
Anomalous Hall effect — local orbital approach

Structure of the talk:

◮ Experimental observations of the anomalous Hall effect,
scaling of the anomalous Hall conductance

◮ Anomalous Hall conductance for ideal Bloch systems,
Berry phase curvature corrections

◮ Effect of the local orbital fluctuations

◮ Drude-Zener type formula

◮ Concluding remarks



Anomalous Hall effect — experimental observations

Anomalous Hall effect is observed on ferromagnetic systems.
It is similar to normal Hall effect

UH
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≡ ρyx = RH Beff = RH (B + γM) ≡ RHB + R1 M

B = external magnetic field
M = magnetization

lim
B→0

UH 6= 0

Another essential difference
from the standard Hall effect:

γ and consequently Beff depends on the resistivity ρ = ρxx
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On Fe for the first time ”intrinsic anomalous Hall effect” was observed

E. H. Butler and E. M. Pugh, Phys. Rev. 57, 916 (1940)
J.-P. Jan, Helv. Phys. Acta. 25, 677 (1952)
J.-P. Jan and J. M. Gijsman, Physica 18, 339 (1952)

for Fe R1 ∼ ρAH ∼ ρ2

off-diagonal
cond. component

σAH =
ρAH

ρ2 + ρ2
AH

for ρ ≫ ρAH

σAH ≈
ρAH

ρ2

independent
on scattering

⇓
intrinsic effect



Three broad regimes have been identified when surveying a
large body of experimental data for diverse materials.

review by Nagaosa et al, Rev. Mod. Phys. 82, 1539 (2010)
Miyasato et al, Phys. Rev. Lett. 99, 086602 (2007)

S = Ω
−1

(i) high conductivity

σxx > 106 Ω−1
cm

−1

σAH
xy ≈ σα

xx

? skew scatt. dominates ?

(ii) intrinsic regime
(good metal)

104 < σxx < 106 Ω−1
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−1

σAH
xy ≈ [σxx ]

0

scattering independent

(iii) bad metal

σxx < 104 Ω−1
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−1

σAH
xy ≈ [σxx ]

1.6−1.8

hopping regime



Physical origin of the anomalous Hall effect

It is generally accepted that anomalous Hall effect
originates in spin-orbit coupling together with exchange interaction

They remove degeneracy of the energy spectrum and the effective single
particle Hamiltonian is composed of the three terms H ≡ H0 + Hso + Hz .

H0 =
~p 2

2m0
+V (~r) , Hso =

λ2
c

4~
~σ ·

[

~∇V (~r) × ~p
]

, Hz = −µB
~Beff ·~σ

where λc denotes an effective Compton length, elements of the vector ~σ
are Pauli matrices and V (~r ) denotes a background potential.
Hamiltonian Hz describes Zeeman-type spin splitting due to the
exchange-correlation energy represented by an effective field ~Beff .
Velocity operator reads

~v ≡
1

i~
[~r , H ] =

~p

m0
+

λ2
c

4~
~σ × ~∇V (~r )

If V (~r) is of the translation symmetry, eigenfunctions are of the Bloch
form, and velocity expectation values are determined by the energy
dispersion En(~k)

~vn(~k) =
1

~

~∇~k
En(~k)



Kubo formula for Hall conductivity

Hall conductivity is often presented as the sum of two ensemble averaged
contributions

σxy (µ) =
〈

σ(I)
xy (µ)

〉

av

+
〈

σ(II)
xy (µ)

〉

av

= − σyx(µ)

”Fermi surface” term

σ(I)
xy (µ) = e2 i~

2
Tr

{

δ(µ − H)
[

vxG
+(µ)vy − vyG

−(µ)vx

]}

and the ”Fermi see” term

σ(II)
xy (µ) =

e2

2
Tr {δ(µ − H) [xvy − yvx ]} = − e2

Tr {δ(µ − H) y vx}

This form has been derived to get quantum Hall effect but it is not
suitable if the chemical potential is located within an energy band. For
perfect Bloch electron systems it can be rewritten as

σxy (µ) = −
e

Vws

∑

n

[

~Pn(µ)
]

z

~Pn(E )

Vws

≡ −
e

8π3

∫

BZ

δ
(

En(~k) − E
)

~rn(~k ) × ~vn(~k ) d3k



Intrinsic AHE in terms of the Berry phase curvature

σxy (µ) = − e2

8π3
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Periodic part of Bloch functions u
n,~k(~r ) can be expressed via Wannier

functions φn(~r − ~Rl ) and for coordinate expectation value ~rn(~k) we get

u
n,~k(~r ) =

N
X

l=1

e i~k(~Rl−~r)

√
N

φn(~r − ~Rl ) ⇒ ~rn(~k) = −Im

Z

Vws

u
+

n,~k
(~r ) ~∇~k u

n,~k(~r ) d
3
r

Integration per parts gives the expression already derived by Karplus and
Luttinger [PR 95, 1154 (1954)]
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4π2
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where the Berry phase curvature ~Ωn(~k) of Bloch states reads

~Ωn(~k) ≡ − Im 〈~∇~kun,~k | × |~∇~kun,~k〉



Orbital polarization momentum

For perfect Bloch electron system Hall conductivity reads

σxy (µ) = −
e

Vws

∑

n

[

~Pn(µ)
]

z

~Pn(E )

Vws

≡ −
e

8π3

∫

BZ

δ
(

En(~k) − E
)

~rn(~k ) × ~vn(~k ) d3k

Quantity ~Pn(µ) represents Fermi electron contribution to the part of the
local orbital magnetization, often called as Berry phase correction to the
orbital magnetization.

It is responsible for current induced charge polarization
since mass-center positions of states having opposite velocity do not
coincide. It can thus also be called as orbital polarization momentum.

For imperfect systems the above result have to be averaged over the
ensemble of the background potential fluctuations

σxy (µ) = −
e

Vws

〈

∑

n

[

~Pn(µ)
]

z

〉

av



Classical view - chain of atomic states
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Electron moving within a chain of tight-binding states, say along x̂

direction, has a finite dwell time that it spends within the unit cell area.
There are two states with ±kF at the Fermi energy.

Part of the current originally circulating within atoms is now forming an
outer paths loop of the macroscopic length. It leads to the mass-center
separation of states at the Fermi energy having opposite velocity

∆Yn(kF )=〈n, kF |y |n, kF 〉 − 〈n,−kF |y |n,−kF 〉≡Yn(kF ) − Yn(−kF )



Current distribution for p-states: m = −1 , sz = 1/2

k −k

Non-equilibrium occupation of states induces charge polarization.



Single-band model of the perfect Bloch electron system

If the potential V (~r) is translationally invariant the considered Hamiltonian

H =
~p 2

2m0
+ V (~r) +

λ2
c

4~
~σ ·

h

~∇V (~r) × ~p
i

− µB
~Beff · ~σ

can be for a particular energy band written as follows

H =
X

l

|l〉 Ea 〈l | +

l 6=m
X

l,m

|l〉 tlm 〈m|

where |l〉 and |m〉 are Wannier functions representing atomic-like orbitals of the

energy Ea associated with lattice sites ~Rl and ~Rm, respectively.
Instead of considering a specific form of the band dispersion it will be assumed
that it gives an elliptical density of states which normalized per Wigner-Seitz
volume Vws reads

g(E) =
2

πw2

p

w2 − (E − Ea)2 if |E − Ea| ≤ w ; g(E) = 0 if |E − Ea| > w

2w = band width. The corresponding mean Fermi velocity reads

vF =
w2

2~

“π

2

”2/3

ã g(µ) ,

where ã ≡ V
1/3
ws just equals to the lattice constant for the simple cubic lattice.



Ferromagnetic system — two-band model

E (2)
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µ
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(2)
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(1)

The simplest model of the ferromagnetic system is to consider two fully
polarized energy bands.

Expectation value of the radius vector can be approximated by the radius
R(Ea) of the given orbital which is an energy dependent quantity

R(Ea)

ã
≈

R0

ã

(

1 + κ
Ea − E0

w

)

;
[

~rn(~k ) × ~vn(~k )
]

z
∼ R(Ea) vF



Disordered systems

The simplest possible approach to model disorder is to assume the so
called single-site fluctuations, i.e. a variation of the orbital energy Ea.

◮ Static disorder like impurities, dislocations, grain boundaries and
other crystal imperfections, Ea → Ea + δi controlled by an
probability distribution p(δi ).

◮ Dynamical disorder like lattice vibrations (temperature fluctuations)
represented by the deformation potential, Ea → Ea + δth controlled
by the normal probability distribution p(δth) ∼ exp(−δ2

th
/2Γ2).

Numerical results will be presented for Lorentzian distribution

p(δ, Γ) =
1

π

Γ

δ2 + Γ2
⇒ 〈Tr δ(H + δ − E )〉

av
=

1

π

Γ

[En(~k) − E ]2 + Γ2

allowing to relate Γ to the electron life time τ = ~/2Γ.

Note that this single-site model fluctuations are not applicable to high
conductivity regime for which vertex corrections cannot be neglected.
They vanish in this model!



Numerical example

Following set of parameters has been used: ã = 3Å , Ra(0)/ã = 0.3,

κ = 1, and (E
(2)
a − E

(1)
a )/w = 0.6.
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Note, that qualitative features of the anomalous Hall conductivity as
function of the inverse electron life-time are not affected by the use of
different probability distribution functions.



Scaling of the anomalous Hall conductivity

Following set of parameters has been used: ã = 3Å , Ra(0)/ã = 0.3,

κ = 1 (0.5), and (E
(2)
a − E

(1)
a )/w = 0.6 (0.4).
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Qualitative agreement with experimental observations has been obtained!



Intrinsic AHE — Drude-Zener type formula

Scattering independent anomalous Hall conductivity can be understood by
using classical arguments. In the steady state the total force has to vanish

~F = − e Ne
~E − 1

c
Ne ~v × ~B −

„

∂~p

∂t

«

scatt

= 0

t t

t t

t t

t

t

t

t

tt

t

t

p+ p −

y

x

p −−+p=Dvm

„

∂~p

∂t

«

scatt

≈ ~p − ~p0

τ

~p0 is the momentum density
corresponding to the

non-dissipative Hall current

e.g . j
(H)
x = e

2
vF g(µ) ∆Y Ey

= − vF {− e g(µ) ∆Y e Ey }
dipole charge density

Generally ~j (H) = e ~P × ~E
~P = −e g(EF ) ~R × ~vF (~R)

Defining ~p0 ≡ − m

e
~j (H) we get

~j − τ ~ωc ×~j =
e2τNe

m
~E + e ~P×~E , ~ωc ≡ e~B/mc



Concluding remarks

◮ Anomalous Hall effect is determined by the orbital polarization
momentum (Berry phase correction to the orbital momentum of
Fermi electrons) giving rise to the local charge polarization induced
by the applied current.

◮ Despite of the model simplicity it describes qualitative features of
the two experimentally observed regimes: bad metal (hopping)
regime and good metal (intrinsic - scattering independent) regime.

◮ Quantitative agreement could be obtained by using exact form of
Wannier functions together with the fluctuation model relevant for
the considered material which should be treated by using coherent
potential approach.

◮ Used single-site model fluctuations is not acceptable for the high
conductivity regime for which so called vertex corrections have to
be taken into account.
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◮ Anomalous Hall effect is determined by the orbital polarization
momentum (Berry phase correction to the orbital momentum of
Fermi electrons) giving rise to the local charge polarization induced
by the applied current.

◮ Despite of the model simplicity it describes qualitative features of
the two experimentally observed regimes: bad metal (hopping)
regime and good metal (intrinsic - scattering independent) regime.

◮ Quantitative agreement could be obtained by using exact form of
Wannier functions together with the fluctuation model relevant for
the considered material which should be treated by using coherent
potential approach.

◮ Used single-site model fluctuations is not acceptable for the high
conductivity regime for which so called vertex corrections have to
be taken into account.

◮ !!! Observed properties of the high conductivity regime are puzzling
for me since for ideal Bloch systems theory predicts values given by
the Berry phase correction to the orbital magnetization which seems
to be smaller in the most cases !!!


