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Abstract

We prove that the solutions to a 2D Poisson equation with unilateral boundary condi-

tions of Signorini type as well as their contact intervals depend smoothly on the data. The

result is based on a certain local equivalence of the unilateral boundary value problem

to a smooth abstract equation in a Hilbert space and on an application of the Implicit

Function Theorem to that equation.

1 Introduction

Let ` > 0, Ω := (0, 1) × (0, `), ΓD := ({0} × (0, `)) ∪ ({1} × (0, `)), ΓU := (γ1, γ2) × {0} ⊂
((0, 1)× {0}) be an open interval and ΓN := ∂Ω \ (ΓD ∪ ΓU). Let h be a positive number and

f ∈ Ck(Ω) a real function, k ∈ N. We will study the Signorini boundary value problem

−∆u = f in Ω, (1.1)

u = 0 on ΓD,
∂u

∂ν
= 0 on ΓN , (1.2)

u ≤ h,
∂u

∂ν
≤ 0, (u− h)

∂u

∂ν
= 0 on ΓU . (1.3)

Our goal is to prove that the data-to-solution map

(f, h) ∈ Ck(Ω)× R 7→ u ∈ W 1,2(Ω)

is Ck-smooth in a neighbourhood of a given (f0, h0) under reasonable assumptions. In other

words, to show that the triplets (u, f, h) ∈ W 1,2(Ω) × Ck(Ω) × R satisfying in a weak sense
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(1.1), (1.2), (1.3) form a Ck-smooth manifold in W 1,2(Ω) × Ck(Ω) × R in a neighbourhood of

(u0, f0, h0). In particular, we will assume that the contact set

Ah(u) := {x ∈ [γ1, γ2] : u(x, 0) = h}

of the solution u = u0 of (1.1)–(1.3) with f0, h0 is an interval and show that then Ah(u) is also

an interval depending Ck-smoothly on f, h for all solutions u corresponding to f, h close to

f0, h0 (see Theorem 2.4). We will also show that under simple additional conditions on f0, h0,

this assumption about u0 is really fulfilled (Proposition 2.12).

We introduce the real Hilbert space H and its closed convex subset Kh (for any h > 0) by

H := {u ∈ W 1,2(Ω) : u = 0 on ΓD}, Kh := {u ∈ H : u ≤ h on ΓU}

and consider the weak formulation of (1.1)–(1.3) in terms of the variational inequality

f ∈ Ck(Ω), h > 0, u ∈ Kh :

∫
Ω

∇u∇(ϕ− u)− f(ϕ− u) dx dy ≥ 0 for all ϕ ∈ Kh. (1.4)

The known regularity properties of this variational inequality will be recalled in Remark 2.13

and Proposition 2.14.

An essential part of our considerations is related to the boundary value problem (1.1), (1.2),

u = h on Iα,β, ∂yu = 0 on Eα,β, (1.5)

where
Iα,β := {(x, 0) ∈ ΓU : α < x < β} = (α, β)× {0},
Eα,β := {(x, 0) ∈ ΓU : γ1 < x < α or β < x < γ2} = ΓU \ Iα,β,

γ1 < α < β < γ2. Roughly speaking, the strategy of our proof is as follows. First, we

transform by means of a smooth transformation of the space variable x ∈ [0, 1] the mixed

boundary value problem (1.1), (1.2), (1.5), which has (α, β)-depending Dirichlet and Neumann

boundary parts, into a mixed boundary value problem with (α, β)-independent Dirichlet and

Neumann boundary parts, but (α, β)-depending coefficients in the differential equation. To this

new mixed boundary value problem we add two scalar equations which ensure the regularity

condition u ∈ W 2,2(Ω)∩C1(Ω) in order to get a well-posed problem for determining α, β and u

in terms of h and f . This new system is highly nonlinear in α and β. We transform it into an

abstract equation in a certain Hilbert space and solve it locally with respect to α, β and u by

means of the Implicit Function Theorem under the non-degeneracy condition (2.16). Finally,

we show by using the maximum principle that the solutions of this equation satisfy also the

variational inequality (1.4) under our sign assumptions about f0 and u0.

An exact formulation of the non-degeneracy assumption (2.16) of our main results (Theo-

rems 2.4, 2.5) needs a rather long preliminaries leading to a definition of certain special func-

tions vδ
α,β, w

δ
α,β. In order to make this theorem understandable without reading these technical

details, let us explain here briefly the sense of that condition.
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It follows from [8, Theorem 1] (see also Remark 3.4) that there exist two functionals

`1α,β, `
2
α,β : L2(Ω)×W 1/2,2(Iα,β) → R such that a weak solution to (1.1), (1.2), (1.5) (even with

an arbitrary h ∈ W 1/2,2(Iα,β)) satisfies u ∈ W 2,2(Ω) if and only if `1α,β(f, h) = `2α,β(f, h) = 0.

If (u0, f0, h0) is the starting solution of (1.4) which should be continued then the assumption

(2.16) can be formulated also as

det

(
∂

∂α
(`1α,β(f0, h0))

∂
∂β

(`1α,β(f0, h0))
∂

∂α
(`2α,β(f0, h0))

∂
∂β

(`2α,β(f0, h0))

)∣∣∣∣∣
α=α0,β=β0

6= 0.

In Theorem 2.4 we use a concrete representation of the funcionals `1α,β, `
2
α,β in terms of functions

vδ
α,β, w

δ
α,β which makes possible to verify this condition numerically in concrete situations.

Our paper is organized as follows. The formulation of our main result (Theorems 2.4, 2.5)

and technical preliminaries are subject of Section 2. Proposition 2.12 in that section shows

that the solutions of (1.4) for which the contact set is an interval and which can be smoothly

continued by Theorem 2.4 really exist under simple additional assumptions. The proof of the

main result is devided into two steps — the proof of a local equivalence of our variational

inequality to a certain variational equation, and application of the Implicit Function Theorem

to this equation. The formulation and the proof of the equivalence result are contained in

Section 3. This proof is based on the results of P. Grisvard [8] concerning a regularity of

solutions of mixed boundary value problems in a neighbourhood of contact points of Dirichlet

and Neumann parts of the boundary. The considerations are related to those from V.G. Mazya,

S.A. Nazarov, B.A. Plamenevskii [13], S.A. Nazarov, B.A. Plamenevskii [15], and C. Eck, S.A.

Nazarov, W. Wendland [4], but they are simpler in our approach. The formulation and the proof

of the continuation result for the variational equation from Section 3 are given in Section 4. The

proofs of the main results then easily follow (Section 5). The Appendix is devoted to technical

proofs of assertions used in previous sections and to recalling some known but essential facts.

Let us recall that a smooth continuation of solutions and contact regions for variational

inequalities in one dimension (a model of a unilaterally supported beam) was proved and even

an existence of smooth bifurcating branches was given in our papers [18], [6]. The same basic

idea (a local equivalence with an equation and use of Implicit Funtion Theorem for it) was used

there but the proofs in the present paper are much more complicated. In fact, this idea in an

essentially simpler form was used also in [5] for variational inequalities in cases when certain

assumptions can guarantee a local independence of the contact set on parameters.
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2 Main Results

We will equip the Hilbert space H with the scalar product

〈u, ϕ〉 =

∫
Ω

∇u · ∇ϕ dx dy for all u, ϕ ∈ H,

and denote the corresponding norm by ‖ ·‖. Norms in other spaces X will be denoted by ‖ ·‖X .

By ∂x, ∂y, ∂α, ∂β and ∂ν we denote the partial derivative with respect to x, y, α, β and outer

normal derivative, respectively, and by ∂2
xx, ∂2

yy, ∂2
xy the second partial derivatives.

In the sequel, we will consider fixed (α0, β0), γ1 < α0 < β0 < γ2, and set δ0 := 1
3

min{α0 −
γ1, β0 − α0, γ2 − β0},

D := {(α, β) : |α− α0| < δ0, |β − β0| < δ0}.

In order to formulate the assumption (2.16) of our main results, we need to introduce special

functions vδ
α,β, wδ

α,β. Considerations necessary for their definition will be used simultaneously

in the proof of main theorems.

First, we will introduce coordinate transformations in Ω, i.e. diffeomorphisms of Ω onto

itself which map Iα,β onto Iα0,β0 and Eα,β onto Eα0,β0 and change the (α, β)-dependence from

the boundary conditions into the coefficients in the differential equations.

For any (α, β) ∈ D let ξα,β : [0, 1] → [0, 1] be a function such that

the map (α, β, x) 7→ ξα,β(x) is C∞-smooth on D × [0, 1], (2.1)

ξα0,β0(x) = x for all x ∈ [0, 1], (2.2)

ξα,β(0) = 0, ξα,β(1) = 1, ξα,β(α) = α0, ξα,β(β) = β0,

ξ−1
α,β(x) = x+ α− α0 for |x− α0| ≤ δ0,

ξ−1
α,β(x) = x+ β − β0 for |x− β0| ≤ δ0,

ξ′α,β(x) > 0 for x ∈ [0, 1],

ξα,β is a diffeomorphism of [0, 1] onto [0, 1],

(2.3)

where ξ−1
α,β denotes the inverse function to ξα,β. Let us define the mapping Φα,β : L2(Ω) → L2(Ω)

by

(Φα,β)f(x, y) := f(ξα,β(x), y) for any f ∈ L2(Ω).

Remark 2.1 Under the assumptions (2.1)–(2.3), the mapping Φα,β is an isomorphism from

W k,2(Ω) onto itself as well as from Ck(Ω) onto itself for any k = 0, 1, . . .. Moreover, a function

v : Ω → R satisfies the boundary conditions v = 0 on ΓD, v = h on Iα0,β0, ∂νv = 0 on

ΓN ∪ Eα0,β0 if and only if u = Φα,βv satisfies the boundary conditions u = 0 on ΓD, u = h on

Iα,β, ∂νu = 0 on ΓN ∪ Eα,β.
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Lemma 2.2 For any k = 1, 2, . . . and m = 0, 1, . . . the map

(α, β, f) ∈ D × Ck+m(Ω) 7→ Φα,βf ∈ Cm(Ω)

is Ck-smooth.

Proof will be done in Appendix.

Let us remark that Φα,β does not depend continuously on α, β in the strong operator norm

on any of the function spaces W k,2(Ω) or Ck(Ω).

Let us denote by Φ∗
α,β ∈ L(L2(Ω)) the adjoint mapping to Φα,β in L2(Ω). Introducing a

new variable x̄ = ξα,β(x) and finally renaming x̄ again to x, we get∫
Ω

(Φ∗
α,βf)(x, y)g(x, y) dx dy =

∫
Ω
f(x, y)g(ξα,β(x), y) dx dy

=
∫

Ω
f(ξ−1

α,β(x), y)g(x, y)(ξ′α,β(ξ−1
α,β(x)))−1 dx dy,

i.e.

(Φ∗
α,βf)(x, y) = f

(
ξ−1
α,β(x), y

) (
ξ′α,β(ξ−1

α,β(x))
)−1

. (2.4)

We have ∂x(Φα,βu)(x, y) = ∂xu(ξα,β(x), y)ξ′α,β(x) and

∂2
xx(Φα,βu)(x, y) = ∂2

xxu(ξα,β(x), y)(ξ′α,β(x))2 + ∂xu(ξα,β(x), y)ξ′′α,β(x).

Denoting ∆α,β := Φ∗
α,β∆Φα,β, we get

∆α,β = ∂x(ξ′α,β(ξ−1
α,β(x))∂x) + (ξ′α,β(ξ−1

α,β(x)))−1∂2
yy.

Therefore, denoting ∇α,β := (
√
ξ′α,β(ξ−1

α,β(x))∂x,
∂yq

ξ′α,β(ξ−1
α,β(x))

) and ∂α,β
ν := (ξ′α,β(ξ−1

α,β(x)))−1∂ν ,

we get that∫
Ω
∇α,βu∇α,βv =

∫
Ω
∇Φα,βu∇Φα,βv

for all u ∈ W 1,p(Ω), v ∈ W 1,q(Ω) with p > 1, 1/p+ 1/q = 1,∫
Ω
u∆α,βv =

∫
Ω

Φα,βu∆Φα,βv for all u ∈ L2(Ω), v ∈ W 2,2(Ω).

(2.5)

Let us define for δ > 0 and z ∈ (0, 1) the sets

Aδ(z) := {(x, y) ∈ Ω : δ2/4 < (x− z)2 + y2 < δ2},
Bδ(z) := {(x, y) ∈ Ω : (x− z)2 + y2 < δ2}.

It follows from the choice of δ0 and (2.3) that

∆α,β = ∆, ∇α,β = ∇ in Bδ(α0) ∪Bδ(β0) for δ ∈ (0, δ0). (2.6)

For any δ ∈ (0, δ0) let us introduce a C∞-smooth function χδ : [0,∞) → [0, 1] such that

χδ(r) = 1 for 0 ≤ r ≤ δ/2,

χδ(r) = 0 for r ≥ δ.
(2.7)
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Let us define functions

Xδ(x, y) = Xδ(α0 + r cosω, r sinω) := χδ(r)r
−1/2 sin ω

2
,

Y δ(x, y) = Y δ(β0 + r cosω, r sinω) := χδ(r)r
−1/2 sin ω

2
,

(2.8)

where r is the distance of (x, y) ∈ Ω from (α0, 0), ω is the angle measured anticlockwise from

the segment (x, y), (α0, 0) to Iα0,β0 in the definition of Xδ, and r is the distance of (x, y) ∈ Ω

from (β0, 0), ω is the angle measured clockwise from the segment (x, y), (β0, 0) to Iα0,β0 in the

definition of Y δ, respectively.

Lemma 2.3 The following conditions hold for any δ ∈ (0, δ0).

(i) Xδ, Y δ ∈ Lq(Ω) for all 1 ≤ q < 4, Xδ, Y δ ∈ W 1,q(Ω) for all 1 ≤ q < 4
3
, Xδ, Y δ ∈ C∞(Ω′)

for any subdomain Ω′ such that Ω′ ⊂ Ω \ {(α0, 0), (β0, 0)}.

(ii) Xδ = Y δ = 0 on Iα0,β0, X
δ = 0 in Ω \ Bδ(α0), Y

δ = 0 in Ω \ Bδ(β0), ∆Xδ = 0 in

Ω \ Aδ(α0), ∆Y δ = 0 in Ω \ Aδ(β0) and ∆Xδ,∆Y δ ∈ C∞(Ω).

(iii) For any (α, β) ∈ D, ∂νX
δ = ∂α,β

ν Xδ = ∂νY
δ = ∂α,β

ν Y δ = 0 on ΓN ∪ Eα0,β0,∫
Ω

∆α,βX
δϕ = −

∫
Ω
∇α,βX

δ · ∇α,βϕ,
∫

Ω
∆α,βY

δϕ = −
∫

Ω
∇α,βY

δ · ∇α,βϕ

for all ϕ ∈ W 1,p(Ω) with ϕ = 0 on ΓD ∪ Iα0,β0 and p > 4.
(2.9)

(iv) For any (α, β) ∈ D we have

∇α,βX
δ = ∇Xδ, ∆α,βX

δ = ∆Xδ, ∇α,βY
δ = ∇Y δ, ∆α,βY

δ = ∆Y δ in Ω.

Proof. The assertions (i) and (ii) follow from the definition of Xδ and Y δ and calculus by using

polar coordinates. In particular, explicit expression of the Laplace operator in polar coordinates

gives that ∆Xδ and ∆Y δ vanish in the sets where the corresponding function χδ is constant (let

us remark that ∂2
xxX

δ, ∂2
yyX

δ and ∂2
xxY

δ, ∂2
yyY

δ have singularities of opposite signs in (α0, 0)

and (β0, 0), respectively).

It follows directly from (2.8) that ∂yX
δ = ∂yY

δ = ∂α,β
ν Y δ = 0 on ΓN ∪ Eα0,β0 . Hence, due

to (i) the Green Formula implies that for any smooth function ψ with a compact support in

Ω ∪ ΓN ∪ Eα0,β0 (i.e. Φα,βψ has a compact support in Ω ∪ ΓN ∪ Eα,β) we have∫
Ω

∆Φα,βX
δ · Φα,βψ +

∫
Ω

∇Φα,βX
δ · ∇Φα,βψ =

∫
∂Ω

∂νΦα,βX
δ · Φα,βψ = 0

where all derivatives exist in the classical sense in suppψ. Similarly for Y δ. Such functions

ψ are dense in {ϕ ∈ W 1,p(Ω) : ϕ = 0 on ΓD ∪ Iα0,β0} and (iii) follows by using the limiting

process and the formulas (2.5) for ∆α,β and ∇α,β.
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The assertion (iv) is a consequence of (ii) and (2.6).

Let Xδ
α,β, Y

δ
α,β ∈ W 1,2(Ω) satisfy

Xδ
α,β = Y δ

α,β = 0 on ΓD ∪ Iα0,β0 ,∫
Ω
∇α,βX

δ
α,β · ∇α,βϕ−∆Xδϕ =

∫
Ω
∇α,βY

δ
α,β · ∇α,βϕ−∆Y δϕ = 0

for all ϕ ∈ W 1,2(Ω) with ϕ = 0 on ΓD ∪ Iα0,β0 ,

(2.10)

i.e. Xδ
α,β and Y δ

α,β is the weak solution to the boundary value problem −∆α,βu = g in Ω with

g = ∆Xδ and g = ∆Y δ, respectively, and with the boundary conditions u = 0 on ΓD ∪ Iα0,β0 ,

∂α,β
ν u = 0 on ΓN ∪ Eα0,β0 . Let us remark that Xδ

α,β, Y
δ
α,β ∈ W 1,2(Ω), but Xδ, Y δ /∈ W 1,2(Ω).

Finally, denote

vδ
α,β := Φα,β(Xδ

α,β +Xδ), wδ
α,β := Φα,β(Y δ

α,β + Y δ). (2.11)

The last functions vδ
α,β, wδ

α,β are of the key importance for the formulation of our main result.

For any d ∈ (0, `) let us denote

Ωd := (0, 1)× (0, d),

Γd := (0, 1)× {d}.

Theorem 2.4 Let k ∈ N, let (u0, h0, f0) satisfy (1.4), Ah0(u0) = [α0, β0] with γ1 < α0 < β0 <

γ2. Let us assume that there are d > 0, ε > 0 such that f0 and u0 satisfy the conditions

f0 ≥ ε > 0 on Iα0,β0 , (2.12)

∂yf0 ≥ ε > 0 on Ωd, (2.13)

∂yu0 > 0 on Γd, (2.14)

∂2
xyu0(0, d) > 0 > ∂2

xyu0(1, d), (2.15)

det

(
∂

∂α

(∫
Ω
f0v

δ
α,β−∇Φα,βu0 ·∇vδ

α,β dx dy
)

∂
∂β

(∫
Ω
f0v

δ
α,β−∇Φα,βu0 ·∇vδ

α,β dx dy
)

∂
∂α

(∫
Ω
f0w

δ
α,β−∇Φα,βu0 ·∇wδ

α,β dx dy
)

∂
∂β

(∫
Ω
f0w

δ
α,β−∇Φα,βu0 ·∇wδ

α,β dx dy
))∣∣∣∣∣ α=α0

β=β0

6= 0

(2.16)

for some δ ∈ (0, δ0). Then there exist neighbourhoods V ⊂ Ck(Ω) × R and W ⊂ H of (f0, h0)

and of u0, respectively, and a Ck-mapping û : V → W such that û(f0, h0) = u0 and that

(f, h, u) ∈ V ×W satisfies (1.4) if and only if u = û(f, h). Moreover, there exist Ck-functions

α̂, β̂ : V → R such that α̂(f0, h0) = α0, β̂(f0, h0) = β0 and

Ah (û(f, h)) =
[
α̂(f, h), β̂(f, h)

]
for all (f, h) ∈ V.

In the following theorem we replace the assumption (2.13) by the weaker condition (2.17)

but we obtain a result of a different type. We get only smoothness of the data-to-solution

map with respect to solutions corresponding to right-hand sides satisfying (2.17), that means

solutions of (1.4) do not form a smooth manifold in a neighbourhood of (u0, f0, h0).
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Theorem 2.5 Let us consider the assumptions of Theorem 2.4 but replace (2.13) by

∂yf0 ≥ 0 on Ωd. (2.17)

Then there exist neighbourhoods V ⊂ Ck(Ω)×R and W ⊂ H of (f0, h0) and of u0, respectively,

and a Ck-mapping û : V → W such that û(f0, h0) = u0 and that (f, h, u) ∈ V ×W with ∂yf ≥ 0

on Ωd satisfies (1.4) if and only if u = û(f, h). Moreover, there exist Ck-functions α̂, β̂ : V → R
such that α̂(f0, h0) = α0, β̂(f0, h0) = β0 and

Ah (û(f, h)) =
[
α̂(f, h), β̂(f, h)

]
for all (f, h) ∈ V with ∂yf ≥ 0 on Ωd.

Remark 2.6 The existence of d > 0 satisfying (2.13) is guaranteed if we assume ∂yf0 ≥ ε > 0

on Γ0. However, we need (2.13) with the same d > 0 for which (2.14) is fulfilled, and this

assumption cannot be replaced by an analogous condition on Γ0 because ∂yu = 0 on a part of

Γ0 (u satisfies (1.2) and (2.24) by Proposition 2.14 below).

Remark 2.7 The condition (2.15) is used only for the proof that (2.14) remains valid even

for all solutions of (1.1), (1.2), (1.5) sufficiently close to (u0, α0, β0, f0, h0), which is essential

for the proof of Theorem 2.4 (see the proof of Lemma 3.10). Therefore it will be seen from

Proposition 2.10 below that if we assume global conditions for f0 considered there then the

assumption (2.15) is not needed.

The conditions (2.14), (2.15) for a starting solution u0 as well as the conditions (2.12),

(2.13) for a starting f0 will be used for the proof of an equivalence of our variational inequality

to a certain operator equation on a neighbourhood of (u0, f0, h0), which is the main tool of

the proof of Theorem 2.4. The precise formulation of this local equivalence is a subject of

Theorem 3.1 below.

The condition (2.16) is generically fulfilled. For given f0, h0, u0, it has to be verified

numerically. The assumption (2.16) will guarantee that a certain mapping is an isomorphism

which will enable us to use Implicit Function Theorem to prove the existence of a unique

local smooth branch of solutions of the operator equation mentioned above (see the proof of

Theorem 4.1).

Remark 2.8 The condition (2.16) can be in fact replaced by assuming that there exist functions

he
α,β ∈ H ∩W 2,2(Ω) such that he

α,β = h0 on Iα,β, that the mapping

(α, β) ∈ D 7→
(∫

Ω

∇he
α,β · ∇vδ

α,β dx dy,

∫
Ω

∇he
α,β · ∇wδ

α,β dx dy

)
∈ R2 (2.18)
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is smooth and that

det

(
∂

∂α

(∫
Ω
f0v

δ
α,β−∇he

α,β ·∇vδ
α,β dx dy

)
∂
∂β

(∫
Ω
f0v

δ
α,β−∇he

α,β ·∇vδ
α,β dx dy

)
∂

∂α

(∫
Ω
f0w

δ
α,β−∇he

α,β ·∇wδ
α,β dx dy

)
∂
∂β

(∫
Ω
f0w

δ
α,β−∇he

α,β ·∇wδ
α,β dx dy

))∣∣∣∣∣ α=α0

β=β0

6= 0

(2.19)

for some δ ∈ (0, δ0). Indeed, we will see in Lemma 3.6 that the integrals in (2.19) are inde-

pendent of the choice of such extension he
α,β of the constant h0 from Iα,β onto the whole Ω,

and Φα,βu0 is such extension (see also Lemma 4.2). Let us note that Φα,βu0 ∈ W 2,2(Ω) due to

Proposition 2.14 below and Remark 2.1.

Remark 2.9 If f0(x, y) = f0(1 − x, y) for all (x, y) ∈ Ω, then for all (f, h) ∈ V with f

satisfying the same symmetry condition, the functions û(f, h) from Theorem 2.4 are symmetric

in x and therefore α̂(f, h) = 1 − β̂(f, h). This follows immediately from the unicity assertion

of Theorem 2.4.

The following Proposition 2.10 together with Proposition 2.14 show that the local assump-

tion (2.14) concerning u0 is automatically fulfilled even in a global form and even for all solutions

of (1.1), (1.2), (1.5) sufficiently close to (u0, α0, β0, f0, h0) under suitable global assumptions

about f0. We do not need to discuss the assumption (2.15) because it is not necessary in this

situation (see also Remark 2.7 above). Furthermore, Proposition 2.12 gurantees that the as-

sumption of the same type on f guarantee that the contact set of the solution of (1.4) is really

an interval for h small enough as it is assumed in Theorem 2.4.

Proposition 2.10 Let k = 1, let (u0, α0, β0, f0, h0) be a solution of (1.4), Ah0(u0) = [α0, β0]

and let (2.12) and

∂yf > ε > 0 in Ω (2.20)

hold for f = f0. If (u, α, β, f, h) ∈ C1(Ω) × D × C1(Ω) × R+ satisfy (1.1), (1.2), (1.5) and

‖u− u0‖+ |α− α0|+ |β − β0|+ ‖f − f0‖C1(Ω) is small enough then

∂yu > 0 in Ω ∪ Iα,β. (2.21)

Proof will be done in Section 5.

Corollary 2.11 The assertion of Theorem 2.4 remains valid if we replace (2.13) by (2.20) and

omit the assumptions (2.14), (2.15). This will be seen from the proof of Theorem 2.4 and from

Proposition 2.10.

Proposition 2.12 Let

f ≥ 0 on ΓU , ∂yf ≥ 0 in Ω. (2.22)

9



If (u, f, h) satisfies (1.4), u(γ1, 0) < h, u(γ2, 0) < h, u(x1, 0) = u(x2, 0) = h for some x1, x2 ∈
[γ1, γ2], x1 < x2, then there are (α, β) ∈ D satisfying Ah(u) = [α, β]. Let, moreover,

f ≥ 0 in Ω. (2.23)

There is hf > 0 such that if h < hf , (u, f, h) satisfies (1.4), then there are (α, β) ∈ D satisfying

Ah(u) = [α, β], and if h > hf , (u, f, h) satisfies (1.4), then we have u(x, 0) < h for all

x ∈ [γ1, γ2].

Proof will be done in Section 5.

We will devote the rest of this section to recalling some basic properties of our variational

inequality we use.

Remark 2.13 It is well known that for any f ∈ C1(Ω), h > 0 there is unique u ∈ H such that

(1.4) holds. Moreover, u ∈ C1(Ω ∪ ΓU). See e.g. [10, Theorem 1.2].

For any u ∈ H ∩ C(ΓU) let us set

Eh(u) := {(x, 0) ∈ ΓU ; u(x, 0) 6= h}, Ih(u) := ΓU \ Eh(u).

Hence, if Ah(u) = [α, β] for some (α, β) ∈ D then Ih(u) = Iα,β, Eh(u) = Eα,β.

Proposition 2.14 A triplet (u, f, h) ∈ H×C1(Ω)×R+ satisfies (1.4) with k = 1 and Ih(u) ⊂
ΓU if and only if u ∈ C2(Ω) ∩ C1(Ω), u is a solution of the problem (1.1), (1.2),

u = h on Ih(u) ∂yu = −∂νu = 0 on Eh(u) (2.24)

and if in addition

∂yu = −∂νu ≥ 0 on Ih(u), (2.25)

u < h on Eh(u), (2.26)

u(γ1, 0) < h, u(γ2, 0) < h. Any such solution satisfies in fact

u ∈ W 2,p(Ω) for all p ∈ (1, 4). (2.27)

Due to embedding theorems (e.g. [16], [7]), (2.27) implies

u ∈ C1+γ(Ω) for all γ ∈
(

0,
1

2

)
. (2.28)

Let us emphasize that under the assumptions on f considered we will prove the sharp inequality

in (2.25) (see Lemma 3.10). The assumption Ih(u) ⊂ ΓU is essential. If (γ1, 0) ∈ Ih(u) or

(γ2, 0) ∈ Ih(u) then u can have a jump in the first derivatives at (γ1, 0) or (γ2, 0), respectively.

We will have in fact Ah(u) = [α, β] in our considerations and then (2.24) reads as (1.5).

Proof is standard and will be done in Appendix for the completeness.
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3 Equivalence of the Variational Inequality to an Oper-

ator Equation

The main idea of the proof of Theorem 2.4 is to show that our variational inequality (1.4) is

equivalent in a neighbourhood of (u0, f0, h0) to an operator equation, and to apply Implicit

Function Theorem to this equation. In order to formulate the equivalence result, let us define

the mapping F : H × C1(Ω) → H by

〈F (u, f), ϕ〉 := −
∫

Ω

∇u∇ϕ− fϕ dx dy for all ϕ ∈ H. (3.1)

Then (1.4) can be written as

f ∈ Ck(Ω), h > 0, u ∈ Kh : 〈F (u, f), ϕ− u〉 ≤ 0 for all ϕ ∈ Kh. (3.2)

Let us introduce the closed subspace H0 of H by

H0 := {u ∈ H : u = 0 in Iα0,β0}.

The following theorem describes precisely the local equivalence of the variational inequality

(1.4) and the operator equation mentioned above. We use the notation from Section 2. In

particular, the functions vα,β, wα,β are from (2.11).

Let us note that we consider k = 1 in Theorem 3.1 because it automatically implies its

validity with any k ∈ N.

Theorem 3.1 Let k = 1 and let (u0, f0, h0) satisfy (1.4), (2.16) for some δ ∈ (0, δ0) and

Ah0(u0) = [α0, β0] with γ1 < α0 < β0 < γ2. Let us assume, moreover, that there are d > 0 and

ε > 0 such that (2.12), (2.13), (2.14), (2.15) are valid. Then for any η > 0 there exists δ > 0

such that the following holds:

(i) For any solution (u, f, h) to (1.4) satisfying ‖u− u0‖+ ‖f − f0‖C1(Ω) + |h− h0| < δ there

exists (v, α, β) ∈ H0 ×D with ‖v‖+ |α− α0|+ |β − β0| < η such that Ah(u) = [α, β] and

(v, α, β, f, h) satisfies

f ∈ C1(Ω), h > 0, (α, β) ∈ D, v ∈ H0 :〈
F
(

Φα,β

(
h
h0
u0 + v

)
, f
)
,Φα,βϕ

〉
= 0 for any ϕ ∈ H0,

(3.3)∫
Ω

fvδ
α,β −

h

h0

∇Φα,βu0 · ∇vδ
α,β dx dy =

∫
Ω

fwδ
α,β −

h

h0

∇Φα,βu0 · ∇wδ
α,β dx dy = 0, (3.4)

u = Φα,β

(
h

h0

u0 + v

)
. (3.5)
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(ii) For any (v, α, β, f, h) satisfying (3.3), (3.4), ‖v‖+ |α− α0|+ |β − β0|+ ‖f − f0‖C1(Ω) +

|h − h0| < δ, the triplet (u, f, h) with u from (3.5) satisfies (1.4), ‖u − u0‖ < η and

Ah(u) = [α, β].

Proof of this theorem as well as of the following one will be done later in this section. We need

for them additional notation and technical assertions, which are the subject of the forthcomming

part of the text. In particular, we need to describe properties of the functions vδ
α,β, wδ

α,β from

(2.11).

Theorem 3.2 Let us consider the assumptions of Theorem 3.1 but replace (2.13) by (2.17).

Then for any η > 0 there exists δ > 0 such that the following holds:

(i) For any solution (u, f, h) to (1.4) satisfying ‖u− u0‖+ ‖f − f0‖C1(Ω) + |h− h0| < δ and

∂yf ≥ 0 on Ωd there exists (v, α, β) ∈ H0×D with ‖v‖+ |α−α0|+ |β−β0| < η such that

Ah(u) = [α, β] and (v, α, β, f, h) satisfies (3.3)–(3.5).

(ii) For any (v, α, β, f, h) satisfying (3.3), (3.4), ‖v‖+ |α− α0|+ |β − β0|+ ‖f − f0‖C1(Ω) +

|h − h0| < δ and ∂yf ≥ 0 on Ωd the triplet (u, f, h) with u from (3.5) satisfies (1.4),

‖u− u0‖ < η and Ah(u) = [α, β].

Remark 3.3 In fact, due to Lemma 3.6 below we could replace Φα,βu0 in (3.4) by an arbitrary

he
α,β ∈ H ∩W 2,2(Ω) such that he

α,β = h on Iα,β. Cf. also Remark 2.8, but now we do not need

any smoothness of the map (2.18) mentioned there.

Let us define for any (α, β) ∈ D the closed subspace Uα,β of L2(Ω)× R by

Uα,β := {(−∆u, h) : u ∈ W 2,2(Ω), h ∈ R, u = 0 on ΓD, u = h on Iα,β, ∂νu = 0 on ΓN ∪ Eα,β}.

Remark 3.4 Clearly, we have

Uα,β = {(f, h) ∈ L2(Ω)× R : u ∈ W 2,2(Ω) for the weak solution u of (1.1), (1.2), (1.5)}.

Since Φα,β is one-to-one mapping of {ϕ ∈ W 2,2(Ω) ∩H : ϕ = h in Iα0,β0 , ∂νu = 0 on Eα0,β0}
onto {ϕ ∈ W 2,2(Ω) ∩H : ϕ = h in Iα,β, ∂νu = 0 on Eα,β} (see Remark 2.1) we get also

Uα,β = {(−∆Φα,βu, h) : u ∈ W 2,2(Ω), h ∈ R, u = 0 on ΓD, u = h on Iα0,β0 ,

∂νu = 0 on ΓN ∪ Eα0,β0}.

It follows from [8, Theorem 1] that there exist two functionals `1α,β, `
2
α,β : L2(Ω)×W 1/2,2(Iα,β) →

R such that a weak solution to (1.1), (1.2), (1.5) (even with an arbitrary h ∈ W 1/2,2(Iα,β))

satisfies u ∈ W 2,2(Ω) if and only if `1α,β(f, h) = `2α,β(f, h) = 0. In particular, Uα,β has a

codimension two in L2(Ω)× R.
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For any fixed (α, β) ∈ D, let us define functions X
(1/2)
δ and Y

(1/2)
δ by

X
(1/2)
δ (α + r cosω, r sinω) := χδ(r)r

1/2 sin ω
2

Y
(1/2)
δ (β + r cosω, r sinω) := χδ(r)r

1/2 sin ω
2

where the function χδ is from (2.7) and r, ω are the same as in the definition of Xδ, Y δ in (2.8).

Remark 3.5 Let (u, α, β, f, h) ∈ H×D×L2(Ω)×R, let u be a weak solution of (1.1), (1.2) and

(1.5). It follows from [8, Theorem 2] (cf. also [12], Theorems 10.2 and 12.5 and expressions

(2.8), (2.10), (2.11), (14.3) there), that we can write u as

u = uα,β,2,p +Kδ
αX

(1/2)
δ +Kδ

βY
(1/2)
δ , (3.6)

where uα,β,2,p ∈ W 2,2(Ω) and Kδ
α, K

δ
β ∈ R. It follows from [8, Theorem 3] that even uα,β,2,p ∈

W 2,p(Ω) for all p ∈ [2, 4), in particular uα,β,2,p ∈ C1(Ω).

Let us emphasize that none of the functions X
(1/2)
δ , Y

(1/2)
δ belongs neither to W 2,2(Ω) nor

to C1(Ω), because of the singularity in the first derivatives at (α, 0) or (β, 0), respectively. In

particular

∂xX
(1/2)
δ (α−, 0) = −∞, ∂xY

(1/2)
δ (β+, 0) = +∞. (3.7)

It follows that u ∈ C1(Ω) if and only if u ∈ W 2,2(Ω), and this is true if and only if Kδ
α = Kδ

β = 0.

In this case even (2.27) is fulfilled. Of course, this holds only for some couples (α, β) ∈ D and

the corresponding h.

Lemma 3.6 The following assertions hold for any (α, β) ∈ D and δ ∈ (0, δ0).

vδ
α,β, w

δ
α,β ∈ W 1,q(Ω) for all q ∈

[
1,

4

3

)
, (3.8)

the expressions aδ
α,β :=

∫
Ω
∇vδ

α,β · ∇ϕ dx dy, bδα,β :=
∫

Ω
∇wδ

α,β · ∇ϕ dx dy

are independent of ϕ ∈ W 2,2(Ω) with ϕ = 0 on ΓD, ϕ = 1 on Iα,β,
(3.9)

Uα,β =
[

span
{

(vδ
α,β,−aδ

α,β), (wδ
α,β,−bδα,β)

}]⊥
, (3.10)

where the orthogonal complement is understood in L2(Ω)× R.

In particular, if δ ∈ (0, δ0) is given then the functionals `1α,β, `
2
α,β mentioned in Remark 3.4

can be chosen such that on L2(Ω)× R they have a representation

`1α,β(f, h) =
∫

Ω
fvδ

α,β − h
h0
∇Φα,βu0 · ∇vδ

α,β dx dy,

`2α,β(f, h) =
∫

Ω
fwδ

α,β − h
h0
∇Φα,βu0 · ∇wδ

α,β dx dy.

Proof. The condition (3.8) follows from Lemma 2.3(i), definition of Xδ, Y δ, Xδ
α,β, Y δ

α,β, (2.11)

and the smoothness of ξα,β.
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In order to prove (3.9), let us show first that if ϕ ∈ W 2,2(Ω) with ϕ = 0 on ΓD ∪ Iα,β then∫
Ω

∇vδ
α,β · ∇ϕ dx dy =

∫
Ω

∇wδ
α,β · ∇ϕ dx dy = 0. (3.11)

Let us take such ϕ. Then using the definition of Φ∗
α,β, vδ

α,β, ∇α,β, Lemma 2.3(iii) and (iv)

(realizing the imbedding W 2,2(Ω) ⊂ W 1,q(Ω) for all 2 ≤ q <∞) we get∫
Ω
∇ϕ · ∇vδ

α,β dx dy =
∫

Ω
∇Φα,βΦ−1

α,βϕ · ∇Φα,β(Xδ
α,β +Xδ) dx dy

=
∫

Ω
∇α,βΦ−1

α,βϕ · ∇α,βX
δ
α,β − Φ−1

α,βϕ∆Xδ dx dy

which is zero due to (2.10) with Φ−1
α,βϕ instead of ϕ there (let us observe that we have Φ−1

α,βϕ ∈
W 2,2(Ω) and Φ−1

α,βϕ = 0 on ΓD ∪ Iα0,β0 due to Remark 2.1). Similarly one can show that∫
Ω
∇ϕ · ∇wδ

α,β dx dy = 0.

If ϕ1, ϕ2 are two functions proper for (3.9) then the choice ϕ := ϕ1 − ϕ2 in (3.11) implies

that the integrals in (3.9) with ϕ = ϕ1 and ϕ = ϕ2 are the same, and the assertion (3.9) follows.

Due to the linear independence of vδ
α,β, wδ

α,β and Remark 3.4, for the proof of (3.10) it is

sufficient to show that ∫
Ω
fvδ

α,β dx dy − haδ
α,β = 0,∫

Ω
fwδ

α,β dx dy − hbδα,β = 0

for all (f, h) ∈ Uα,β. Let us take u ∈ W 2,2(Ω), h > 0 with u = 0 on ΓD, u = h on Iα,β, ∂νu = 0

on ΓN ∪ Eα,β and set

f := −∆u.

Let us choose ϕ := u/h in (3.9). Then∫
Ω
fvδ

α,β dx dy − haδ
α,β =

∫
Ω
fvδ

α,β − h∇ϕ · ∇vδ
α,β dx dy

= −
∫

Ω
∆uvδ

α,β +∇u · ∇vδ
α,β dx dy = 0

by the Green formula and the facts that u ∈ W 2,2(Ω), vδ
α,β ∈ W 1,q(Ω), q ∈

[
1, 4

3

)
, vδ

α,β = 0 on

ΓD ∪ Iα,β. Similarly for wδ
α,β, and (3.10) is proved. The representation of `1α,β, `

2
α,β from the last

assertion now follows from (3.10) by the choice ϕ := Φα,βu0/h0 in (3.9).

Let us remark that in the following Proposition, the condition (3.4) could be again formu-

lated as it is mentioned in Remark 3.3, cf. also Remark 2.8.

Proposition 3.7 A point (v, α, β, f, h) ∈ H ×D × C1(Ω) × R satisfies (3.3) if and only if u

from (3.5) is a weak solution of the boundary value problem (1.1), (1.2), (1.5). In this case,

(f, h) satisfies (3.4) if and only if u ∈ C1(Ω). Then in particular (1.1), (1.2), (1.5) are fulfilled

in the classical sense and also (2.27) holds.

Proof. The statement about the equivalence of (3.5) with a weak formulation of (1.1), (1.2),

(1.5) follows from standard considerations and the fact that Φα,β is one-to-one mapping of Hα0,β0
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onto Hα,β (see Remark 2.1). If (f, h) satisfies, moreover, (3.4) then (f, h) ∈ Uα,β by Lemma 3.6

where we choose ϕ = Φα,βu0/h0 in the expressions for aδ
α,β, bδα,β. Remark 3.4 implies that the

weak solution of (1.1), (1.2), (1.5) belongs in addition to W 2,2(Ω). Remark 3.5 gives that in

this case u ∈ C1(Ω) and even (2.27) holds.

The last part of Remark 3.5 implies that if u ∈ C1(Ω) then u ∈ W 2,2(Ω). This means

that (f, h) = (−∆u, u|Iα,β
) ∈ Uα,β by Remark 3.4, and Lemma 3.6 (again with ϕ = Φα,βu0/h0)

implies that (3.4) holds.

For any (α, β) ∈ D and any h > 0, let us define the subspace Hα,β and the affine space

Hh
α,β in H by

Hα,β := {u ∈ H : u = 0 in Iα,β}, Hh
α,β := {u ∈ H : u = h in Iα,β}.

Lemma 3.8 Let (u, α, β, f, h), (un, αn, βn, fn, hn) ∈ H × D × C1(Ω) × R satisfy (1.1), (1.2),

(1.5) in the weak sense and let

|αn − α|+ |βn − β|+ ‖fn − f‖C1(Ω) + |hn − h| → 0. (3.12)

Then ‖un − u‖ → 0.

Proof. Proposition 3.7 implies that (u, α, β, f, h), (un, αn, βn, fn, hn) satisfy (1.1), (1.2), (1.5)

if and only if (w, α, β, f, h), (wn, αn, βn, fn, hn) with w = Φ−1
α,β(u), wn(x, y) = Φ−1

αn,βn
(un) satisfy

f ∈ C1(Ω), h > 0, (α, β) ∈ D,w ∈ Hh
α0,β0

: 〈F (Φα,β (w) , f) ,Φα,βϕ〉 = 0 for any ϕ ∈ H0.

(3.13)

Realizing the definitions of F and Φα,β we can write (3.13) in the form∫
Ω

∇w(ξα,β(x), y)∇ϕ(ξα,β(x), y)− f(x, y)ϕ(ξα,β(x), y) dx dy = 0 for all ϕ ∈ H0.

Introducing a new variable x̄ = ξα,β(x) and finally renaming x̄ again to x we get∫
Ω
∂xw(x, y)∂xϕ(x, y)ξ′α,β(ξ−1

α,β(x)) +
∂yw(x,y)∂yϕ(x,y)−f(ξ−1

α,β(x),y)ϕ(x,y)

ξ′α,β(ξ−1
α,β(x))

dx dy = 0

for all ϕ ∈ H0.

It follows from (2.1) that ξ′αn,βn
(ξ−1

αn,βn
(x)) → ξ′α,β(ξ−1

α,β(x)), 1
ξ′αn,βn

(ξ−1
αn,βn

(x))
→ 1

ξ′α,β(ξ−1
α,β(x))

in

C([0, 1]). We obtain ‖wn − w‖ → 0 under the assumption (3.12) from known results about

dependence of weak solutions to boundary value problems on data ([16, Proposition 6.2, The-

orem 6.2]). Our assertion now follows by using Remark 2.1.

In the following assertions we will consider often (u, α, β, f, h) ∈ C1(Ω) ×D × C1(Ω) × R
satisfying (1.1), (1.2), (1.5). Hence, in this case u will satisfy also (2.27) by Remark 3.5.
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Lemma 3.9 Let T be a subset of ∂Ω, T ⊂ ΓD∪ΓN∪Eα0,β0 (i.e. T ⊂ ∂Ω\Iα0,β0), and Ω′ a sub-

domain of Ω such that Ω′ ⊂ Ω∪T . There is C > 0 such that if (u, α, β, f, h), (u0, α0, β0, f0, h0) ∈
C1(Ω)×D × C1(Ω)× R satisfy (1.1), (1.2), (1.5) and Iα,β ∩ T = ∅ then u0, u ∈ C2(Ω

′
),

‖u− u0‖C2(Ω′) ≤ C
(
‖u− u0‖+ ‖f − f0‖C1(Ω)

)
.

Proof. First, let us consider an arbitrary subdomain Ω′ satisfying our assumptions with T ⊂
({0} × [0, `)) ∪ ([0, α0 − δ) × {0}), δ ∈ (0, α0). Clearly there is a domain Ω′′ ⊂ Ω such that

Ω′ ⊂ Ω′′ ∪ T and also Ω′′ ⊂ Ω ∪ T . We will prolong the domain Ω and the functions u, u0, f ,

f0 to the left and down in the following way. Let us define

Ω− := {(x, y) ∈ R2 : (x,−y) ∈ Ω} = (0, 1)× (−`, 0),

ΩL := {(x, y) ∈ R2 : (−x, y) ∈ Ω} = (−1, 0)× (0, `),

Ω−
L := {(x, y) ∈ R2 : (−x,−y) ∈ Ω} = (−1, 0)× (−`, 0),

Ω0 := (−1, 1)× (−`, `),
Ω1 := (0, 1)× (−`, `),
Γ0,` := {0} × (−`, `),
I−α0,β0

:= {(x, y) ∈ R2 : (−x, y) ∈ Iα0,β0}

and introduce the functions ũ, ũ0, f̃ , f̃0 : Ω0 → R defined by

ũ(x, y) :=


u(x, y), (x, y) ∈ Ω,

u(x,−y), (x, y) ∈ Ω−,

−u(−x, y), (x, y) ∈ ΩL,

−u(−x,−y), (x, y) ∈ Ω−
L

and analogously for ũ0, f̃ , f̃0. Let us choose domains Ω′
0, Ω′′

0 ⊂ Ω0 such that Ω′
0 ∩Ω = Ω′, Ω′′

0 ∩
Ω0 = Ω′′, Ω

′
0 ⊂ Ω′′

0, Ω′′
0 ∩ (Iα0,β0 ∪ I−α0,β0

) = ∅. (We can take e.g. symmetric prolongations to the

left and down of Ω′, Ω′′ similarly as above.) It is easy to verify that ũ, ũ0 ∈ W 1,2(Ω′′
0)∩C1

(
Ω′′

0

)
and f̃ , f̃0 ∈ L2(Ω0). (Let us note that f̃ , f̃0 need not be continuous on Γ0,`.) Moreover, both

(ũ, f̃) and (ũ0, f̃0) satisfy in a weak sense

−∆ũ = f̃ in Ω′′
0.

We get from [7, Theorem 8.8] together with the embedding theorem that there are C1, C2 > 0

such that

‖ũ− ũ0‖C(Ω′
0) ≤ C1‖ũ− ũ0‖W 2,2(Ω′

0) ≤ C2

(
‖ũ− ũ0‖W 1,2(Ω′′

0 ) +
∥∥∥f̃ − f̃0

∥∥∥
L2(Ω′′

0 )

)
.

These estimates together with the definitions of reflected functions ũ, ũ0, f̃ , f̃0 imply that

‖ũ− ũ0‖C(Ω′
0) ≤ 4C2(‖u− u0‖+ ‖f − f0‖C1(Ω)). (3.14)
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In particular,

‖u− u0‖C(Ω′) ≤ 4C2(‖u− u0‖+ ‖f − f0‖C1(Ω)). (3.15)

Furthermore, let us take Ω′
1 := Ω1 ∩Ω′

0, Ω′′
1 := Ω1 ∩Ω′′

0. Now, let us realize that the restrictions

of ũ, ũ0, f̃ , f̃0 on Ω1 (called for the sake of simplicity again ũ, ũ0, f̃ , f̃0) satisfy ũ, ũ0 ∈
W 1,2(Ω′′

1) ∩ C1(Ω
′′
1), and f̃ , f̃0 ∈ C0,1(Ω′′

1) (the space of Lipschitz functions) and both (ũ, f̃),

(ũ0, f̃0) satisfy

−∆ũ = f̃ in Ω′′
1, (3.16)

u = 0 on Γ0,`. (3.17)

by the assumptions, we see that Moreover, ũ and ũ0 satisfies the boundary value problem (6.1),

(6.2) with g = f̃ and g = f̃0, respectively, in Ω′′
1, ϕ = ũ and ϕ = ũ0, respectively, on ∂Ω′′

1.

Remark 6.1 implies that ũ, ũ0 ∈ C2(Ω′′
1). Using [7, Theorem 4.12] with Ω′′

1 instead of Ω, T = Γ0,`

we get the existence of C3 > 0 such that the estimate

‖ũ− ũ0‖C2(Ω′
1) ≤ C3

(
‖ũ− ũ0‖C(Ω′′

1 ) +
∥∥∥f̃ − f̃0

∥∥∥
C0,1(Ω′′

1 )

)
holds. Restricting back to Ω and realizing (3.14) we obtain that

‖u− u0‖C2(Ω′) ≤ ‖ũ− ũ0‖C2(Ω′) ≤ C4

(
‖u− u0‖+ ‖f − f0‖C1(Ω)

)
(3.18)

with C4 = 4C2 + 2C3. The assertion of Lemma 3.9 for the case T ⊂ ({0} × [0, `)) ∪ ([0, α0 −
δ)× {0}) if δ ∈ (0, α0) is proved.

Similarly we can treat subdomains Ω′ adhering to the left upper corner of Ω, i.e. the case

T ⊂ ({0} × (0, `]) ∪ ([0, 1) × {`}). Now we prolong our domain and functions to the left and

above and use similar considerations to obtain the same estimate again. (Now we do not remove

a neighbourhood of Iα0,β0 from the domain which arises.) Finally, we can do the same with

the right corners, i.e. we prolong to the right and down or up, respectively. Realizing that the

union of four suitable subdomains of the four types considered cover an arbitrary domain from

the assumptions of Lemma and summarizing the estimates obtained for the particular cases,

we get the assertion.

Lemma 3.10 Let (u0, f0, h0) satisfy (1.4), Ah0(u0) = [α0, β0] with γ1 < α0 < β0 < γ2. Let us

assume, moreover, that there are d > 0, ε > 0 such that (2.12), (2.13), (2.14), (2.15) hold.

Then there exists η > 0 such that if (u, α, β, f, h) ∈ C1(Ω)×D×C1(Ω)×R satisfy (1.1), (1.2),

(1.5),

‖u− u0‖+ ‖f − f0‖C1(Ω) + |h− h0|+ |α− α0|+ |β − β0| < η (3.19)

then

∂yu > 0 in Ωd ∪ Iα,β ∪ Γd, (3.20)

u < h on Eα,β. (3.21)
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Remark 3.11 It is easy to see from the proof below that if we replace the assumption (2.13) by

(2.17) in Lemma 3.10 then the assertion holds only for all (u, α, β, f, h) ∈ C1(Ω)×D×C1(Ω)×R
satisfying (1.1), (1.2), (1.5), (3.19) and in addition ∂yf ≥ 0 in Ωd.

Proof. First, it follows from (2.12), (2.13), (2.14), (2.15) and Lemma 3.9 that if (u, α, β, f, h) ∈
C1(Ω) ×D × C1(Ω) × R satisfy (1.1), (1.2), (1.5) and (3.19) with η sufficiently small then we

have

f > 0 on Iα,β, (3.22)

∂yf ≥ 0 in Ωd, (3.23)

∂yu > 0 on Γd. (3.24)

Let us not that ∂yu(0, d) = ∂yu(1, d) = 0 and we need both (2.14), (2.15) for the proof of (3.24).

Let us prove that

∂yu > 0 on Iα,β (3.25)

for all u, α, β under consideration. Let us assume for a contradiction that there are (un, αn, βn, fn, hn) ∈
C1(Ω)×D×C1(Ω)×R satisfying (1.1), (1.2), (1.5), (3.23), (3.22) and points (xn, 0) ∈ Iαn,βn such

that ∂yun(xn, 0) ≤ 0. Let us denote vn := ∂yun. It follows from Remark 3.5 that un ∈ W 2,2(Ω),

that means vn ∈ W 1,2(Ω) and it is easy to see that vn satisfy in the weak sence

−∆v = ∂yf in Ωd, (3.26)

v = 0 on ∂Ωd ∩ (ΓD ∪ ΓN ∪ Eα,β) (3.27)

with (α, β) = (αn, βn), f = fn. Of course, we have also vn(αn, 0) = vn(βn, 0) = 0 due to

un ∈ C1(Ω). Because of (3.23) we can apply Maximum Principle for weak solutions (see [7,

Theorem 8.1] for −vn in Ωd to obtain that vn has to attain its minimum on ∂Ωd. We have

min vn|Iαn,βn
≤ 0 and therefore if arg min vn|Ωd

/∈ Iαn,βn for n arbitrarily large then min vn|Ωd
<

0, and because of (3.27) there are points (ζn, d) ∈ Γd with vn(ζn, d) < 0. This contradicts to

(3.24) for n large enough. Hence, arg min vn|Ωd
∈ Iαn,βn for all n large enough. Let us denote

this argument of minimum by (zn, 0).

Due to the minimality we get ∂yvn(zn, 0) ≥ 0 (∂yvn(zn, 0) exists due to Remark 6.1 and

∂yvn(zn, 0) < 0 leads immediately to the contradiction). We get (realizing (1.1) and (1.5)

implying ∂2
xxun(zn, 0) = 0) with help of the assumption (3.22) and Remark 6.1 that

0 ≤ ∂yvn(zn, 0) = ∂2
yyun(zn, 0) = −fn(zn, 0) < 0.

This contradiction implies (3.25).

It follows from (1.2), (1.5), (3.24), (3.25) and Maximum Principle for v := ∂yu on Ωd that

v ≥ 0 on Ωd. Strong Maximum Principle for weak solutions (see [7, Theorem 8.19]) implies

v > 0 in Ωd. This together with (3.24) and (3.25) gives (3.20).
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Let us prove (3.21). First, it follows from (2.12) that δ > 0, η > 0 can be chosen so small

that if (u, α, β, f, h) ∈ C1(Ω)×D × C1(Ω)× R satisfy (1.1), (1.2), (1.5) and (3.19) then

f(x, 0) > 0 for all x ∈ [α− δ, β + δ]. (3.28)

Since u0 < h on Eα0,β0 by the assumption A(u0) = [α0, β0], it follows from Lemma 3.9 that η

can be chosen sufficiently small such that

u(x, 0) < h for all x ∈ [γ1, α− δ] ∪ [β + δ, γ2] (3.29)

for all (u, α, β, f, h) under consideration.

Further, let us prove that

∂2
xxu(x, 0) < 0 for all x ∈ (α− δ, α) ∪ (β, β + δ). (3.30)

If this were not true then the equation (1.1), Remark 6.1 and (3.28) would give

∂2
yyu(x, 0) = −f(x, 0)− ∂2

xxu(x, 0) < 0

for some x ∈ (α− δ, α)∪ (β, β+ δ). Since ∂yu(x, 0) = 0 by (1.5), we would obtain ∂yu(x, y) < 0

for y > 0 small, which contradicts (3.20) and (3.30) is proved.

Due to (1.5) and the assumption u ∈ C1(Ω) we have u(α, 0) = u(β, 0) = ∂xu(α, 0) =

∂xu(β, 0) = 0 and therefore (3.30) implies that

∂xu(x, 0) > 0 for all x ∈ (α− δ, α), ∂xu(x, 0) < 0 for all x ∈ (β, β + δ).

Hence,

u(x, 0) < h for all x ∈ (α− δ, α) ∪ (β, β + δ).

This together with (3.29) give (3.21) and the proof is completed.

Proof of Theorem 3.1. Let us have (u0, α0, β0, f0, h0) satisfying all assumptions.

First, we will prove (ii). Let us consider (v, α, β, f, h) ∈ H0×D×C1(Ω)×R satisfying (3.3),

(3.4). The map Φα,β is one-to-one of Hα0,β0 onto Hα,β (see Remark 2.1) and it follows easily

from (3.3) that u from (3.5) is a weak solution of (1.1), (1.2), (1.5). Proposition 3.7 implies that

u ∈ C1(Ω), (1.1), (1.2), (1.5) hold even in the classical sense and (2.27) is fulfilled. It follows

from Remark 2.1 that for any η > 0 there is δ > 0 such that if ‖v‖+ |α−α0|+ |β − β0|+ ‖f −
f0‖C1(Ω) + |h− h0| < δ then ‖u− u0‖+ |α− α0|+ |β − β0|+ ‖f − f0‖C1(Ω) + |h− h0| < η with

u from (3.5). Moreover, if η is sufficiently small then it follows from Lemma 3.10 that (3.20),

(3.21) are fulfilled. In particular, Ah(u) = [α, β]. Now, Proposition 2.14 (where Ih(u) = Iα,β

and Eh(u) = Eα,β) yields that (u, f, h) satisfies (1.4), and (ii) is proved.

To prove (i), let η > 0 be given. Let δ > 0 be such that (ii) already proved holds. First,

let (u, f, h) satisfy (1.4) and, moreover, Ah(u) = [α, β] with some (α, β) ∈ D. Consider the
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corresponding v from (3.5). It follows from Proposition 2.14 that u ∈ C2(Ω)∩C1(Ω) and (1.1),

(1.2), (1.5) hold. Hence, Proposition 3.7 ensures that (3.3) and (3.4) are fulfilled. Thus, in

order to finish the proof, it is sufficient to show that for any triplet (u, f, h) satisfying (1.4) and

lying in a neighbourhood of (u0, f0, h0) there is really some (α, β) ∈ D such that Ah(u) = [α, β].

The following assertion follows directly from Theorem 4.1 which will be proved completely

independently in Section 4. There is δ′ > 0 such that if ‖f − f0‖C1(Ω) + |h−h0| < δ′ then there

are v̂(f, h) ∈ H0,
(
α̂(f, h), β̂(f, h)

)
∈ D satisfying (3.3), (3.4) (with α = α̂(f, h), β = β̂(f, h))

‖v̂(f, h)‖ + |α̂(f, h) − α0| +
∣∣∣β̂(f, h)− β0

∣∣∣ < δ
2
. We can take δ′ < δ

2
and then ‖v̂(f, h)‖ +

|α̂(f, h)− α0|+
∣∣∣β̂(f, h)− β0

∣∣∣+‖f−f0‖+|h−h0| < δ. Now, by the assertion (ii) already proved,

the triplet (u, f, h) with u = û(f, h) := Φα,β

(
h
h0
u0 + v̂(f, h)

)
satisfies (1.4), ‖û(f, h)−u0‖ < η,

Ah (û(f, h)) =
[
α̂(f, h), β̂(f, h)

]
. However, the variational inequality (1.4) has for any f , h

a unique solution u and therefore u = û(f, h) for any (u, f, h) under consideration, and in

particular Ah(u) =
[
α̂(f, h), β̂(f, h)

]
.

Proof of Theorem 3.2 is the same as that of Theorem 3.1 but we use Remark 3.11 instead

of Lemma 3.10.

4 Application of the Implicit Function Theorem: Con-

tinuation for the Operator Equation

We will use the notation from Sections 2, 3. In particular, vδ
α,β, wδ

α,β and aδ
α,β, bδα,β are from

(2.11) and (3.9) (Lemma 3.6), respectively.

Theorem 4.1 Let k ∈ N, let (u0, f0, h0) satisfy (1.4), (2.16) for some δ ∈ (0, δ0), Ah0(u0) =

[α0, β0] with γ1 < α0 < β0 < γ2. Then there exist neighbourhoods V ⊂ Ck(Ω) × R, W0 ⊂ H0

and Wα,Wβ ⊂ R of (f0, h0), 0, α0 and β0, respectively, and Ck-mappings v̂ : V → W0,

α̂ : V → Wα, β̂ : V → Wβ such that v̂(f0, h0) = 0, α̂(f0, h0) = α0, β̂(f0, h0) = β0 and that

(v, α, β, f, h) ∈ W0×Wα ×Wβ × V satisfies (3.3), (3.4) if and only if v = v̂(f, h), α = α̂(f, h),

β = β̂(f, h).

Proof will be done later in this section.

Lemma 4.2 For any fixed δ ∈ (0, δ0) the map (α, β) ∈ D 7→ (aδ
α,β, b

δ
α,β) ∈ R2 is C∞-smooth,

and for any k ∈ N the map

(α, β, f) ∈ D × Ck(Ω) 7→
(∫

Ω

fvδ
α,β dx dy,

∫
Ω

fwδ
α,β dx dy

)
∈ R2

is Ck-smooth.
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Proof. Let ϕ ∈ C∞(Ω) with ϕ = 0 on ΓD, ϕ = 1 on Iα,β be fixed. Then we get by using the

definition of aδ
α,β (Lemma 3.6), Φα,β, ṽδ

α,β, ∇α,β, properties (2.5), (2.6) and Lemma 2.3 (ii) that

aδ
α,β =

∫
Ω
∇ϕ · ∇vδ

α,β dx dy =
∫

Ω
∇ϕ · ∇Φα,β(Xδ

α,β +Xδ) dx dy

=
∫

Ω
∇α,βΦ−1

α,βϕ · ∇α,β(Xδ
α,β +Xδ) dx dy

=
∫

Ω
∇α,βΦ−1

α,βϕ · ∇α,βX
δ
α,β dx dy +

∫
Ω
∇α,βΦ−1

α,βϕ · ∇α,βX
δ dx dy

=
∫

Ω
∇α,βΦ−1

α,βϕ · ∇α,βX
δ
α,β dx dy +

∫
Bδ(α0)

∇Φ−1
α,βϕ · ∇Xδ dx dy.

(4.1)

Standard results about smooth dependence of weak solutions to linear elliptic boundary value

problems on coefficients and right hand sides yield that the map

(α, β) ∈ D 7→ Xδ
α,β ∈ W 1,2(Ω)

generated by (2.10) is C∞-smooth. Moreover, because of the C∞-smoothness of ϕ, realizing

Lemma 2.2 (with m = 1, k = ∞) and the definition of ∇α,β we get that

(α, β) ∈ D 7→ ∇Φ−1
α,βϕ ∈ L2(Ω) is C∞-smooth,

(α, β) ∈ D 7→ ∇α,βΦ−1
α,βϕ ∈ L2(Ω) is C∞-smooth.

(4.2)

Hence, the right hand side of (4.1) depends C∞-smoothly on (α, β). Similarly for bδα,β, and the

first part follows.

To prove the second assertion, take f ∈ Ck(Ω). Then we get by using the definition of Φ∗
α,β,

properties (2.5), (2.6) and (3.9) and Lemma 2.3(ii) that∫
Ω
fvδ

α,β dx dy =
∫

Ω
fΦα,β(Xδ

α,β +Xδ) dx dy

=
∫

Ω
Φ∗

α,βf(Xδ
α,β +Xδ) dx dy

=
∫

Ω
Φ∗

α,βfX
δ
α,β dx dy +

∫
Ω

Φ∗
α,βfX

δ dx dy

=
∫

Ω
Φ∗

α,βfX
δ
α,β dx dy +

∫
Bδ(α0)

Φ∗
α,βfX

δ dx dy.

(4.3)

Because of Lemma 2.2 (with m = 0) we get that

(α, β, f) ∈ D × Ck(Ω) 7→ Φ∗
α,βf ∈ L2(Ω) is Ck-smooth. (4.4)

Hence, the right hand side of (4.3) depends Ck-smoothly on (α, β, f). Similarly for wδ
α,β, and

the second assertion is proved.

Proof of Theorem 4.1. First, due to Propositions 2.14, 3.7 and the fact that Φα,β is one-to-

one mapping of Hα0,β0 onto Hα,β (see Remark 2.1), (v, α0, β0, f0, h0) with v = 0 satisfies (3.3),

(3.4).

Furthermore, let us fix δ ∈ (0, δ0) and k ∈ N and introduce a mapping Gδ : H0 × D ×
Ck(Ω)× R → H0 × R2, Gδ = (G1, G

δ
2, G

δ
3), by

〈G1(v, α, β, f, h), ϕ〉 :=
〈
−F

(
Φα,β

(
h
h0
u0 + v

)
, f
)
,Φα,βϕ

〉
for all ϕ ∈ H0,

Gδ
2(v, α, β, f, h) =

∫
Ω
fvδ

α,β − hh−1
0 ∇Φα,βu0 · ∇vδ

α,β dx dy,

Gδ
3(v, α, β, f, h) =

∫
Ω
fwδ

α,β − hh−1
0 ∇Φα,βu0 · ∇wδ

α,β dx dy.

(4.5)
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It follows from Lemma 2.2 and Lemma 4.2 that Gδ
2 and Gδ

3 are Ck-smooth. Introducing a new

integration variable x̄ = ξα,β(x) and renaming x̄ again to x we get

〈G1(v, α, β, f, h), ϕ〉 =
∫

Ω
∂x

[
h
h0
u0(x, y) + v(x, y)

]
∂xϕ(x, y) · ξ′α,β

(
ξ−1
α,β(x)

)
+
(
∂y

[
h
h0
u0(x, y) + v(x, y)

]
∂yϕ(x, y)− f

(
ξ−1
α,β(x), y

)
ϕ(x, y)

)
1

ξ′α,β(ξ−1
α,β(x))

dx dy

for all ϕ ∈ H0.

(4.6)

Hence, (also by using (2.4)) we get

G1(v, α, β, f, h) = M1

ξ′α,β(ξ−1
α,β)∂x

[
h

h0

u0 + v

]
,
∂y

[
h
h0
u0 + v

]
ξ′α,β(ξ−1

α,β)

−M2Φ
∗
α,βf,

where the linear bounded operators M1 : (L2(Ω))
2 → H0 and M2 : L2(Ω) → H0 are defined by

〈M1(v1, v2), ϕ〉 :=
∫

Ω
(v1∂xϕ + v2∂yϕ) dx dy and 〈M2v, ϕ〉 :=

∫
Ω
vϕ dx dy for all ϕ ∈ H0. Using

(4.4) and the C∞-smoothness of the map

(α, β, u) ∈ D ×W 1,2(Ω) 7→

(
ξ′α,β(ξ−1

α,β)∂xu,
∂yu

ξ′α,β(ξ−1
α,β)

)
∈
(
L2(Ω)

)2
,

we get the Ck-smoothness of G1.

Now, the problem (3.3), (3.4) is equivalent to

Gδ(v, α, β, f, h) = 0. (4.7)

Let us denote by Lδ : H0 × R2 → H0 × R2 the partial derivative of Gδ with respect to

(v, α, β) at the point (0, α0, β0, f0, h0). Derivating (4.6) with respect to (v, α, β) at the point

(0, α0, β0, f0, h0) and realizing (2.2) we get

〈Lδ
1(w, ζ, θ), ϕ〉 =

∫
Ω
∇w∇ϕ

+ ζ([∂xu0∂xϕ− ∂yu0∂yϕ+ f0ϕ] ∂αξ
′
α,β(x) + ∂αξα,β(x)∂xf0ϕ)

+ θ([∂xu0∂xϕ− ∂yu0∂yϕ+ f0ϕ] ∂βξ
′
α,β(x) + ∂βξα,β(x)∂xf0ϕ) dx dy |α=α0,β=β0

for all ϕ ∈ H0,

Lδ
2(w, ζ, θ) = ζ∂α

(∫
Ω
f0v

δ
α,β −∇Φα,βu0 · ∇vδ

α,β dx dy
)
|α=α0,β=β0 ,

+ θ∂β

(∫
Ω
f0v

δ
α,β −∇Φα,βu0 · ∇vδ

α,β dx dy
)
|α=α0,β=β0 ,

Lδ
3(w, ζ, θ) = ζ∂α

(∫
Ω
f0w

δ
α,β −∇Φα,βu0 · ∇wδ

α,β dx dy
)
|α=α0,β=β0 ,

+ θ∂β

(∫
Ω
f0w

δ
α,β −∇Φα,βu0 · ∇wδ

α,β dx dy
)
|α=α0,β=β0 .

The condition (2.16) for δ small gives that Lδ(w, ζ, θ) = 0, i.e.

〈Lδ
1(w, ζ, θ), ϕ〉 = 0 for all ϕ ∈ H0,

Lδ
2(w, ζ, θ) = 0,

Lδ
3(w, ζ, θ) = 0,
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if and only if ζ = θ = 0 and w is a weak solution to the homogeneous boundary value problem

∆w = 0 in Ω,

w = 0 on ΓD ∪ Iα0,β0 ,

∂νw = 0 on ΓN ∪ Eα0,β0 .


This problem has only the trivial solution w = 0 and it follows that Lδ : H0 × R2 → H0 × R2

is injective for δ > 0 small enough. Realizing the form of the operator Lδ we see that it is

Fredholm, therefore its injectivity is equivalent to its surjectivity. Thus, Lδ is an isomorphism.

Hence, it follows from the Implicit Function Theorem that there are neighbourhoods V ⊂
Ck(Ω) × R of (f0, h0), W0 ⊂ H0 of 0, and Wα,Wβ ⊂ R of α0 and β0, respectively, and Ck-

mappings v̂ : V → H0, α̂, β̂ : V → R such that v̂(f0, h0) = 0, α̂(f0, h0) = α0, β̂(f0, h0) = β0 and

that we have Gδ(v, α, β, f, h) = 0 for (f, h) ∈ V and (v, α, β) ∈ W0 ×Wα ×Wβ if and only if

v = v̂(f, h), α = α̂(f, h), β = β̂(f, h). Finally, the equivalence between (4.7) and (3.3), (3.4)

mentioned above gives the assertion of the theorem.

5 Proof of the Main Results

Proof of Theorem 2.4 follows directly from Theorem 3.1 and Theorem 4.1.

Proof of Theorem 2.5 follows directly from Theorem 3.2 and Theorem 4.1.

Lemma 5.1 Let (u, α, β, f, h) ∈ C1(Ω)×D × C1(Ω)× R+ satisfy (1.1), (1.2), (1.5),

f > 0 on Iα,β, (5.1)

∂yf ≥ 0 in Ω. (5.2)

Then

∂yu > 0 in Ω ∪ Iα,β. (5.3)

Proof. Set v := ∂yu. We have u ∈ W 2,2(Ω) by Remark 3.5, therefore v ∈ W 1,2(Ω) and it is

easy to see that v satisfies in the weak sense

−∆v = ∂yf in Ω, (5.4)

v = 0 on ΓD ∪ ΓN ∪ Eh(u). (5.5)

Because of (5.2) we can apply Maximum Principle for weak solutions to −v (see [7, Theo-

rem 8.1]). Realizing that v ∈ C(Ω) we obtain that v attains its minimum on ∂Ω.

If there is (x, 0) ∈ Iα,β with ∂yu(x, 0) ≤ 0, i.e. v(x, 0) ≤ 0, then v must attain its minimum

on Iα,β because of (5.5). Let (x0, 0) ∈ Iα,β be the argument of minimum. Then v(x0, 0) =
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∂yu(x0, 0) ≤ 0. The derivative ∂yv(x0, 0) exists due to Remark 6.1 and clearly ∂yv(x0, 0) ≥ 0.

We have ∂2
xxu(x0, 0) = 0 by (1.5) and (1.1) together with the assumption (5.1) imply that

0 ≤ ∂yv(x0, 0) = ∂2
yyu(x0, 0) = −f(x0, 0) < 0.

This contradiction implies that u satisfies

∂yu > 0 on Iα,β. (5.6)

The previous part of the proof implies that v is nonconstant and v ≥ 0 in Ω. The Strong

Maximum Principle for weak solutions (see [7, Theorem 8.19]) implies ∂yu = v > 0 in Ω and

this together with (5.6) gives our asserion.

Proof of Proposition 2.10. The conditions (2.12), (2.20) assumed for f0 remain valid for f

(with a smaller ε) if ‖f − f0‖C1(Ω) is small enough. Hence, the assertion follows from Lemma

5.1.

Proof of Proposition 2.12. First, let us show that (3.25) holds under the assumption (2.22).

We have u ∈ W 2,2(Ω) by Proposition 2.14 and it is easy to see that the function v = ∂yu is a

weak solution of the problem

−∆v = ∂yf in Ω, (5.7)

v = ∂yu on ∂Ω. (5.8)

Again due to Proposition 2.14 we have ∂yu = 0 on ΓD ∪ ΓN ∪ Eh(u) and ∂yu ≥ 0 on Ih(u).

Under the assumption (2.22), the Strong Maximum Principle for weak solutions together with

the fact that v ∈ C(Ω) implies that minu|Ω = minu|∂Ω = 0 and v > 0 in Ω, i.e. (3.25) holds.

If the first assertion were not true then we would have also x̃1, x̃2 ∈ [γ1, γ2] such that

u(x̃1) = u(x̃2) = h, u(x) < h for all x ∈ (x̃1, x̃2). It is sufficient to prove that then it would

be simultaneously ∂2
xxu(x, 0) ≤ 0 for all x ∈ (x̃1, x̃2), which is impossible. If ∂2

xxu(x, 0) > 0

for some x ∈ (x̃1, x̃2) then ∂2
yyu(x, 0) = −f(x, 0) − ∂2

xxu(x, 0) < 0. We have ∂yu(x, 0) = 0 by

Proposition 2.14, therefore ∂yu(x, y) < 0 for y > 0 small, which contradicts (3.25). Hence, the

first assertion must hold.

For any f there is unique weak solution u0 of the problem (1.1) with

u = 0 on ΓD, (5.9)

∂νu = 0 on ΓN ∪ ΓU . (5.10)

It follows from [8, Theorem 3] that u0 ∈ C1(Ω) because we have right angles in all corners.

Hence, u0 ∈ C2(Ω) by Remark 6.1 (u0 is a solution of (1.1), (6.2) with the C1 right hand

side g = f and a continuous boundary condition u|∂Ω). We assume (2.22) and the classical
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Maximum Principle implies that minu0|Ω = minu0|∂Ω. This minimum cannot be attained in

(x, 0) or (x, `) (x ∈ (0, 1)) because the Strong Maximum Principle would imply ∂yu0(x, 0) > 0

or ∂yu0(x, 0) < 0, respectively, which would contradict (5.10).

Hence, the minimum must be attained on ΓD, that means minu0|Ω = 0. Consequently

u0(x, 0) > 0 for all x ∈ (0, 1). Clearly there is hf such that if h < hf then u0(x0, 0) > h

for some x0 ∈ [γ1, γ2] and if h > hf then u(x, 0) < h for all x ∈ [γ1, γ2]. In the former case,

u0 /∈ Kh and therefore it cannot be a solution of (1.4). The solution uI of (1.4) must touch the

obstacle h at least at two points. Indeed, if it were uI < h on ΓU or on ΓU with the exception

of a single point then it would fulfill (1.1), (5.9), (5.10) (recall that uI ∈ C1(Ω)), which would

contradict the unicity of the solution of (1.1), (5.9), (5.10). Hence, the existence of α, β such

that Ah(uI) = [α, β] follows from the first assertion of our Proposition. In the latter case, u0 is

simultaneously the unique solution of (1.4), and our last assertion follows.

6 Appendix

Proof of Lemma 2.2. Define the operator F : D × Ck+m(Ω) → Ck+m(Ω) by F(α, β, f) =

Φα,βf .

First, let us consider the case m = 0. Define F(α, β, f) := Φα,βf .

If F is differentiable then the partial derivatives can be calculated pointwise:

[∂αF(α, β, f)] (x, y) = ∂xf(ξα,β(x), y)∂αξα,β(x),

[∂βF(α, β, f)] (x, y) = ∂xf(ξα,β(x), y)∂βξα,β(x),

[∂fF(α, β, f)g] (x, y) = g(ξα,β(x), y).

Let us check that F is really partially differentiable with respect to α:

[F(α̃, β, f)−F(α, β, f)] (x, y)− (α̃− α)∂xf(ξα,β(x), y)∂αξα,β(x) =

= f(ξα̃,β(x), y)− f(ξα,β(x), y)− (α̃− α)∂xf(ξα,β(x), y)∂αξα,β(x).

The mean value theorem gives

f(ξα̃,β(x), y)−f(ξα,β(x), y) = ∂xf(θ, y)(ξα̃,β(x)−ξα,β(x)) and ξα̃,β(x)−ξα,β(x) = ∂αξη,β(x)(α̃−α)

with θ between ξα̃,β(x) and ξα,β(x) and η between α̃ and α. Therefore

[F(α̃, β, f)−F(α, β, f)] (x, y)

α̃− α
− ∂xf(ξα,β(x), y)∂αξα,β(x) → 0

for α̃→ α uniformly with respect to x and y because of the assumption (2.1).
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Analogously one shows that F is partially differentiable with respect to β.

For any fixed (α, β) ∈ D, the map f ∈ Ck(Ω) 7→ F(α, β, f) = Φα,βf ∈ C(Ω) is linear and

continuous and it follows that F is partially differentiable with respect to f .

In order to get the C1-smoothness of F it remains to show that the maps (α, β, f) ∈
D × Ck(Ω) 7→ ∂αF(α, β, f) ∈ C(Ω) and (α, β, f) ∈ D × Ck(Ω) 7→ ∂βF(α, β, f) ∈ C(Ω) and

(α, β, f) ∈ D×Ck(Ω) 7→ ∂fF(α, β, f) = Φα,β ∈ L(Ck(Ω), C(Ω)) are continuous. The continuity

of ∂αF follows from[
∂αF(α̃, β̃, f̃)− ∂αF(α, β, f)

]
(x, y) =

= ∂xf̃(ξα̃,β̃(x), y)∂αξα̃,β̃(x)− ∂xf(ξα,β(x), y)∂αξα,β(x) =

=
(
∂xf̃(ξα̃,β̃(x), y)− ∂xf̃(ξα,β(x), y)

)
∂αξα̃,β̃(x) +

+∂xf̃(ξα,β(x), y)
(
∂αξα̃,β̃(x)− ∂αξα,β(x)

)
+

+
(
∂xf̃(ξα,β(x), y)− ∂xf(ξα,β(x), y)

)
∂αξα,β(x).

Obviously, this tends to zero uniformly with respect to x and y if α̃→ α, β̃ → β and f̃ → f in

Ck(Ω) due to (2.1) again.

Similarly one shows the continuity of ∂βF .

Now, let us show the continuity of ∂fF : Ck(Ω) → C(Ω), i.e. to show (due to the form of

∂fF) that

(α, β) ∈ D 7→ Φα,β ∈ L(Ck(Ω), C(Ω)) is continuous.

We have
∣∣[Φα̃,β̃f − Φα,βf

]
(x, y)

∣∣ =
∣∣f(ξα̃,β̃(x), y)− f(ξα,β(x), y)

∣∣ ≤ ‖f‖Ck(Ω)|ξα̃,β̃(x)− ξα,β(x)|,
i.e.

‖Φα̃,β̃f − Φα,βf‖C(Ω)

‖f‖Ck(Ω)

≤ sup
0≤x≤`

|(ξα̃,β̃(x)− ξα,β(x))| → 0 for (α̃, β̃) → (α, β).

To prove C2-smoothness of F (if k ≥ 2) we have to show that ∂αF , ∂βF and ∂fF are

C1-smooth from D × Ck(Ω) into C(Ω) or into L(Ck(Ω), C(Ω)), respectively. Showing that for

∂αF and ∂βF is the same procedure as above because ∂αF and ∂βF map D×Ck(Ω) into C(Ω)

as F .

Let us show that ∂fF is C1-smooth from D × Ck(Ω) into L(Ck(Ω), C(Ω)), i.e. that

(α, β) ∈ D 7→ Φα,β ∈ L(Ck(Ω), C(Ω)) is C1-smooth for k ≥ 2.

If ∂fF is differentiable then the partial derivatives can be calculated pointwise:

[∂α∂fF(α, β, f)g] (x, y) = ∂xg(ξα,β(x), y)∂αξα,β(x),

[∂β∂fF(α, β, f)g] (x, y) = ∂xg(ξα,β(x), y)∂βξα,β(x).
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Let us check that ∂fF is really partially differentiable with respect to α. As above, using the

mean value theorem, we get

[∂fF(α̃, β, f)g − ∂fF(α, β, f)g] (x, y)− (α̃− α)∂xg(ξα,β(x), y)∂αξα,β(x) =

= g(ξα̃,β(x), y)− g(ξα,β(x), y)− (α̃− α)∂xg(ξα,β(x), y)∂αξα,β(x) =

= ∂xg(θ, y)(ξα̃,β(x)− ξα,β(x))− (α̃− α)∂xg(ξα,β(x), y)∂αξα,β(x) =

= (α̃− α) (∂xg(θ, y)∂αξη,β(x)− ∂xg(ξα,β(x), y)∂αξα,β(x)) =

= (α̃− α)
(
∂2

xg(ζ, y)(θ − ξα,β(x), y))∂αξη,β(x) + ∂xg(ξα,β(x), y)(∂αξη,β(x)− ∂αξα,β(x))
)

with θ between ξα̃,β(x) and ξα,β(x), η between α̃ and α and ζ between θ and ξα,β(x). Hence

‖∂fF(α̃, β, f)g − ∂fF(α, β, f)g‖C(Ω) = o (|α̃− α|) ‖g‖C2(Ω) for α̃→ α.

Similarly one shows that ∂β∂fF exists. It remains to show that ∂α∂fF and ∂β∂fF are contin-

uous. For ∂α∂fF this follows from

sup
(x,y)∈Ω

∣∣∣[∂α∂fF(α̃, β̃, f̃)g − ∂α∂fF(α, β, f)g
]

(x, y)
∣∣∣ =

= sup
(x,y)∈Ω

∣∣∂xg(ξα̃,β̃(x), y)∂αξα̃,β̃(x)− ∂xg(ξα,β(x), y)∂αξα,β(x)
∣∣ =

= o
(
‖g‖C2(Ω)

)
for (α̃, β̃) → (α, β).

In a similar way one shows higer order smoothness (up to Ck) in the case m = 0.

Now, consider the case m = 1. Additionally to the consideratons of the case m = 0 we

have to show that the maps

G1 : D × Ck+1(Ω) → C(Ω) : G1(α, β, f)(x, y) := ∂x [F(α, β, f)(x, y)] = ∂xf(ξα,β(x), y)ξ′α,β(x)

and

G2 : D × Ck+1(Ω) → C(Ω) : G2(α, β, f)(x, y) := ∂y [F(α, β, f)(x, y)] = ∂yf(ξα,β(x), y)

are Ck-smooth. Obviously, for G2 this can be done as above by replacing f by ∂yf . For G1

there are needed some straightforward modifications because of the factor ξ′α,β(x).

Similarly, if m = 2, then the considerations can be lead back to the case m = 1 etc.

Proof of Proposition 2.14. Let (u, f, h) ∈ H×C1(Ω)×R+ satisfy (1.4). Then u ∈ C1(Ω∪ΓU)

(Remark 2.13) and standard considerations (using suitable test functions) show that u is a weak

solution of the boundary value problem (1.1), (1.2), (2.24). If Ih(u) ⊂ ΓU , i.e. Ih(u) ⊂ (γ̃1, γ̃2)

with some γ1 < γ̃1 < γ̃2 < γ2, (γ̃1, 0), (γ̃2, 0) ∈ Eh(u), then u can be understood as a solution

of the mixed boundary value problem (1.1) with the smooth Dirichlet boundary condition u

on ΓD ∪ ((γ̃1, γ̃2)× {0}) and with the zero Neumann boundary condition on the rest of ∂Ω.
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The only transmission points between the smooth Dirichlet boundary condition and the zero

Neumann boundary condition are the points (γ̃1, 0), (γ̃2, 0) (in their neighborhoods the C1-

regularity is already justified) and the corners of Ω. Since all corners have the right angles, it

follows from [8, Theorem 1] that (2.27) holds, in particular (2.28) is true. Hence, a solution

of (1.4) must satisfy also u ∈ C2(Ω) because it is a solution of (1.1) with a differentiable right

hand side f and continuous boundary condition u|∂Ω (see Remark 6.1 below).

Conversely, standard considerations imply that if u ∈ C2(Ω) ∩ C1(Ω) satisfies (1.1), (1.2),

(2.24), (2.25), (2.26) then (1.4) holds, and u(γ1, 0) < h, u(γ2, 0) < h means Ih(u) ⊂ ΓU .

Remark 6.1 Let us recall that a problem

−∆u = g in Ω, (6.1)

u = ϕ on ∂Ω (6.2)

with g ∈ Cγ(Ω), γ ∈ (0, 1), and ϕ ∈ C(∂Ω) has a unique solution u ∈ C2(Ω) ∩ C(Ω) (see e.g.

[7, Section 4.2]).

If u is a weak solution of (1.1), (1.2), (2.24) and in addition u ∈ C(Ω), then u ∈ C2(Ω)

(because the function u is simultaneously a solution of (6.1), (6.2) with the continuous boundary

condition ϕ = u|∂Ω and with the C1-smooth right-hand side g = f) and u has continuous second

order derivatives up to the boundary with the exception of the points (x, 0) ∈ ∂Ih(u) and the

corners. In a neighbourhood of the points from ΓD ∪ Ih(u), the C2-regularity follows e.g. from

[7, Theorem 4.12]. For (x0, y0) ∈ ΓN ∪ Eh(u) it is a particular case of Lemma 3.9.
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