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Negative Index of Refraction in Anisotropic
Nonmagnetic Materials
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182 21 Prague 8, Czech Republic

We analyze the possibility of negative refractive index and/or negative refraction of en-
ergy flow in a uniaxial nonmagnetic dielectric material. It is shown that an extraordinary
p-polarized electromagnetic wave can exhibit a negative refraction provided the parallel
(with respect to the optical axis) and perpendicular components of the permittivity have
different signs. Such a situation can be encountered near phonon resonant lines, as for
example in mercurous halides. The dispersion curves of surface and guided modes in
an anisotropic nonmagnetic slab are calculated. The effect of space dispersion is briefly
discussed.

Keywords Anisotropic dielectric; negative refractive index; surface modes; guided
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Introduction

In the past few years, materials showing simultaneously negative permittivity ε and perme-
ability µ in a particular frequency range have been intensively investigated. These, so called
negative refractive materials (NRM), exhibit unusual electromagnetic (EM) wave propaga-
tion properties predicted by Veselago [1] almost 40 years ago and recently demonstrated
experimentally in the microwave range [2, 3]. The essential feature of isotropic NRM is that
the phase vph and group vgvelocities of EM waves have opposite directions. Straightforward
consequences of this property are the negative refraction of the EM beams described by
a negative refractive index nph introduced into the Snell’s law, a reversed Doppler shift,
negative radiation pressure and an obtuse angle for Cherenkov radiation [1]. Of particular
interest is Veselago’s perfect lens [1], a slab of NRM with ε = µ = –1, which could dra-
matically improve the resolution in 3d imaging. Physics of isotropic NRM was recently
reviewed in detail by Ramakrishna [4].

Anisotropic Dielectrics

A study of EM wave propagation in magnetic anisotropic materials for which not all of
the principal components of the permittivity and/or the permeability tensors have the same
sign has been reported recently; in certain classes of anisotropy negative refraction and
other related properties have been found [5–7]. It is well known [8] that in an anisotropic

Paper originally presented at IMF-11, Iguassu Falls, Brazil, September 5–9, 2005; received for
publication January 26, 2006.

∗Corresponding author. E-mail: Dvorak@fzu.cz

[1611]/195



D
ow

nl
oa

de
d 

B
y:

 [F
yz

ik
al

ni
 u

st
av

 A
V

 C
R

] A
t: 

15
:2

5 
14

 F
eb

ru
ar

y 
20

08
 

196/[1612] V. Dvořák and P. Kužel

Figure 1. The refraction of a TM wave: a) εx = 0.5, εz = –0.5; b) εx = –0.5, εz = 0.5; with this
special choice of the values of the permittivity components β = – γ in both cases. The magnetic field
H is oriented in the positive direction of the y-axis.

nonmagnetic (µik = δik) material vg makes an acute angle with vph, i.e. with the wave
vector k of the monochromatic plane wave. (If the spatial dispersion of the permittivity is
taken into account, the angle between vg and k may assume all values between 0 and π for
different directions of wave propagation [8].) A question arises: which kind of dielectric
anisotropy can lead to the negative refraction? Indeed, it has been recently shown that in
a planar waveguide with anisotropic dielectric core and metallic waveguide boundaries
negative refraction can be achieved [9].

The aim of this paper is to provide a systematic study of EM wave propagation in
a uniaxial anisotropic nonmagnetic material. We study both a semi-infinite medium and
a plane-parallel slab with the z-axis perpendicular to the sample surface. The EM wave
propagation takes place in the (x,z)-plane; the principal axes of the permittivity tensor
of the sample are along x, y, and z. Since, obviously, the TE waves (ordinary waves; the
electric field E perpendicular to the plane of incidence y = 0) are not affected by anisotropy
of the medium, we shall consider in the following the TM waves (extraordinary waves; the
magnetic field H perpendicular to the plane of incidence: Hyexpi[k · r −ωt]) only. The signs
of the in-plane (εx ) and normal (εz) components of the permittivity tensor are assumed to be
different. Such a situation can be frequently encountered near phonon lines in anisotropic
dielectrics, e.g., mercurous halides exhibit this type of behavior in the THz spectral range.
One can distinguish two cases: (i) the in-plane component of the permittivity is negative (i.e.
εx < 0, εz > 0) and (ii) the normal component of the permittivity is negative (i.e., εx >0,
εz < 0) (see Fig. 1).

Refraction

Let us first consider the refraction of a monochromatic EM plane wave with the angular
frequency ω and the wave-vector k(kx,0, kz) incident from vacuum on the surface z = 0 of
a semi-infinite uniaxial dielectric with the optical axis along the z-axis of the coordinate
system (see Fig. 1). From Fresnel equation we get for the z-component of the wave-vector
K of the refracted wave (x-component is conserved, Kx = kx )

Kz = ±
√

εx k2
0 − εx

εz
k2

x (1)
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where k0 = ω/c. In order to obtain a propagative refracted EM wave, we need εx k2
0 -

(εx /εz)k2
x > 0, i.e.,

εx − εx

εz
sin2 α > 0. (2)

The components of time averaged energy flux (the Poynting vector) S read as

Sx = ckx

2πk0εz

(
εx kz

Kz + εx kz

)2 ∣∣Hy

∣∣2
,

(3)

Sz = cεx Kz

2πk0

(
kz

Kz + εx kz

)2 ∣∣Hy

∣∣2
.

Obviously, the energy of the EM wave is flowing from the interface into the medium and
hence Sz is always positive, which means that εx Kz > 0, i.e. the actual sign of Kz in Eq. (1)
is determined by the sign of εx component of the permittivity tensor. From (3) we get the
well known relation [10] between the directions of S and K (see Fig. 1), i.e., of vg and vph,

tan β = εx

εz
tan γ.

Negative refraction of S or K can be achieved when εx and εz have different sign. When
εx > 0, εz < 0 (Fig. 1a), Sx is negative and the refracted wave is propagative for an arbitrary
angle of incidence α. On the other hand, when εx < 0, Kz must be negative (Fig. 1b) and, as
it follows from (2) for εz > 0, the angle of incidence is limited by the condition sin2α > εz .
It is interesting to note that unlike in an isotropic medium, there exist specific angles of
incidence α0 at which the wave vector K or the Poynting vector S are not refracted, i.e.
γ = α0 or β = α0. These critical angles are 300and 600 when εx = 0.5, εz = –0.5 (Fig. 1a)
and εx = –0.5, εz = 0.5 (Fig.1b), respectively. It should be emphasized that the vectors K,
E, H form a right-handed triad even when K refracts negatively, i.e. Kz < 0 (Fig. 1b). In
a magnetic anisotropic material, when K refracts negatively, the triad becomes left-handed
[7].

Let us now consider the dependence of the refraction angles β and γ on the incident
angle α. It is easy to find that

sin α

sin γ
= K

k0
= n = (sign εx )

√
εx +

(
1 − εx

εz

)
sin2 α

and

sin α

sin β
= (sign εz)

√
ε2

z

εx
+

(
1 − εz

εx

)
sin2 α

where n is the usual refractive index of the extraordinary beam which is a function of the
incident angle α. Refractive properties of a slab of a uniaxial material would be of interest
for direct applications when β is practically independent of α. This condition is fulfilled
when |εz| � εx ,1; in this case sin α � sin β. However, Veselago’s lens cannot be realized
since sinα/sinβ = –1 cannot be achieved for an arbitrary α. The refraction angles as a
function of the angle of incidence are plotted in Fig. 2.
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Figure 2. The refraction angle β (full curve; γ = – β for the chosen values of εx and εz) and the
reflectivity R (dashed curve) as a function of the incident angle α of a material with a) εx = 0.5, εz =
– 0.5 and b) εx = – 0.5, εz = 0.5, respectively. In the case a) R is nonzero for any α since εx < 1.

Which dielectric materials may display negative refraction? Negative permittivity ε(ω)
naturally occurs, for example, near optical phonon resonant lines in polar dielectrics which,
moreover, should be anisotropic. Mercurous halides Hg2X2 (X = Cl, Br, I) are good candi-
dates for observing the negative refraction since these materials exhibit very large dielectric
anisotropy in the infrared region: two strong resonance lines appear which are shifted in
frequency with respect to each other and correspond to differently polarized polaritons
(see Fig. 3). Note that the two cases discussed in this paper (i.e. εx < 0, εz > 0 and εx > 0,

Figure 3. The dielectric function calculated from the single classical-oscillator fit of the reflectivity
spectrum of Hg2I2 by Petzelt et al. [11].
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εz < 0) are experimentally achievable using a single slab in two distinct spectral ranges in
the far infrared.

Reflection

The reflectivity R is given by the formula

R = |Kz − εx kz|2
|Kz + εx kz|2

which can be rewritten for a medium with negligibly small imaginary parts of εi (Kz real)
in the form

R =
(

n cos γ − εx cos α

n cos γ + εx cos α

)2

where n(α) is the refraction index. The course of R for a TM polarized EM wave as a
function of α when εx > 0, εz < 0 is qualitatively similar to that of an isotropic material:
first it decreases with increasing α, it reaches zero at the Brewster angle provided εx > 1
and then it increases to unity at α = π /2.

The reflection from a dielectric exhibiting a negative index of refraction n, i.e. with
εx < 0, εz > 0 is more interesting. If εz ≥ 1 (Re Kz = 0), the surface is totally reflecting
(R = 1) for any angle α of incidence. For the special case εx = –1, εz = 1 we have Kz =
ikz and the phase of the reflected wave is shifted by π /2. Therefore the surface acts as a
mirror and the reflected wave will enhance a wave radiated from a source (an electric dipole
antenna) placed (4N + 1)λ/8 away from the surface [6]. The reflectivity R as a function of
the incident angle α is plotted in the Fig. 2.

We remind that the reflectance Rd of a film of thickness d is given by the formula [10]

Rd = 4R sin2 φ

(1 − R)2 + 4R sin2 φ

where 
 = Kzd and R is the reflectivity of a semi-infinite medium.
It has been shown that the sign of Kz is determined by the sign of εx . Therefore com-

bining two layers (I and II) of appropriate thickness having opposite signs of εx , the phase
advance of the transmitted wave across this bilayer can be made zero. If, moreover, the
two layers are impedance matched (ε I

x K I I
z = ε I I

x K I
z ), the bilayer exhibits a unit transfer

function T. Such a compensated bilayer has been proposed by Smith and Schurig [6] com-
posed of appropriate magnetic anisotropic materials. The important point is that T = 1 can
be achieved for all incident angles and the bilayer could be used for imaging in a similar
manner as the perfect lens [6]. Unfortunately nonmagnetic (µ = 1) anisotropic bilayer has
this property only for a particular value of the incident angle.

Surface and Guided Modes in an Anisotropic Slab

Surface modes (SM’s) in a semi-infinite medium and in a slab of an isotropic magnetic
material have been studied in context with the negative index of refraction [12, 13, 14].
SM’s in nonmagnetic anisotropic semi-infinite dielectrics were discussed long time ago
[8]. We complete those studies considering SM’s and guided modes (GM’s) in a uniaxial
anisotropic nonmagnetic dielectric slab in vacuum.
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Using Maxwell equations and continuity of fields at the slab surfaces we get two types
of GM’s of the form Hyexp[i(kx x − ωt)]:

1) Symmetric modes (with respect to z)
Hy(z) = Hy(0) cos (βz), −d/2 ≤ z ≤ d/2 (4a)
Hy(z) = Hy(d/2) exp[−β1(|z| − d/2)] outside the slab,

with dispersion relation

εxβ1

β
cot

(
β

d

2

)
= 1.

2) Anti-symmetric modes
Hy(z) = H sin(βz), −d/2 ≤ z ≤ d/2
Hy(z) = Hy(d/2) exp[−β1(z − d/2)], z ≥ d/2 (4b)
Hy(z) = −Hy(d/2) exp[β1(z + d/2)] , z ≤ −d/2

with dispersion relation

εxβ1

β
tan

(
β

d

2

)
= −1.

Here β1 = (k2
x − k2

0)1/2 and β = (εx k2
0 − [εx /εz]k2

x )1/2. The condition εx k2
0 − [εx /εz]k2

x > 0
limits the range of allowed kx . The condition k2

x − k2
0 > 0 simply means that the GM’s

are nonradiative. When β becomes purely imaginary we get SM’s localized near the slab
surfaces. Their dispersion relations and Hy(z) are obtained by making the substitution β →
−i([εx /εz]k2

x −εx k2
0)1/2 in the above formulae. We remind that SM’s can exist only if εx < 0.

We consider the frequency dependence of both εx and εz in the form of a resonant line

εi (ω) = ε∞i
(
ω2

Li − ω2
)

ω2
T i − ω2

which is characteristic for optical phonons in crystals. The course of dispersion curves
depends on the relative value of the frequencies ωT i and ωLi of transverse and longitudinal
phonons, respectively. In Fig. 4 the dispersion curves of SM’s and GM’s are plotted using
εx (ω) and εz(ω) corresponding to Hg2I2 (see Fig. 3). We use the reduced coordinates:
� = ω/ωLz , κ = ckx /ωLz .

Note that the anti-symmetric SM continuously transforms (with κ2) into the anti-
symmetric GM. In the frequency region where εx < 0, there exist simultaneously both
SM’s and GM’s which cannot be observed in materials with the same sign of the permittivity
components. At the point on the lower bulk polariton branch where εx → ±∞ all GM’s are
degenerate. Starting from certain values of kx the GM’s in the region of εz < 0 (εx > 0) have
negative group velocity vgx = dω/dkx, opposite to the phase velocity. The same conclusion
can be drawn, as it should be, from the formula for the energy flow which reads (for
symmetric modes, for example)

Sx = ckx

16πk0

{
2 cos2

(
β d

2

)
β1

+ d

εz

(
1 + sin βd

βd

)}
Hy (0)2 .

The first term describes the energy flow outside the slab (always positive) and the second
one corresponds to the energy flow inside the slab (negative for εz < 0). The ratio of these
two terms determines the direction of the total energy flow. Note that the negative vg occurs
just in the region εx > 0, εz < 0 of the negative refraction of S (see Fig. 1a).
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Figure 4. The dispersion curves of SM’s and GM’s in the slab of thickness d = 100 µm. �2 ≡ ω2/ω2
Lz

(ωLz ≈ 3×1013 s−1, �2
T x ≡ ω2

T x /ω2
Lz = 0.1, �2

Lx = 0.2, �2
T z = 0.7); κ2 ≡ (c2/ω2

Lz)k
2
x . In the frequency

ranges (0.1–0.2) and (0.7–1.0), delimited by dashed-dotted horizontal lines in the plot, εx < 0 and
εz < 0, respectively. The straight dotted line is the photon branch in vacuum (PhB), the dotted curves
represent upper and lower bulk polariton branches (UPB and LPB) polarized in the z-direction. The
full and dashed lines correspond to symmetric and anti-symmetric modes, respectively. SM’s are
confined to the region above the LPB where εx < 0. The series of the dispersion curves of GM’s
correspond to different values of β, i.e., to different variation of Hy(z) versus z (4a,b); arrows indicate
the growing β (there is an infinite number of dispersion curves in each region). Inset: SM’s for several
thicknesses d.
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To observe the SM’s and GM’s directly, the attenuated total reflection method or Raman
scattering could be used.

The Effect of Spatial Dispersion

It is well-known that a mode with negative group velocity may exist when spatial dispersion
of ε(ω, k) is taken into account [8, 15]. This is the case of so called additional or new waves
when the spatial dispersion of ε is of the form [8] (for a non-gyrotropic medium)

ε(ω, k) = ε∞ + A

ω2
T + βk2 + γ k4 − ω2

(5)

with β < 0, γ > 0. The group velocity may be negative in this case as it follows directly
from the expression for the energy flow which contains an additional term proportional to
–[∂ε(ω, k)/∂k]k=0 ∼ β < 0 [8].

The spatial dispersion of the form (5) with negative β is typical for ferroelectric materi-
als which exhibit an incommensurate phase like in thiourea and sodium nitrite [16]. In these
materials there exist soft transverse optic modes with negative slopes of their dispersion
curves at k 
 0 (Fig. 5).

A question arises whether these additional waves (one of them having the negative
group velocity) can be observed in reflection or transmission spectra of EM waves in a
slab of incommensurate materials. In principle, measuring the intensity of monochromatic
EM wave passing through a slab as a function of its thickness, one could observe the
oscillations of the intensity due to interference of the three different waves. In reflection
and/or transmission spectra one can expect additional features due to the existence of
additional waves. Such effects could be observed obviously only if the damping of the
modes is small.

Detailed theoretical analysis of reflection and transmission spectra could be made
generalizing the procedure used in [17] for an anisotropic slab.

Figure 5. Schematic illustration of the dispersion curve of the soft optic phonon (dashed line) and
polariton (solid line) in incommensurate ferroelectrics. At a given frequency three modes with different
wavelengths denoted by full circles can propagate.
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Conclusion

This paper is a complementary study to a more general case of a material showing both
magnetic and dielectric anisotropy [5, 6, 7]. We have discussed under which circumstances
negative refraction may occur in a material exhibiting dielectric anisotropy only. We propose
that mercurous halides are good candidates of anisotropic materials in which negative
refraction of either the wave-vector or the Poynting vector may be observed. The advantage
of such materials is that they are natural, in contrast to sophisticated artificial materials [4],
and that the frequency range of interest is shifted from the microwave to the infrared region.
On the other hand, some important properties (Veselago lens, for example) are lost.

Financial support by the Academy of Sciences of the Czech Republic (project
1ET300100401) is acknowledged.
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