B. Balcar and T. Pazák ${ }^{1}$

Abstract

Let \mathbb{B}, \mathbb{C} be Boolean algebras and $e: \mathbb{B} \rightarrow \mathbb{C}$ an embedding. We examine hierarchy of ideals on \mathbb{C} for which $\bar{e}: \mathbb{B} \rightarrow \mathbb{C} / \mathcal{I}$ is a regular (i.e. complete) embedding and as an application we deal with interrelationship among $\mathcal{P}(\omega) /$ fin in ZFC groundmodel and in its extension. If M is an extension of V adding new subset of ω, then in M there is almost disjoint refinement of the family $\left([\omega]^{\omega}\right)^{V}$. Moreover, there is exactly one ideal \mathcal{I} on ω in M such that $(\mathcal{P}(\omega) / f i n)^{V}$ is dense subalgebra of $(\mathcal{P}(\omega) / \mathcal{I})^{M}$ if and only if M does not add independent (splitting) real.

We show that for a generic extension $V[G]$, the canonical embedding

$$
\mathcal{P}^{V}(\omega) / \text { fin } \hookrightarrow \mathcal{P}(\omega) /(U(O s)(\mathbb{B}))^{G}
$$

is a regular one, where $U(O s)(\mathbb{B})$ is the Urysohn closure of zero - convergent structure on \mathbb{B}.

1 Introduction

Let V be a model of ZFC and M its extension. Then $(\mathcal{P}(\omega) / \text { fin })^{V}$ is a subalgebra of the Boolean algebra $\mathcal{P}(\omega) /$ fin in M.

It is natural to ask whether $(\mathcal{P}(\omega) / \text { fin })^{V}$ is a regular subalgebra of $\mathcal{P}(\omega) /$ fin.
This question makes sense only in cases when there are new reals in the extension M, otherwise these algebras coincide. Hence in what follows we suppose that M is an arbitrary ZFC extension of ground model V adding new reals.
L. Soukup posed the following question:

Does the family $\left([\omega]^{\omega}\right)^{V}$ have an almost disjoint refinement in any generic extension, which adds a new real?

It was known that this holds true in different types of generic extension, e.g. adding one Cohen real [Hec78].

We shall consider a little more general situation, when we take into account arbitrary ZFC extension M of V. Clearly to have a chance for the refinement, the extension M has to add a new real, i.e.

$$
(\mathcal{P}(\omega))^{V} \subsetneq(\mathcal{P}(\omega))^{M},
$$

in this generalised setting we show in paragraph 3 the following theorem This result was achieved independently by J. Brendle, his proof is rather different and can be found in L. Soukup's paper [Sou07].

Theorem 1. In any $Z F C$ extension M of V adding a new real there is an almost disjoint refinement of $\left([\omega]^{\omega}\right)^{V}$.

In the following $A, B \subset \omega ; A \subset^{*} B$ will denote the fact that $A \backslash B$ is finite. Note that, in fact Almost Disjoint (AD) family is a pairwise disjoint family in the Boolean algebra $\mathcal{P}(\omega) /$ fin and a Maximal Almost Disjoint (MAD) family is a partition of unity in the same algebra.

Definition. Family $\mathcal{S} \subset[\omega]^{\omega}$ has an almost disjoint refinement (ADR) if there is an almost disjoint family $\left\{A_{X}: X \in \mathcal{S}\right\}$ such that $A_{X} \in[X]^{\omega}$ for every $X \in \mathcal{S}$.

[^0]Instead of this 'indexed' refinement we will benefit from [BPS80] and use any of these equivalents without further mentioning.

Proposition. For a family $\mathcal{S} \subset[\omega]^{\omega}$ the following are equivalent:
(i) The family S has $A D R$, i.e. there is an almost disjoint family $\left\{A_{X}: X \in \mathcal{S}\right\}$ such that $A_{X} \in[X]^{\omega}$ for every $X \in \mathcal{S}$.
(ii) There is an almost disjoint family \mathcal{A} such that for any $X \in \mathcal{S}$ there is $A \in \mathcal{A}$ such that $A \subset{ }^{*} X$.
(iii) There is an almost disjoint family \mathcal{A} such that for any $X \in \mathcal{S}$

$$
|\{A \in \mathcal{A}:|X \cap A|=\omega\}|=2^{\omega}
$$

Proof. (i) \rightarrow (ii) This implication is trivial since the almost disjoint family from (i) satisfies also (ii).
(ii) \rightarrow (iii) Let \mathcal{A} be an almost disjoint family as in (ii). In $[\omega]^{\omega}$ there is a maximal almost disjoint family $\left\langle B_{i}^{A}: i \in 2^{\omega}\right\rangle$ of a size 2^{ω} below any $A \in \mathcal{A}$. Hence $\left\langle B_{i}^{A}: i \in 2^{\omega}, \quad A \in \mathcal{A}\right\rangle$ satisfies (iiii).
(iii) \rightarrow (i) First enumerate $\mathcal{S}=\left\{X_{\alpha}: \alpha \in 2^{\omega}\right\}$ and for any $X \in \mathcal{S}$ denote $\mathcal{A}_{X}=\{A \in \mathcal{A}$: $|X \cap A|=\omega\},\left|\mathcal{A}_{X}\right|=2^{\omega}$. Now proceed by induction and for each $X_{\alpha} \in \mathcal{S}$ choose an $A_{\alpha} \in$ $\mathcal{A}_{X_{\alpha}}-\bigcup\left\{A_{\beta}: \beta<\alpha\right\}$. Clearly the family $\left\{A_{\alpha} \cap X_{\alpha}: \alpha \in 2^{\omega}\right\}$ gives an almost disjoint refinement for \mathcal{S}.

Our approach to Theorem 1 strongly benefit from results of [BPS80] or see [BS89]; let us quickly summarize results we use. For other notions concerning Boolean algebras see [Kop89].

Note that an algebra \mathbb{B} is $(\kappa, \cdot, 2)$ distributive if and only if any κ-many partitions of unity have a common refinement, or equivalently if and only if the intersection $\cap_{\alpha<\kappa} D_{\alpha}$ of κ-many open dense sets is dense.

Cardinal invariant \mathfrak{h} (non-distributivity number) is characterised through distributivity properties of the algebra $\mathcal{P}(\omega) /$ fin as follows:

Definition.

$$
\mathfrak{h}=\min \{\kappa: \mathcal{P}(\omega) / \text { fin is not }(\kappa, \cdot, 2) \text { distributive }\},
$$

In the proof of Theorem 1 we use the techniques of base tree. Base tree is a special kind of a dense subset of $\mathcal{P}(\omega) /$ fin; see e.g. [BS89].

Theorem. [BPS80]) There is a base tree (T, \supset^{*}) for $[\omega]^{\omega}$, i.e.
(i) $\left(T, \supseteq^{*}\right) \subset[\omega]^{\omega}$ is a tree,
(ii) if $B \in T$ then the family of immediate successors of B in T is a maximal almost disjoint family below B of a full (2^{ω}) size,
(iii) for each $A \in[\omega]^{\omega}$ there is $B \in T$ such that $B \subset A$,
(iv) the height of T is \mathfrak{h}.

It is well known that if new real is added, then $(\mathcal{P}(\omega) / f \text { fin })^{V}$ is not a regular subalgebra of $(\mathcal{P}(\omega) / \text { fin })^{M}$. There is a natural question wheather there is an ideal \mathcal{I} such that the canonical embedding

$$
(\mathcal{P}(\omega) / \text { fin })^{V} \hookrightarrow\left(\mathcal{P}(\omega) / \text { fin }^{M} / \mathcal{I}\right.
$$

becomes regular. We show in paragraph 2 more general theorem
Theorem 2. Let \mathbb{B} be a subalgebra of a Boolean algebra \mathbb{C}. There is an ideal \mathcal{I} on \mathbb{C} such that the canonical homomorphism

$$
\begin{aligned}
i: \mathbb{B} & \longrightarrow \mathbb{C} / \mathcal{I} \\
b & \longmapsto[b]_{\mathcal{I}},
\end{aligned}
$$

is a regular embedding of \mathbb{B} into \mathbb{C} / \mathcal{I}.
Finally in paragraphs 4 and 5 we compute the minimal regularization ideal for embeddings $(\mathcal{P}(\omega) / \text { fin })^{V} \hookrightarrow(\mathcal{P}(\omega) / \text { fin })^{M} / \mathcal{I}$ and $\mathbb{B} \hookrightarrow \mathbb{B}^{\omega} /$ Fin. Latter and former regularisation ideals are closely connected with order sequential topology on Boolean algebras, which we briefly introduce here in the Topological intermezzo.

2 Regularisation ideals

We start with Theorem 2. First, let us recall the definition of regular subalgebra \mathbb{B} of a Boolean algebra \mathbb{C} and its equivalents.

A subalgebra \mathbb{B} of a Boolean algebra \mathbb{C} is called regular if any $X \subset \mathbb{B}$ which has a supremum $\bigvee^{\mathbb{B}} X$ in \mathbb{B}, has the same element as a supremum of X in \mathbb{C}, i.e. $\bigvee^{\mathbb{B}} X=\bigvee^{\mathbb{C}} X$. An embedding $i: \mathbb{B} \rightarrow \mathbb{C}$ is regular if the image $i[\mathbb{B}]$ is the regular subalgebra of algebra \mathbb{C}.
Proposition 3. For a subalgebra $\mathbb{B} \subset \mathbb{C}$ the following are equivalent
(i) \mathbb{B} is a regular subalgebra of \mathbb{C},
(ii) every maximal pairwise disjoint family in \mathbb{B} is maximal in \mathbb{C},
(iii) for each $c \in \mathbb{C}^{+}$there is a 'pseudoprojection' $b_{c} \in \mathbb{B}^{+}$; i.e. for every $a \leq b_{c}$, $a \in \mathbb{B}^{+}$

$$
a \wedge c \neq \mathbf{0}
$$

(iv) for every generic filter F on $\mathbb{C}, F \cap \mathbb{B}$ is a generic filter on \mathbb{B}.

Proof. The proofs of implications (i) $\leftrightarrow(i i) \leftrightarrow(i i i) \leftrightarrow(v)$ and (vi) \rightarrow (ii) are straight forward.
To show that $(i i) \rightarrow(v i)$ let $c \in \mathbb{C}^{+}$. Take arbitrary maximal pairwise disjoint family $B_{c} \subset\{b \in$ $\mathbb{B}: b \wedge c=\mathbf{0}\}$. From (ii) it follows that B_{c} is not maximal in \mathbb{B}, hence there is some b_{c} disjoint with B_{c} and we are done.

Let \mathbb{B}, \mathbb{C} be Boolean algebras and $e: \mathbb{B} \rightarrow \mathbb{C}$ an embedding. We are looking for ideals on \mathbb{C} for which the factor embedding \bar{i} is regular.
Theorem 2. Let \mathbb{B} be a subalgebra of a Boolean algebra \mathbb{C}. There is a minimal ideal $\mathcal{I}_{\text {min }}$ on \mathbb{C} such that the canonical homomorphism

$$
\begin{aligned}
i: \mathbb{B} & \longrightarrow \mathbb{C} / \mathcal{I}_{\text {min }} \\
b & \longmapsto[b]_{\mathcal{I}_{\text {min }}}
\end{aligned}
$$

is a regular embedding of \mathbb{B} into $\mathbb{C} / \mathcal{I}_{\text {min }}$.

Proof. Let

$\mathcal{I}=\{u \in \mathbb{C}: \exists$ max. pairwise disjoint family $X \subset \mathbb{B}$ such that $u \wedge x=\mathbf{0}$ for any $x \in X\}$.
We check that \mathcal{I} is an ideal. The set \mathcal{I} is downward closed. Let $u, v \in \mathcal{I}$. Take maximal pairwise disjoint families X and Y that guarantee that u respectively v belongs to \mathcal{I}. Then $z=\{x \wedge y \neq \mathbf{0}: x \in X \& y \in Y\}$ is a maximal pairwise disjoint family of elements of \mathbb{B} and $u \vee v$ is disjoint from every element of z. Therefore $u \vee v \in \mathcal{I}$, hence \mathcal{I} is an ideal.

No $b \in \mathbb{B}^{+}$belongs to \mathcal{I}, so the mapping $i: \mathbb{B} \rightarrow \mathbb{C} / \mathcal{I}$ is an embedding. We show that i is a regular embedding. Let $\left\{c_{i}: i \in I\right\}$ be a maximal pairwise disjoint family in $i[\mathbb{B}]$, the family $\left\{\left[c_{i}\right]: i \in I\right\}$ is a maximal pairwise disjoint family in \mathbb{C} / \mathcal{I}. Assume that there is $[u]$, disjoint with every $\left[c_{i}\right]$ in \mathbb{C} / \mathcal{I}, i.e. $c_{i} \wedge u \in \mathcal{I}$, hence there is a maximal pairwise disjoint set $X_{i} \subset \mathbb{B} \upharpoonright c_{i}$ such that u is disjoint from every element of X_{i}. The set $\bigcup\left\{X_{i}: i \in I\right\}$ is maximal in \mathbb{B} and so $u \in \mathcal{I}$, i.e. $[u]=\mathbf{0} \in \mathbb{C} / \mathcal{I}$.

Such obtained ideal I is minimal.
Proposition 4. Let \mathbb{B} be a subalgebra of a Boolean algebra \mathbb{C} and let $\mathcal{J} \subset \mathbb{C}$ be a maximal ideal such that $\mathbb{B} \cap \mathcal{J}=\{\mathbf{0}\}$. Then canonical embedding

$$
i: \mathbb{B} \longrightarrow \mathbb{C} / \mathcal{J}
$$

is a regular one. In this case $i[\mathbb{B}]$ is even dense in \mathbb{C} / \mathcal{J}.
Proof. Suppose that $i[\mathbb{B}]$ is not dense in \mathbb{C} / \mathcal{J}. Then there is a $c \in \mathbb{C}, c \notin \mathcal{J}$ such that for any $b \in \mathbb{B}^{+} b \not \leq \mathcal{J} c$. Since \mathcal{J} is maximal and $c \notin \mathcal{J}$ there is a $j \in \mathcal{J}$ such that there is a $b \in \mathbb{B}^{+}$so that $b \leq c \vee j$ i.e. $b \leq_{\mathcal{J}} c$; contradiction.
Corollary 5. Let \mathbb{B} be a subalgebra of a Boolean algebra \mathbb{C} and let $\mathcal{J} \subset \mathbb{C}$ be a maximal regularising ideal. Then
(i) if \mathbb{B} is complete, then $\mathbb{B} \simeq \mathbb{C} / \mathcal{J}$;
(ii) if \mathbb{C} is complete, then $\operatorname{RO}(\mathbb{B}) \simeq \mathbb{C} / \mathcal{J}$.

Proposition 6. Let \mathbb{B} be a subalgebra of a Boolean algebra \mathbb{C} and let

$$
\mathcal{K}=\left\{\mathcal{J}: \mathcal{J} \text { is an ideal on } \mathbb{C} \text { maximal with respect to } \mathcal{J} \cap \mathbb{B}^{+}=\emptyset\right\}
$$

then
(i) $\cap \mathcal{K}=\mathcal{I}_{\text {min }}$ and
(ii) $\cup \mathcal{K}=\left\{c \in \mathbb{C}: \neg\left(\exists b \in \mathbb{B}^{+}\right) b \leq c\right\}$.

Proof. Suppose that $\mathcal{I} \backslash \mathcal{J} \neq \emptyset$ and $a \in \mathcal{I} \backslash \mathcal{J}$. Since \mathcal{J} is maximal then there is a $j \in \mathcal{J}$ for which there is a $b \in \mathbb{B}^{+}$such that $b \leq j \vee a$. Since $a \in \mathcal{I}$, there is a maximal antichain M in \mathbb{B} such that $m \wedge a=\mathbf{0}$, for each $m \in M$. Every $b \in \mathbb{B}$ has to intersect some $m \in M$, so $\mathbf{0} \neq m \wedge b \leq j \vee a$, but the m and a are disjoint hence $m \wedge b \leq j$, which is contradiction with the assumption that \mathcal{J} does not intersect \mathbb{B}.

Clearly, $\bigcap \mathcal{K} \supset \mathcal{I}$. Take arbitrary $c \in \mathbb{C}^{+} \backslash \mathcal{I}$, the set $\{b \in \mathbb{B}: b \leq-c\}$ is not dense in \mathbb{B} as $c \notin \mathcal{I}$. It means that there is a $b_{0} \in \mathbb{B}$ such that

$$
\forall b \in \mathbb{B}^{+} \quad(b \leq-c) \rightarrow b-b_{0} \neq \mathbf{0}
$$

That is, $b_{0} \wedge-c \notin \mathbb{B}$ and one can take a maximal ideal \mathcal{J} containing this element, which shows that $c \notin \bigcap \mathcal{K}$; and we are done.

3 Almost disjoint refinement of ground model reals

Let M be a ZFC extension of V. We ask about the existence of almost disjoint refinement of $(\mathcal{P}(\omega))^{V}$ in M Clearly to have a chance for the refinement, the extension M has to add a new real, i.e.

$$
(\mathcal{P}(\omega))^{V} \subsetneq(\mathcal{P}(\omega))^{M}
$$

Hence, from now on we will assume, that the extension M adds new reals. In fact we ask about the existence (of course in M) of a mapping

$$
\varphi:\left([\omega]^{\omega}\right)^{V} \rightarrow[\omega]^{\omega}
$$

such that for each $x \neq y, x, y \in\left([\omega]^{\omega}\right)^{V}$
(i) $\varphi(x) \subset x$ and
(ii) $\varphi(x) \cap \varphi(y)={ }^{*} \emptyset$.

First we show, that the embedding $(\mathcal{P}(\omega))^{V} \subsetneq(\mathcal{P}(\omega))^{M}$ is far from regular.
Lemma 7. There is $\sigma \subset \omega, \sigma \in M$ such that for each $X \in[\omega]^{\omega} \cap V$ there is a $Y \in[X]^{\omega} \cap V$ such that $Y \cap \sigma=\emptyset$.

Proof. Instead of ω one can consider a countable set

$$
A=\bigcup\left\{{ }^{n}\{0,1\}: n \in \omega\right\} .
$$

Let χ be the characteristic function of a new real. Define $\sigma=\{\chi \upharpoonright n: n \in \omega\}$, note that σ is set of compatible functions. Then σ has desired properties:

Let $X \subset A, X \in V$ be infinite. From the Ramsey theorem it follows that X contains either infinite subset Y of compatible functions or it contains infinite subset Y of pairwise disjoint functions. In the latter case clearly $|Y \cap \sigma| \leq 1$. Now suppose that Y is set of compatible functions and $Y \cap \sigma$ is infinite. Then $\bigcup Y=\chi$, but $\bigcup Y \in V$ and $\chi \notin V$, a contradiction. Hence $Y \cap \sigma={ }^{*} \emptyset$ and we are done.

This yields a list of straight forward corollaries.
Corollary 8. (i) Let V be a model of ZFC and M its extension that adds new reals. Then $(\mathcal{P}(\omega) / \text { fin })^{V}$ is not a regular subalgebra of the Boolean algebra $\mathcal{P}(\omega) /$ fin in $M ; \sigma$ from the Lemma 7 has no pseudoprojection.
(ii) In any ZFC extension M of V adding a new real there is $\sigma \subset \omega, \sigma \in M$ such that σ does not contain infinite ground model set.
(iii) In any ZFC extension M of V adding a new real $(\mathcal{P}(\omega) / f i n)^{V}$ is not a regular subalgebra of $\mathcal{P}(\omega) /$ fin, i.e. there is a MAD family in $(\mathcal{P}(\omega) / f i n)^{V}$ which is no longer MAD in M; cf. Lemma 3.
(iv) If there is a $H \subset[\omega]^{\omega}$ dense in $\left(\mathcal{P}(\omega) /\right.$ fin M such that $H \subset V$. Then $\mathcal{P}(\omega)=\mathcal{P}^{V}(\omega)$.

The following theorem gives an affirmative answer to L. Soukup's question.
Theorem 1. In any ZFC extension M of V adding a new real there is an almost disjoint refinement of $\left([\omega]^{\omega}\right)^{V}$.

Proof. From Corollary 8 we already know, that the Boolean algebra $\left(\mathcal{P}(\omega) / f_{\text {fin }}\right)^{V}$ is not regular in $\mathcal{P}(\omega) /$ fin. Hence by the definition, there is some MAD family in $(\mathcal{P}(\omega) / \text { fin })^{V}$, which is no longer MAD in the extension.

Let $\left(T, \supseteq^{*}\right) \subset[\omega]^{\omega}$ be a base tree for $[\omega]^{\omega}$, in groundmodel V; and let $\mathcal{A} \in V$ be a destructible MAD family with its 'destructor' $\sigma \in[\omega]^{\omega}, \sigma \in M$. We denote T_{α} the α-level of the tree T.

By recursion we construct a base tree $T^{*} \in V$ for $[\omega]^{\omega} \cap V$. We start with the root $t \in T_{0}$ of the tree T and leave it untouched. The set t is an infinite subset of ω, take arbitrary bijection $b: t \rightarrow \omega$ in V. So $b^{-1}[\mathcal{A}]$ is a destructible MAD family on t with destructor $b^{-1}(\sigma) \in M$. There is a common refinement of the MAD families $b^{-1}[\mathcal{A}]$ and T_{1}. This common refinement will be the next level T_{1}^{*} of the constructed tree T^{*}.

Let T_{α}^{*} level be constructed. For every $t \in T_{\alpha}^{*}$ pick a bijection $b_{t}: t \rightarrow \omega$. The $T_{\alpha+1}^{*}$ level will be the common refinement of $T_{\alpha+1}$ and the maximal almost disjoint family

$$
\left\{b_{t}^{-1}[A]: t \in T_{\alpha}^{*}, A \in \mathcal{A}\right\} .
$$

On the limit stages $\gamma<\mathfrak{h}$. Take T_{γ}^{*} common refinement of the T_{α}^{*} for each $\alpha \leq \gamma$. Such refinement exists by the definition of \mathfrak{h}.

The tree $T^{*} \in V$ is clearly a base tree for $\left([\omega]^{\omega}\right)^{V}$. Moreover, for each $t \in T^{*}$ we found a subset $b_{t}^{-1}(\sigma) \in M$. Note that each $b_{t}^{-1}(\sigma)$ is almost disjoint with every $s \in T_{\beta}^{*}$ for each $\beta>\alpha$. Hence, for each $t \neq s, b_{s}^{-1}(\sigma)$ is almost disjoint from $b_{t}^{-1}(\sigma)$ and

$$
\left\{b_{t}^{-1}(\sigma): t \in T^{*}\right\}
$$

is an almost disjoint refinement of $\left([\omega]^{\omega}\right)^{V}$, which completes the proof.

4 Regularisation ideal for $\mathcal{P}(\omega) /$ fin

From the previous paragraphs we know, that for arbitrary ZFC extension M, there is a minimal ideal such that the embedding $(\mathcal{P}(\omega) / f i n) \hookrightarrow(\mathcal{P}(\omega) / f i n)^{M} / \mathcal{I}$ is regular. We are able to describe a regularisation ideal only in the case of generic extension rather then an arbitrary one. i.e. the minimal ideal $\mathcal{I}_{\text {min }}$ such that the embedding

$$
(\mathcal{P}(\omega) / f i n)^{V} \hookrightarrow(\mathcal{P}(\omega) / f i n)^{V(\mathbb{B})} / \mathcal{I}_{\text {min }}
$$

is regular. To describe $I_{\min }$ we introduce Order sequential topology on Boolean algebras.

Topological Intermezzo

In order to equip a Boolean algebra with a topological structure that agrees with the Boolean operations we start with a convergence structure. It is enough to determine which sequences converge to $\mathbf{0}$ because using the symmetrical difference operation we can move convergent sequences to an arbitrary element $a \in \mathbb{B}$. It is natural to use the usual notion of a limit; i.e. $\lim a_{n}=\mathbf{0}$ if and only if

$$
\lim \sup a_{n}=\bigwedge_{n} \bigvee_{k \geq n} a_{k}=\mathbf{0}=\bigvee_{n} \bigwedge_{k \geq n} a_{k}=\lim \inf a_{n}
$$

It is clear that right-hand side of the previous formula is redundant and one can define the order convergence structure on Boolean algebra \mathbb{B} as the following ideal

$$
O s(\mathbb{B})=\left\{f \in \mathbb{B}^{\omega}: \lim \sup f=\mathbf{0}\right\} .
$$

Note that it follows directly from the definition that $f \in O s(\mathbb{B})$ if and only if there is $g \in \mathbb{B}^{\omega}$ so that $g \searrow \mathbf{0}$ and $f \leq g$.

The order convergence structure $\operatorname{Os}(\mathbb{B})$ determines the Order sequential topology τ_{s} on the Boolean algebra: The set $A \subset \mathbb{B}$ is τ_{s}-closed if and only if

$$
\forall f \in A^{\omega} f \text { convergent sequence, } \lim f \in A
$$

$\left(\mathbb{B}, \tau_{s}\right)$ is generally a T_{1} topological space. The τ_{s} topology allows us to define an ideal; Urysohn closure of $\operatorname{Os}(\mathbb{B})$

$$
U(O s(\mathbb{B}))=\left\{f \in \mathbb{B}^{\omega}: f \xrightarrow{\tau_{s}} \mathbf{0}\right\} .
$$

There is an obvious relation between algebraic and topological convergence.
Proposition 9. A sequence $\left\langle x_{n}\right\rangle$ converges to x in the topology $\tau_{s}, x_{n} \xrightarrow{\tau_{s}} \mathbf{0}$, if and only if any subsequence of $\left\langle x_{n}\right\rangle$ has a subsequence that converges to $\mathbf{0}$ algebraically.

The definition of the topological structure sketched here works well only in case the Boolean algebra in question is complete (or at least σ-complete). In general, the assumption on σ completeness of \mathbb{B} is not necessary. We give a general definition here; for more details see [Vla69], [BFH99], [BJP05] or [Paz07].

Definition 10. Let \mathbb{B} be an arbitrary Boolean algebra,

$$
O s(\mathbb{B})=\left\{f \in \mathbb{B}^{\omega}: \exists \mathcal{A} \subset \mathbb{B} \text { a maximal countable antichain such that } f \perp \mathcal{A}\right\}
$$

where $f \perp \mathcal{A}$ means that the set $\{n \in \omega: f(n) \wedge a \neq 0\}$ is finite for every $a \in \mathcal{A}$.
The structure with piece-wise Boolean operation is again Boolean algebra; one also can look at \mathbb{B}^{ω} as a set of \mathbb{B}-names for subsets of ω in the forcing extension by \mathbb{B}. From this point of view, the ideal $\operatorname{Os}(\mathbb{B})$ consist of names for finite subsets of ω.

Proposition 11. Let \mathbb{B} be a complete Boolean algebra. Then for any generic G on \mathbb{B}

$$
O s^{G}(\mathbb{B})=\left\{f_{G}: f \in O s(\mathbb{B})\right\}=\text { fin }=[\omega]^{<\omega},
$$

where $f_{G}=\{n \in \omega: f(n) \in G\}$.
Proof. Let $f \in O s$ and suppose on contrary that f_{G} is an infinite set for some generic G. Since $f \in O s$, there exists $g \searrow \mathbf{0}$ such that $f \leq g$. Clearly if $f(n) \in G$ then $g(n) \in G$. Since g is monotone and f_{G} is infinite, we have $g(n) \in G$ for every $n \in \omega$. This is a contradiction since $\mathbf{0}=\bigwedge\{g(n): n \in \omega\} \in G$.

On the other hand, suppose that $f \notin O s$ and set $d=\overline{\lim } f>\mathbf{0}$. Choose a generic filter G such that $d \in G$. Clearly, $\forall k \in \omega d \leq \bigvee\{f(n): n>k\}$, which means that $\forall k \in \omega \exists m>k f(m) \in G$; hence the set f_{G} is infinite.

Computing a regularization ideal for $\mathcal{P}(\omega) /$ fin

Now we are ready to show that the minimal regularisation ideal $\mathcal{I}_{\text {min }}$ for the canonical embedding of Boolean algebra $(\mathcal{P}(\omega) / f i n)^{V}$ into $(\mathcal{P}(\omega) / f i n)^{V(\mathbb{B})}$ is given by the evaluation of names from $U(O s(\mathbb{B}))$.
Theorem 12. Let \mathbb{B} be a complete Boolean algebra and let G be a generic in \mathbb{B} over V. Then

$$
\mathcal{I}_{\min }=U(O s)^{G}
$$

Proof. Let $f \in V$ be such that $f_{G}=\rho \subset \omega$ destroys a MAD $\mathcal{A} \in V$. Find a name $g \in U(O s)$ for the set ρ. Suppose $f \notin U(O s)$; i.e. there is a $X \subset \omega$ infinite such that $f \upharpoonright Y \notin O s$ for each $Y \in[X]^{\omega}$. Let

$$
\mathfrak{X}=\left\{X \in[\omega]^{\omega}: \forall Y \in[X]^{\omega} f \upharpoonright Y \notin O s\right\} .
$$

For $X \in \mathfrak{X}$ there is an $A \in \mathcal{A}$ such that $X \cap A$ is infinite; denote this infinite intersection $Y_{X}=X \cap A$. Since $X \in \mathfrak{X}, f \upharpoonright Y_{X} \notin O s$; i.e. $\varlimsup_{\lim _{Y}} f \notin G$. Otherwise if

$$
\bigwedge_{k \in \omega} \bigvee_{k \leq n \in Y_{X}} f(n) \in G \text {, }
$$

then $\bigvee_{k \leq n \in Y_{X}} f(n) \in G$ for each $k \in \omega$ and the set $f_{G} \cap(A \cap X)$ is infinite, which contradicts the fact that f_{G} destroys \mathcal{A}. Now, put

$$
c=\bigvee_{X \in \mathfrak{X}} \varlimsup_{n \in Y_{X}} f(n) \notin G,
$$

and $g(n)=f(n)-c$; clearly $g_{G}=f_{G}=\rho$ and $g \in U(O s)$.
Let $f \in U(O s) \backslash O s$ i.e. for every infinite X there is a $Y_{X} \in[X]^{\omega}$ such that $f \upharpoonright Y_{X} \in O s$. The family

$$
\mathcal{F}=\left\{Y_{X}: X \in[\omega]^{\omega}\right\}
$$

is then dense in $\mathcal{P}(\omega) /$ fin. Now, pick an arbitrary MAD family $\mathcal{A} \subset \mathcal{F}$. Clearly, f_{G} is an infinite set $(f \notin O s)$ and destroys the MAD \mathcal{A}.

This result together with Corollary 8 yields the following equivalence. This equivalence was achieved independently by M. S. Kurilić and A. Pavlović.

Corollary. [KP07] For a complete Boolean algebra \mathbb{B} the following are equivalent
(i) $U(O s(\mathbb{B}))=O s(\mathbb{B})$,
(ii) there are no $V^{\mathbb{B}}$-destructible MAD in V,
(iii) the algebra \mathbb{B} as a forcing notion does not add new reals.

In a special case when there are no independent reals in the extension M there is even a unique largest regularisation ideal (cf. Proposition 4) with simple and straightforward description. We say that $A \subset \mathcal{P}^{M}(\omega)$ is independent real if for every $X \in[\omega]^{\omega} \cap V$ are both sets $A \cap X$ and $X \backslash A$ infinite.

Definition 13. Let H be the family of subsets of ω that do not contain infinite sets from the ground model

$$
H=\left\{\sigma \in M: \sigma \subset \omega \quad \& \quad \neg \exists a \in\left([\omega]^{\omega}\right)^{V} a \subset \sigma\right\}
$$

Theorem 14. The following holds in M.
(i) H is an open dense subset of $\left([\omega]^{\omega}, \subseteq\right)$.
(ii) H is an ideal if and only if M does not add independent reals.

Proof. First note that if M adds a new real $\chi \subset \omega, \chi \notin V$, then H contains infinite set. It is easy to see, that σ given by lemma 7 is an infinite set belonging to H.

To prove (i), let $A \in\left([\omega]^{\omega}\right)^{V}$. Then there is a bijection f in V between ω and A and by the previous proposition 3 there is a subset $\sigma \subset \omega$ in M which does not contain an infinite ground model set, so $f[\sigma] \in H$ is subset of A. Generally, if $A \in[\omega]^{\omega}$ then $A \in H$ or there is an $A^{\prime} \in\left([\omega]^{\omega}\right)^{V}$, $A^{\prime} \subset A$ and we can use the same reasoning.
(ii) Suppose that M adds an independent real σ. Clearly $\sigma \in H$ and $-\sigma \in H$, hence H is not an ideal.

On the other hand if H is not an ideal, then there are $a, b \in H$ so that there is an $X \in\left([\omega]^{\omega}\right)^{V}$ and $X \subset a \cup b$. Again, we can identify X and ω in ground model and then $X \cap a$ is an independent real in M.

It is clear, that whenever H is an ideal, then it is the unique regularisation ideal; cf. Proposition 6.

Proposition 15. Let M be a ZFC extension of V adding new reals, then M does not add independent reals if and only if there is unique ideal H such that the canonical embedding $\mathcal{P}(\omega) /$ fin \hookrightarrow $\mathcal{P}(\omega) / H$ is regular.

Proof. Direct consequence of Propositions 4 and 6.

5 Regularisation ideal for $\mathbb{B}^{\omega} /$ Fin

In this final part we assume that Boolean algebras are at least σ-complete. This assumption is necessary but since our motivation comes from forcing it is not too restrictive.

The canonical embedding

$$
\begin{aligned}
e: \mathbb{B} & \longrightarrow \mathbb{B}^{\omega} \\
b & \longmapsto\langle b: n \in \omega\rangle
\end{aligned}
$$

is obviously regular. The more interesting situation is the derived embedding $\hat{e}: \mathbb{B} \hookrightarrow \mathbb{B} / F i n$, where Fin $=\left\{f \in \mathbb{B}^{\omega}:|\{n: f(n) \neq 0\}|<\omega\right\}$. This embedding is not regular since image of maximal countable antichain $\left\langle a_{n}: n \in \omega\right\rangle \subset \mathbb{B}$ is not maximal in $\mathbb{B}^{\omega} /$ Fin. It is enough to put $f=\left\langle a_{n}: n \in \omega\right\rangle \in\left(\mathbb{B}^{\omega} \backslash\right.$ Fin) and we get $f \wedge e\left(a_{n}\right) \in$ Fin for every $n \in \omega$. Note that by our assumption that \mathbb{B} is σ-complete, there are countable maximal antichains in \mathbb{B}.

It is natural to ask what is the minimal regularisation ideal $\mathcal{I}_{\text {min }}$ for this situation and how algebra $\mathbb{B}^{\omega} / \mathcal{I}_{\text {min }}$ behaves from the forcing point of view.

Proposition 16. The canonical embedding of σ-complete Boolean algebra \mathbb{B} into $\mathbb{B}^{\omega} / O s(\mathbb{B})$ is regular. Moreover, whenever the canonical embedding $\mathbb{B} \hookrightarrow \mathbb{B}^{\omega} / \mathcal{I}$ is regular for some ideal $\mathcal{I} \supset F i n$, then $O s(\mathbb{B}) \subset \mathcal{I}$.

Proof. Let $f \in \mathbb{B}^{\omega}-O s$ then $d=\overline{\lim } f>\mathbf{0}$ is the required pseudoprojection witnessing the fact that the embedding $\mathbb{B} \hookrightarrow \mathbb{B}^{\omega} / O s$ is regular.

Computing $I_{\text {min }}$ from the Theorem 2 we obtain that

$$
I_{\text {min }}=\left\{f \in \mathbb{B}^{\omega}: \exists \text { max. antichain } \mathcal{A} \text { in } \mathbb{B} \text { such that } f \perp \mathcal{A}\right\} .
$$

It is clear from the definition that $O s \subset I_{\text {min }}$, which completes the proof.
We conclude with the forcing description of algebra $\mathbb{B}^{\omega} / \mathcal{I}$, where \mathcal{I} is regularisation ideal.

Theorem 17. Let \mathbb{B} be a complete Boolean algebra and Fin $\subset \mathcal{I} \subset \mathbb{B}^{\omega}$ an ideal for which the canonical embedding $\mathbb{B} \hookrightarrow \mathbb{B}^{\omega} / \mathcal{I}$ is regular, then $\left.\mathbb{B}^{\omega} / \mathcal{I}\right)$ is isomorphic with an iteration of \mathbb{B} and $P(\omega) / \mathcal{I}^{G}$, where G is the generic filter on \mathbb{B}; i.e.

$$
\mathbb{B}^{\omega} / \mathcal{I} \cong \mathbb{B} \star\left(\mathcal{P}(\omega) / \mathcal{I}^{G}\right)
$$

Proof. We define

$$
\begin{aligned}
\varphi: \mathbb{B} \star \mathcal{P}(\omega) / \mathcal{I}^{G} & \longrightarrow \mathbb{B}^{\omega} / \mathcal{I} \\
(b, f) & \longmapsto e(b) \wedge f
\end{aligned}
$$

where f is a \mathbb{B}-name for a subset of ω. Let us remind the ordering i.e.

$$
(b, f) \leq(c, g) \text { if and only if } b \leq c \& b \Vdash "[f]_{\mathcal{I}} \leq[g]_{\mathcal{I}} ",
$$

where $b \Vdash "[f]_{\mathcal{I}} \leq[g]_{\mathcal{I}} "$ means that $e(b) \wedge f \leq_{\mathcal{I}} e(b) \wedge g$.
It is a routine check to verify that φ preserves ordering, disjoint relation and that $\varphi\left[\mathbb{B} \star \mathcal{P}(\omega) / \mathcal{I}^{G}\right]$ is dense in $\mathbb{B}^{\omega} / \mathcal{I}$.

The following result was originally proved by A. Kamburelis.
Corollary 18. If \mathbb{B} is a complete Boolean algebra, then

$$
\mathbb{B}^{\omega} / O s(\mathbb{B}) \cong \mathbb{B} \star\left(\mathcal{P}(\omega)^{V(\mathbb{B})} / \text { Fin }\right) .
$$

References

[BFH99] B. Balcar, F. Franek, and J. Hruška. Exhaustive zero-convergence structures on Boolean algebras. Acta Univ. Carolin. Math. Phys., 40(2):27-41, 1999.
[BJP05] B. Balcar, T. Jech, and T. Pazák. Complete CCC Boolean algebras, the order sequential topology, and a problem of von Neumann. Bull. London Math. Soc., 37(6):885-898, 2005.
[BPS80] B. Balcar, J. Pelant, and P. Simon. The space of ultrafilters on n covered by nowhere dense sets. Fund. Math., 110:11-24, 1980.
[BS89] B. Balcar and P. Simon. Disjoint refinement. In Handbook of Boolean algebras. Vol. 2, pages 333-386. North-Holland Publishing Co., Amsterdam, 1989.
[Hec78] S. H. Hechler. Generalizations of almost disjointness, c-sets, and the Baire number of $\beta N-N$. Gen. Top. and its Appl., 8:93-110, 1978.
[Kop89] S. Koppelberg. Handbook of Boolean algebras. Vol. 1. North-Holland Publishing Co., Amsterdam, 1989.
[KP07] M. S. Kurilić and A. Pavlović. A posteriori convergence in complete Boolean algebras with the sequential topology. Ann. Pure Appl. Logic, 148:49-62, 2007.
[Paz07] T. Pazák. Exhaustive Structures on Boolean Algebras. Ph.D. Thesis, 2007.
[Sou07] L. Soukup. Nagata's conjecture and countably compact hulls in generic extension. To appear in Topology and its Applications, 2007.
[Vla69] D. A. Vladimirov. Boolean Algebras. Nauka, Moskow, 1969.

[^0]: ${ }^{1}$ Supported in part by the GAAV Grant IAA100190509 and by the Research Program CTS MSM 0021620845

