 1 0

− 12 1
2γ

3
2


v =


 2h − 2γ + 1 2γ −1

1
2γ h − γ 1

2γ

0 γ(h − γ + 1) h − γ + γ2


v′.

�����. According to (4) we have

(6) y2 = 2h − 2γ + 1 + 2γ cosx − cos2 x.

Then

I0 =
∫

y2

y
dx

=
∫
2h− 2γ + 1 + 2γ cosx − cos2 x

y
dx

= (2h − 2γ + 1)I ′0 + 2γI ′1 − I ′2,

which is the first equation of (5). To obtain the second, we first integrate I1 by parts,

and then use twice (6):

I1 = −
∫
dy
dx
sinxdx

=
∫
sin2 x

y
(γ − cosx) dx

=
∫
1− cos2 x

y
(γ − cosx) dx

=
∫
1
y
(y2 − 2h+ 2γ − 2γ cosx)(γ − cosx) dx

= γI0 + 2γ(γ − h)I ′0 − I1 + 2(h − γ − γ2)I ′1 + 2γI ′2.

Then

(7) I1 =
1
2
γI0 + γ(γ − h)I ′0 + (h − γ − γ2)I ′1 + γI ′2,

and substituting I0 into (7) yields the second equation in (5). In a similar way we
derive the third equation in (5). First, we use the trigonometrical identity

cos2 x =
1 + cos 2x
2

596



to obtain

(8) I2 =
1
2
I0 +

1
2

∫
y cos(2x) dx.

Integrating the second integral by parts gives∫
y cos(2x) dx = −1

2

∫
dy
dx
sin(2x) dx

=
∫
1
y
cosx(γ − cosx) sin2 xdx

and, after using the relation

cos2 x = 2h− 2γ + 1 + 2γ cosx − y2,

we obtain∫
y cos(2x) dx = −γI1 − I2 + 2γ(h− γ + 1)I ′1 + 2(h − γ + γ2)I ′2.

This yields, together with (8), the last equation in (5). �

Lemma 2. The period map T (h) satisfies the second order differential equation

(9) 2aT ′′ = −bT + cT ′,

where

a = 2w(h − γ + γ2),

b = h2 + hγ(2.5γ − 2) + γ2(0.5γ2 − 2.5γ + 1),
c = 2

(
w − w′(h − γ + γ2)

)
with w = h(h − 2γ) (2h+ (γ − 1)2) and w′ = 2(h − γ)(γ − 1)2 + 2h(3h − 4γ) being
the derivative of w with respect to h.

�����. The first equation of (5) implies

(10) I ′2 = (2h − 2γ + 1)I ′0 + 2γI ′1 − I0.

Substituting it into the third equation of (5) gives

I2 =
1− 2(h − γ + γ2)

3
I0 − 13γI1

+
2
3
(h − γ + γ2)(2h − 2γ + 1)I ′0 +

2
3
γ(3h − 3γ + 2γ2 + 1)I ′1.
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If we differentiate the last equation with respect to h and compare it with (10), we

obtain

(11) γI ′1 = I0 + 2γ
2I ′0 + 2vI ′′0 + 2γ(3h− 3γ + 2γ2 + 1)I ′′1 ,

where v = (h − γ + γ2)(2h − 2γ + 1). We now use the first and second equations of
(5) to calculate I ′′1 . First, we eliminate I2:

1
2
γI0 + I1 = γ(h − γ + 1)I ′0 + (h − γ + γ2)I ′1,

from which

I1 = γ(h − γ + 1)I ′0 + (h − γ + γ2)I ′1 −
1
2
γI0.

Differentiating the last equation with respect to h yields

I ′′1 = − γ

h − γ + γ2

[
(h − γ + 1)I ′′0 +

1
2
I ′0

]
.

Substituting for I ′′1 into (11) gives

(12) γI ′1 = I0 + 2γ2I ′0 + 2vI ′′0 − 2γ2 3h − 3γ + 2γ2 + 1
h − γ + γ2

[
(h − γ + 1)I ′′0 +

1
2
I ′0

]
.

To simplify this equation, we multiply it by (h − γ + γ2) and denote

(13) w = (h − γ + γ2)2(2h − 2γ + 1)− γ2(h − γ + 1)(3h − 3γ + 1 + 2γ2).

Then (12) becomes

γ(h − γ + γ2)I ′1 = (h − γ + γ2)I0 − γ2(h − γ + 1)I ′0 + 2wI ′′0 .

If we differentiate the last equation with respect to h and again substitute for I ′′1 , we
obtain

γI ′1 = I0 +
(1
2
γ2 + h − γ

)
I ′0 + 2w

′I ′′0 + 2wI ′′′0 .

Now, compare this equation with (12) to eliminate I0 and I ′1. The result is

2wI ′′′0 = 2
( w

h − γ + γ2
− w′

)
I ′′0 +

(3
2
γ2 − h+ γ − γ2

3h− 3γ + 2γ2 + 1
h − γ + γ2

)
I ′0,

which together with (13) and I ′0 = T gives (9). �

598



Suppose h0 is a critical point of T , e.g.T ′(h0) = 0. It follows from (9) that

T ′′(h0) =
−b

2a
T (h0).

Since T (h0) > 0, the following result is obvious:

Corollary 1. If T ′(h0) = 0 for some h0 ∈ (hm,∞), then

(14) ab > 0 (< 0) at h = h0 =⇒ T ′′(h0) < 0 (> 0).

h

0 1 4 γ

−

+

+

+
−

a1=0

b=0

h=2γ

a2=0

�
Fig. 3. The sign of ab.

Therefore the curves a = 0 and b = 0 in the γ-h plane determine the type of the

critical points of T (h). The situation is depicted in Fig. 3, where we have denoted
a1 = h − γ + γ2 and a2 = h + 1

2 (1 − γ)2. There are regions inside which a and b

are of constant sign (note that we are interested only in h � hm). The coefficient a

changes its sign when crossing one of the curves a1 = 0, a2 = 0, h = 2γ and h = 0.

The coefficient b vanishes, for given γ, at

h± = γ − 5
4
γ2 ± γ

√
17
16

γ2 − 1.

Depending on γ, there are several cases:

1. γ < 4/
√
17. Then b > 0 for all h � hm.

2. 4/
√
17 � γ < 1 or γ > 4. Then h+ � hm, which means that b > 0 for all

h > hm.
3. γ = 1 or γ = 4. Then h− < h+ = 0, which implies that b is positive for all

h > 0, and b = 0 at h = 0.
4. 1 < γ < 4. Then h− < 0 < h+, and so b = 0 only at the point h+.
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The following lemma will be helpful for determining the sign of T ′(h):

Lemma 3.

lim
h→h+m

T (h) =




2�√
1−γ2

, if γ < 1,

∞, if γ = 1,
2�√
γ−1 , if γ > 1,

and

lim
h→h+m

T ′(h) =




�
1+2γ2

(1−γ2)
5
2
, if γ < 1,

−∞, if γ = 1,
�

(γ−1) 52
(
1
4γ − 1) , if γ > 1.

�����. We examine three cases separately.

1. γ < 1. It is easily seen that in P∗

T (h) = 2
∫ x−

h

x+h

dx
y

with x+,−
h = arccos(γ ± √

(1 − γ)2 + 2h) and y =
√
2h − 2γ + 1− cos2 x+ 2γ cosx.

Let us define new coordinates (h, ϕ) by

x = arccos s

y = sinϕ
√
(1− γ)2 + 2h,

where h is the level of the energy H(x, y), ϕ ∈ [0, �] is the angle between the x-axis

and the line connecting the points (arccosγ, 0) and (x, y), and

s = γ − cosϕ
√
(1 − γ)2 + 2h.

Then
1
2
T (h) = −

∫
�

0

1
y

dx
dϕ
dϕ =

∫
�

0

dϕ√
1− s2

.

Since lim
h→hm

s = γ, we have

lim
h→hm

T (h) =
2�√
1− γ2

.

We now compute the derivative of T (h):

1
2
T ′(h) =

∫
�

0

ss′

(1− s2)
3
2

dϕ

=
−1√

(1− γ)2 + 2h

∫
�

0

cosϕ
(
γ − cosϕ√

(1− γ)2 + 2h
)

(1− s2)
3
2

dϕ.
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The last expression is of type “0/0” if h = hm. To find its limit at the point

h = hm, we use L’Hospital’s rule:

lim
h→hm

T ′(h) = −2 lim
h→hm

∫
�

0

cosϕ
(

γ−cosϕ
√
(1−γ)2+2h

)
(1−s2)

3
2

dϕ√
(1− γ)2 + 2h

= 2 lim
h→hm

∫
�

0

cos2 ϕ(1 + 2s2)

(1− s2)
5
2

dϕ

= �

1 + 2γ2

(1− γ2)
5
2

.

2. γ = 1. In this case,

T (h) = 4
∫ xh

0

dx
y

with xh = arccos(1 −
√
2h). The new coordinates are of the form

x = arccos s

y =
√
2h sinϕ,

where ϕ ∈ [
0, �2

]
is the angle between the x-axis and the line connecting the points

(0, 0) and (x, y), and
s = 1−

√
2h cosϕ.

Easy computations yield

T (h) = 4
∫ �

2

0

dϕ√
1− s2

and then

T ′(h) =
−4
(2h)

5
4

∫ �

2

0

1−√
2h cosϕ√

cosϕ(2−√
2h cosϕ)

dϕ,

which means that lim
h→0+

T ′(h) = −∞.
3. γ > 1. Again, in P0 we have

T (h) = 4
∫ xh

0

dx
y

with xh = arccos(γ − √
(γ − 1)2 + 2h). This integral can be arranged (see, e.g. [9],

[14]) into the form

(15) T (h) =
4

4
√
(γ − 1)2 + 2hK(k).
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Here

K(k) =
∫ 1

0

ds√
1− s2

√
1− k2s2

is the complete elliptic integral of the first kind with the elliptic modulus k, where

k2 =
1
2

(
1 +

h − γ + 1√
(γ − 1)2 + 2h

)
.

With h increasing on 〈0, 2γ〉, the elliptic modulus k increases on 〈0, 1〉. The integral
K(k) can be expressed via the infinite series

K(k) =
�

2

(
1 +
1
4
k2 +O(k4)

)
which is increasing for k ∈ 〈0, 1〉, and

lim
k→0+

K(k) = K(0) =
�

2
, lim

k→1−
K(k) = +∞.

It follows immediately that

lim
h→0+

T (h) =
2�√
γ − 1 .

Differentiating (15) with respect to h gives

T ′(h) =
�

((γ − 1)2 + 2h) 54
{ γ2 − γ + h√
(γ − 1)2 + 2h

(1
4
+O(k2)

)
− 1−O(k2)

}
.

Now, it is easy to check the last limit of the lemma, provided we realize that k → 0
as h → 0. �

4. Monotonicity of the period

We are now ready to examine the monotonicity of the period map T of (3). Recall
that there are two (for γ � 1) or three (for γ < 1) one-parameter families of periodic

solutions with periods T ∗, T 0 and T+ defined on (− 12 (1−γ)2, 0), (0, 2γ), and (2γ,∞),
respectively. It is not difficult to see that

T ∗(h)→ ∞ as h → 0−,

T 0(h)→ ∞ as h → 0+ and γ � 1,
T 0(h)→ ∞ as h → 2γ−,

T+(h)→ ∞ as h → 2γ+.
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Theorem 1. Let γ be a positive real number. Then

1. T+(h) is strictly decreasing;

2. T 0(h)

(a) is strictly increasing, if γ � 4 and
(b) has exactly one critical point which is its global minimum point, if γ < 4;

3. T ∗(h) is strictly increasing.

�����. In Fig. 4, the domains of the particular period functions are bounded
by the curves h = 0, h = 2γ, and h = − 12 (1 − γ)2. They also, together with

h − γ + γ2 = 0 and b = 0, form the boundaries of the regions where ab does not
change its sign (compare with Fig. 3). We now consider particular cases.

h

0 1 4 γ

MIN

MAX

MAX

MAX
MIN

h=2γ

h=hm

�
Fig. 4. Possible types of critical points.

1. T+(h).

Since neither a = 0 nor b = 0 intersect the region above the line h = 2γ, T ′′(h0)
is, according to (9), of one sign at any critical point h0 > 2γ of T . Namely, ab > 0,
which implies, by (14), that every critical point should be a local maximum. But

T (h) → ∞ as h → 2γ. Thus, there is no critical point of T+(h), and T ′(h) < 0 for
all h > 2γ.

2. T 0(h).

Between the lines h = 0 and h = 2γ, there are two subcases depending on the
value of the parameter γ:

(i) γ � 4:
Fig. 4 shows that any critical point in the interval (0, 2γ) should be a minimum
point. Since lim

h→0+
T ′(h) > 0, we can conclude that there is no critical point of

T 0(h).

(ii) γ < 4:
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By Lemma 3, lim
h→0+

T ′(h) < 0, which together with lim
h→2γ−

T (h) = ∞ implies

that there is at least one minimum point. Consulting Fig. 4 we obtain that T (h)

has exactly one minimum point h, particularly

if γ ∈ (1, 4) then h ∈ (h+, 2γ);

if γ ∈ (0, 1) then h ∈ (
γ − γ2, 2γ

)
.

3. T ∗(h).
The discussed region is bounded by the lines γ = 0, γ = 1, h = 0 and the

curve h = − 12 (1 − γ)2. Fig. 4 shows that any critical point in this region should be

a minimum point. Since lim
h→0−

T ∗(h) = ∞, and the derivative of T ∗(h) is positive

near the point h = hm (see Lemma 3), we can conclude that there is no critical point
of T ∗(h). �

−0.32 0 0.4 h
�

0 2 h
�

a) b)

0 2.2 h
�

0 16 h
�

c) d)

Fig. 5. Graphs of T (h): a) γ = 0.2, b) γ = 1, c) γ = 1.1, d) γ = 8.
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5. Numerical computations of T (h)

The graphs of the period function in the particular cases are in Fig. 5. The data

for the graphs were computed in two ways. For γ � 1 and h ∈ (0, 2γ) we have used
the relation (15) where we have substituted the infinite series for K(k). In the other

cases we computed

T (h) =
∫
Γh

dx
y

numerically using the Simpson rule with slightly modified boundaries to avoid the
situation y = 0. However, both methods have not been applicable near the points

h = hm and h = 2γ because of great numerical errors. To complete the picture we
used the results of Lemma 3:

— if γ �= 1 then the limit at h = hm is finite;
— if γ = 1 then T (h) is (near h = 0) approximately 2�(2h)−1/4;
— near h = 2γ we applied (15) with use of the inequality (see [12])

1 +
k′2

8
<

K(k)
log(4/k′)

< 1 +
k′2

4
.

������	
��
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