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Time-resolved terahertz spectroscopy has become a widely used experimental tool for the
investigation of ultrafast dynamics of polar systems in the far infrared. We have recently proposed
an analytical method for the extraction of a transient two-dimensional susceptibility from the
experimental datafNěmec, Kadlec, and Kužel, J. Chem. Phys.117, 8454 s2002dg. In the present
paper the methodology of optical pump-terahertz probe experiments is further developed for direct
application in realistic experimental situations. The expected two-dimensional transient response
function is calculated for a number of model casessincluding Drude dynamics of free carriers,
harmonic and anharmonic oscillator modesd; these results serve as a basis for the interpretation of
experimental results. We discuss also the cases where only partialsone-dimensionald information
about the system dynamics can be experimentally obtained. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1857851g

I. INTRODUCTION

The fast development of the time-domain terahertz
sTHzd spectroscopy has enabled a widespread use of this
technique as a sensitive probe of far-infrared response of
polar systems in steady state.1,2 This is mainly due to signifi-
cant improvements of the signal-to-noise ratio and of the
dynamic range of THz systems and due to the inherent pos-
sibility to analyze experimentally the THz electric fieldsand
not only the power as in usual optical experimentsd. The
experiments then provide directly the complex dielectric
function of the sample without the need of data fitting or of
Kramers–Kronig analysis. Furthermore, the technique of
synchronous gated emission and detection of THz pulses
along with the ability to resolve the electric-field profile of
THz wave forms with a subpicosecond resolution allow set-
ting up time-resolved experiments of photoexcited media in
the far infrared. The term optical pump–THz probesOPTPd
is usually used for experiments in which the broadband THz
pulses are used to probe changes of the far-infrared suscep-
tibility sor conductivityd spectrum initiated by an optical ex-
citation eventssee Ref. 3 for a reviewd.

Compared to the standard optical pump–optical probe
sOPOPd spectroscopy the OPTP experiments differ in three
aspects.

sid A different spectral range is probed.
sii d OPOP technique in the common setup measures

time-resolved power reflectance or transmittance at carrier
frequency of the probe pulse. The experimental results then
provide a nonlinear susceptibility as a function of pump-

probe delay, i.e., for a single experiment a real one-
dimensionals1Dd curve is accessed. In contrast, OPTP ex-
periments are sensitive to the transientstime-resolvedd THz
electric field which depends on the pump-probe delay. Con-
sequently, complex time-resolved THz spectra can be in
principle obtained from a single experiment yielding a two-
dimensionals2Dd complex response function.4

siii d The time resolution in the OPTP experiments is not
related to the THz pulse lengthswhich extends typically over
more than 1 psd; rather, it is limited by the bandwidth of the
gated detection process which yields a subpicosecond reso-
lution stypically 0.3–0.4 psd. On the other hand, the investi-
gated systems exhibiting picosecond or subpicosecond dy-
namics involve frequency components falling intosor
overlapping withd the THz range. This may produce a fre-
quency mixing which distorts the transient THz wave form.5

In other words, the leading and trailing parts of the THz
pulse may probe the sample in two different states.

The two latter issues pointed out above lead to a conclu-
sion that the OPTP experiments contain potentially more in-
formation, however, an appropriate care should be taken to
extract this information correctly from the experimental data.

A number of papers have been devoted to the time-
resolved THz studies of photocarrier dynamics in
semiconductors6–10 and superconductors11,12 and to charge
transfer in photoionized liquids.13 In these experiments the
free carrier absorption represents the principal interaction of
the THz radiation with the sample. A smaller number of pa-
pers have dealt with an experimentally challenging study of
photoinduced environmental vibrational or librational re-
sponse in solutions.14–18 Clearly, if the rate of the probed
dynamics exceeds tens of picoseconds, no special treatmentadElectronic mail: kuzelp@fzu.cz
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or methodology is required to obtain correct results. As to the
investigation of faster dynamics, two different methodologi-
cal approaches have been proposed up to now.

Historically the first approach, proposed by Schmutten-
maer and his group,16 is based on time-domain calculations
and has been applied in several experimental works.10,17 It
uses the numerical method of finite-difference time-domain
sFDTDd calculations which simulates the propagation of the
THz pulse through the nonequilibrium medium with a
known dielectric response. The advantage of this method is
that it can take into account all nonequilibrium effects; in
particular it can account for situations where the modifica-
tions of the THz field are strong and cannot be described
using a perturbative approach. In addition, a method for
simulation of the THz pulse propagation in usual experimen-
tal geometriessi.e., outside the photoexcited sampled has
been recently developed19 allowing a complete numerical
simulation of the experiment. On the other hand, the FDTD
method was not designed for the solution of the inverse
problem, i.e., the extraction of the sought nonlinear suscep-
tibility is not straightforward. The method requiresa priori
an explicit model for nonequilibrium behavior, the param-
eters of which are to be adjusted using FDTD calculations.

Recently, we have solved analytically the problem of
propagation of broadband THz pulses in photoexcited
media.5 We have introduced a frequency-domain formalism
which handles to the first order all nonequilibrium effects,
including refraction on the surfaces of a photoexcited me-
dium, dispersion, THz/optical velocity mismatch, and pump
intensity extinction. This treatment makes it possible to ob-
tain the 2D nonlinear susceptibility in the frequency domain
from the experimental data using explicit analytical formu-
las. It also provides strategies for carrying out the experiment
in order to cancel or minimize the influence of instrumental
functions of the THz setup. Nevertheless, an experimental
demonstration of this approach which would show the ability
of this method to find the unknown nonlinear susceptibility is
still lacking. The aim of this paper is to fill this gap by a
thorough experimental and theoretical study: we present ex-
perimental data for various physical and/or chemical systems
exhibiting different behavior and we discuss the observed
features in the nonlinear susceptibility and their interpreta-
tion.

The present paper reviews the principal results of our
methodological approachsSec. IId and it is mainly devoted to
phenomenological modeling of 2D nonlinear susceptibility
sSec. IIId. The following paper in this issue20 sPaper IId then
shows experimental results obtained in semiconductors and
molecular systems and provides their detailed treatment and
interpretation within the frame of the developed models.

II. REVIEW OF THE FREQUENCY DOMAIN
APPROACH

The approach discussed in this section has been devel-
oped in Ref. 5 where the reader can find the details of un-
derlying calculations. The aim of this section is to introduce

the principal notions of our description of OPTP experi-
ments, to present concisely the main findings and conclu-
sions, and to provide a short reference for the experimental-
ists.

A. Transient THz field

The dynamics of a photoexcited system can be described
by a nonlinear polarizationDP introducing a 2D susceptibil-
ity Dx.4,5 In many cases it is more suitable to use an equiva-
lent treatment in terms of a nonequilibrium conductivityDs
and an induced electric currentD j :

D jst − tp,t − ted =E
−`

t

ETHzst8 − tpdDsst − t8,t − teddt8,

s1d

wherete marks the time of the optical excitation,tp is con-
nected to THz probe pulse arrival, andt defines the time of
the measurementsi.e., the real timed. In the experiment, the
arrival of the pulses is controlled by delay linesD1, D2, and
D3, respectivelyssee Fig. 1d. The photoinduced transient
conductivityDs is proportional to the pump pulse intensity
and depends on two time variables: the first one is related to
the dielectric response to the probe pulse and the second one
describes the influence of the optical excitation. The field
ETHz in the sample consists of the equilibrium partE0 and of
a small transient partDE which is generated by the nonlinear
currentD j .

When a 2D scan is performed, two delay lines are mov-
ing and the remaining one is held in a fixed position. We
have shown5 that following two casessrepresentationsd
should be considered.

sId D3, which determines timet, is fixed, we define two
independent variables for the time scans:te= t− te scontrolled
by D1d and t= t− tp sD2d with the conjugated frequency-
domain variablesve andv.

sII d D2, which determines timetp, is fixed; the time-
domain variables aretp= tp− te sD1d and t= t− tp sD3d, and
the frequency domain variables arevp andv.

In the following text, the 2D physical quantities labeled
by the superscriptsId are expressed by means of variableste

andt or ve andv fi.e., inherent variables of representation
sIdg and quantities labeled by the superscriptsII d are ex-
pressed throughtp andt or vp andv si.e., inherent variables
of representation IId. We would like to stress that a relevant
physical quantityse.g.,DssId andDssII dd can be expressed in
either representation while it always describes the same
physical process. In this sense, on one hand, both represen-
tations of the chosen quantity are equivalent, i.e., they
contain the same information about the system. On the other

FIG. 1. Scheme of OPTP technique. For definition of symbols, see text.
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hand, their mathematical form is different as they are ex-
pressed using different inherent variables. In addition, they
can be accessed using different experimental protocols and,
as it is pointed out below, the frequency domain quantities
are obtained by a different transformation of the experimen-
tal data.

One can easily show5 that in the time domain

DssIdst,ted = DssII dst,tp = te − td s2d

and in the frequency domain

DssIdsv,ved = DssII dsv + ve → v,ve → vpd, s3d

which means that upon passing from representation I to rep-
resentation IIsv+ved is replaced byv andve is replaced by
vp. As the time-domain quantitiesDE and E are real, the
transient conductivity automatically fulfills the following re-
lations:

DssIdsv,ved = Ds* sIds− v,− ved, s4d

DssII dsv,vpd = Ds* sII ds− v,− vpd, s5d

where “p” denotes the complex conjugate quantityssee Fig.
2 for illustrationd. The information forv,0 is thus redun-
dant and subsequent figures show data forv.0 only. Note
also that in figures we use frequencies in THz defined as
f =v /2p and fp=vp/2p.

The wave equation describing propagation of the elec-
tromagnetic field in the photoexcited medium can be solved
analytically in the Fourier space5 within the approximation
DE!E0. One finds for the outgoing transient part of the THz
field in representationsId,

DEsIdsv,ved =
DssIdsv,ved
isv + ved«0

JsIdsv + ve,vdE0svd, s6d

and in representationsII d,

DEsII dsv,vpd =
DssII dsv,vpd

iv«0
JsII dsv,v − vpdE0sv − vpd,

s7d

whereJsI,II d, introduced by Eqs.s30d ands31d in Ref. 5, is a
transfer function of the photoexcited sample. This function
depends on the THz dispersion of the sample in equilibrium,
on its optical absorption coefficient, group velocity, and on
its thickness. It can be unambiguously determined from a
steady-state experiment. In the general case the form of
JsI,II d can be complicated; on the other hand, it can be easily
shown that in the most interesting experimental casesJsI,II d

takes a rather simple form. For the analysis of the experi-
mental results we always use the general formula forJ,
however, it is worth inspecting its behavior in the simple
cases.

Let us assume for a while that the THz dispersion of the
sample in equilibrium is negligible. It then follows from Ref.
5 fsee Eqs.s33d and s34d thereing that both in the case of a
bulk phase-matched interaction and in the case of a high
optical absorption of the samplesi.e., the case encountered
often in semiconductors where the OPTP signal is mainly
generated at the input face of the sampled:

JsId ~ isv + ved, s8d

JsII d ~ iv. s9d

This simplified approach immediately yields

DEsIdst,ted ~ D j sIdst,ted, s10d

DEsII dst,tpd ~ D j sII dst,tpd. s11d

We return back to the general case. Note that the quan-
tity DE is not directly measured; it represents the transient
field just leaving the samplesnear fieldd. The detected tran-
sient signal is obtained using the convolution theoremfcf.
Eqs.s12ad and s12bd in Ref. 5g:

representation I,

FIG. 2. sColord Simulations of transient 2D conductivityDssII dsv ,vpd for free carrier dynamics following Eq.s33d. Upper row:tc=0.7 ps andts=0.1 ps,
lower row: tc=0.35 ps andts=0.2 ps. The rightmost plot in the lower row shows a typical accessible area using the available spectral range of
300 GHz–2 THz.
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DED,sIdsv,ved = c2sv + vedc1sv + vedDEsIdsv,ved, s12d

representation II,

DED,sII dsv,vpd = c2svdc1svdDEsII dsv,vpd, s13d

where c1 and c2 are the instrumental functions describing
the propagation of the THz pulse between the sample and the
sensor and the response of the sensor, respectivelyssee Fig.
1d.

A reference measurement in the pump-probe studies is
obtained in equilibriumsi.e., without the optical pumpd. The
detected reference wave form transmitted through the opti-
cally unexcited sample reads

Eref
D svd = c2svdc1svdTsvdE0svd, s14d

whereT is the complex equilibrium transmission function of
the sample.

Equationss6d, s12d, and s14d for representation I, and
s7d, s13d, and s14d for representation II, constitute the basis
for the experimental determination ofDs. Their thorough
understanding requires a short discussion.

B. Representation I

In this experimental scheme one varies the delaysD1
sscan of ted and D2 sscan of tpd, while the timet sD3d is
fixed. It has been pointed out4,9 that, using this scheme, dif-
ferent points on the THz wave form experience the same
delay with respect to the excitation event. Indeed, for a given
position ofD1 sfixed excitation eventd a wave form scan is
realized usingD2. On the other hand, this implies that one
cannot access a single propagating THz wave formswhich is
connected to the timetd. Instead, one collects data points
from different transient THz pulses all measured with the
same time distance between the pump and the gated detec-
tion event. We can still call the measured curve a wave form,
however, it is important to realize that it does not exist in real
time but it is connected to timetp. In the detection process,
though, the response function of the sensor is always convo-
luted with wave forms existing in real time. The direct con-
sequence of this fact is that the detection process and the
propagation between the sample and the sensor involve fre-
quency mixing in terms ofv+ve.

Thus the experimentally obtained ratio

DED,sIdsv,ved
Eref

D svd

does not allow for cancelling out the instrumental functions.
It is necessary to know the sensor response functionc2 de-
fined, e.g., by Eq.s38d in Ref. 5. It is also required to sim-
plify the optical path of the THz pulses between the sample
and the sensor as much as possible so as to enable the deter-
mination of c1. It has been suggested5 that the experiments
should be carried out in the far fieldswithout any transfor-
mation of the THz beam between the sample and the sensord
to obtain plausible experimental data. Another possibility is
to evaluatec1 using the formalism developed in Ref. 19 or
Ref. 21.

C. Representation II

Using this experimental protocol a 2D scan is realized
throughD1 sscan ofted andD3 sscan oftd. By contrast with
the preceding scheme, aD3 scan with a fixed position ofD1
directly yields a single propagating transient THz wave form
induced by the pump pulse. The convolution with the instru-
mental functionss13d is then simplified as expected. How-
ever, different points on the THz wave form experience a
different delay with respect to the excitation event, leading to
the frequency mixing between the incident THz wave form
E0sv−vpd and the transient signalDEsII dsv ,vpd.

The determination of the transient conductivity from the
ratio

DED,sII dsv,vpd
Eref

D svd

therefore requires knowledge of the shape of the THz wave
form incident on the sample. This implies replacing the
sample by the sensor, measuring the wave form and, subse-
quently, its deconvolution with the sensor response function
c2.

The protocol related to representation II thus requires an
additional measurement compared to that related to represen-
tation I. This is counterbalanced by the fact that representa-
tion II allows one to choose the most suitable experimental
arrangement behind the sample from the point of view of the
signal-to-noise ratio, namely, to focus the THz beam into the
sensor. Note also that the knowledge of the sensor response
function is required in both schemes. This response always
involves frequency mixing:c2sv+ved in representation I
andc2sv−vpd in representation II.

D. Accessible spectral range

The nonlinear conductivitysor susceptibilityd can be ex-
perimentally determined only in the spectral ranges where
both DED and Eref

D are nonvanishing and exceed the noise
level. Clearly, owing to frequency mixing, the accessible re-
gion in the 2Dsv ,ved or sv ,vpd space is not rectangular but
it is a union of several polygonsssee Fig. 6 in Ref. 5d. In
fact, the terms which contain the argumentv+ve or the ar-
gumentv−vp are at the origin of diagonal spectral delimit-
ers. The most important factor is related to the upper limit of
the spectral sensitivity of the sensor which, due to its diago-
nal character, significantly reduces the experimentally acces-
sible area. For a typical THz experiment based on a ZnTe
emitter and sensor, one obtainsuvu, uve+vu, uv−vpu
,2.5 THz.

This discussion reveals the advantage of the frequency-
domain approach. A careful analysis of the experiment un-
ambiguously yields the spectral region where the transient
conductivity can be obtained; the experimental error can be
also quantified in this region. Up to this point noa priori
information about the dynamics of the system under investi-
gation is needed. It also follows that any time-domain repre-
sentation of the conductivity is more or less distorted and/or
it should be based on some model assumptions about the
system studied.

104503-4 Němec et al. J. Chem. Phys. 122, 104503 ~2005!
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The experimentalist obtains a 2D “map” of the transient
complex conductivity expressed in the frequency space
which provides a macroscopic picture of ultrafast dynamics
of charges; he should then decrypt it and assign to underlying
processes. This can be performed on a microscopic scale
using, e.g., molecular dynamics simulations or within a phe-
nomenological macroscopic framework. In this paper we use
the latter approach to find the expected form of the transient
conductivity in simple model situations for several qualita-
tively different types of response. Paper II then supplements
this theoretical work with data taken for several experimen-
tally interesting systems.

III. MODELS FOR TRANSIENT CONDUCTIVITY

A. General considerations

For simplicity we assume in this section that the optical
pump pulse excites only one kind of quasiparticlesse.g., free
electrons in semiconductors, vibrational or librational mode
in a molecular crystal or in a solution, etc.d; a generalization
of this model is straightforward. Furthermore, we assume a
local character of the response both to the optical and THz
pulses. Let the indicesG and E denote the properties of
particles in the ground and optically excited state, respec-
tively. The macroscopic current in the sample is given by the
mean velocity calculated by averaging individual velocities
vi of charged particles:

jstd = qo vistd = qnkvstdl, s15d

wheren is the number of particles andq is their charge. The
transient photocurrent then reads

D jst,ted = qnfkvst,tedlE − kvstdlGg. s16d

On one hand the transient velocities can be extracted from
molecular dynamics simulations.18 Such an approach has the
advantage of obtaining a detailed dynamical picture with
molecular resolution, provided a reliable atom-atom interac-
tion potential is available. The main drawback of this direct
approach is that the response of the system to the THz probe
pulse is very weaksunlike the response to the optical pump
pulsed and it tends to be buried in the statistical noise inher-
ent to simulations with a finite number of particles. On the
other hand, it is also possible to develop a macroscopic phe-
nomenological model describing the average particle posi-
tion xst ,ted and velocity ẋst ,ted. One can introduce time-
dependent velocity distribution functionspE,Gst ,ted,

kvst,tedlE,G =E pE,Gst,tedvdv. s17d

The model assumption then consists in the possibility of fac-
torization of this distribution function,

pEst,ted = rst − teddfv − ẋEst,tedg + f1 − rst − tedg

3dfv − ẋGstdg, s18d

pGstd = dfv − ẋGstdg, s19d

wherexEst ,ted andxGstd are solutions of a model set of equa-
tions of motion which should be supplied to describe the

motion of chargesseither free or boundd in the excited and
ground state, respectively;d denotes the Diracd function.
The functionrst− ted then can be interpreted in terms of the
variation of the excited state population.

The coupling constant to the THz probe fieldseffective
charged is denoted byfE,G; for sake of generality we assume
that it can be time dependent. The photoinduced current is
then equal to

D jst,t − ted = nEst − tedffEst − tedẋEst,t − ted − fGẋGstdg.

s20d

In our model, the density of excited particlesnE does not
depend on the THz probe field and it obeys a differential
equation with the opticald pulse representing the source
term

DstdnEst − ted = n0dst − ted, s21d

whereD is a differential operator describing the depopula-
tion of the excited state andn0 is the density of photocarriers
immediately after excitation.

The dynamical response of the system in equilibrium to
the THz probe fieldE0 can be described by a differential
operatorLG

LGstdxGstd = fGE0std. s22d

One obtains in terms of a Green’s function

LGstdGGst − t8d = dst − t8d. s23d

Out of equilibrium, the quasiparticle dynamics is de-
scribed by a differential operatorLEst ,t− ted and by the cou-
pling function fEst− ted,

LEst,t − tedxEst,t − ted = fEst − tedE0std, s24d

using Green’s function formalism, one finds

LEst,t − tedGEst − t8,t − ted = dst − t8d. s25d

Explicit forms of operatorsD, LG, and LE are discussed in
the model applications below.

It can be now easily shown that the general form of the
nonequilibrium current reads

D jst,t − ted = nEst − tedF fEst − tedE
−`

`

dt8fEst8 − ted

3ĠEst − t8,t − tedE0st8d

− fG
2E

−`

`

dt8ĠGst − t8dE0st8dG , s26d

where the causality is formally achieved by the Heaviside
functionYstd which will be explicitly included in the Green’s
functions. Now, similarly as in Ref. 5, we can introduce the
probe arrival timetp and switch to the time delay variables.
In representation I the nonequilibrium response function
reads

DssIdst,ted = nEstedffEstedfEste − tdĠEst,ted − fG
2 ĠGstdg.

s27d
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The simplest approximation for the behavior of the ex-
cited particles populationnE is a single exponential decay

nEsted = n0Ystedexpf− te/tcg, s28d

wheretc is the particle lifetime in the excited state.
A special attention should be paid to the situation when

the THz probe pulse arrives before the optical pumpsi.e.,
tp, te or tp,0d. We recall thattp is connected to the arrival
of the THz probe pulse. Consequently, in a real experiment,
the origin oftp is chosen to some extent arbitrarily given the
temporal length of the THz pulse. However, regarding the
transient conductivity as a response function to an impul-
sional probing field,tp is unambiguously determined by the
position of the probed pulse. Thus, betweentp and te the
system exhibits a dynamics described byGG and driven by
the THz field. At te the pump pulse optically excites the
system. The physical state we probe after the photoexcitation
may differ depending on the extent to which the phase and
the amplitude of the equilibrium motion have been con-
served on the time scale comparable to the upper frequency
limit of the THz resolution. Strictly speaking, the initial
conditions for the Green’s function of the excited state read,

GEst= ted=GGst= ted, ĠEst= ted=ĠGst= ted. However, in
some cases, the position and the velocity of the particles can
be changed on very short time scales due to efficient fast
scattering mechanisms. A fast and efficient averaging of
these quantities leads to a simpler initial conditionGEst
= ted=ĠEst= ted=0. In the following we will refer to these
cases as to weakly perturbed systems described by the
former initial conditions and we will call strongly perturbed
systems those satisfying the latter ones. The latter condition
can be also applied, e.g., to the case of optical interband
excitation of semiconductors, where the motion of valence
electrons is negligible compared to that of the conduction
electronssGG!GEd.

In our model we consider explicitly that the coupling
constantfE may exhibit some dynamics upon photoexcita-
tion. Furthermore, its time dependence provides a convenient
way to “switch on” the interaction of the probe field with
newly generated particles if we assumefEst− ted~Yst− ted.

The 2D maps of the conductivity we discuss in the fol-
lowing paragraphs are essentially based on Eq.s27d using
some model behavior of the excitations. We discuss several
cases including the Drude model of free carriers and oscilla-
tory behavior of bound charges. In this paper, we derive the
behavior of the transient conductivity for the model cases
and discuss what can then be obtained by OPTP experiments.
In Paper II, the relevance of these models for particular
physical situations is addressed.

B. Drude dynamics and trapping of free carriers

This case covers a broad class of applications of OPTP
experiments to systems in which carriers can be excited by
an optical pump pulse to states described by a delocalized
wave function, i.e., the restoring force is absent. It concerns,
namely, semiconductors with ultrafast response such as low-
temperature grown GaAssLT-GaAsd,10,22 radiation-damaged
silicon on sapphiresRD-SOSd,23 low-temperature grown

InAlAs,24 etc. This model can also describe to a large extent
the dynamics of carriers after multiphoton ionization in
fluids.13

1. 2D scans

The kinetic equations read25

dnE

dt
+

nE

tc
= n0dst − ted, s29d

m
d2xE

dt2
+

m

ts

dxE

dt
= qYst − tedE0std, s30d

wheretc is the lifetime of free carriers andts is their mo-
mentum scattering time. We assume immobile valence elec-
trons. The equations yield the following dynamical param-
eters:

nE = n0Yst − tedexpf− st − ted/tcg,

fG = 0,

ĠG = 0,

fEst − ted = qYst − ted,

ĠEst,t − ted = Yst − tedYstd/mexps− t/tsd.

The transient response function then reads

DssIdst,ted =
q2n0

m
YstdYste − tdexps− te/tcdexps− t/tsd.

s31d

The 2D Fourier transform is straightforward and easy to per-
form,

DssIdsv,ved =
B

isv + ved + 1/t f

1

ive + 1/tc
, s32d

DssII dsv,vpd =
B

iv + 1/t f

1

ivp + 1/tc
, s33d

with

1

t f
=

1

tc
+

1

ts
, s34d

B =
q2n0

m
. s35d

The transient conductivity shows a single pole at the origin
of frequency axes and its amplitude decreases with increas-
ing frequencies; the speed of this decrease is a measure oftc

andts ssee Fig. 2d. For these plots the upper limit of 2.5 THz
of the sensor spectral sensitivity was used. Note that the
scattering time of 100 fs can be still resolved in such data.
Indeed, the use of 2D complex fitting makes it possible to
determine time constants as fast as 50 fs assuming still the
2.5 THz upper detection limit. Note also that even shorter
time constants can be determined if the parameterB can be
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independently estimated from the experiment.
Note that the symmetry propertyDssII dsv ,vpd

=Ds* sII ds−v ,−vpd is clearly observed in Fig. 2.
By performing a 1D inverse Fourier transform invp

sfrequency conjugated to the pump-probe delaytpd one ob-
tains in representation II a simple expression,

DssII dsv,tpd =
B

iv + 1/t f
Ystpdexps− tp/tcd. s36d

This formula can be interpreted in terms of a series of THz
snapshots with a single exponential decay due to the carrier
trapping. For any pump-probe delay the individual THz
spectra show a Drude-like shape characterized by a time con-
stantt f which is a combination of the decay and scattering
times.

We stress once more that experimentally such data can-
not be obtained directly by a 1D Fourier transformation of
the measured ratioDEDst ,tpd /Eref

D std. The passage through
the 2D Fourier space and the appropriate data transformation
are required.

The transient current can be also calculated; it depends
in a rather complicated way on a particular THz wave form:

D j sII dsv,tpd ~
exps− tp/tcd

iv + 1/t f

3E
−tp

`

dt8 expf− t8siv + 1/tcdgE0st8d. s37d

2. 1D pump-probe scans

In some OPTP studies the authors have performed 1D
scans only to obtain dynamical information. This strategy is
required for systems where the THz transient signal is ex-
tremely week and 2D scans can hardly be performed. Two
different types of 1D scans have been used so far.sid The
delay between the THz probe and the optical gating pulse is
held constantsi.e., t is fixedd while the advance of the pump
pulse is changed during the experiment;15,26,27 sii d A THz
power detectorse.g., a bolometerd is used instead of a gated
detection scheme; the whole THz power is then detected as a
function of pump probe delay.14,28 In both casestp is
scanned.

The present model of the dynamics of free carriers pro-
vides analytical expressions for all quantities of interest.
Thus it can also serve as a simple tool to analyze 1D experi-
ments. To simplify this short analysis, let us adopt the as-
sumptions which lead to expressionss10d and s11d. In addi-
tion we assume here a flat spectral response of the THz
detectors.

Equation s26d applied to our model then leads to the
expression for the near-field transient wave form:

DEst,tpd ~ exps− tp/tcdYst + tpdexps− t/tcd

3E
0

t+tp

dt8E0st − t8dexps− t8/tsd. s38d

In the case of the pump-probe scan of a THz field at a fixed

waveform positiont=t0, the observed quantity is propor-
tional to

DEDst0,tpd ~ E
−`

`

dt8c1st8dDEst0 − t8,tpd. s39d

In the case of the pump-probe scan with a time integrating
detector the measured signal is proportional to

Sstpd ~ E
−`

`

dt8c1st8dE
−`

`

dt9c1st9d

3 E
−`

`

dtDEst − t8,tpdE0st − t9d. s40d

Here,c1std is the instrumental function describing the propa-
gation of THz wave forms between the sample and the de-
tector. In the simplest casesc1std=dstd or c1std=d8std sde-
rivative of the Diracd functiond for the measurement in the
near or far field, respectively. In the case of focusing by a
mirror or a lens with a finite aperture, and with the object/
image size ratio 1:1, a useful approximation is represented
by ssee Ref. 21 for detailsd

c1std = dstd −Îa

p
exps− at2d.

Examples of the observables for the two experiments are
shown in Fig. 3. We assumed here the simplest case of the
measurement in the near field, i.e., Eq.s38d and

Sstpd ~ exps− tp/tcdE
−tp

`

dtE0stdexps− t/tcd

3 E
0

t+tp

dt8 exps− t8/tsdE0st − t8d. s41d

The following conclusions can be deduced from the simula-
tions. If there is a measurable signal for delays larger than
approximately the THz probe-pulse lengths,1 ps in our
simulationsd, the fitting of this part of the signal by a single
exponential always yields the correct trapping timetc. Ex-
tending the fitting range towards shorter delays may lead to
incorrect results. The data corresponding to short pump–
probe delays cannot be analyzed in a simple way. The signal
in this range depends on the incident THz wave form, on the
momentum scattering rate and on the experimental setupsus-
ing different instrumental functionsc1 leads to qualitatively
similar but quantitatively very different curvesd. For ex-
ample, the oscillations in the signal shown in Figs. 3sad and
3sbd are not caused by an oscillatory behavior of the studied
system, rather, they are a consequence of particular experi-
mental conditions and parameters. These findings will be
also experimentally demonstrated in Paper II.

In summary, results obtained for an unknown physical
system using 1D pump-probe scans should be analyzed very
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carefully. Despite of a presumed higher temporal resolution
of the experiments, safely correct results are obtained only
for delays exceeding the THz pulse length.

3. 1D transient wave form scans

In some dynamical studies another kind of 1D THz ex-
periments can be useful. In this case the pump-probe delay is
held at a fixed positiontp and the transient THz wave form is
recorded. In a large number of experimental works the tran-
sient THz wave forms are recorded for several values oftp,
but not enough to provide a complete 2D picture.11,13,28The
interpretation is then based on the behavior of Fourier trans-
form of the recorded signal usually called transient THz
spectra: typically, in the systems with free carriers, these
spectra are fitted to the Drude formula.

Assuming the applicability of expressionss10d and s11d
and using Eq.s37d we can easily find the form of the signal
which is to be interpreted,

DEDsv,tpd
Eref

D svd

~
exps− tp/tcd

iv + 1/t f

E
−tp

`

dt8 expf− t8siv + 1/tcdgE0st8d

E
−`

`

dt8 exps− ivt8dE0st8d
. s42d

Consequently, the data exhibit necessarily a departure from
the Drude behaviorfeven if, as in our model case, the physi-
cal process exactly follows the Drude dynamics expressed by
Eq. s36dg in the case whensid the trapping time is short
sshorter than or comparable to the THz probe-pulse length
and/or the momentum scattering timetsd and sii d the probe
pulse comes too early after the pumpstheir time separation is
shorter than the THz pulse lengthd. These results are illus-
trated for several sets of dynamical parameters in Fig. 4.

C. Harmonic oscillators: Excitation of a vibrational
mode

This paragraph deals with the case in which the eigen-
frequency of a vibrational or librational mode changes upon
photoexcitation. This type of dynamics can occur, namely, in
molecular systems. For example, in the solvation dynamics
experiments the photoexcitation of a chromophore in the so-
lution, which is connected to the redistribution of charges,
may cause a change of the interaction potential for an envi-
ronmental mode of the first solvation layer.17 In this para-

FIG. 3. Simulations of 1D pump-probe scans for free carrier dynamics. Inset
of sad: the shape of the THz wave formE0std used in the calculations.sa,bd
signal snormalized to unity and shifted to the common time origind for a
pump-probe scan at a fixed wave form positionst=t0d based on Eq.s38d;
the lines correspond to different wave form positionsst0d indicated in the
inset of sad: the motifs of lines mutually correspond. Parameters:tc

=0.7 ps,ts=0.25 pssad, ts=0.1 pssbd. Inset ofsbd: the same signal as insbd
but not normalized to unity and not shifted.scd Normalized signal for a
pump-probe scan using a time-integrating detector. Parameters:tc=0.7 ps,
full line sts=0.1 ps, near fieldd, dotted linests=0.25 ps, near fieldd, dash-
dotted linests=0.25 ps, far fieldd.

FIG. 4. Simulations of 1D transient wave form scans for free carrier dynam-
ics. The transient THz spectra defined by Eq.s42d are plotted without taking
into account the first exponential term. Momentum scattering time:ts

=0.1 ps. Values oftp andtc are indicated in the legend. The Drude model
corresponds to the situation whentp→` andtc→`. Wave form shown in
the inset of Fig. 3sad was used.
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graph we investigate the dynamics of such a system in the
damped harmonic approximation. The equations of motion
then read

m
d2xi

dt2
+ mgi

dxi

dt
+ mvi

2xi = f iE0std, s43d

wherei =E,G denotes coordinates and parameters of excited
and ground state, respectively. Note that we can still describe
the system in terms of dynamical conductivity of bound par-
ticles and a polarization current defined by Eq.s1d. We as-
sume that, prior to the optical excitation, only oscillators
with eigenfrequencyvG and dampinggG exist. Upon excita-
tion some of these oscillators change their parameters tovE

andgE. The population of excited-state oscillators may then
exhibit a decay in time leading back to their ground-state
characteristics. The oscillations occur at the reduced frequen-
ciesVG andVE:

Vi = Îvi
2 − gi

2/4. s44d

We obtain

nEsted = n0Ystedexps− te/tcd,

fG = q,

GGstd =
Ystd
mVG

exps− gGt/2dsinsVGtd.

In the case when during photoexcitation the system loses the
motion information due to some fast scattering mechanisms

fstrongly perturbed systems:GEste=0d=ĠEste=0d=0g we
get

fEsted = qYsted,

GE,0std =
YstedYstd

mVE
exps− gEt/2dsinsVEtd,

leading to

DssIdst,ted = n0q
2Ystedexps− te/tcd

3fYste − tdĠE,0std − ĠGstdg. s45d

In the case when the excited quasiparticles keep the position
and velocity information of the ground statefweakly per-

turbed systems:GEste=0d=GGste=0d, ĠEste=0d=ĠGste

=0dg the transient response becomes more complicated. An
additional signal, coming from the configuration in which the
probe pulse precedes the pump one, may in principle appear.
One finds after a straightforward but lengthy calculation

fEsted = q,

GEst,ted = Yste − tdGE,0std + Yst − tedGE,1st,ted,

where the functionGE,0std has been defined above and where
sin the simplified case, in whichgE=gG=gd

GE,1st,ted =
Ysted
mVE

exps− gt/2d

3HcosfVGste − tdgsinsVEted

−
VE

VG
sinfVGste − tdgcossVEtedJ . s46d

This yields finally

DssIdst,ted = n0q
2Ystedexps− te/tcdfYste − tdĠE,0std

+ Yst − tedĠE,1st,ted − ĠGstdg. s47d

In the Fourier space the behavior of the transient conductiv-
ity is determined by the position of the poles. These are
defined as the zeroes of the denominator function

DE,GsVd = vE,G
2 − V2 + iVgE,G, s48d

whereV is a general frequency variable. One obtains in the
strongly perturbed systemsfusing Eq.s45dg

DssII dsv,vpd =
n0q

2

m
F v − i/tc

vp − i/tc

1

DEsv − i/tcd

−
v − vp

vp − i/tc

1

DGsv − vpdG , s49d

and in the weakly perturbed systemsfusing Eq.s47dg

DssII dsv,vpd =
n0q

2

m

1

DEsv − i/tcd
v − i/tc

vp − i/tc

3F1 −
DEsv − vpd
DGsv − vpdG . s50d

The poles of the functionsDjsv− i /tcd occur at renormalized
eigenfrequencies

v2 = v j8
2 ; v j

2 + 1/tc
2 + g j/tc, s51d

and the poles ofDjsv−vpd occur at

sv − vpd2 = v j
2, s52d

where j =E,G. Examples of the transient conductivity spec-
tra for several sets of parameters are shown in Figs. 5 and 6.
As there are many possible qualitatively different combina-
tions of the parameters for the harmonic oscillator case we
will describe here only the main features of the amplitude
spectra. The principal poles of the transient conductivity are
clearly visible in Figs. 5sad, 5sbd, 5sed, and 6, which corre-
spond to underdamped dynamics. The denominators of Eqs.
s49d and s50d determine the poles which have the form of
straight lines in thesv ,vpd space:v= ±vE8, v−vp= ±vG,
vp=0. The characteristic maxima of the conductivity are
then given by intersections of these lines. Thus, in the half
spacev.0, one finds three principal maxima in the weakly
perturbed casefFigs. 5sad and 5sbdg: fv ,vpg=fvE8 ,0g,
fvG,0g, fvE8 ,vE8 −vGg, and two principal maxima in the
strongly perturbed casefthe last one is lacking due to the
absence of the productDEDG in the denominator of Eq.
s49dg. The casesvG.vE and vG,vE for the strongly per-
turbed systems cannot be easily distinguished from each
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other using the amplitude information only and the knowl-
edge of the phase is required. The increase of damping
causes the broadening of the above discussed peaks alongv
scase ofgEd, along vp scase oftcd, and along the diagonal
v−vp scase ofgGd. Note that the common feature of all
these spectrasand consequently the characteristic feature of
the harmonic oscillator behaviord is the presence of maxima
at vp=0 andvÞ0.

A 1D inverse Fourier transform yielding the time-
resolved THz spectra leads to a complicated expression. This
expression simplifies upon considering only the case when
the pump pulse precedes the probe,tp.0. One obtains for
both weakly and strongly perturbed systems

DssII dsv,tpd ~ i exps− tp/tcd

3 F v − i/tc

DEsv − i/tcd
−

v − i/tc

DGsv − i/tcd
G . s53d

The time-dependent THz spectrum is thus driven by the ex-
ponential decay due to depopulation of the excited level and
it shows poles at renormalized eigenfrequenciesvE,G82 . Con-
cerning 1D experimental scans, analogous conclusions to
those deduced in paragraph C can be drawn.

D. Harmonic oscillators: Relaxation of the coupling
constant

In some molecular systems it may happen that the fre-
quency of an oscillatory mode does not change appreciably
upon photoexcitation, while, due to spatial charge transfer,
the effective charge coupling of the mode with the THz
probe field may exhibit some dynamics,

m
d2x

dt2
+ mg

dx

dt
+ mv0

2x = f iE0std, s54d

with

fG = q,

s55d
fE = qh1 + Ystedfb + a exps− te/tbdgj.

This problem can be also solved analytically. One then finds
the poles atfv ,vpg=f±v08 ,0g, f±v0,0g, where analogously
to Eq. s51d

v08
2 = v0

2 + 1/tb
2 + g/tb. s56d

It is also possible to combine this problem with that dis-
cussed in the preceding paragraph, i.e., to solve a simulta-
neous steplike change of the eigenfrequency and of the ef-
fective charge.

E. Excitation of an anharmonic vibrational mode

In this paragraph we continue to deal with two oscilla-
tory modes. We refer here to the case when we can still
describe the ground-state oscillator within the harmonic ap-
proximationssmall probing field limitd. In a large number of
systems, though, the potential minimum of the excited state
is shifted with respect to that of the ground state. The initial
position of the excited-state oscillator thus can be far from
equilibrium. This means that the mode after photoexcitation
can exhibit a highly anharmonic motion.

This case cannot be solved analytically and requires a
slightly deeper insight into the problem than that used in the
previous model cases. This treatment will also allow us to
see more clearly the connection between the phenomenologi-
cal models and molecular dynamics simulations. Our ap-
proach is based on a numerical solution of equations of mo-

FIG. 5. sColord Simulations of the amplitude of transient 2D conductivityDssII dsv ,vpd for harmonic oscillator dynamics. Weakly perturbed caseffollowing
Eq. s50dg, plots sad, sbd, scd, andsdd; strongly perturbed cases49d, plots sed and sfd. Eigenfrequencies of harmonic oscillators:vE/2p=1.5 THz andvG/2p
=0.6 THz sfaster motion in the excited stated for all figures exceptsbd where these values are interchangedsslower motion in the excited stated. Dampings
sgE=gG=gd and lifetimesstcd: sa,b,ed g=1 ps−1, tc=3 pssunderdamped, long-livedd; scd g=2 ps−1, tc=3 pssstrongly damped, long-livedd; sd,fd g=2 ps−1,
tc=1.5 pssstrongly damped, short-livedd. The arrows in figuresad show the directions of the cuts plotted in Fig. 6.

FIG. 6. 1D cuts of the amplitude of transient 2D conductivity
DssII dsv ,vpd for harmonic oscillator dynamics shown in Fig. 5sad. The fre-
quency on the abscissa has the meaning off for the vertical cut, offp for the
horizontal cut, and offsf − fgd2+ fp

2g1/2 for the diagonal cut.
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tion for a particle with coordinateX in the potentialVsX,ted.
In the excited state the equation for the trajectoryXE,0 with-
out the probing THz field reads

m
d2XE,0

dt2
+ mg

dXE,0

dt
+

]VsXE,0,ted
]XE,0

= 0. s57d

The presence of a probing field changes the trajectory to
XE=XE,0+xE. Note that in Sec. III C we did not need to in-
troduce the variablesXE andXE,0 and that we wrote directly
the equation of motion for the field-induced deviationxE. As
we show later, this is possible for harmonic motions, how-
ever, the present case requires a more general approach. The
equation of motion with the probing field can be then written
as

m
d2XE

dt2
+ mg

dXE

dt
+

]VsXE,ted
]XE

= qdstd. s58d

Subtracting Eq.s57d from Eq. s58d and neglecting higher-
order terms inxE one obtains

m
d2xE

dt2
+ mg

dxE

dt
+

]2VsXE,0,ted
]XE,0

2 xE = qdstd. s59d

The most important result is that this equation is linear inxE

and that it contains only the potential at the trajectory evalu-
ated without the probing field. Here we can see a link to
molecular dynamics simulations, namely, to the method of
instantaneous normal modessINM d. These simulations yield
trajectories XE,0 and the spectral distribution of normal
modes along these trajectories. This is encoded in the poten-
tial term in Eq.s59d. The INM approach represents a viable
alternative to direct molecular dynamics calculations of spec-
tra, as discussed in Refs. 18 and 29. Adopting the INM ap-

proach allows suppressing the inherent statistical noise of the
simulations. The price for involving an instantaneous har-
monic picture is the limited applicability to short-time dy-
namics only, particularly for strongly anharmonic systems.
The experiment gives access toxE controlled by the potential
term. The response of the system is calculated by solving
Eqs.s57d and s59d for a particular potential.

The ground state is treated analogously. However, for a
harmonic potential, Eq.s59d is independent ofXE,0: this di-
rectly leads to the treatment of the ground state developed in
Sec. III C.

Examples of the anharmonic behavior obtained by the
above numerical calculation are shown in Fig. 7. The exci-
tation pathways1d corresponds to the harmonic approxima-
tion: the corresponding plot of the transient conductivity is
equivalent to that shown in Fig. 5sad. The increasing anhar-
monicity of the motion fexcitation pathwayss2–5dg then
leads to the disappearance of conductivity maxima atvp=0
and to the enhancement and broadening of the maxima at
vp,vÞ0. A strong presence of such maxima is the finger-
print of the anharmonicity of the probed dynamics in the
excited state.

IV. CONCLUSION

We have described the methodology of the optical
pump–THz probe experiments and the procedure of the data
treatment for an analytical extraction of the two-dimensional
transient conductivity, mapping out the ultrafast evolution of
far-infrared polar spectra. We have derived expressions for
the transient conductivity in model cases of free charges and
of bound ones in a harmonic and anharmonic potentials. The
shape of the amplitude spectra presents characteristic finger-

FIG. 7. sColord Simulations of the amplitude of transient 2D conductivityDssII dsv ,vpd for anharmonic oscillator dynamics. The ground state is a harmonic
potential withvG/2p=0.6 THz. The potential of the excited stateswe use Morse potential modeld sRefs. 30 and 31d is shown in the uppermost left plot along
with the excitation pathwayss1–5d that were used for the calculation of the conductivity in the plots numbered 1–5. The resonant frequency of the harmonic
part of Morse potential isvE/2p=1.5 THz. The lowest row shows 1D diagonal cutssas indicated by arrows in plots 1–5d of the transient conductivity
amplitude normalized to unity
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prints allowing a clear distinction between localized and de-
localized state dynamics. The possibility of spectra fitting by
a complex 2D function in principle enables a fine adjustment
of model parameters and an independent check of the cor-
rectness of the experimental results.

The approach developed in this paper allowed us to dis-
cuss the relevance of the dynamical information that can be
extracted from one-dimensional time delay scans. In particu-
lar, we have shown that, in such experiments, the data ob-
tained with short pump-probe delayssshorter than THz pulse
lengthd can lead to inherent artifacts depending on the par-
ticular THz field profile.
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