Time-domain terahertz study of defect formation
in one-dimensional photonic crystals

Hynek Némec, Petr Kuzel, Frédéric Garet, and Lionel Duvillaret

One-dimensional photonic crystals composed of silicon and air layers with and without twinning defect
(i.e., a periodicity break where one half of the photonic structure is a mirror image of the other one) are
studied by means of terahertz time-domain transmission and reflection spectroscopy. The structure
with defect is decomposed into building blocks: two twins and a defect. A phase-sensitive character-
ization in transmission and reflection allows us to fully determine the transfer matrices of any block and
consequently to predict the properties of composed structures regardless of the microstructure of the

constituting blocks.

It is shown and experimentally demonstrated that the defect level position is
controlled by the reflectance phase of the twins.

Possible approach of the reflectance phase determina-

tion by use of Kramers—Kronig analysis is also discussed. © 2004 Optical Society of America

OCIS codes:

1. Introduction

Photonic crystals (PCs) have attracted considerable
attention in recent years.!-3 The PCs are periodic
dielectric structures that may exhibit ranges of for-
bidden frequencies for the propagation of light, so-
called photonic band gaps. Such structures were
proposed to solve several problems in fundamental
research, related, e.g., to the control of spontaneous
emission from atoms and molecules and localizing
and channeling light.1:¢ The operating range of cur-
rently available PCs covers a wide range of frequen-
cies, from the microwaves® through the terahertz
range® up to the visible,”® and they can potentially
find many applications in optoelectronics and optical
communications.?®1® One of the topics of major in-
terest for filtering applications and signal demulti-
plexing is the control of defect modes.8:11-12

Up to the present, little attention has been devoted
to the full experimental characterization of PCs: In
most cases, only the existence of the forbidden gap is
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verified from the intensity of transmittance or reflec-
tance, and only a few papers report measurements of
the related phases. Most of them concern an exper-
imental determination of the transmittance phase in
the microwave,3:14 terahertz,'516 and opticall?-18
spectral domains. Indeed, the transmittance phase
provides a direct insight into the dispersion relations
of the experimentally excited eigenmodes of the pho-
tonic structures.’® On the other hand, a reliable and
accurate measurement of the phase of the reflected
field, which controls other important properties of
photonic structures, like the frequencies of defect
modes in PCs with broken periodicity,°—2! is much
more difficult to carry out.®

Time-domain terahertz spectroscopy (TDTS) is
based on an emission of a picosecond terahertz (THz)
pulse and on its synchronous phase-sensitive detec-
tion, i.e., it can provide the temporal profile of the
electric field of the pulse transmitted or reflected by
the investigated sample.22 The transmission vari-
ant of this method is well established; on the other
hand, owing to difficulties with accurate determina-
tion of the reflectivity phase,23 the complete charac-
terization of PCs (i.e., a simultaneous determination
of transmittance and reflectance phase) has not yet
been carried out.

In this paper we take advantage of a recently dem-
onstrated technique allowing a reliable determina-
tion of the reflectance phase,2¢ and we fully
characterize two one-dimensional (1-D) PCs. This
allows us to predict frequencies of the defect modes of
photonic structures composed of these PCs separated
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Fig. 1. Schematic definition of (a) fields used in the transfer ma-
trix method, (b) transmission and reflection coefficients for left-
and right-hand measurements, and (c) investigated structure.

by a homogeneous layer with varying thickness
(twinning defect). Our treatment is general and al-
lows the prediction of bound states in any structures
(even aperiodic) exhibiting a forbidden band. 1-D
systems were chosen owing to their simplicity; exact
analytic expressions for frequencies of defect modes
can be easily derived as well as simply under-
stood.2125 On the other hand, the ability to com-
pletely characterize two- or three-dimensional
photonic structures can also be of great interest and
could serve as an important tool in the characteriza-
tion and the design of large-scale devices.26

2. Theoretical Description

Our description is based on a transfer matrix formal-
ism27 that is very often used for the investigation of
1-D PCs. The transfer matrices usually relate the
amplitudes of electric fields corresponding to
forward- and backward-propagating waves at the in-
terfaces between adjacent layers; we will use the
same conventions and definitions as those introduced
in Ref. 21. The product of individual transfer ma-
trices yields the transfer matrix of an entire block
that connects the fields at the left-hand side of the
block [E®] to those at its right-hand side [E"] [see
Fig. 1(a)]:

[Efwd“)] MM, ..

.M, [Efwﬁ]
l .
Ebck( ) Ebck(r)

Assuming the block is composed only of nonabsorbing
media, the elements of its transfer matrix can be
simply identified with the complex reflection and
transmission coefficient of the block:

1 { exp(—it)
t |rexpli(p — 7)]

(1)

M

rexpl—i(p — 7)]
exp(iT) } @

where r and ¢ are the reflectance and transmittance
amplitudes and p and 7 are the corresponding phases,
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respectively. We have implicitly assumed here that
the incident wave impinges on the structure from the
left-hand side, i.e., Eqq") = E,, and E,, ) = 0 [see
top of Fig. 1(b)]. The structure can be alternatively
characterized by the complex transmission ¢ exp(i%)
and reflection 7 exp(ip) coefficients measured when
the incident wave impinges on the structure from the
right-hand side: E,,"” = E,, and Eq 4% = 0 [see
bottom of Fig. 1(b)]. One can easily show that £ = ¢,
T=1,7F=r,and p = 21 — p + w. The structure is
thus completely characterized by a set of three spec-
tral functions: ¢, 7, and p.

To investigate complex structures (composed, e.g.,
of several kinds of PCs), it appears that decomposing
the structure into several suitable building blocks is
useful. Each block then can be described in terms of
its transfer matrix [Eq. (2)]. In principle, given the
incidence angle and the polarization of the incident
wave, the transfer matrix of any block can be calcu-
lated if its microstructure (i.e., thickness, refractive
index, and wave impedance of each of its constituting
layers) is known. However, in practice the micro-
structure data are not always available and/or the
real microstructure can significantly differ from the
expected one. In this case phase-sensitive measure-
ments of the complex reflection and transmission co-
efficients can provide all of the required information.
The TDTS is capable of providing all of the entries of
Eq. (2) for reasonable real blocks operating in the
THz range. Hence the properties of the entire com-
plex structure can be predicted before it is built from
the blocks without exact knowledge of the microstruc-
ture details. In contrast with most theoretical de-
scriptions, we express the transfer matrices in terms
of experimentally accessible quantities, i.e., the re-
flectance and the transmittance of the separate
blocks surrounded by vacuum. One can easily show
that the transfer matrix of two such blocks—A and
B—put into optical contact reads simply A - B.

We apply this approach to a one-dimensional PC,
including a twinning defect [Fig. 1(c)]. We consider
a structure composed of three blocks: The outer
blocks are two periodic PCs—twins (denoted by indi-
ces 1 and 2)—and the inner block represents an en-
closed defect (index D). In the ideal case, the two
PCs have identical properties, as they are assumed to
have the same microstructure. However, experi-
mental realizations of these PCs can show different
properties, to some extent. The corresponding
transfer matrices then could display slightly different
coefficients. Depending on the optical thickness of
the defect, the whole structure may exhibit a defect
mode, i.e., a narrow range of frequencies in the for-
bidden gap, for which the propagation through the
structure is allowed.28 One finds the following con-
dition for the defect level in the limit of perfect PCs (r;
—landry— 1)

p1+ pe=2mm — 275 + 2 arg[1 — rp exp(ipy)], (3)
where m is an arbitrary integer and where

Po=pPp T Pp1= P2 T Pp- 4)



This last equality is automatically fulfilled at the de-
fect level frequencies. Equation (3) in fact represents
the resonance condition in a Fabry—Pérot interferom-
eter: Constructive interference—or equivalently, the
defect level—occurs if the phase shift p; due to the
reflection on the left “mirror” (PC,) plus the phase
shift p, due to reflection on the right “mirror” (PC,)
plus twice the phase shift introduced by the propa-
gation through the “resonator” (defect) equals any
integer multiple of 2. The last term of Eq. (3)
arises from the fact that the resonator is formally
enclosed between infinitesimally thin vacuum layers,
e.g., p; describes the reflectance phase for the inci-
dent wave coming from the vacuum and not from the
defect medium. This term thus accounts for the im-
pedance mismatch between the building blocks and
the vacuum.

Equation (3) is not restricted to ideal periodic PCs
but can be applied to other structures showing
bandgaps, e.g., chirped structures, disordered sys-
tems?® or photonic quasicrystals.30

In case the defect consists only in a vacuum layer,
Eq. (3) is largely simplified and becomes equivalent to
that reported in Refs. 19 and 20: The last term dis-
appears, and the phase shift 1, is simply expressed as
2mfdp,/c, where f is the frequency, ¢ is the speed of
light in vacuum, and d, is the defect thickness.

Equation (3) clearly shows that the defect position
is controlled by the reflectance phases in the forbid-
den gap of the PCs. It is then crucial to have an
experimental access to this parameter to predict the
properties of complex structures.

3. Experimental Details

The PCs (outer blocks) were fabricated with use of
three 100-pm-thick wafers of high-resistivity silicon
(p > 1000 Q) cm) with a 5-cm diameter (the refractive
index of silicon is practically constant in the THz
range and equals 3.41). The individual wafers were
separated by air layers, which we built by inserting
small 350-pm-thick silicon spacers placed near the
edges of the wafers. The structure was mechani-
cally stabilized by drops of glue put on its edges.
Structures with defect were composed of two such
PCs separated by an air layer using spacers with
thicknesses ranging from 50 pm up to 1 mm: The
entire structure was mechanically clamped during
the measurements.

The THz experiments were made by use of setups
described in detail in Refs. 24, 31, and 32. (i) The
two individual PCs were first completely character-
ized; the complex transmittance and the reflectance
of both structures were measured. The reflection
spectra were obtained with use of a novel scheme that
allows highly accurate determination of the phase of
the reflected wave.2¢ (ii) Long temporal scans (250
ps) were acquired for the study of the transmission
functions of structures with defect in order to achieve
better frequency resolution of the defect levels. In-
deed, TDTS is a time-domain method, and its fre-
quency resolution Af depends essentially on the
length T of the temporal window of the scans: AfT =
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Fig. 2. (a) transmission (amplitude and phase) and (b), (c) reflec-
tion (phase) spectra of one of the PCs. The solid curves represent
the measured data, whereas the dotted curves correspond to the-
oretical calculations based on the microstructure. Dashed and
dash-dotted curves in (b) and (c) are calculated by means of
Kramers—Kronig relations from the theoretical transmittance
(dashed curve) and from the measured transmission amplitude
(dash-dotted curve). Artificial phase shifts of 7 in (b) are intro-
duced for graphical clarity only.

1. Aresolution better than a few GHz (0.1 cm ) can
hardly be achieved. This is also the reason why we
have utilized individual PCs with only three silicon
layers; the transmittance in the forbidden gap appre-
ciably decreases with an increasing number of layers.
At the same time, the defect spectral lines exhibit a
significant narrowing and, consequently, they could
not be easily resolved by use of TDTS for a higher
number of periods of PCs.

4. Discussion

We first characterized the individual PCs composed
of three layers of silicon; both reflection and trans-
mission spectra are presented in Fig. 2. The five
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Fig. 3. Dispersion relations for the studied PCs. The symbols
are the experimentally determined values for a stack PC; + PC,
separated by a 350-pum spacer (i.e., six-layer PC); the lines are the
theoretical predictions for an ideal PC. L is the lattice parameter
of the PC (475 pm).

lowest forbidden bands are clearly observed. The
microstructure of the PCs was assumed to be known
from the fabrication protocol. However, in order to
achieve a good agreement between the theoretical
curves (i.e., calculated from the microstructure) and
the experimental data, it was necessary to increase
slightly the thickness of the air layers separating the
silicon wafers; the values of 370 pm for PC; and 380
pm for PC, lead to excellent fits of the measured data
[see Fig. 2(a)]. This small increase of air layers is
probably due to glue infiltration between the spacers
and the silicon wafers. The subsequent calculations
are then performed with the following microstructure
data:

PC,: Si(100 pm)/air(370 pm)/Si(100 pm)/
air(370 pm)/Si(100 pwm),

PC,: Si(100 pm)/air(380 wm)/Si(100 pm)/
air(380 pm)/Si(100 pm).

The transmittance phase of a PC defines its effec-
tive refractive index, and thus it directly provides the
dispersion relation of the structure.l®> Figure 3
shows the measured dispersion relation of a six-layer
PC obtained through a stacking of PC; and PC, with
use of a 350-pm spacer. In this plot the existence of
subsidiary forbidden gaps near 415 and 840 GHz
(gaps above 1 THz are not shown in Fig. 3) appear.
The corresponding transmission minima can be also
clearly identified in Fig. 2(a). These additional gaps
originate from the small mismatch between the opti-
cal thicknesses of Si (341 wm) and air (~375 pm)
layers and consequently become well pronounced
only for crystals with a large number of periods.

We have already emphasized the key role of the
reflectance phase of PCs for the position of the defect
levels. In many cases it is rather difficult to mea-
sure this parameter directly. The application of the
Kramers—Kronig (KK) relations to the measured
transmittance and reflectance intensities or ampli-
tudes is therefore the only way to obtain it. As
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TDTS is able to provide both amplitude and phase
spectra, the present research constitutes an excellent
opportunity to study the applicability of KK relations
for the determination of the reflection phase from the
measured amplitudes. The KK relations for the re-
flectance read33

2f J“ Inr(f") i 5)

=p(0) — P
PN =00 =P |

where P stands for the principal value. If the am-
plitude transmittance ¢ is measured rather than the
reflectance r, one can substitute into Eq. (5):

0

—

r=41-¢. (6)

The reflectance phase behavior is governed mainly by
the reflectance amplitude in the frequency ranges
where the argument of the integral in Eq. (5) reaches
the largest values. Apparently, this can happen in
two cases: (i) the denominator vanishes for frequen-
cies approaching fand (ii) the numerator diverges for
frequencies where the reflectance vanishes. We are
interested mainly in the reflectance phase at frequen-
cies lying in the forbidden gap. The logarithm of
reflectivity in the gap is very small for PCs with a
reasonably good quality; consequently, the contribu-
tion of type (i) is not the leading one. The contribu-
tion of type (ii), arising from high-transmission spikes
in the regions close to the forbidden gap, is clearly
dominating.

For frequencies near the center of the bandgap of a
photonic structure, the denominator of the integral
argument in Eq. (5) is always far from resonance; the
integral itself thus does not show a significant vari-
ation for these frequencies. Consequently, the re-
flectance phase always exhibits a quasi-linear
frequency dependence close to the bandgap center.
Moreover, a straightforward calculation of dp/df
leads directly to the conclusion that p(f) is an in-
creasing function [except for the singular points r(f)
= 0, where phase jumps may occur]. Both of these
properties are illustrated by our experimental results
plotted in Figs. 2(b) and 2(c).

Figures 2(b) and 2(c) show a comparison of the
reflectance phases of PC; directly measured and cal-
culated with use of different methods and input data.
Figure 2(b) indicates a very good overall agreement of
all curves in the entire spectral range studied. Fig-
ure 2(c) shows details of the behavior in the two low-
est photonic gaps. The deviations of the curves from
the theoretical one (dotted curve), which is based on
the direct calculation from the microstructure data,
characterize the precision of the given approach.
The experimental curve (solid line) is in quite good
agreement with the theoretical one in both gaps.
The dashed curve represents the data calculated with
use of KK relations from the theoretical amplitude
transmittance, i.e., the input data are virtually error
free. However, the KK integral is calculated only
over a limited frequency range (0.1-2.0 THz). The
last curve (dash-dotted curve) is obtained from the
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Fig. 4. Transmission spectrum of a photonic structure with de-
fect. Dotted curve, theoretical calculations; solid curve, experi-
ment.

measured transmittance amplitude with use of KK
analysis. A significant discrepancy between this
curve and the theoretical one is observed mainly in
the lowest gap. This is connected to the fact that the
regions that contribute to the KK integral are formed
of a series of quite sharp spikes; a high-resolution and
highly precise measurement of the transmittance is
thus required to supply the input data. The lack of
experimental data below 0.1 THz and its reduced
precision close to this limit is at the origin of the
discrepancy in the lowest gap. On the other hand,
the second forbidden gap matches the frequency
range giving the highest dynamics of measure of our
THz spectrometer, and consequently the agreement
is far better.

Let us now analyze the results obtained for the
structures with defect. An example of a transmis-
sion spectrum of the structure with a 548-pm-thick
air-layer defect is shown in Fig. 4. One can clearly
identify the defect mode occurring at 252 GHz in the
first gap and another one at 586 GHz in the second
gap. The experimental peak transmittance at the
defect level frequency is almost 1 order of magnitude
lower than the one predicted by theory (equals to 1).
This is mainly due to the low-frequency resolution of
the TDTS (Af = 4 GHz for 250-ps scans). The cal-
culated FWHM of the defect level is ~1 GHz.

Figure 5 summarizes the dependence of the defect
mode frequency on the defect thickness for the two
lowest forbidden bands. The points correspond to
the frequencies of defect modes identified in the mea-
sured transmission spectra. Solid curves show the
predictions obtained from numerical calculations
based on the system microstructure. For PCs con-
sisting of only three periods, we have verified that the
difference between the exact numerical solutions of
the problem and the solutions of Eq. (3), for which we
assume that r — 1, is negligibly small. Here again,
the thickness of the defect layer has been slightly
increased in the calculations (adjustment smaller
than 50 pm) compared with the nominal thickness of
the spacers in order to fit the experimental data.
This can be simply understood in terms of the stress
produced while the twins are clamped together. Itis

0 200 400 600 800 1000
dp (um)
Fig. 5. Frequency of defect modes versus defect layer thickness.
Filled circles, measured data; solid curve, prediction based on the
microstructure; dashed curve, prediction based on Eq. (3) and on
the measured reflectance phases p; and p,.

important to note that the thickness adjustment has
been made just once for each defect thickness, leading
to a very good fit of all the measured defect frequen-
cies (e.g., three different frequencies for a 270-pm-
thick defect) with the prediction. Finally, the
dashed curve indicates the prediction based on Eq. (3)
and on the experimentally obtained reflectance
phases p; and p,. It is necessary to emphasize that
the setup for reflection measurements does not allow
us to measure under strictly normal incidence.24
However, measurements in our experimental condi-
tions (with an incidence angle of 15° and in TM po-
larization) lead only to a minor systematic shift of the
predicted frequencies as compared with the normal
incidence.2! This shift corresponds to the difference
between the solid and the dashed curves in Fig. 5.
Larger differences are observed if the defect level lies
near the bandgap edges; the forbidden gap in fact is
shifted to slightly higher frequencies with increasing
incidence angle for TM polarization.2!

The presence or absence of defect modes in the
vicinity of the bandgap edges needs to be considered
cautiously. As the transmission of real PCs does not
decrease steeply, the position of edges is not well
defined. In addition, the uncertainty of the position
of band edges may be increased by possible small
changes of the microstructure of PCs owing to clamp-
ing. Hence the beginning and the ending of the lines
predicting the frequency of defect modes (Fig. 5) is not
well defined, and the experimentally identified defect
modes can be confused with the maxima outside the
forbidden gap.

The method discussed in this paper can in principle
be extended to structures containing dissipating me-
dia. The transfer matrices then should be supplied
with loss terms, i.e., each transfer matrix would be
determined by six independent parameters instead of
three. A complete characterization of such a block
would be required in turn to measure the spectra
from both sides of the block.
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5. Conclusion

Two PCs and a PC with twinning defect were com-
pletely characterized by TDTS. It was shown and
experimentally demonstrated that the defect level po-
sition is controlled by the reflectance phase in the
bandgap of the twins. The reflection setup of the
TDTS was proven to be able to predict properties of
structures with defect, regardless of whether the mi-
crostructure of constituting blocks (i.e., thicknesses,
refractive indices, and wave impedances of the indi-
vidual layers) is known.

Finally, the measured reflectance phase was com-
pared to that obtained by means of KK relations from
the transmittance amplitude; KK analysis yields the
correct phase in the bandgap if the amplitude spectra
are accurately determined in both neighboring al-
lowed bands.
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by the Ministry of Education of the Czech Republic
(Project No. LNOOA032) and by the Volkswagen Stif-
tung (Grant No. I/75908).
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