Microwave and Terahertz Surface Resistance of MgB₂ Thin Films

B. B. Jin,¹ T. Dahm,² F. Kadlec,³ P. Kuzel,³ A. I. Gubin,¹ Eun-Mi Choi,⁴ Hyun Jung Kim,⁴ Sung-IK Lee,⁴ W. N. Kang,⁵ S. F. Wang,⁶ Y. L. Zhou,⁶ A. V. Pogrebnyakov,^{7,8} J. M. Redwing,⁸ X. X. Xi,^{7,8} and N. Klein¹

Published online: 2 September 2006

The knowledge of the surface resistance R_s of superconducting thin film at microwave and terahertz (THz) regions is significant to design, make and assess superconducting microwave and THz electronic devices. In this paper we reported the R_s of MgB₂ films at microwave and THz measured with sapphire resonator technique and the time-domain THz spectroscopy, respectively. Some interesting results are revealed in the following: (1) A clear correlation is found between $R_{\rm s}$ and normal-state resistivity right above $T_{\rm c}$, ρ_0 , i.e., $R_{\rm s}$ decreases almost linearly with the decrease of ρ_0 . (2) A low residual R_s , less than 50 $\mu\Omega$ at 18 GHz is achieved by different deposition techniques. In addition, between 10 and 14 K, MgB₂ has the lowest R_s compared with two other superconductors Nb₃Sn and the high-temperature superconductor YBa₂Cu₃O_{7- δ}(YBCO). (3) From THz measurement it is found that the R_s of MgB_2 up to around 1 THz is lower than that of copper and YBCO at the temperature below 25 K. (4) The frequency dependence of R_s follows ω^n , where ω is angular frequency, and n is power index. However, n changes from 1.9 at microwave to 1.5 at THz. The above results clearly give the evidences that MgB₂ thin film, compared with other superconductors, is of advantage to make superconducting circuits working in the microwave and THz regions.

1. INTRODUCTION

The discovery of binary metallic MgB₂ with a superconducting transition T_c of 39 K has stimulated great scientific interest and potential applications [1]. A number of experiments and calculations have demonstrated that the pairing symmetry is of

conventional s-wave type, however, with two gaps of different size [2–7] Band structure calculations have shown that its Fermi surface consists of four bands: two σ -type two-dimensional cylindrical hole sheets (formed by B p_{xy} orbits) and two π -type threedimensional tubular networks, from the π bonding and antibonding bands (formed by B p_z orbits). This compound offers a realistic two-gap system for fundamental investigation.

As is commonly known, superconducting electronic devices made of low- and high- T_c

¹Institut für Schichten und Grenzflächen (ISG) and cni, Center of Nanoelectronic Systems for Information Technology, Forschungszentrum Jülich, 52425 Jülich, Germany.

²Universität Tübingen, Institut für Theoretische Physik, Auf der Morgenstelle 14, 72076 Tübingen, Germany.

³Institute of Physics, Academy of Sciences of the Czech Rep., Na Slovance 2, 182 21 Praha 8, Czech Republic.

⁴National Creative Research Initiative Center for Superconductivity, Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Korea.

⁵Department of Physics, Pukyung National University, Pusan 608-737, Korea.

⁶Laboratory of Optical Physics, Institute of Physics and Center of Condensed Matter Physics, Chinese Academy of Science, Beijing 100080, P. R. China.

⁷Department of Physics, The Pennsylvania State University, University Park 16802, Pennsylvania.

⁸Department of Material Science and Engineering, The Pennsylvania State University, University Park 16802, Pennsylvania.

superconductor have offered superior performance in the frequency range from microwave to terahertz (THz) [8-13]. MgB₂ is also expected to provide similar performance because of the relative high $T_{\rm c}$, the s-wave pair symmetry and the relatively long coherence length [1,3,15,16]. The s-wave pair symmetry suggests that residual losses ought to be very low. Furthermore, R_s is proportional to $\exp(-\Delta(0)/kT)$ for $T < T_c/2$, where $\Delta(0)$ is the size of energy gap at zero temperature. It means that $R_{\rm s}$ of MgB₂ thin film may achieve low $R_{\rm s}$ values at 20 K due to the relative high T_c . This temperature could easily be accessible with modern cryocoolers. This working temperature is impossible for other s-wave superconductors, e.g., Nb, NbN, and Nb₃Sn because their $T_{\rm c}$ s are lower than 20 K. Another important property is the long coherence length ξ_0 , which is around 50 nm. Microwave application will also benefit from this long coherence length because grain boundaries will not play an important role in the microwave nonlinearity. The intrinsic nonlinear response will be much easier to achieve in MgB₂ thin film, which may yield a large power handling. Moreover, long ξ_0 is crucial for the fabrication of MgB₂ Josephson junction. The success of the junction will give great opportunities for MgB₂ in the millimeter and THz detectors, which usually have the performance unattainable by the semiconductor devices.

Much effort, so far, has been devoted to the investigation of the microwave and THz properties of MgB_2 thin films [17,18–26] The measurements on residual surface resistance $R_{\rm res}$, however, indicate large values [18-21]. Also, intermodulation measurement points to the model of Josephson coupled gains [23]. This means that extrinsic properties, to some extent, have a large influence on microwave properties. In addition, there is an increased demand to know the electromagnetic response in the THz region for designing THz devices and estimating the performance because the design and estimation are usually numerical simulations, which strongly rely on the input of precisely measured material properties of MgB₂ at THz frequencies as well as on theoretical models. In this paper we will firstly present microwave surface resistance measurements on eight MgB₂ thin films with the sapphire resonator technique. A correlation between R_s and material parameter is observed. Then, we discuss the temperature dependence of R_s at low temperature for random orientation, c-axis orientation and epitaxial thin films, and conclud that grain boundary may not have a large influence on $R_{\rm s}$.

The comparison of R_s is carried out between MgB₂ and Nb_3Sn and the high-temperature superconductor YBa₂Cu₃O_{7- δ}(YBCO). We also report measurement on an epitaxial thin film with time-domain THz spectroscopy (TDTS) [27, 28]. The results show that R_s of MgB₂ is lower than that of copper at 1THz below T_c . Finally, combining the R_s value at microwave and THz, the frequency dependence following ω^n is observed, However, *n* changes from 1.9 at microwave region to around 1.5 at THz region, where ω is angular frequency and *n* is power index.

2. SAMPLES

Eight MgB₂ thin films of different quality are prepared by chemical vapor deposition (CVD) with post-deposition annealing [29], pulsed laser ablation (PLD) with in situ annealing [30] and in situ hybrid physical-chemical vapor deposition (HPCVD) [31] methods, respectively. The three films deposited on MgO substrates by the CVD method are randomly oriented with a thickness of about 600 nm. The three films deposited on Al₂O₃ by PLD are c-axis oriented with a thickness of about 400 nm. The remaining two films are epitaxial films deposited by HPCVD on Al₂O₃ and SiC, respectively, with the thickness of about 100 nm (on Al₂O₃) and 300 nm (on SiC), respectively. T_c measurements show that all samples exhibit a sharp transition of the dc resistivity with a width of less than 0.3 K. For the sample on SiC, the highest T_c of 41.3 K was observed.

3. MICROWAVE MEASUREMENTS

In our previous work a sapphire resonator technique has been successfully employed to measure $Z_{\rm s} = R_{\rm s} + j \omega \mu_0 \lambda$ of MgB₂ thin films at a frequency $f = \omega/2\pi = 18$ GHz [17,32,33] Here ω is the angular frequency, μ_0 is the free-space permeability, and λ is the penetration depth. The same method is used in our present investigation. We found in the measurements that the residual surface resistance $R_{\rm res}$ $(R_{\rm res} = R_{\rm s}(T \rightarrow 0))$ of the MgB₂ thin film is less than the resolution for $R_{\rm s}$ of our setup (about 50 $\mu\Omega$). Hence, the measured $R_{\rm s}(T)$ actually represents the change of $R_{\rm s}$.

Figure 1a showed R_s at 15 and 20 K dependence on normal-state resistivity ρ_0 at temperature just above T_c . A nearly linear decrease of R_s was easily found with the decrease of ρ_0 . In the study of

Fig. 1. The dependence of R_s at 15 K(solid symbol) and 20 K (open symbol) on (a) ρ_0 , normal-state resistivity right above T_c (b) $\alpha = \xi_0/\lambda$, where ξ_0 is the BCS coherence length and λ is the electronic mean free path.

conventional superconductor, the dependence of R_s on the material properties could be described within BCS-theory by the material parameters $\lambda_{\rm L}$, $v_{\rm F}$, $\Delta(0)$ and λ or the two dimensionless quantities $\alpha = \xi_0 / \lambda$ and $\gamma(\lambda = \infty) = \lambda_L/\xi_0$. Here, ξ_0 is the BCS coherence length, v_F is Fermi velocity, λ_L is the London penetration depth, and λ is the electronic mean free path. Because our study is restricted to MgB₂ samples only, γ is a constant, and only the R_s dependence on α can be addressed. Figure 1b shows the dependence of R_s on the material parameters $\alpha = \xi_0 / \lambda$ at 15 K (solid symbol) and 20 K (open symbol). α could be calculated from the extracted quantities $R_{\rm s}(T), \lambda(0), \Delta_{\pi}(0)$ and ρ_0 from the temperature dependence of Z_s [17,32,33]. Here we only consider the π -band coherence length. There is another coherence length corresponding to the σ band. However, we have found in our previous work the conductivity is dominated by the π band [33]. In Fig. 1b, the R_s decrease on α in different rate. It decrease rapidly with α , then slowly decrease when α is below around 2. According to BCS theory, R_s is expected to decrease with decreasing α and saturates around $\alpha = 0.7$, but increases again as α decreases further [34]. Our observation is similar to the BCS calculation. However, so far, we could not find the expected saturation in our measurement because of our limited resolution for R_s . In addition, for the 100-nm thick epitaxial film on Al₂O₃ substrate there is a 30–40-nm thick non-superconducting layer between the Al₂O₃ substrate and MgB₂ thin film [31]. For the analysis of the surface impedance of this particular film we assumed the thickness of the superconducting layer to be 62 nm: For this value the best agreement between the dc resistivity determined from microwave and dc measurements was achieved.

We plot in Fig. 2 the temperature dependences of R_s below 20 K for the samples with the lowest R_s value for each type of orientation. It is found that temperature dependences are similar although the orientations are completely different. As we knew, the different orientations of the grains in the film will produce the grain boundaries between the grains. The RF current may be blocked by the boundaries yielding a percolation effect, or pass through the boundaries with boundary resistance R_{bn} . These two effects lead to additional RF losses. The sizes of percolation effect and R_{bn} are usually dependent on the misorientation angle of the grains in the film. Consequently, the epitaxial films usually have a lower RF loss than the random orientation films. The above observation in Fig. 2 indicates the grain boundary may not have an important contribution to R_s for low ρ_0 thin film. This explanation could be further verified as follows: Firstly, DC measurement could give an estimate on the contribution of grain boundaries. Figure 3 shows the temperature dependence of ρ up to room temperature for a random orientation film.

Fig. 2. Comparison of surface resistance of MgB₂ with YBCO, and Nb₃Sn films. The R_s curves of MgB₂ thin films represent the best R_s values for films of different crystalline orientations.

Fig. 3. Typical resistivity versus temperature for a random orientation film made by CVD method.

 $\Delta \rho$ of about 3.5 $\mu \Omega$ cm could be found from this figure. The typical value of $\Delta \rho$ for *c*-axis orientation and epitaxial films could also be found in Refs. [30,31]. All the results show $\Delta \rho (\rho_{300K} - \rho_{50K})$ ranges from 3.5 to 7 $\mu\Omega$ cm for the above three kinds of samples. These values are similar to that from singlecrystal measurement [36,37]. So, the grains in the films are well connected. The RF current flows in a straight path, and grain boundaries effect can be neglected. Secondly, the BCS coherence length is about 50 nm, the mean free path for these three samples is about 10 nm. This leads to an effective coherence length of about 10 nm. Hence, a strong coupling exists between two adjacent grains, and the current density almost remains the same when the current passes the grain boundary, which makes the grain boundary resistance very small. Thirdly, the temperature dependences follow $\exp(-\Delta_{\pi}(0)/kT)$ approximately, where $\Delta_{\pi}(0)$ is the energy gap of π -band. Figure 4 shows logarithmic plot of R_s and penetration depth λ versus T_c/T at the temperature below 30 K. A good linear behavior could be found from penetration depth data. The solid line is depicted for the guide of clearance. However, R_s values deviate from linear behavior at about 9 K. It is caused by the resolution of our measurement. As we have demonstrated in our previous paper, the rutile resonator could achieve a higher resolution on $R_{\rm s}$ [17]. The change of R_s , ΔR_s , from rutile resonator measurement is also depicted in Fig. 4. The better linear behavior down to 7 K is found. Here, the solid line, which lies on the data at 7.2 GHz, is of the same slope as the previous one. Hence, we believe the temperature dependences of ΔR_s should follow $\exp(-\Delta_{\pi}(0)/kT)$. It implies that grain boundary

Fig. 4. Logarithmic representations of change of R_s at 18 GHz (open square), 7.2 GHz (open circle) and penetration depth λ (solid square) versus T_c/T below 30 K. The linear behavior represents ΔR_s and λ follow $\exp(-\Delta/kT_c)$. The solid line is depicted for the guide of clearance. Two solid lines have the same slope.

effect do not play an important role in our measurement on low normal-state resistivity samples.

Low $R_{\rm res}$ (<50 $\mu\Omega$ at around 18 GHz) is observed in our measurement, i.e., $R_{\rm res}$ is less than around 20 $\mu\Omega$ at 10 GHz if ω^2 scaling law is used. This value is much lower than that in the early reports, which gave values ranging from 300 $\mu\Omega$ to 4.7 m Ω [18–21]. However, recent report after the intensive efforts on the film deposition techniques, gave $R_{\rm res}$ lower than 50 $\mu\Omega$ at 10 GHz, which is similar to our present data [17,22]. In addition, R_s values of Nb₃Sn $(T_{\rm c} = 18 \text{ K})$ and high-quality epitaxial YBCO films deposited on r-cut sapphire are also depicted [8, 38]. We can easily see that MgB₂ has the lowest R_s between 10 K and 1 4 K. From the cryogenic cooling point of view, 10 to 14 K can make a big difference from 4 K, in particular with regard to cost and power efficiency of closed-cycle refrigerators. Hence, MgB₂ thin films have demonstrated its advantage over other superconductors working around 10 K for microwave applications.

4. THZ MEASUREMENT

Using TDTS, we also measured the epitaxial MgB₂ film ($T_c = 39.1$ K) on Al₂O₃ mentioned above. Our setup utilizes ultrashort broadband THz pulses generated and detected, respectively, by optical rectification and electro-optic sampling in 1mm thick [110]-oriented ZnTe single crystal [27,28]. This technique enables measuring the amplitude as

Fig. 5. Temperature dependence of R_s at 0.445 and 1.0 THz. The R_s of copper at the same frequency is also depicted for comparison.

well as the phase shift of the transmitted THz wave; therefore the complex dielectric response(or, equivalently, the complex conductivity of the MgB₂ thin film) can be calculated without any model assumption and without Kramers–Kronig transformation. The experimental setup, the principle of the measurement, and the method of extraction of the complex are described in [27, 28].

Figure 5 shows the temperature dependence of the deduced R_s , the real part of $Z_s = (j \omega \mu / \sigma)^{0.5}$, at two frequencies, 0.455 and 1 THz. The temperature dependence of R_s for copper is also depicted for comparison [39]. From this figure it is found that R_s for MgB₂ is lower than that of copper below T_c in the submillimeter wave and THz regions, in particular, R_s of MgB₂ is about three times lower at 450 GHz around 15 K. Some measurements for YBCO showed that the R_s value of 0.45 Ω at 1 THz and 15 K, which is about four times higher than MgB₂ [40, 41]. Hence, MgB₂ thin film has also shown its advantages in the THz region.

Figure 6 shows the frequency dependence of R_s at 15 K (solid symbol). Usually, R_s at frequency below the gap frequency follows ω^n , where n is power index. We scaled R_s measured with sapphire resonator at around 18 GHz to THz according to ω^n scaling law, yielding goods fit with n = 1.5. This does not agree with the report in microwave region, where n = 2 was found [19]. Therefore, this film is also measured with rutile resonator at 7.2 GHz. Figure 6 shows the temperature dependence of R_s at

Fig. 6. Frequency dependence of R_s at THz. The solid line represents the values scaled from R_s at 18 GHz following to ω^n with n = 1.5.

18 and 7.2 GHz below 25 K, respectively (Fig. 7). The inset shows the R_s at 7.22 GHz is scaled to 18 GHz, yielding the best fit with n = 1.9. This n value is approximately equal to the reported value in microwave measurement [19]. Also, it is approximately equal to that obtained for Nb measurement, which could be explained in the BCS model [42]. These measurements indicate that n decrease with the increase of frequency. MgB₂ thin film will benefit from this change for the electronic application in THz.

Fig. 7. The temperature dependence of R_s at 18 and 7.2 GHz. The inset shows R_s value at 18 GHz and scaled R_s from 7.2 to 18 GHz following ω^n with n = 1.9.

5. DISCUSSIONS AND CONCLUSIONS

We have firstly illustrated in the above the R_s at microwave. The low R_s value below 50 $\mu\Omega$ at 18 GHz could be achieved by several kinds of deposition techniques. This is a great progress in making the film because very low R_s could be repeatedly obtained. We also found that R_s decrease almost linearly with ρ_0 . This may provide a direction to optimize the deposition techniques to reduce further R_s value. The comparison between MgB₂ thin film and Nb₃Sn and YBCO indicates a temperature nicht (10-14 K), in which MgB₂ is of the lowest R_s . The temperature dependence of R_s shows the intrinsic properties could be obtained. The recent calculations have presented a low intrinsic nonlinear effect in MgB₂ thin film compared with YBCO material [43]. These results are significant for superconducting planar circuit. This kind of circuit is compact and light with high performance [10]. However, the current density in the center strip of the circuits will peak at the edge of strip, which will produce large nonlinear effect for HTSC planar circuits, even at moderate power level due to weak link and flux penetration, although high intrinsic power handling is predicted [44-47]. In contrast to YBCO thin film, the intrinsic property of MgB_2 thin film could be much easier to achieve due to long coherence length as discussed in the above [43]. It means microwave devices made of MgB₂ thin film is of high power handling. Hence, MgB₂ offers the great promising for superconductive passive microwave devices [48].

The R_s at THz indicates a lower value than YBCO and normal metal. This means contacts and passive structure in THz superconducting circuits, for example, antenna, could also be made from MgB₂ thin films, in contrast to the present THz devices, in which the contacts and passive structure is commonly made from normal metal [13]. In addition, MgB₂ may be suitable for fabricating Josephson junction because it has less anisotropy, fewer material complexities, and a longer coherence length [49]. There are some reports on investigating multilayers of MgB₂ thin films with several other materials, and making successful sandwich-type NbN/AlN/MgB2 junction [50-52]. However, there is, so far, no successful report on fabricating MgB₂/insulator/MgB₂ junction, which is referred as all MgB₂ tunneling junction. One of the future challenges is the fabricating of all MgB_2 THz detector with all MgB₂ tunneling junctions to replace niobium tunneling junctions working above 20 K.

6. ACKNOWLEDGMENTS

The authors thank Dr R. Wördenweber for providing R_s data of YBCO thin film. One of the authors (A. I. Gubin) is funded in part within the INTAS program by the European Union, which supports his research stay in Jülich. The work at Postech is supported by the Ministry of Science and Technology of Korea through the Creative Research Initiative Program. The work at Penn State is supported in part by ONR under grant Nos. N00014-00-1-0294 (Xi) and N0014-01-1-0006 (Redwing). F. Kadlec and P. Kuzel are thankful to the Ministry of Education of the Czech Republic for the support (Project No. LN00A032).

REFERENCES

- J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, *Nature* 410, 63 (2001).
- J. Kortus, I. I. Mazin, K. D. Belashchenko, V. P. Antropov, and L. L. Boyer, *Phys. Rev. Lett.* 86, 4656 (2001).
- H. J. Choi, D. Roundy, Hong Sun, M. L. Cohen, S. G. Louie, *Nature*, 758 (2002).
- 4. I. I. Mazin, et al., Phys. Rev. Lett. 89, 107002 (2002).
- 5. T. Dahm and N. Schopohl, Phys. Rev. Lett. 91, 017001 (2003).
- 6. P. Szabo, et al., Phys. Rev. Lett. 87, 137005 (2001).
- 7. H. Uchiyama, et al., Phys. Rev. Lett. 88, 157002 (2002).
- M. A. Hein, High-Temperature Superconductor Thin Films at Microwave Frequency, Vol. 155: Springer Tracts of Modern Physics (Springer, Heidelberg, 1999).
- 9. T. Van Duzer, and C. W. Tunner, *Principle of Superconductive Devices and Circuits*, Prentice Hall, Englewood Cliffs, NJ.
- 10. N. Klein, Rep. Prog. Phys. 65, 1387 (2002).
- A. D. Semenov, G. N. Gol'tsman, and R. Sobolewski, Supercond. Sci. Technol. 15, R1 (2002).
- 12. B. D. Jackson, T. M. Klapwijk, Physica C 372-376, 368 (2002).
- 13. M. Hajenius, et al., Supercond. Sci. Technol. 17, S224 (2004).
- 14. M. A. Hein, M. Getta, S. Kteiskott, B. Mönter, H. Piel, D. E. Oates, P. J. Hirst, R. G. Humphreys, H. N. Lee, and S. H. Moon, *Physica C* **372–376**, 571 (2002).
- 15. M. R. Eskildsen et. al., *Phys. Rev. Lett.* **89**, 187003 (2002).
- 16. B. B. Jin et. al., Supercond. Sci. Technol. 18, L1 (2005).
- 17. B. B. Jin, et al., Phys. Rev. B 66, 104521 (2002).
- 18. A. Andreone, et al., Physica C 372-376, 1287, (2002).
- 19. A. A. Zhukov, et al., Appl. Phys. Lett. 80, 2347 (2002).
- 20. A. J. Purnell, et al., Supercond. Sci. Technol. 16, 1 (2003).
- A. Andreone, E. Di Gennaro, G. Lamura, F. Chiarella, and R. Vaglio, J. Superconductivity 16, 807 (2003).
- N. Hakim, C. Kusko, S. Sridhar, A. Soukiassian, X. H. Zeng, and X. X. Xi, *Appl. Phys. Lett.* 81, 4525 (2002).
- G. Lamura, A. J. Purnell, L. F. Cohen, A. Andreone, F. Chiarella, E. Di Gennaro, R. Vaglio, L. Hao, and J. Gallop, *Appl. Phys. Lett.* 82, 4525 (2003).
- 24. R. A. Kaindl, M. A. Carnahan, J. Orenstein, D. S. Chemla, H. M. Christen, H. Y. Zhai, M. Paranthaman, and D. H. Lowndes, *Phys. Rev. Lett.* 88, 027003 (2002).
- A. V. Pronin, A. Pimenov, A. Loidl, and S. I. Krasnosvobodtsev, *Phys. Rev. Lett.* 87, 097003 (2001).

Microwave and Terahertz Surface Resistance of MgB₂ Thin Films

- 26. J. H. Jung, et al., Phys. Rev. B 65, 052413 (2002).
- M. Kempa, P. Kuzel, S. Kamba, P. Samoukhina, J. Petzelt, A. Grag, and Z. H. Barber, J. Phys.: Cond. Matter 15, 8095 (2003).
- J. Petzelt, P. Kuzel, I. Rychetsky, A. Pashkin, and T. Ostrapchuk, *Ferroelectrics* 288, 169 (2003).
- 29. S. F. Wang, et al., Thin Solid Film 443, 120 (2003).
- W. N. Kang, H.-J. Kim, E.-M. Choi, C. U. Jung, S.-I. Lee, *Science* 292, 1521–1523 (2001).
- 31. X. H. Zeng, et al., Nature Mater. 1, 35-38 (2002).
- N. Klein, N. Tellmann, H. Schulz, K. Urban, S. A. Wolf, and V. Z. Kresin, *Phys. Rev. Lett.* **71**, 3355 (1993).
- 33. B. B. Jin, et al., Phys. Rev. Lett. 91, 127006 (2003).
- 34. J. Halbritter, Z. Physik 243, 201 (1971); Z. Physik 266, 209 (1974).
- 35. J. Halbritter, Supercond. Sci. Technol. 14, R17 (2003).
- 36. J. M. Rowell, Supercond. Sci. Technol. 16, R17 (2003).
- Hyeong-Jin Kim, W. N. Kang, Eun-Mi Choi, Mun-Seog Kim, Kijoon H. P. Kim, and Sung-Ik Lee, *Phys. Rev. Lett.* 87, 087002 (2001).
- 38. J. Einfeld, P. Lahl, R. Kutzner, R. Wördenweber, G. Kästner, *Physica C* 103, (2001).

- A. N. Luiten, M. E. Tobar, J. Krupka, R. Woode, E. N. Ivanov, and A. G. Mann, *J. Phys.D: Appl. Phys.* **31**, 1383 (1998).
- I. Wilke, M. Khazan, C. T. Rieck, P. Kuzel, T. Kaiser, C. Jaekel, and H. Kurz, J. Appl. Phys. 87, 2984 (2000).
- I. Wilke, M. Khazan, C. T. Rieck, P. Kuzel, C. Jaekel, and H. Kurz, *Physica C* 341-348, 2271 (2000).
- 42. J. P. Tuneaure, J. Halbritter, and H. A. Schwettman, J. Supercond. 4, 341 (1991).
- T. Dahm, and D. J. Scalapino, Appl. Phys. Lett. 85, 4436 (2004).
- 44. P. Lahl and R. Wördenweber, Appl. Phys. Lett. 81, 505 (2002).
- P. Lahl and R. Wördenweber, *Supercond. Sci. Technol.* 17, S369 (2004).
- 46. J. Halbritter, J. Supercond. 8, 691 (1995).
- 47. T. Dahm, and D. J. Scalapino, Appl. Phys. Lett. 69, 4248 (1996).
- 48. N. Klein, et al., IEEE Trans. Appl. Supercond. 13, 3252 (2003).
- 49. M. Naito, and K. Ueda, Supercond. Sci. Technol. 17, R1 (2004).
- 50. X. X. Xi, et al., Supercond. Sci. Technol. 17, S196 (2004).
- 51. H. Ake, J. Appl. Phys. 96, 2343 (2004).
- H. Shimakage, K. Tsujimoto, Z. Wang, and M. Tonouchi, Supercond. Sci. Technol. 17, 1376 (2004).