Quotients of Boolean algebras and regular subalgebras

B. Balcar and T. Pazák ¹

Abstract

Let \mathbb{B} , \mathbb{C} be Boolean algebras and $e: \mathbb{B} \to \mathbb{C}$ an embedding. We examine hierarchy of ideals on \mathbb{C} for which $\overline{e}: \mathbb{B} \to \mathbb{C}/\mathcal{I}$ is a regular (i.e. complete) embedding and as an application we deal with interrelationship among $\mathcal{P}(\omega)/fin$ in ZFC groundmodel and in its extension. If M is an extension of V adding new subset of ω , then in M there is almost disjoint refinement of the family $([\omega]^{\omega})^V$. Moreover, there is exactly one ideal \mathcal{I} on ω in M such that $(\mathcal{P}(\omega)/fin)^V$ is dense subalgebra of $(\mathcal{P}(\omega)/\mathcal{I})^M$ if and only if M does not add independent (splitting) real.

We show that for a generic extension V[G], the canonical embedding

$$\mathcal{P}^V(\omega)/fin \hookrightarrow \mathcal{P}(\omega)/(U(Os)(\mathbb{B}))^G$$

is a regular one, where $U(Os)(\mathbb{B})$ is the Urysohn closure of zero - convergent structure on \mathbb{B} .

1 Introduction

Let V be a model of ZFC and M its extension. Then $(\mathcal{P}(\omega)/\text{fin})^V$ is a subalgebra of the Boolean algebra $\mathcal{P}(\omega)/\text{fin}$ in M.

It is natural to ask whether $(\mathcal{P}(\omega)/\text{fin})^V$ is a regular subalgebra of $\mathcal{P}(\omega)/\text{fin}$.

This question makes sense only in cases when there are new reals in the extension M, otherwise these algebras coincide. Hence in what follows we suppose that M is an arbitrary ZFC extension of ground model V adding new reals.

L. Soukup posed the following question:

Does the family $([\omega]^{\omega})^V$ have an almost disjoint refinement in any generic extension, which adds a new real?

It was known that this holds true in different types of generic extension, e.g. adding one Cohen real [Hec78].

We shall consider a little more general situation, when we take into account arbitrary ZFC extension M of V. Clearly to have a chance for the refinement, the extension M has to add a new real, i.e.

$$(\mathcal{P}(\omega))^V \subseteq (\mathcal{P}(\omega))^M$$

in this generalised setting we show in paragraph 3 the following theorem This result was achieved independently by J. Brendle, his proof is rather different and can be found in L. Soukup's paper [Sou07].

Theorem 1. In any ZFC extension M of V adding a new real there is an almost disjoint refinement of $([\omega]^{\omega})^V$.

In the following $A, B \subset \omega; A \subset^* B$ will denote the fact that $A \setminus B$ is finite. Note that, in fact Almost Disjoint (AD) family is a pairwise disjoint family in the Boolean algebra $\mathcal{P}(\omega)/fin$ and a Maximal Almost Disjoint (MAD) family is a partition of unity in the same algebra.

Definition. Family $S \subset [\omega]^{\omega}$ has an almost disjoint refinement (ADR) if there is an almost disjoint family $\{A_X : X \in S\}$ such that $A_X \in [X]^{\omega}$ for every $X \in S$.

¹Supported in part by the GAAV Grant IAA100190509 and by the Research Program CTS MSM 0021620845

Instead of this 'indexed' refinement we will benefit from [BPS80] and use any of these equivalents without further mentioning.

Proposition. For a family $S \subset [\omega]^{\omega}$ the following are equivalent:

- (i) The family S has ADR, i.e. there is an almost disjoint family $\{A_X : X \in S\}$ such that $A_X \in [X]^{\omega}$ for every $X \in S$.
- (ii) There is an almost disjoint family A such that for any $X \in S$ there is $A \in A$ such that $A \subset^* X$.
- (iii) There is an almost disjoint family A such that for any $X \in S$

$$|\{A \in \mathcal{A} : |X \cap A| = \omega\}| = 2^{\omega}.$$

Proof. $(i) \rightarrow (ii)$ This implication is trivial since the almost disjoint family from (i) satisfies also (ii).

 $(ii) \to (iii)$ Let \mathcal{A} be an almost disjoint family as in (ii). In $[\omega]^{\omega}$ there is a maximal almost disjoint family $\langle B_i^A : i \in 2^{\omega} \rangle$ of a size 2^{ω} below any $A \in \mathcal{A}$. Hence $\langle B_i^A : i \in 2^{\omega}, A \in \mathcal{A} \rangle$ satisfies (iii).

(iii) \rightarrow (i) First enumerate $\mathcal{S} = \{X_{\alpha} : \alpha \in 2^{\omega}\}$ and for any $X \in \mathcal{S}$ denote $\mathcal{A}_X = \{A \in \mathcal{A} : |X \cap A| = \omega\}, |\mathcal{A}_X| = 2^{\omega}$. Now proceed by induction and for each $X_{\alpha} \in \mathcal{S}$ choose an $A_{\alpha} \in \mathcal{A}_{X_{\alpha}} - \bigcup \{A_{\beta} : \beta < \alpha\}$. Clearly the family $\{A_{\alpha} \cap X_{\alpha} : \alpha \in 2^{\omega}\}$ gives an almost disjoint refinement for \mathcal{S} .

Our approach to Theorem 1 strongly benefit from results of [BPS80] or see [BS89]; let us quickly summarize results we use. For other notions concerning Boolean algebras see [Kop89].

Note that an algebra \mathbb{B} is $(\kappa, \cdot, 2)$ distributive if and only if any κ -many partitions of unity have a common refinement, or equivalently if and only if the intersection $\cap_{\alpha < \kappa} D_{\alpha}$ of κ -many open dense sets is dense.

Cardinal invariant \mathfrak{h} (non-distributivity number) is characterised through distributivity properties of the algebra $\mathcal{P}(\omega)$ /fin as follows:

Definition.

$$\mathfrak{h} = \min \{ \kappa : \mathcal{P}(\omega) / \text{fin is not } (\kappa, \cdot, 2) \text{ distributive } \},$$

In the proof of Theorem 1 we use the techniques of base tree. Base tree is a special kind of a dense subset of $\mathcal{P}(\omega)/fin$; see e.g. [BS89].

Theorem. [BPS80]) There is a base tree (T, \supset^*) for $[\omega]^{\omega}$, i.e.

- (i) $(T, \supseteq^*) \subset [\omega]^{\omega}$ is a tree,
- (ii) if $B \in T$ then the family of immediate successors of B in T is a maximal almost disjoint family below B of a full (2^{ω}) size,
- (iii) for each $A \in [\omega]^{\omega}$ there is $B \in T$ such that $B \subset A$,
- (iv) the height of T is \mathfrak{h} .

It is well known that if new real is added, then $(\mathcal{P}(\omega)/fin)^V$ is not a regular subalgebra of $(\mathcal{P}(\omega)/fin)^M$. There is a natural question wheather there is an ideal \mathcal{I} such that the canonical embedding

$$(\mathcal{P}(\omega)/fin)^V \hookrightarrow (\mathcal{P}(\omega)/fin)^M/\mathcal{I},$$

becomes regular. We show in paragraph 2 more general theorem

Theorem 2. Let \mathbb{B} be a subalgebra of a Boolean algebra \mathbb{C} . There is an ideal \mathcal{I} on \mathbb{C} such that the canonical homomorphism

$$i: \mathbb{B} \longrightarrow \mathbb{C}/\mathcal{I}$$
 $b \longmapsto [b]_{\mathcal{I}},$

is a regular embedding of \mathbb{B} into \mathbb{C}/\mathcal{I} .

Finally in paragraphs 4 and 5 we compute the minimal regularization ideal for embeddings $(\mathcal{P}(\omega)/fin)^V \hookrightarrow (\mathcal{P}(\omega)/fin)^M/\mathcal{I}$ and $\mathbb{B} \hookrightarrow \mathbb{B}^\omega/Fin$. Latter and former regularisation ideals are closely connected with order sequential topology on Boolean algebras, which we briefly introduce here in the Topological intermezzo.

2 Regularisation ideals

We start with Theorem 2. First, let us recall the definition of regular subalgebra \mathbb{B} of a Boolean algebra \mathbb{C} and its equivalents.

A subalgebra \mathbb{B} of a Boolean algebra \mathbb{C} is called *regular* if any $X \subset \mathbb{B}$ which has a supremum $\bigvee^{\mathbb{B}} X$ in \mathbb{B} , has the same element as a supremum of X in \mathbb{C} , i.e. $\bigvee^{\mathbb{B}} X = \bigvee^{\mathbb{C}} X$. An embedding $i : \mathbb{B} \to \mathbb{C}$ is *regular* if the image $i[\mathbb{B}]$ is the regular subalgebra of algebra \mathbb{C} .

Proposition 3. For a subalgebra $\mathbb{B} \subset \mathbb{C}$ the following are equivalent

- (i) \mathbb{B} is a regular subalgebra of \mathbb{C} ,
- (ii) every maximal pairwise disjoint family in \mathbb{B} is maximal in \mathbb{C} ,
- (iii) for each $c \in \mathbb{C}^+$ there is a 'pseudoprojection' $b_c \in \mathbb{B}^+$; i.e. for every $a \leq b_c$, $a \in \mathbb{B}^+$

$$a \wedge c \neq \mathbf{0}$$
,

(iv) for every generic filter F on \mathbb{C} , $F \cap \mathbb{B}$ is a generic filter on \mathbb{B} .

Proof. The proofs of implications $(i) \leftrightarrow (ii) \leftrightarrow (iii) \leftrightarrow (v)$ and $(vi) \rightarrow (ii)$ are straight forward.

To show that $(ii) \to (vi)$ let $c \in \mathbb{C}^+$. Take arbitrary maximal pairwise disjoint family $B_c \subset \{b \in \mathbb{B} : b \land c = \mathbf{0}\}$. From (ii) it follows that B_c is not maximal in \mathbb{B} , hence there is some b_c disjoint with B_c and we are done.

Let \mathbb{B}, \mathbb{C} be Boolean algebras and $e : \mathbb{B} \to \mathbb{C}$ an embedding. We are looking for ideals on \mathbb{C} for which the factor embedding \bar{i} is regular.

Theorem 2. Let \mathbb{B} be a subalgebra of a Boolean algebra \mathbb{C} . There is a minimal ideal \mathcal{I}_{min} on \mathbb{C} such that the canonical homomorphism

$$i: \mathbb{B} \longrightarrow \mathbb{C}/\mathcal{I}_{min}$$

 $b \longmapsto [b]_{\mathcal{I}_{min}},$

is a regular embedding of \mathbb{B} into $\mathbb{C}/\mathcal{I}_{min}$.

Proof. Let

 $\mathcal{I} = \{u \in \mathbb{C} : \exists \text{ max. pairwise disjoint family } X \subset \mathbb{B} \text{ such that } u \land x = \mathbf{0} \text{ for any } x \in X\}.$

We check that \mathcal{I} is an ideal. The set \mathcal{I} is downward closed. Let $u, v \in \mathcal{I}$. Take maximal pairwise disjoint families X and Y that guarantee that u respectively v belongs to \mathcal{I} . Then $z = \{x \land y \neq \mathbf{0} : x \in X \& y \in Y\}$ is a maximal pairwise disjoint family of elements of \mathbb{B} and $u \lor v$ is disjoint from every element of z. Therefore $u \lor v \in \mathcal{I}$, hence \mathcal{I} is an ideal.

No $b \in \mathbb{B}^+$ belongs to \mathcal{I} , so the mapping $i : \mathbb{B} \to \mathbb{C}/\mathcal{I}$ is an embedding. We show that i is a regular embedding. Let $\{c_i : i \in I\}$ be a maximal pairwise disjoint family in $i[\mathbb{B}]$, the family $\{[c_i] : i \in I\}$ is a maximal pairwise disjoint family in \mathbb{C}/\mathcal{I} . Assume that there is [u], disjoint with every $[c_i]$ in \mathbb{C}/\mathcal{I} , i.e. $c_i \wedge u \in \mathcal{I}$, hence there is a maximal pairwise disjoint set $X_i \subset \mathbb{B} \upharpoonright c_i$ such that u is disjoint from every element of X_i . The set $\bigcup \{X_i : i \in I\}$ is maximal in \mathbb{B} and so $u \in \mathcal{I}$, i.e. $[u] = \mathbf{0} \in \mathbb{C}/\mathcal{I}$.

Such obtained ideal I is minimal.

Proposition 4. Let \mathbb{B} be a subalgebra of a Boolean algebra \mathbb{C} and let $\mathcal{J} \subset \mathbb{C}$ be a maximal ideal such that $\mathbb{B} \cap \mathcal{J} = \{0\}$. Then canonical embedding

$$i: \mathbb{B} \longrightarrow \mathbb{C}/\mathcal{J},$$

is a regular one. In this case $i[\mathbb{B}]$ is even dense in \mathbb{C}/\mathcal{J} .

Proof. Suppose that $i[\mathbb{B}]$ is not dense in \mathbb{C}/\mathcal{J} . Then there is a $c \in \mathbb{C}$, $c \notin \mathcal{J}$ such that for any $b \in \mathbb{B}^+$ $b \nleq_{\mathcal{J}} c$. Since \mathcal{J} is maximal and $c \notin \mathcal{J}$ there is a $j \in \mathcal{J}$ such that there is a $b \in \mathbb{B}^+$ so that $b \leq c \vee j$ i.e. $b \leq_{\mathcal{J}} c$; contradiction.

Corollary 5. Let \mathbb{B} be a subalgebra of a Boolean algebra \mathbb{C} and let $\mathcal{J} \subset \mathbb{C}$ be a maximal regularising ideal. Then

- (i) if \mathbb{B} is complete, then $\mathbb{B} \simeq \mathbb{C}/\mathcal{J}$;
- (ii) if \mathbb{C} is complete, then $RO(\mathbb{B}) \simeq \mathbb{C}/\mathcal{J}$.

Proposition 6. Let \mathbb{B} be a subalgebra of a Boolean algebra \mathbb{C} and let

$$\mathcal{K} = \{ \mathcal{J} : \mathcal{J} \text{ is an ideal on } \mathbb{C} \text{ maximal with respect to } \mathcal{J} \cap \mathbb{B}^+ = \emptyset \}$$

then

(i)
$$\bigcap \mathcal{K} = \mathcal{I}_{min}$$
 and

(ii)
$$\bigcup \mathcal{K} = \{ c \in \mathbb{C} : \neg (\exists b \in \mathbb{B}^+) \ b \le c \}.$$

Proof. Suppose that $\mathcal{I} \setminus \mathcal{J} \neq \emptyset$ and $a \in \mathcal{I} \setminus \mathcal{J}$. Since \mathcal{J} is maximal then there is a $j \in \mathcal{J}$ for which there is a $b \in \mathbb{B}^+$ such that $b \leq j \vee a$. Since $a \in \mathcal{I}$, there is a maximal antichain M in \mathbb{B} such that $m \wedge a = \mathbf{0}$, for each $m \in M$. Every $b \in \mathbb{B}$ has to intersect some $m \in M$, so $\mathbf{0} \neq m \wedge b \leq j \vee a$, but the m and a are disjoint hence $m \wedge b \leq j$, which is contradiction with the assumption that \mathcal{J} does not intersect \mathbb{B} .

Clearly, $\bigcap \mathcal{K} \supset \mathcal{I}$. Take arbitrary $c \in \mathbb{C}^+ \setminus \mathcal{I}$, the set $\{b \in \mathbb{B} : b \leq -c\}$ is not dense in \mathbb{B} as $c \notin \mathcal{I}$. It means that there is a $b_0 \in \mathbb{B}$ such that

$$\forall b \in \mathbb{B}^+ \quad (b < -c) \rightarrow b - b_0 \neq \mathbf{0}.$$

That is, $b_0 \wedge -c \notin \mathbb{B}$ and one can take a maximal ideal \mathcal{J} containing this element, which shows that $c \notin \bigcap \mathcal{K}$; and we are done.

3 Almost disjoint refinement of ground model reals

Let M be a ZFC extension of V. We ask about the existence of almost disjoint refinement of $(\mathcal{P}(\omega))^V$ in M Clearly to have a chance for the refinement, the extension M has to add a new real, i.e.

$$(\mathcal{P}(\omega))^V \subsetneq (\mathcal{P}(\omega))^M$$
.

Hence, from now on we will assume, that the extension M adds new reals. In fact we ask about the existence (of course in M) of a mapping

$$\varphi: ([\omega]^{\omega})^V \to [\omega]^{\omega}$$

such that for each $x \neq y, x, y \in ([\omega]^{\omega})^V$

- (i) $\varphi(x) \subset x$ and
- (ii) $\varphi(x) \cap \varphi(y) =^* \emptyset$.

First we show, that the embedding $(\mathcal{P}(\omega))^V \subseteq (\mathcal{P}(\omega))^M$ is far from regular.

Lemma 7. There is $\sigma \subset \omega$, $\sigma \in M$ such that for each $X \in [\omega]^{\omega} \cap V$ there is a $Y \in [X]^{\omega} \cap V$ such that $Y \cap \sigma = \emptyset$.

Proof. Instead of ω one can consider a countable set

$$A = \bigcup \{ {}^{n}\{0,1\} : n \in \omega \}.$$

Let χ be the characteristic function of a new real. Define $\sigma = \{\chi \upharpoonright n : n \in \omega\}$, note that σ is set of compatible functions. Then σ has desired properties:

Let $X \subset A$, $X \in V$ be infinite. From the Ramsey theorem it follows that X contains either infinite subset Y of compatible functions or it contains infinite subset Y of pairwise disjoint functions. In the latter case clearly $|Y \cap \sigma| \leq 1$. Now suppose that Y is set of compatible functions and $Y \cap \sigma$ is infinite. Then $\bigcup Y = \chi$, but $\bigcup Y \in V$ and $\chi \notin V$, a contradiction. Hence $Y \cap \sigma =^* \emptyset$ and we are done.

This yields a list of straight forward corollaries.

- Corollary 8. (i) Let V be a model of ZFC and M its extension that adds new reals. Then $(\mathcal{P}(\omega)/\text{fin})^V$ is not a regular subalgebra of the Boolean algebra $\mathcal{P}(\omega)/\text{fin}$ in M; σ from the Lemma 7 has no pseudoprojection.
 - (ii) In any ZFC extension M of V adding a new real there is $\sigma \subset \omega$, $\sigma \in M$ such that σ does not contain infinite ground model set.
- (iii) In any ZFC extension M of V adding a new real $(\mathcal{P}(\omega)/fin)^V$ is not a regular subalgebra of $\mathcal{P}(\omega)/fin$, i.e. there is a MAD family in $(\mathcal{P}(\omega)/fin)^V$ which is no longer MAD in M; cf. Lemma 3.
- (iv) If there is a $H \subset [\omega]^{\omega}$ dense in $(\mathcal{P}(\omega)/fin)^M$ such that $H \subset V$. Then $\mathcal{P}(\omega) = \mathcal{P}^V(\omega)$.

The following theorem gives an affirmative answer to L. Soukup's question.

Theorem 1. In any ZFC extension M of V adding a new real there is an almost disjoint refinement of $([\omega]^{\omega})^{V}$.

Proof. From Corollary 8 we already know, that the Boolean algebra $(\mathcal{P}(\omega)/fin)^V$ is not regular in $\mathcal{P}(\omega)/fin$. Hence by the definition, there is some MAD family in $(\mathcal{P}(\omega)/fin)^V$, which is no longer MAD in the extension.

Let $(T, \supseteq^*) \subset [\omega]^{\omega}$ be a base tree for $[\omega]^{\omega}$, in groundmodel V; and let $A \in V$ be a destructible MAD family with its 'destructor' $\sigma \in [\omega]^{\omega}$, $\sigma \in M$. We denote T_{α} the α -level of the tree T.

By recursion we construct a base tree $T^* \in V$ for $[\omega]^{\omega} \cap V$. We start with the root $t \in T_0$ of the tree T and leave it untouched. The set t is an infinite subset of ω , take arbitrary bijection $b: t \to \omega$ in V. So $b^{-1}[\mathcal{A}]$ is a destructible MAD family on t with destructor $b^{-1}(\sigma) \in M$. There is a common refinement of the MAD families $b^{-1}[\mathcal{A}]$ and T_1 . This common refinement will be the next level T_1^* of the constructed tree T^* .

Let T_{α}^* level be constructed. For every $t \in T_{\alpha}^*$ pick a bijection $b_t : t \to \omega$. The $T_{\alpha+1}^*$ level will be the common refinement of $T_{\alpha+1}$ and the maximal almost disjoint family

$$\{b_t^{-1}[A] : t \in T_\alpha^*, A \in \mathcal{A}\}.$$

On the limit stages $\gamma < \mathfrak{h}$. Take T_{γ}^* common refinement of the T_{α}^* for each $\alpha \leq \gamma$. Such refinement exists by the definition of \mathfrak{h} .

The tree $T^* \in V$ is clearly a base tree for $([\omega]^{\omega})^V$. Moreover, for each $t \in T^*$ we found a subset $b_t^{-1}(\sigma) \in M$. Note that each $b_t^{-1}(\sigma)$ is almost disjoint with every $s \in T_{\beta}^*$ for each $\beta > \alpha$. Hence, for each $t \neq s$, $b_s^{-1}(\sigma)$ is almost disjoint from $b_t^{-1}(\sigma)$ and

$$\{b_t^{-1}(\sigma) : t \in T^*\}$$

is an almost disjoint refinement of $([\omega]^{\omega})^V$, which completes the proof.

4 Regularisation ideal for $\mathcal{P}(\omega)/fin$

From the previous paragraphs we know, that for arbitrary ZFC extension M, there is a minimal ideal such that the embedding $(\mathcal{P}(\omega)/fin) \hookrightarrow (\mathcal{P}(\omega)/fin)^M/\mathcal{I}$ is regular. We are able to describe a regularisation ideal only in the case of generic extension rather than an arbitrary one. i.e. the minimal ideal \mathcal{I}_{\min} such that the embedding

$$(\mathcal{P}(\omega)/fin)^V \hookrightarrow (\mathcal{P}(\omega)/fin)^{V(\mathbb{B})}/\mathcal{I}_{\min}$$

is regular. To describe I_{\min} we introduce Order sequential topology on Boolean algebras.

Topological Intermezzo

In order to equip a Boolean algebra with a topological structure that agrees with the Boolean operations we start with a convergence structure. It is enough to determine which sequences converge to $\mathbf{0}$ because using the symmetrical difference operation we can move convergent sequences to an arbitrary element $a \in \mathbb{B}$. It is natural to use the usual notion of a limit; i.e. $\lim a_n = \mathbf{0}$ if and only if

$$\limsup a_n = \bigwedge_n \bigvee_{k>n} a_k = \mathbf{0} = \bigvee_n \bigwedge_{k>n} a_k = \liminf a_n.$$

It is clear that right-hand side of the previous formula is redundant and one can define the order convergence structure on Boolean algebra \mathbb{B} as the following ideal

$$Os(\mathbb{B}) = \{ f \in \mathbb{B}^{\omega} : \limsup f = \mathbf{0} \}.$$

Note that it follows directly from the definition that $f \in Os(\mathbb{B})$ if and only if there is $g \in \mathbb{B}^{\omega}$ so that $g \setminus \mathbf{0}$ and $f \leq g$.

The order convergence structure $Os(\mathbb{B})$ determines the Order sequential topology τ_s on the Boolean algebra: The set $A \subset \mathbb{B}$ is τ_s -closed if and only if

$$\forall f \in A^{\omega}$$
 f convergent sequence, $\lim f \in A$.

 (\mathbb{B}, τ_s) is generally a T_1 topological space. The τ_s topology allows us to define an ideal; Urysohn closure of $Os(\mathbb{B})$

$$U(Os(\mathbb{B})) = \{ f \in \mathbb{B}^{\omega} : f \xrightarrow{\tau_s} \mathbf{0} \}.$$

There is an obvious relation between algebraic and topological convergence.

Proposition 9. A sequence $\langle x_n \rangle$ converges to x in the topology τ_s , $x_n \xrightarrow{\tau_s} \mathbf{0}$, if and only if any subsequence of $\langle x_n \rangle$ has a subsequence that converges to $\mathbf{0}$ algebraically.

The definition of the topological structure sketched here works well only in case the Boolean algebra in question is complete (or at least σ -complete). In general, the assumption on σ -completeness of \mathbb{B} is not necessary. We give a general definition here; for more details see [Vla69], [BFH99], [BJP05] or [Paz07].

Definition 10. Let \mathbb{B} be an arbitrary Boolean algebra,

$$Os(\mathbb{B}) = \{ f \in \mathbb{B}^{\omega} : \exists \mathcal{A} \subset \mathbb{B} \text{ a maximal countable antichain such that } f \perp \mathcal{A} \},$$

where $f \perp \mathcal{A}$ means that the set $\{n \in \omega : f(n) \land a \neq \mathbf{0}\}$ is finite for every $a \in \mathcal{A}$.

The structure with piece-wise Boolean operation is again Boolean algebra; one also can look at \mathbb{B}^{ω} as a set of \mathbb{B} -names for subsets of ω in the forcing extension by \mathbb{B} . From this point of view, the ideal $Os(\mathbb{B})$ consist of names for finite subsets of ω .

Proposition 11. Let \mathbb{B} be a complete Boolean algebra. Then for any generic G on \mathbb{B}

$$Os^G(\mathbb{B}) = \{ f_G : f \in Os(\mathbb{B}) \} = fin = [\omega]^{<\omega},$$

where $f_G = \{n \in \omega : f(n) \in G\}.$

Proof. Let $f \in Os$ and suppose on contrary that f_G is an infinite set for some generic G. Since $f \in Os$, there exists $g \setminus \mathbf{0}$ such that $f \leq g$. Clearly if $f(n) \in G$ then $g(n) \in G$. Since g is monotone and f_G is infinite, we have $g(n) \in G$ for every $n \in \omega$. This is a contradiction since $\mathbf{0} = \bigwedge \{g(n) : n \in \omega\} \in G$.

On the other hand, suppose that $f \notin Os$ and set $d = \overline{\lim} f > \mathbf{0}$. Choose a generic filter G such that $d \in G$. Clearly, $\forall k \in \omega \ d \leq \bigvee \{f(n) : n > k\}$, which means that $\forall k \in \omega \ \exists m > k \ f(m) \in G$; hence the set f_G is infinite.

Computing a regularization ideal for $\mathcal{P}(\omega)/fin$

Now we are ready to show that the minimal regularisation ideal \mathcal{I}_{\min} for the canonical embedding of Boolean algebra $(\mathcal{P}(\omega)/fin)^V$ into $(\mathcal{P}(\omega)/fin)^{V(\mathbb{B})}$ is given by the evaluation of names from $U(Os(\mathbb{B}))$.

Theorem 12. Let \mathbb{B} be a complete Boolean algebra and let G be a generic in \mathbb{B} over V. Then

$$\mathcal{I}_{\min} = U(Os)^G$$
.

Proof. Let $f \in V$ be such that $f_G = \rho \subset \omega$ destroys a MAD $\mathcal{A} \in V$. Find a name $g \in U(Os)$ for the set ρ . Suppose $f \notin U(Os)$; i.e. there is a $X \subset \omega$ infinite such that $f \upharpoonright Y \notin Os$ for each $Y \in [X]^{\omega}$. Let

$$\mathfrak{X} \ = \ \{ \ X \in [\omega]^\omega \ : \ \forall Y \in [X]^\omega \ f \upharpoonright Y \not \in Os \ \}.$$

For $X \in \mathfrak{X}$ there is an $A \in \mathcal{A}$ such that $X \cap A$ is infinite; denote this infinite intersection $Y_X = X \cap A$. Since $X \in \mathfrak{X}$, $f \upharpoonright Y_X \notin Os$; i.e. $\overline{\lim}_{Y_X} f \notin G$. Otherwise if

$$\bigwedge_{k \in \omega} \bigvee_{k \le n \in Y_X} f(n) \in G,$$

then $\bigvee_{k \leq n \in Y_X} f(n) \in G$ for each $k \in \omega$ and the set $f_G \cap (A \cap X)$ is infinite, which contradicts the fact that f_G destroys \mathcal{A} . Now, put

$$c = \bigvee_{X \in \mathfrak{X}} \overline{\lim}_{n \in Y_X} f(n) \notin G,$$

and g(n) = f(n) - c; clearly $g_G = f_G = \rho$ and $g \in U(Os)$.

Let $f \in U(Os) \setminus Os$ i.e. for every infinite X there is a $Y_X \in [X]^{\omega}$ such that $f \upharpoonright Y_X \in Os$. The family

$$\mathcal{F} = \{ Y_X : X \in [\omega]^\omega \}$$

is then dense in $\mathcal{P}(\omega)/fin$. Now, pick an arbitrary MAD family $\mathcal{A} \subset \mathcal{F}$. Clearly, f_G is an infinite set $(f \notin Os)$ and destroys the MAD \mathcal{A} .

This result together with Corollary 8 yields the following equivalence. This equivalence was achieved independently by M. S. Kurilić and A. Pavlović.

Corollary. [KP07] For a complete Boolean algebra B the following are equivalent

- (i) $U(Os(\mathbb{B})) = Os(\mathbb{B}),$
- (ii) there are no $V^{\mathbb{B}}$ -destructible MAD in V,
- (iii) the algebra \mathbb{B} as a forcing notion does not add new reals.

In a special case when there are no independent reals in the extension M there is even a unique largest regularisation ideal (cf. Proposition 4) with simple and straightforward description. We say that $A \subset \mathcal{P}^M(\omega)$ is independent real if for every $X \in [\omega]^\omega \cap V$ are both sets $A \cap X$ and $X \setminus A$ infinite.

Definition 13. Let H be the family of subsets of ω that do not contain infinite sets from the ground model

$$H = \{ \sigma \in M : \sigma \subset \omega \quad \& \quad \neg \exists \ a \in ([\omega]^{\omega})^V \ a \subset \sigma \}.$$

Theorem 14. The following holds in M.

- (i) H is an open dense subset of $([\omega]^{\omega}, \subseteq)$.
- (ii) H is an ideal if and only if M does not add independent reals.

Proof. First note that if M adds a new real $\chi \subset \omega$, $\chi \notin V$, then H contains infinite set. It is easy to see, that σ given by lemma 7 is an infinite set belonging to H.

To prove (i), let $A \in ([\omega]^{\omega})^V$. Then there is a bijection f in V between ω and A and by the previous proposition 3 there is a subset $\sigma \subset \omega$ in M which does not contain an infinite ground model set, so $f[\sigma] \in H$ is subset of A. Generally, if $A \in [\omega]^{\omega}$ then $A \in H$ or there is an $A' \in ([\omega]^{\omega})^V$, $A' \subset A$ and we can use the same reasoning.

(ii) Suppose that M adds an independent real σ . Clearly $\sigma \in H$ and $-\sigma \in H$, hence H is not an ideal.

On the other hand if H is not an ideal, then there are $a, b \in H$ so that there is an $X \in ([\omega]^{\omega})^V$ and $X \subset a \cup b$. Again, we can identify X and ω in ground model and then $X \cap a$ is an independent real in M.

It is clear, that whenever H is an ideal, then it is the unique regularisation ideal; cf. Proposition 6.

Proposition 15. Let M be a ZFC extension of V adding new reals, then M does not add independent reals if and only if there is unique ideal H such that the canonical embedding $\mathcal{P}(\omega)/f$ in $\hookrightarrow \mathcal{P}(\omega)/H$ is regular.

Proof. Direct consequence of Propositions 4 and 6.

5 Regularisation ideal for \mathbb{B}^{ω}/Fin

In this final part we assume that Boolean algebras are at least σ -complete. This assumption is necessary but since our motivation comes from forcing it is not too restrictive.

The canonical embedding

$$e: \mathbb{B} \longrightarrow \mathbb{B}^{\omega}$$
$$b \longmapsto \langle b : n \in \omega \rangle$$

is obviously regular. The more interesting situation is the derived embedding $\hat{e}: \mathbb{B} \hookrightarrow \mathbb{B}/\mathrm{Fin}$, where $\mathrm{Fin} = \{f \in \mathbb{B}^{\omega}: |\{n: f(n) \neq \mathbf{0}\}| < \omega\}$. This embedding is not regular since image of maximal countable antichain $\langle a_n: n \in \omega \rangle \subset \mathbb{B}$ is not maximal in $\mathbb{B}^{\omega}/\mathrm{Fin}$. It is enough to put $f = \langle a_n: n \in \omega \rangle \in (\mathbb{B}^{\omega} \setminus \mathrm{Fin})$ and we get $f \wedge e(a_n) \in \mathrm{Fin}$ for every $n \in \omega$. Note that by our assumption that \mathbb{B} is σ -complete, there are countable maximal antichains in \mathbb{B} .

It is natural to ask what is the minimal regularisation ideal \mathcal{I}_{min} for this situation and how algebra $\mathbb{B}^{\omega}/\mathcal{I}_{min}$ behaves from the forcing point of view.

Proposition 16. The canonical embedding of σ -complete Boolean algebra \mathbb{B} into $\mathbb{B}^{\omega}/Os(\mathbb{B})$ is regular. Moreover, whenever the canonical embedding $\mathbb{B} \hookrightarrow \mathbb{B}^{\omega}/\mathcal{I}$ is regular for some ideal $\mathcal{I} \supset Fin$, then $Os(\mathbb{B}) \subset \mathcal{I}$.

Proof. Let $f \in \mathbb{B}^{\omega} - Os$ then $d = \overline{\lim} f > \mathbf{0}$ is the required pseudoprojection witnessing the fact that the embedding $\mathbb{B} \hookrightarrow \mathbb{B}^{\omega}/Os$ is regular.

Computing I_{min} from the Theorem 2 we obtain that

$$I_{min} = \{ f \in \mathbb{B}^{\omega} : \exists \text{ max. antichain } \mathcal{A} \text{ in } \mathbb{B} \text{ such that } f \perp \mathcal{A} \}.$$

It is clear from the definition that $Os \subset I_{min}$, which completes the proof.

We conclude with the forcing description of algebra $\mathbb{B}^{\omega}/\mathcal{I}$, where \mathcal{I} is regularisation ideal.

Theorem 17. Let \mathbb{B} be a complete Boolean algebra and $Fin \subset \mathcal{I} \subset \mathbb{B}^{\omega}$ an ideal for which the canonical embedding $\mathbb{B} \hookrightarrow \mathbb{B}^{\omega}/\mathcal{I}$ is regular, then $\mathbb{B}^{\omega}/\mathcal{I}$) is isomorphic with an iteration of \mathbb{B} and $P(\omega)/\mathcal{I}^G$, where G is the generic filter on \mathbb{B} ; i.e.

$$\mathbb{B}^{\omega}/\mathcal{I} \cong \mathbb{B} \star (\mathcal{P}(\omega)/\mathcal{I}^G).$$

Proof. We define

$$\varphi: \mathbb{B} \star \mathcal{P}(\omega)/\mathcal{I}^G \longrightarrow \mathbb{B}^{\omega}/\mathcal{I}$$

$$(b, f) \longmapsto e(b) \wedge f,$$

where f is a \mathbb{B} -name for a subset of ω . Let us remind the ordering i.e.

$$(b, f) \leq (c, g)$$
 if and only if $b \leq c \& b \Vdash "[f]_{\mathcal{I}} \leq [g]_{\mathcal{I}}"$,

where $b \Vdash$ " $[f]_{\mathcal{I}} \leq [g]_{\mathcal{I}}$ " means that $e(b) \wedge f \leq_{\mathcal{I}} e(b) \wedge g$.

It is a routine check to verify that φ preserves ordering, disjoint relation and that $\varphi[\mathbb{B}\star\mathcal{P}(\omega)/\mathcal{I}^G]$ is dense in $\mathbb{B}^\omega/\mathcal{I}$.

The following result was originally proved by A. Kamburelis.

Corollary 18. If \mathbb{B} is a complete Boolean algebra, then

$$\mathbb{B}^{\omega}/Os(\mathbb{B}) \cong \mathbb{B} \star (\mathcal{P}(\omega)^{V(\mathbb{B})}/Fin).$$

References

- [BFH99] B. Balcar, F. Franck, and J. Hruška. Exhaustive zero-convergence structures on Boolean algebras. *Acta Univ. Carolin. Math. Phys.*, 40(2):27–41, 1999.
- [BJP05] B. Balcar, T. Jech, and T. Pazák. Complete CCC Boolean algebras, the order sequential topology, and a problem of von Neumann. *Bull. London Math. Soc.*, 37(6):885–898, 2005.
- [BPS80] B. Balcar, J. Pelant, and P. Simon. The space of ultrafilters on n covered by nowhere dense sets. *Fund. Math.*, 110:11–24, 1980.
- [BS89] B. Balcar and P. Simon. Disjoint refinement. In *Handbook of Boolean algebras. Vol. 2*, pages 333–386. North-Holland Publishing Co., Amsterdam, 1989.
- [Hec78] S. H. Hechler. Generalizations of almost disjointness, c-sets, and the Baire number of $\beta N N$. Gen. Top. and its Appl., 8:93–110, 1978.
- [Kop89] S. Koppelberg. *Handbook of Boolean algebras. Vol. 1*. North-Holland Publishing Co., Amsterdam, 1989.
- [KP07] M. S. Kurilić and A. Pavlović. A posteriori convergence in complete Boolean algebras with the sequential topology. *Ann. Pure Appl. Logic*, 148:49–62, 2007.
- [Paz07] T. Pazák. Exhaustive Structures on Boolean Algebras. Ph.D. Thesis, 2007.
- [Sou07] L. Soukup. Nagata's conjecture and countably compact hulls in generic extension. *To appear in Topology and its Applications*, 2007.
- [Vla69] D. A. Vladimirov. Boolean Algebras. Nauka, Moskow, 1969.