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ime-domain terahertz study of defect formation
n one-dimensional photonic crystals

ynek Němec, Petr Kužel, Frédéric Garet, and Lionel Duvillaret

One-dimensional photonic crystals composed of silicon and air layers with and without twinning defect
�i.e., a periodicity break where one half of the photonic structure is a mirror image of the other one� are
studied by means of terahertz time-domain transmission and reflection spectroscopy. The structure
with defect is decomposed into building blocks: two twins and a defect. A phase-sensitive character-
ization in transmission and reflection allows us to fully determine the transfer matrices of any block and
consequently to predict the properties of composed structures regardless of the microstructure of the
constituting blocks. It is shown and experimentally demonstrated that the defect level position is
controlled by the reflectance phase of the twins. Possible approach of the reflectance phase determina-
tion by use of Kramers–Kronig analysis is also discussed. © 2004 Optical Society of America

OCIS codes: 300.6240, 230.4170.
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. Introduction

hotonic crystals �PCs� have attracted considerable
ttention in recent years.1–3 The PCs are periodic
ielectric structures that may exhibit ranges of for-
idden frequencies for the propagation of light, so-
alled photonic band gaps. Such structures were
roposed to solve several problems in fundamental
esearch, related, e.g., to the control of spontaneous
mission from atoms and molecules and localizing
nd channeling light.1,4 The operating range of cur-
ently available PCs covers a wide range of frequen-
ies, from the microwaves5 through the terahertz
ange6 up to the visible,7,8 and they can potentially
nd many applications in optoelectronics and optical
ommunications.9,10 One of the topics of major in-
erest for filtering applications and signal demulti-
lexing is the control of defect modes.8,11,12

Up to the present, little attention has been devoted
o the full experimental characterization of PCs: In
ost cases, only the existence of the forbidden gap is
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erified from the intensity of transmittance or reflec-
ance, and only a few papers report measurements of
he related phases. Most of them concern an exper-
mental determination of the transmittance phase in
he microwave,13,14 terahertz,15,16 and optical17,18

pectral domains. Indeed, the transmittance phase
rovides a direct insight into the dispersion relations
f the experimentally excited eigenmodes of the pho-
onic structures.13 On the other hand, a reliable and
ccurate measurement of the phase of the reflected
eld, which controls other important properties of
hotonic structures, like the frequencies of defect
odes in PCs with broken periodicity,19–21 is much
ore difficult to carry out.19

Time-domain terahertz spectroscopy �TDTS� is
ased on an emission of a picosecond terahertz �THz�
ulse and on its synchronous phase-sensitive detec-
ion, i.e., it can provide the temporal profile of the
lectric field of the pulse transmitted or reflected by
he investigated sample.22 The transmission vari-
nt of this method is well established; on the other
and, owing to difficulties with accurate determina-
ion of the reflectivity phase,23 the complete charac-
erization of PCs �i.e., a simultaneous determination
f transmittance and reflectance phase� has not yet
een carried out.
In this paper we take advantage of a recently dem-

nstrated technique allowing a reliable determina-
ion of the reflectance phase,24 and we fully
haracterize two one-dimensional �1-D� PCs. This
llows us to predict frequencies of the defect modes of
hotonic structures composed of these PCs separated
20 March 2004 � Vol. 43, No. 9 � APPLIED OPTICS 1965
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y a homogeneous layer with varying thickness
twinning defect�. Our treatment is general and al-
ows the prediction of bound states in any structures
even aperiodic� exhibiting a forbidden band. 1-D
ystems were chosen owing to their simplicity; exact
nalytic expressions for frequencies of defect modes
an be easily derived as well as simply under-
tood.21,25 On the other hand, the ability to com-
letely characterize two- or three-dimensional
hotonic structures can also be of great interest and
ould serve as an important tool in the characteriza-
ion and the design of large-scale devices.26

. Theoretical Description

ur description is based on a transfer matrix formal-
sm27 that is very often used for the investigation of
-D PCs. The transfer matrices usually relate the
mplitudes of electric fields corresponding to
orward- and backward-propagating waves at the in-
erfaces between adjacent layers; we will use the
ame conventions and definitions as those introduced
n Ref. 21. The product of individual transfer ma-
rices yields the transfer matrix of an entire block
hat connects the fields at the left-hand side of the
lock �E�l �� to those at its right-hand side �E�r�� �see
ig. 1�a��:

�Efwd
�l �

Ebck
�l �� �

M1 M2 . . . MnÇ
M

�Efwd
�r�

Ebck
�r�� . (1)

ssuming the block is composed only of nonabsorbing
edia, the elements of its transfer matrix can be

imply identified with the complex reflection and
ransmission coefficient of the block:

M �
1
t � exp��i�� r exp��i�� � ���

r exp�i�� � ��� exp�i�� � , (2)

here r and t are the reflectance and transmittance
mplitudes and � and � are the corresponding phases,

ig. 1. Schematic definition of �a� fields used in the transfer ma-
rix method, �b� transmission and reflection coefficients for left-
nd right-hand measurements, and �c� investigated structure.
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espectively. We have implicitly assumed here that
he incident wave impinges on the structure from the
eft-hand side, i.e., Efwd

�l � � Ein and Ebck
�r� 	 0 �see

op of Fig. 1�b��. The structure can be alternatively
haracterized by the complex transmission t̃ exp�i�̃�
nd reflection r̃ exp�i�̃� coefficients measured when
he incident wave impinges on the structure from the
ight-hand side: Ebck

�r� � Ẽin, and Efwd
�l � 	 0 �see

ottom of Fig. 1�b��. One can easily show that t̃ 	 t,
˜ 	 �, r̃ 	 r, and �̃ 	 2� � � 
 �. The structure is
hus completely characterized by a set of three spec-
ral functions: t, �, and �.

To investigate complex structures �composed, e.g.,
f several kinds of PCs�, it appears that decomposing
he structure into several suitable building blocks is
seful. Each block then can be described in terms of

ts transfer matrix �Eq. �2��. In principle, given the
ncidence angle and the polarization of the incident
ave, the transfer matrix of any block can be calcu-

ated if its microstructure �i.e., thickness, refractive
ndex, and wave impedance of each of its constituting
ayers� is known. However, in practice the micro-
tructure data are not always available and�or the
eal microstructure can significantly differ from the
xpected one. In this case phase-sensitive measure-
ents of the complex reflection and transmission co-

fficients can provide all of the required information.
he TDTS is capable of providing all of the entries of
q. �2� for reasonable real blocks operating in the
Hz range. Hence the properties of the entire com-
lex structure can be predicted before it is built from
he blocks without exact knowledge of the microstruc-
ure details. In contrast with most theoretical de-
criptions, we express the transfer matrices in terms
f experimentally accessible quantities, i.e., the re-
ectance and the transmittance of the separate
locks surrounded by vacuum. One can easily show
hat the transfer matrix of two such blocks—A and
—put into optical contact reads simply A � B.
We apply this approach to a one-dimensional PC,

ncluding a twinning defect �Fig. 1�c��. We consider
structure composed of three blocks: The outer

locks are two periodic PCs—twins �denoted by indi-
es 1 and 2�—and the inner block represents an en-
losed defect �index D�. In the ideal case, the two
Cs have identical properties, as they are assumed to
ave the same microstructure. However, experi-
ental realizations of these PCs can show different

roperties, to some extent. The corresponding
ransfer matrices then could display slightly different
oefficients. Depending on the optical thickness of
he defect, the whole structure may exhibit a defect
ode, i.e., a narrow range of frequencies in the for-

idden gap, for which the propagation through the
tructure is allowed.28 One finds the following con-
ition for the defect level in the limit of perfect PCs �r1

1 and r2 3 1�:

�̃1 � �2 � 2�m � 2�D � 2 arg�1 � rD exp�i�0��, (3)

here m is an arbitrary integer and where

� � � � �̃ � � � �̃ . (4)
0 D 1 2 D
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his last equality is automatically fulfilled at the de-
ect level frequencies. Equation �3� in fact represents
he resonance condition in a Fabry–Pérot interferom-
ter: Constructive interference—or equivalently, the
efect level—occurs if the phase shift �̃1 due to the
eflection on the left “mirror” �PC1� plus the phase
hift �2 due to reflection on the right “mirror” �PC2�
lus twice the phase shift introduced by the propa-
ation through the “resonator” �defect� equals any
nteger multiple of 2�. The last term of Eq. �3�
rises from the fact that the resonator is formally
nclosed between infinitesimally thin vacuum layers,
.g., �̃1 describes the reflectance phase for the inci-
ent wave coming from the vacuum and not from the
efect medium. This term thus accounts for the im-
edance mismatch between the building blocks and
he vacuum.

Equation �3� is not restricted to ideal periodic PCs
ut can be applied to other structures showing
andgaps, e.g., chirped structures, disordered sys-
ems29 or photonic quasicrystals.30

In case the defect consists only in a vacuum layer,
q. �3� is largely simplified and becomes equivalent to

hat reported in Refs. 19 and 20: The last term dis-
ppears, and the phase shift �D is simply expressed as
�fdD�c, where f is the frequency, c is the speed of
ight in vacuum, and dD is the defect thickness.

Equation �3� clearly shows that the defect position
s controlled by the reflectance phases in the forbid-
en gap of the PCs. It is then crucial to have an
xperimental access to this parameter to predict the
roperties of complex structures.

. Experimental Details

he PCs �outer blocks� were fabricated with use of
hree 100-�m-thick wafers of high-resistivity silicon
� 
 1000 � cm� with a 5-cm diameter �the refractive
ndex of silicon is practically constant in the THz
ange and equals 3.41�. The individual wafers were
eparated by air layers, which we built by inserting
mall 350-�m-thick silicon spacers placed near the
dges of the wafers. The structure was mechani-
ally stabilized by drops of glue put on its edges.
tructures with defect were composed of two such
Cs separated by an air layer using spacers with

hicknesses ranging from 50 �m up to 1 mm: The
ntire structure was mechanically clamped during
he measurements.

The THz experiments were made by use of setups
escribed in detail in Refs. 24, 31, and 32. �i� The
wo individual PCs were first completely character-
zed; the complex transmittance and the reflectance
f both structures were measured. The reflection
pectra were obtained with use of a novel scheme that
llows highly accurate determination of the phase of
he reflected wave.24 �ii� Long temporal scans �250
s� were acquired for the study of the transmission
unctions of structures with defect in order to achieve
etter frequency resolution of the defect levels. In-
eed, TDTS is a time-domain method, and its fre-
uency resolution �f depends essentially on the
ength T of the temporal window of the scans: �fT �
. A resolution better than a few GHz �0.1 cm�1� can
ardly be achieved. This is also the reason why we
ave utilized individual PCs with only three silicon

ayers; the transmittance in the forbidden gap appre-
iably decreases with an increasing number of layers.
t the same time, the defect spectral lines exhibit a
ignificant narrowing and, consequently, they could
ot be easily resolved by use of TDTS for a higher
umber of periods of PCs.

. Discussion

e first characterized the individual PCs composed
f three layers of silicon; both reflection and trans-
ission spectra are presented in Fig. 2. The five

ig. 2. �a� transmission �amplitude and phase� and �b�, �c� reflec-
ion �phase� spectra of one of the PCs. The solid curves represent
he measured data, whereas the dotted curves correspond to the-
retical calculations based on the microstructure. Dashed and
ash-dotted curves in �b� and �c� are calculated by means of
ramers–Kronig relations from the theoretical transmittance

dashed curve� and from the measured transmission amplitude
dash-dotted curve�. Artificial phase shifts of � in �b� are intro-
uced for graphical clarity only.
20 March 2004 � Vol. 43, No. 9 � APPLIED OPTICS 1967
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owest forbidden bands are clearly observed. The
icrostructure of the PCs was assumed to be known

rom the fabrication protocol. However, in order to
chieve a good agreement between the theoretical
urves �i.e., calculated from the microstructure� and
he experimental data, it was necessary to increase
lightly the thickness of the air layers separating the
ilicon wafers; the values of 370 �m for PC1 and 380
m for PC2 lead to excellent fits of the measured data

see Fig. 2�a��. This small increase of air layers is
robably due to glue infiltration between the spacers
nd the silicon wafers. The subsequent calculations
re then performed with the following microstructure
ata:
PC1: Si�100 �m��air�370 �m��Si�100 �m��

ir�370 �m��Si�100 �m�,
PC2: Si�100 �m��air�380 �m��Si�100 �m��

ir�380 �m��Si�100 �m�.
The transmittance phase of a PC defines its effec-

ive refractive index, and thus it directly provides the
ispersion relation of the structure.13 Figure 3
hows the measured dispersion relation of a six-layer
C obtained through a stacking of PC1 and PC2 with
se of a 350-�m spacer. In this plot the existence of
ubsidiary forbidden gaps near 415 and 840 GHz
gaps above 1 THz are not shown in Fig. 3� appear.
he corresponding transmission minima can be also
learly identified in Fig. 2�a�. These additional gaps
riginate from the small mismatch between the opti-
al thicknesses of Si �341 �m� and air ��375 �m�
ayers and consequently become well pronounced
nly for crystals with a large number of periods.
We have already emphasized the key role of the

eflectance phase of PCs for the position of the defect
evels. In many cases it is rather difficult to mea-
ure this parameter directly. The application of the
ramers–Kronig �KK� relations to the measured

ransmittance and reflectance intensities or ampli-
udes is therefore the only way to obtain it. As

ig. 3. Dispersion relations for the studied PCs. The symbols
re the experimentally determined values for a stack PC1 
 PC2

eparated by a 350-�m spacer �i.e., six-layer PC�; the lines are the
heoretical predictions for an ideal PC. L is the lattice parameter
f the PC �475 �m�.
968 APPLIED OPTICS � Vol. 43, No. 9 � 20 March 2004
DTS is able to provide both amplitude and phase
pectra, the present research constitutes an excellent
pportunity to study the applicability of KK relations
or the determination of the reflection phase from the
easured amplitudes. The KK relations for the re-
ectance read33

�� f � � ��0� �
2f
�

P �
0

� ln r� f��

f�2 � f 2 df�, (5)

here P stands for the principal value. If the am-
litude transmittance t is measured rather than the
eflectance r, one can substitute into Eq. �5�:

r � �1 � t2. (6)

he reflectance phase behavior is governed mainly by
he reflectance amplitude in the frequency ranges
here the argument of the integral in Eq. �5� reaches

he largest values. Apparently, this can happen in
wo cases: �i� the denominator vanishes for frequen-
ies approaching f and �ii� the numerator diverges for
requencies where the reflectance vanishes. We are
nterested mainly in the reflectance phase at frequen-
ies lying in the forbidden gap. The logarithm of
eflectivity in the gap is very small for PCs with a
easonably good quality; consequently, the contribu-
ion of type �i� is not the leading one. The contribu-
ion of type �ii�, arising from high-transmission spikes
n the regions close to the forbidden gap, is clearly
ominating.
For frequencies near the center of the bandgap of a

hotonic structure, the denominator of the integral
rgument in Eq. �5� is always far from resonance; the
ntegral itself thus does not show a significant vari-
tion for these frequencies. Consequently, the re-
ectance phase always exhibits a quasi-linear
requency dependence close to the bandgap center.

oreover, a straightforward calculation of d��df
eads directly to the conclusion that �� f � is an in-
reasing function �except for the singular points r� f �

0, where phase jumps may occur�. Both of these
roperties are illustrated by our experimental results
lotted in Figs. 2�b� and 2�c�.
Figures 2�b� and 2�c� show a comparison of the

eflectance phases of PC1 directly measured and cal-
ulated with use of different methods and input data.
igure 2�b� indicates a very good overall agreement of
ll curves in the entire spectral range studied. Fig-
re 2�c� shows details of the behavior in the two low-
st photonic gaps. The deviations of the curves from
he theoretical one �dotted curve�, which is based on
he direct calculation from the microstructure data,
haracterize the precision of the given approach.
he experimental curve �solid line� is in quite good
greement with the theoretical one in both gaps.
he dashed curve represents the data calculated with
se of KK relations from the theoretical amplitude
ransmittance, i.e., the input data are virtually error
ree. However, the KK integral is calculated only
ver a limited frequency range �0.1–2.0 THz�. The
ast curve �dash-dotted curve� is obtained from the
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easured transmittance amplitude with use of KK
nalysis. A significant discrepancy between this
urve and the theoretical one is observed mainly in
he lowest gap. This is connected to the fact that the
egions that contribute to the KK integral are formed
f a series of quite sharp spikes; a high-resolution and
ighly precise measurement of the transmittance is
hus required to supply the input data. The lack of
xperimental data below 0.1 THz and its reduced
recision close to this limit is at the origin of the
iscrepancy in the lowest gap. On the other hand,
he second forbidden gap matches the frequency
ange giving the highest dynamics of measure of our
Hz spectrometer, and consequently the agreement

s far better.
Let us now analyze the results obtained for the

tructures with defect. An example of a transmis-
ion spectrum of the structure with a 548-�m-thick
ir-layer defect is shown in Fig. 4. One can clearly
dentify the defect mode occurring at 252 GHz in the
rst gap and another one at 586 GHz in the second
ap. The experimental peak transmittance at the
efect level frequency is almost 1 order of magnitude
ower than the one predicted by theory �equals to 1�.
his is mainly due to the low-frequency resolution of

he TDTS ��f 	 4 GHz for 250-ps scans�. The cal-
ulated FWHM of the defect level is �1 GHz.

Figure 5 summarizes the dependence of the defect
ode frequency on the defect thickness for the two

owest forbidden bands. The points correspond to
he frequencies of defect modes identified in the mea-
ured transmission spectra. Solid curves show the
redictions obtained from numerical calculations
ased on the system microstructure. For PCs con-
isting of only three periods, we have verified that the
ifference between the exact numerical solutions of
he problem and the solutions of Eq. �3�, for which we
ssume that r3 1, is negligibly small. Here again,
he thickness of the defect layer has been slightly
ncreased in the calculations �adjustment smaller
han 50 �m� compared with the nominal thickness of
he spacers in order to fit the experimental data.
his can be simply understood in terms of the stress
roduced while the twins are clamped together. It is
mportant to note that the thickness adjustment has
een made just once for each defect thickness, leading
o a very good fit of all the measured defect frequen-
ies �e.g., three different frequencies for a 270-�m-
hick defect� with the prediction. Finally, the
ashed curve indicates the prediction based on Eq. �3�
nd on the experimentally obtained reflectance
hases �̃1 and �2. It is necessary to emphasize that
he setup for reflection measurements does not allow
s to measure under strictly normal incidence.24

owever, measurements in our experimental condi-
ions �with an incidence angle of 15° and in TM po-
arization� lead only to a minor systematic shift of the
redicted frequencies as compared with the normal
ncidence.21 This shift corresponds to the difference
etween the solid and the dashed curves in Fig. 5.
arger differences are observed if the defect level lies
ear the bandgap edges; the forbidden gap in fact is
hifted to slightly higher frequencies with increasing
ncidence angle for TM polarization.21

The presence or absence of defect modes in the
icinity of the bandgap edges needs to be considered
autiously. As the transmission of real PCs does not
ecrease steeply, the position of edges is not well
efined. In addition, the uncertainty of the position
f band edges may be increased by possible small
hanges of the microstructure of PCs owing to clamp-
ng. Hence the beginning and the ending of the lines
redicting the frequency of defect modes �Fig. 5� is not
ell defined, and the experimentally identified defect
odes can be confused with the maxima outside the

orbidden gap.
The method discussed in this paper can in principle

e extended to structures containing dissipating me-
ia. The transfer matrices then should be supplied
ith loss terms, i.e., each transfer matrix would be
etermined by six independent parameters instead of
hree. A complete characterization of such a block
ould be required in turn to measure the spectra

rom both sides of the block.
ig. 4. Transmission spectrum of a photonic structure with de-
ect. Dotted curve, theoretical calculations; solid curve, experi-
ent.
ig. 5. Frequency of defect modes versus defect layer thickness.
illed circles, measured data; solid curve, prediction based on the
icrostructure; dashed curve, prediction based on Eq. �3� and on

he measured reflectance phases �̃ and � .
20 March 2004 � Vol. 43, No. 9 � APPLIED OPTICS 1969
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. Conclusion

wo PCs and a PC with twinning defect were com-
letely characterized by TDTS. It was shown and
xperimentally demonstrated that the defect level po-
ition is controlled by the reflectance phase in the
andgap of the twins. The reflection setup of the
DTS was proven to be able to predict properties of
tructures with defect, regardless of whether the mi-
rostructure of constituting blocks �i.e., thicknesses,
efractive indices, and wave impedances of the indi-
idual layers� is known.
Finally, the measured reflectance phase was com-

ared to that obtained by means of KK relations from
he transmittance amplitude; KK analysis yields the
orrect phase in the bandgap if the amplitude spectra
re accurately determined in both neighboring al-
owed bands.
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