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Abstract. We study the resolvent equation associated with a linear operator L arising
from the linearized equation for perturbations of a steady Navier–Stokes flow U∗. We
derive estimates which, together with a stability criterion from [33], show that the stability
of U∗ (in the L2–norm) depends only on the position of the eigenvalues of L, regardless
the presence of the essential spectrum.
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1. Introduction

Assume that Ω ⊂ R3 is an exterior domain and U∗ is a steady solution of the
Navier–Stokes system

∂tV + (V · ∇)V = −∇P + ν∆V + F in Ω× (0,+∞),

divV = 0 in Ω× (0,+∞)

}
(1.1)

with the boundary conditions

V = 0 in ∂Ω× (0,+∞),

V (x, t) → (τ, 0, 0) for |x| → +∞

}
(1.2)

where (τ, 0, 0) is a constant velocity at infinity. The solution U∗ can be written in
the form U∗ = U + (τ, 0, 0) where

τ ∂1U + (U · ∇)U = −∇P + ν∆U + F in Ω,

divU = 0 in Ω,

U = (−τ, 0, 0) in ∂Ω,

U(x) → 0 for |x| → +∞.

 (1.3)
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The problem of stability of solution U∗ to the problem (1.1) has so far attracted
much attention; see e.g. J. G. Heywood [18], [19], [20], K. Masuda [28], P. Mare-
monti [27], G. P. Galdi and S. Rionero [12], G. P. Galdi and M. Padula [13],
W. Borchers and T. Miyakawa [4], [5], H. Kozono and T. Ogawa [24], H. Kozono
and M. Yamazaki [25], [26], G. P. Galdi, J. G. Heywood and Y. Shibata [14],
T. Miyakawa [30] and Y. Shibata [35]. Most of the results in these references are
based on smallness assumptions on U . However, as explained in [31], [32], one
would also like to find a criterion related to the spectrum of a suitable linear op-
erator, similar to the situation in a bounded domain (see D. H. Sattinger [34])
or in abstract differential equations (see e.g. H. Kielhöfer [21], [22]). Recently
J. Neustupa [33] came rather close to such a criterion. The solution U∗ is sup-
posed to be such that ∇U∗ ≡ ∇U ∈ L3/2(Ω)9 ∩ L3(Ω)9 in [33]. Then the main
result from [33] can be stated as follows:

Denote by P2 the usual Helmholtz projection in L2(Ω)3. Define

Lv := νP2 ∆v − τ P2∂1v + P2Bv, (1.4)

where

Bv := −(U · ∇)v − (v · ∇)U , (1.5)

for v ∈ D(L) := H2 ∩W 1,2
0 (Ω)3 ∩W 2,2(Ω)3. (The closed subspace H2 of L2(Ω)3,

which contains the divergence–free vector–functions, is defined in Section 2. Note
that νP2 ∆, with the domain D(L), is known as the Stokes operator.) Define the
nonlinear operator N by the equation

Nv := −P2(v · ∇)v (1.6)

for v ∈ D(L). Obviously, writing the solutions of (1.1) in the form V = U∗ +u =
(1, 0, 0) +U + u, the perturbations u satisfy the operator equation

du
dt

= Lu + Nu. (1.7)

Denote by Bsym the symmetric part of B. (Hence Bsymv = −v · (∇U)sym.) It is
shown in [33] that the spaceH ′2 generated by the eigenfunctions ofA+ξP2Bsym (for
a fixed ξ > 0) associated with positive eigenvalues is finite dimensional. Suppose
that

(C1) there exists a function ϕ ∈ L1(0,+∞) ∩ L2(0,+∞) such that∥∥∇eLtφ
∥∥

2; ΩR
≤ ϕ(t) ‖φ‖2 for all φ ∈ H ′2 and t > 0. (1.8)

The exact notation of the norms is explained in Section 2. ΩR denotes the set
{x ∈ Ω; |x| < R} and we suppose that R > 0 is so large that

‖∇U‖3/2; Ω−ΩR ≤ 1
8 . (1.9)
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Then J. Neustupa [33] could show that given u0 ∈ H2 ∩ W 1,2
0 (Ω) with ‖u0‖1,2

sufficiently small, the equation (1.7) with the initial condition u(0) = u0 has a
strong solution u on the time interval [0,+∞), such that ‖u(t)‖1,2 remains small
for all t > 0 and ‖∇u(t)‖2 → 0 as t→ +∞. It means that solution U∗ of problem
(1.1) is stable. J. Neustupa considers condition (C1) to be a substitute for the
usual assumption

(C2) there exists δ > 0 such that ∀ λ ∈ Sp(L) : Reλ < −δ

where Sp(L) denotes the spectrum of L. (The assumption (C2) can never be
satisfied in our situation because the essential spectrum Spess(L) of L touches
the imaginary axis at point 0 from the left, independently of the concrete form of
function U∗; see [3] and [10].) The norm ‖∇eLtφ‖2; ΩR in (C1) can be alternatively
replaced by ‖eLtφ‖2; ΩR and all the conclusions of [33] remail valid.

In the presented work, we assume that Ω = R
3. In this case, D(L) = H2 ∩

W 2,2(Ω)3 and P2∆v = ∆v, P2∂1v = ∂1v for v ∈ D(L). Since the viscosity
coefficient ν plays no important role in our considerations, we also assume that
ν = 1. Thus, operator L can be simplified: Lv = ∆v − τ ∂1v + P2Bv. We show
that at least in this case the essential spectrum of L does not play the decisive role
in the stability criterion, namely that (C1) follows from the assumption (A1) that
0 is almost in the resolvent of L, in the same sense as 0 is almost in the resolvent
of respectively the Stokes and the Oseen operator (see Section 5 for the precise
formulation) and from the assumption

(A2) All eigenvalues of L have negative real parts.

Our main result is stated in Theorem 25 at the end of the paper.

2. Notation and some auxiliary results

◦ For M ⊂ R3, we put M c := R
3 −M .

◦ We write BR for the open ball with center at the origin and radius R > 0. It
will be convenient to use the notation B0 := ∅.
◦ The length α1 +α2 +α3 of a multiindex α = [α1, α2, α3] ∈ N3

0 is denoted by |α|.
◦ All our function spaces are to be understood as spaces of complex–valued func-

tions. Let p ∈ [1,∞] and M ⊂ R3 be a measurable set. Then we denote by
‖ . ‖p;M the norm in Lp(M). If M = R

3 then we use the simplified notation:
‖ . ‖p. In addition, we use the convention that ‖f‖p;M = +∞ for any measurable
function f from M into C such that f /∈ Lp(M). This means conversely that
any measurable function f : M 7→ C is in Lp(M) if and only if ‖f‖p;M < +∞.
◦ For measurable functions f, g : R3 7→ C with

∫
R3 |f(x− y) g(y)| dy < +∞ for

a.a. x ∈ R3 we define the convolution f ∗ g in the obvious way. For functions
f : R3 7→ C, g = (g1, g2, g3) : R3 7→ C

3, under analogous assumptions, we put
f ∗ g :=

(
f ∗ g1, f ∗ g2, f ∗ g3

)
.
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◦ For p ∈ [1,+∞), m ∈ N, M ⊂ R3 open, Wm,p(M) denotes the usual Sobolev
space of order m and exponent p. We write ‖ . ‖m,p;M for the standard norm of
this space. If M = R

3 then we use the simplified notation ‖ . ‖m,p. The space
Wm,p
loc (M) is defined in the usual way.

◦ The spaces of vector–valued or tensor–valued functions are e.g. denoted by
Lp(M)3, Wm,p(B)3 or Lp(M)9, Wm,p(B)9. The norms in these spaces are
denoted in the same way as the norms in Lp(M) and Wm,p(B). Vector–valued
functions are denoted by boldface letters.
◦ The space C∞0 (R3) is defined in the standard way. We further denote by

D1,2
0 (R3) the completion of C∞0 (R3) in the norm ‖∇ . ‖2. The dual space is

denoted by D−1,2
0 (R3). The norm of a bounded linear functional ` ∈ D−1,2

0 (R3)
is, as usually,

‖`‖−1,2 := sup
{
|`(v)|/‖∇v‖2 ; v ∈ D1,2(R3), v 6= 0

}
.

Note that due to the density of C∞0 (R3) in D1,2
0 (R3), we can consider only

v ∈ C∞0 (R3) instead of v ∈ D1,2
0 (R3) in the set on the right hand side.

◦ Recall that each function u ∈ D1,2
0 (R3) belongs to L6(R3) and the particular

form of the Sobolev inequality (see [15, p. 59]) says that

‖u‖6 ≤
2√
3
‖∇u‖2. (2.10)

◦ The dual space to D1,2
0 (R3)3 is denoted by D−1,2

0 (R3)3. The norm in D−1,2
0 (R3)3

is denoted in the same way as the norm in D−1,2
0 (R3): ‖ . ‖−1,2.

◦ We denote by C∞0,σ(R3) the linear space of all vector–functions φ ∈ C∞0 (R3)3

such that divφ = 0.
◦ For q ∈ (1,+∞), let Hq(R3) denote the closure of C∞0,σ(R3) in Lq(R3)3. Hq(R3)

is the space of so called solenoidal vector–functions in Lq(R3)3.
◦ While E denotes Newton’s potential (Theorem 3), the symbols Eρ and Γ%, are

introduced in Definition 1 in Section 3, respectively in Corollary 2 in Section 3.
◦ In Sections 4–7, we shall also use the symbols A (defined in Theorem 16), G

(defined by (5.7)), H (defined in Theorem 16), IY and I (defined in Lemma 11,
respectively at the beginning of Section 6), K (introduced by Theorem 20), M
(defined in Lemma 14), N (defined after equation (7.8)), SR (introduced in the
proof of Theorem 18) and V (defined in the proof of Corollary 3).

Lemma 1. Let f ∈ L1
loc(R

3)3 such that

γf := sup
{

1
‖∇v‖2

∣∣∣∣∫
R3
f · v dx

∣∣∣∣ ; v ∈ C∞0 (R3)3, v 6= 0
}
< ∞. (2.11)

Then the mapping `f : D1,2
0 (R3)3 → C defined by the equation `f (v) =

∫
R3 f ·v dx

belongs to D−1,2(R3)3 and ‖`f‖−1,2 = γf .
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The lemma is an obvious consequence of the density of C∞0 (R3)3 in D1,2
0 (R3)3. In

what follows, we will always write f instead of `f if f ∈ L1
loc(R

3)3 satisfies (2.11).
In this sense, the intersection D−1,2

0 (R3)3 ∩ L2(R3)3 is meaningful. We define

‖u‖∗ := ‖u‖−1,2 + ‖u‖2 for u ∈ D−1,2
0 (R3)3 ∩ L2(R3)3. (2.12)

Then the pair
{

D−1,2
0 (R3)3 ∩ L2(R3)3, ‖ . ‖∗

}
is a Banach space.

Let us now recall some results on the function spaces introduced above. We
begin with well–known Lp–inequalities which hold for functions defined a.e. in Rn.
Since only the case n = 3 will be of interest in what follows, we confine ourselves
to this case.

Theorem 1. (Young’s inequality for integrals) [2, Corollary 2.25] Let p, q, r
∈ [1,∞] with 1/p = 1/q + 1/r − 1. Let f, g : R3 7→ C be measurable functions.
Then ‖ |f | ∗ |g| ‖p ≤ ‖f‖q · ‖g‖r.

This means in particular that in the case f ∈ Lq(R3), g ∈ Lr(R3), the integral∫
R3 |f(x− y) g(y)| dy is finite for a.e. x ∈ R3 and ‖f ∗ g‖p ≤ ‖f‖q · ‖g‖r.

Theorem 2. (Hardy–Littlewood–Sobolev inequality) [37, pp. 118–121] Let
p, q ∈ (1,+∞), α ∈ (0, 3) with 1/p = 1/q − α/3. Then there is C = C(p, q) > 0
such that(∫

R3

(∫
R3
|x− y|−3+α · |f(y)| dy

)p
dx
)1/p

≤ C ‖f‖q

for f : R3 7→ C measurable.

Next we present some further properties of the space D−1,2
0 (R3)3.

Lemma 2. [15, p. 385; Lemma VII.4.3] The space C∞0 (R3)3 is dense in D−1,2
0 (R3)3

and in D−1,2
0 (R3)3 ∩ L2(R3)3.

As a consequence of (2.10), we obtain the next lemma:

Lemma 3. L6/5(R3)3 ⊂ D−1,2
0 (R3)3 and there is C > 0 such that ‖f‖−1,2 ≤

C ‖f‖6/5 for f ∈ L6/5(R3)3.

Next we recall some properties of Newton’s potential.

Theorem 3. Put E(z) := (4π |z|)−1 for z ∈ R3 − {0}. Let Φ ∈ C∞0 (R3), α ∈ N3
0,

l ∈ {1; 2; 3}. Then E ∗ Φ ∈ C∞(R3),

∂α(E ∗ Φ) = E ∗ ∂αΦ, ∂l(E ∗ Φ) = (∂lE) ∗ Φ,

−∆(E ∗ Φ) = Φ.
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Given p ∈ (1, 3
2 ), q ∈ (1, 3), r ∈ (1,+∞), there exist positive constants c1(p),

c2(q), c3(r) such that

‖E ∗ Φ‖(1/p−2/3)−1 ≤ c1(p) ‖Φ‖p,
‖∂l(E ∗ Φ)‖(1/q−1/3)−1 ≤ c2(q) ‖Φ‖q,
‖∂m∂l(E ∗ Φ)‖r ≤ c3(r) ‖Φ‖r

for 1 ≤ l, m ≤ 3.

The proof of this theorem is well known. In fact, the first part follows from
Lebesgue’s theorem on dominated convergence; the estimate of ∂l(E ∗Φ) is a con-
sequence of Theorem 2, and the estimate of the second derivatives of E ∗Φ may be
deduced from Calderon–Zygmund’s inequality.

Lemma 4. There exist c4 and c5 > 0 such that to any w ∈ C∞0 (R3) one can find
g ∈ C∞(R3)3 such that div g = w, g ∈W 1,q(R3)3 for all q ∈ ( 3

2 ,+∞) and

c4 ‖w‖−1,2 ≤ ‖g‖2 ≤ c5 ‖w‖−1,2.

Proof. Following [15, p. 391–392], we put gl := −∂l(E ∗w) for l ∈ {1; 2; 3}. Then
the statement follows from Theorem 3. Note that, in particular, E ∗w ∈ D1,2

0 (R3)
by [15]. �

Now we turn our attention to the space Hq(R3).

Theorem 4. Let q ∈ (1,+∞). Then, for any f ∈ Lq(R3)3, there exists a unique
function Pqf ∈ Hq(R3) and a function Gqf ∈ W 1,1

loc (R3), unique up to an additive
constant, such that ∇Gqf ∈ Lq(R3)3 and

Pqf +∇Gqf = f .

This defines a linear mapping Pq : Lq(R3)3 7→ Hq(R3). There exists c6(q) > 0 such
that

‖Pqf‖q ≤ c6(q) ‖f‖q

for f ∈ Lq(R3)3.

The proof follows from [15, Section III.1].

Theorem 5. Let q ∈ (1,+∞). Then Pq
∣∣
Lq(R3)3∩L2(R3)3= P2

∣∣
Lq(R3)3∩L2(R3)3 .

Proof. Let P ′q : Lq
′
(R3)3 7→ Lq

′
(R3)3 denote the adjoint operator to Pq. Then

P ′q = Pq′ ; compare with [15, Exercise III.1.6] and [11]. Let u ∈ Lq′(R3)3. Since
φ = P2φ = Pq′φ for all φ ∈ C∞0,σ(R3), we have

0 =
∫
R3
u · (φ− φ) dx =

∫
R3
u · (P2φ− Pq′φ) dx =

∫
R3

(P2u− Pqu) · φ dx.
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It follows by [15, Lemma III.1.1] that there exists g ∈ W 1,1
loc (R3) such that (Pq −

P2)(u) = ∇g. This implies that g is a distributional solution of the Laplace
equation in R3. This observation and Liouville’s theorem yield P2u = Pqu. �

In view of Theorem 5, we will always write only P instead of Pq.

Theorem 6. Let f ∈ L2(R3)3. Then f ∈ H2(R3) if and only if
∫
R3 f ·∇ϕ dx = 0

for all ϕ ∈ C∞0 (R3).
The intersection W 1,2(R3)3 ∩ H2(R3) can be characterized as the space of all

functions g from W 1,2(R3) such that div g = 0 a.e. in R3.

Proof. For the first statement of the lemma, we refer to [36, Lemma II.2.5.4]. The
second statement follows from the first one. �

In the next two theorems, we state some well–known results on the Oseen system
and the Stokes resolvent problem, respectively.

Theorem 7. For ` ∈ D−1,2
0 (R3)3, there is a unique function u ∈ D1,2

0 (R3)3 such
that divu = 0 and∫

R3

(
∇u · ∇φ+ τ ∂1u · φ

)
dx = `(φ)

for φ ∈ C∞0,σ(R3)3.

The proof follows from [15, Theorem VII.1.2, VII.2.1, II.5.1, II.6.1].
We note that only the uniqueness statement in Theorem 7 will be needed in the

following. Nevertheless, Theorem 7 is a motivation for assumption (A1) in Section
5, pertaining to resolution of the perturbed Oseen problem (5.2).

Theorem 8. Let σ ∈ (0,+∞). We define

g1(r) := e−r + r−2 (e−r + r e−r − 1),

g2(r) := e−r + 3r−2 (e−r + r e−r − 1),

F
(σ)
jk (z) :=

1
4π |z|

(
δjk g1(σ1/2 |z|)− zj zk g2(σ1/2 |z|)

)
for r, σ ∈ C − {0}, z ≡ (z1, z2, z3) ∈ R3 − {0} and j, k ∈ {1; 2; 3}. (It means

that the functions F
(σ)
jk represent the velocity part of a fundamental solution of

the Stokes resolvent problem (2.13).) Let s ∈ (1,+∞), g ≡ (g1, g2, g3) ∈ Ls(R3)3.

Define wj(g) :=
∑3
k=1 F

(σ)
jk ∗ gk for j = 1, 2, 3.

Then w(g) ≡
(
w1(g), w2(g), w3(g)

)
∈W 2,s(R3)3 and there is %(g) ∈W 1,1

loc (R3)
such that ∇%(g) ∈ Ls(R3)3 and the pair

(
w(g), %(g)

)
solves the Stokes resolvent

system

−∆u+ σu+∇π = g, divu = 0 in R3. (2.13)



8 P. Deuring and J. Neustupa

If (u, π) ∈W 2,s(R3)3 ×W 1,1
loc (R3) with ∇π ∈ Ls(R3)3 is another solution of (2.13)

then w(g) = u. There is c7(s, σ) > 0 such that

‖w(g)‖2,s ≤ c7(s, σ) ‖g‖s for g ∈ Ls(R3)3.

The proof follows from [29] and [6, Theorem 1.3, Lemma 1.1].
In addition to the assumptions on the solution U∗ made in Section 1, we shall

further suppose that there exists ε0 > 0 such that

∇U∗ ≡ ∇U ∈ Ls(Ω)9 ∀ s ∈
(

4
3 , 3 + ε0

)
. (2.14)

Note that a steady solution U∗ = (1, 0, 0) +U of (1.1), (1.2) with these properties
exists under the assumption that F ∈ Lq(R3)3 for q ∈ (1, q0], with some q0 > 3; see
[16, Section IX.7]. Using the Sobolev inequality (see e.g. [1, p. 104] or [15, p. 31])
and (2.14), we can deduce that

U ∈ La(R3)3 ∀ a ∈
(

12
5 , +∞

)
. (2.15)

Furthermore, we can deduce from [1, Corollary 5.16, p. 106] thatU ∈ L∞(R3−BR)3

for each R > 0. If we restrict ourselves e.g. to R > 1 then we can observe that
the domains R3 − BR satisfy an interior cone condition specified by a single cone
having a fixed height and vertex angle, independent of R. Hence

‖U‖∞;R3−BR ≤ C(ε0) ‖U‖1,3+ε0;R3−BR

where the constant C(ε0) does not depend on R. Since U ∈ W 1,3+ε0(R3)9, we
obtain

‖U‖∞;R3−BR −→ 0 for R→ +∞. (2.16)

Notation of constants. Generic constants in our estimates are denoted by the
capital letter C. If we need more generic constants in one formula then we use in-
dices. The generic constants implicitly depend on certain quantities which may vary
from section to section, but they are always listed at the beginning of each section.
If these constants also depend on some additional quantities, like e.g. γ1, . . . , γn,
then they are denoted by C(γ1, . . . , γn).

3. The scalar Oseen equation in R3

In this section, we consider the scalar Oseen equation with the resolvent term

−∆v + τ ∂1v + λ v = Φ in R3. (3.1)

The results we are going to derive will later be used in order to solve a perturbed
vector Oseen equation with the resolvent term in the whole space R3 (Section 5),
and to obtain estimates of the solutions (Section 6).

The generic constants in this section may depend on τ . The dependence on any
other quantity will be indicated explicitly, as mentioned at the end of Section 2.
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Definition 1. Put

s(z) := τ (|z| − z1),

E(0)(z) :=
e−s(z)/2

4π |z|
,

E(λ)(z) :=
1

4π |z|
e−
√
λ+(τ/2)2 |z|+τ z1/2

for z ∈ R3 − {0} and λ ∈ C− {0} such that Reλ ≥ 0.

Note that throughout the paper, we denote by letter λ nonzero complex num-
bers. Whenever we admit the value zero, we will use letter %.

We will now establish some estimates of convolutions of E(λ). We begin by
stating an observation for which we refer to [9, Lemma 4.3].

Lemma 5. Let β ∈ (1,+∞). Then∫
∂Br

(
1 + s(x)

)−β dSx ≤ C(β) r

for r ∈ (0,+∞).

The next lemma was proved in [8] (see [8, Lemma 4.8]).

Lemma 6.
(
1 + s(x− y)

)−1 ≤ C (1 + |y|)
(
1 + τ s(x)

)−1
for x, y ∈ R3.

Now we can derive pointwise estimates of the fundamental solution E(λ).

Theorem 9. Let µ, γ ∈ (0,+∞). Then

|∂αz E(λ)(z)| ≤ C1(µ, γ) |λ|−2γ
(
|z|−γ−1−|α|/2

+ |z|−γ−1−|α|
) (

1 + s(z)
)−µ e−C2 |λ|2 |z| (3.2)

for z ∈ R3 − {0}, α ∈ N3
0 with |α| ≤ 2 and λ ∈ C − {0} with Reλ ≥ 0 and

|λ| ≤ (τ/2)2. Moreover,

|∂αz E(λ)(z)| ≤ C(µ)
(
|z|−1−|α|/2 + |z|−1−|α|

) (
1 + s(z)

)−µ (3.3)

for z and α as in (3.2) and λ ∈ C with Reλ ≥ 0, |λ| ≤ (τ/2)2.

Proof. Take λ as in (3.2). Abbreviate, for a while, κ := τ/2 and note that
|λκ−2| ≤ 1. We find that

Re [ (λ+ κ2)1/2 − κ ] = κ Re
λκ−2

(λκ−2 + 1)1/2 + 1
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= κ
Re (λκ−2)

(
1 + Re (λκ−2 + 1)1/2

)
− Im (λκ−2) Im (λκ−2 + 1)1/2

|λκ−2 + 1|+ 2 Re (λκ−2 + 1)1/2 + 1
,

|λκ−2 + 1| ≤ |λκ−2|+ 1 ≤ 2,

Im (λκ−2) Im (λκ−2 + 1)1/2 ≤ 0.

(The inequalities on the last two lines follow from |λκ−2| ≤ 1.) Hence

Re [(λ+ κ2)1/2 − κ]

≥ κ

6
[
Re (λκ−2) + |Im (λκ−2)| |Im (λκ−2 + 1)1/2|

]
. (3.4)

There exists ϕ ∈ [−π/2, π/2] such that λκ−2 + 1 = |λκ−2 + 1| eiϕ. Since Re λ ≥ 0
and consequently |λκ−2 + 1| ≥ 1, we also have

|Im (λκ−2 + 1)1/2| = | sin(ϕ/2)| |λκ−2 + 1|1/2 ≥ | sin(ϕ/2)|

=
[
(1− cosϕ)/2

]1/2
=

[
|λκ−2 + 1| − Re (λκ−2 + 1)

2 |λκ−2 + 1|

]−1/2

≥ 1√
2

[
|λκ−2 + 1| − Re (λκ−2 + 1)

]1/2
=

1√
2

|Im (λκ−2)|[
|λκ−2 + 1|+ Re (λκ2 + 1)

]1/2 ≥ 1
2
|Im (λκ−2)|.

This estimate and (3.4) yield

Re [(λ+ κ2)1/2 − κ] ≥ κ

6

[
Re (λκ−2) +

1
2
(
Im (λκ−2)

)2] ≥ C
|λ|2

κ3
. (3.5)

Obviously

|(λ+ κ2)1/2 − κ| ≤ |λ|κ−1

|(λκ−2 + 1)1/2 + 1|
≤ |λ|

κ
. (3.6)

In particular, |(λ+ κ2)1/2| ≤ 2κ.
Now let z ∈ R3

r {0}. We abbreviate b(λ, z) := −(λ + κ2)1/2 |z| + κ z1. Then
we get from (3.5) that

|eb(λ,z)| ≤ e−c8 |λ|
2 |z| e−κ (|z|−z1) (3.7)

with some constant c8 > 0 depending only on τ . Thus,

|E(λ)(z)| ≤ C |z|−1 e−c8 |λ|
2 |z| e−κ (|z|−z1). (3.8)
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Let l,m ∈ {1; 2; 3}. Then

∂lE
(λ)(z) = (4π)−1

[
−zl |z|−3 + |z|−1 ∂zlb(λ, z)

]
eb(λ,z), (3.9)

∂m∂lE
(λ)(z) = (4π)−1

[
−δlm |z|−3 + 3 zl zm |z|−5

− zm |z|−3 ∂zlb(λ, z) + |z|−1 ∂zl ∂zmb(λ, z)− zl |z|−3 ∂zmb(λ, z)

+ |z|−1 ∂zlb(λ, z) ∂zmb(λ, z)
]

eb(λ,z). (3.10)

However, using (3.6), we have

|∂zν b(λ, z)| =
∣∣ (−(λ+ κ2)1/2 + κ

)
zν |z|−1 + κ ∂zν (−|z|+ z1)

∣∣
≤ C

(
|λ|+ (|z| − z1)1/2 |z|−1/2

)
for ν ∈ {1; 2; 3}. Now we may conclude with (3.7) and (3.9) that

|∂lE(λ)(z)|
≤ C

(
|z|−2 + |z|−1 |λ|+ |z|−3/2 (|z| − z1)1/2

)
e−c8 |λ| |z| e−κ (|z|−z1)

≤ C (|z|−2 + |z|−3/2) e−c8 |λ|
2 |z|/2 e−κ (|z|−z1)/2. (3.11)

Similarly, due to (3.10), (3.7) and because |∂zl∂zmb(λ, z)| ≤ C |z|−1, we get

|∂l∂mE(λ)(z)|
≤ C

[
|z|−3 +

(
|λ|+ (|z| − z1)1/2 |z|−1/2

)
|z|−2

+ |z|−2 +
(
|λ|+ (|z| − z1)1/2 |z|−1/2

)2 |z|−1
]

e−c8 |λ|
2 |z| e−κ (|z|−z1)

≤ C (|z|−3 + |z|−2) e−c8 |λ|
2 |z|/2 e−κ (|z|−z1)/2. (3.12)

Recalling the abbreviation s(x) = τ (|x| − x1) from Definition 1, we observe in the
case s(x) ≥ 1 that s(x)−1 ≤ 2

(
1+s(x)

)−1. If s(x) < 1, we get 1 ≤ 2
(
1+s(x)

)−1.
Thus we find in the first case that

e−κ (|z|−z1)/2 ≤ C(µ) s(x)−µ ≤ C(µ)
(
1 + s(x)

)−µ
and in the second case, 1 ≤ C(µ)

(
1 + s(x)

)−µ, hence in any case

e−κ (|z|−z1)/2 ≤ C(µ)
(
1 + s(x)

)−µ
. (3.13)

Moreover,

e−c8 |λ|
2 |z|/2 ≤ C(γ) |λ|−2γ |z|−γ e−c8 |λ|

2 |z|/4. (3.14)

Inequality (3.2) follows from (3.8), (3.11), (3.12), (3.13) and (3.14). The estimate
in (3.3) may be shown by similar, but somewhat simpler arguments. �

We exploit the preceding theorem to obtain Lp-estimates of convolutions of
E(%).
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Theorem 10. Let p, q ∈ [1, 2] with p ≥ q. Further suppose that p < 2 or q > 1.
Then

‖ |E(λ)| ∗ |f | ‖p ≤ C(p, q) · |λ|2−4 (1−1/q+1/p) · ‖f‖q (3.15)

for f ∈ Lq(R3), λ ∈ Cr {0} with Reλ ≥ 0, |λ| ≤ (τ/2)2.

Let q ∈ [1, 2) and p ∈
(

(1/q−1/2)−1, ∞] if q ≥ 3/2 or p ∈
(

(1/q−1/2)−1, (1/q−
2/3)−1

)
if q < 3/2. Then, for f ∈ Lq(R3), % ∈ C with Re % ≥ 0, |%| ≤ (τ/2)2,

‖ |E(%)| ∗ |f | ‖p ≤ C(p, q) · ‖f‖q. (3.16)

Let q ∈ [1, 3] and p ∈
(

(1/q − 1/4)−1, (1/q − 1/3)−1
)
. Then

‖ |∂lE(%)| ∗ |f | ‖p ≤ C(p, q) · ‖f‖q (3.17)

for l ∈ {1, 2, 3} and for f , % as in (3.16).

Finally,

‖ |E(%)| ∗ |f | ‖6 + ‖ |∂lE(%)| ∗ |f | ‖2 ≤ C · ‖f‖6/5 (3.18)

for l ∈ {1, 2, 3}, f ∈ L6/5(R3), % ∈ C with Re % ≥ 0, |%| ≤ (τ/2)2.

Proof. In the situation of (3.15), put r := (1−1/q+1/p)−1. Note that since p ≥ q
and q > 1 or p < 2, we have r ∈ [1, 2). Using (3.2) with α = 0, µ = 2/r, γ = 0,
and referring to Lemma 5, we get∫

R3
|E(λ)(x)|r dx ≤ C

∫
R3
|x|−r

(
1 + s(x)

)−2 e−c8 |λ|
2 |x| dx

≤ C

(∫
B1

|x|−r dx+
∫ ∞

1

α−r+1 e−c8 |λ|
2 α dα

)
≤ C

(
1 + |λ|−4+2r

∫ ∞
|λ|2

t−r+1 e−c8t dt
)

≤ C

(
1 + |λ|−4+2r

∫ ∞
0

t−r+1 e−c8t dt
)

≤ C (1 + |λ|−4+2r) ≤ C |λ|−4+2r, (3.19)

where the last and last but one inequality hold because r < 2. Now inequality
(3.15) follows from Theorem 1.

In the situation of (3.16) and (3.17), we also put r := (1 − 1/q + 1/p)−1. The
exponents p and q are chosen in such a way that r ∈ (2, 3) under the assumptions
of (3.16), and r ∈ (4/3, 3/2) under those of (3.17). Further observe that for
z ∈ R3

r {0},

|E(%)(z)| ≤ C |z|−1,

|∂lE(%)(z)| ≤ C
[
|z|−2 + |z|−3/2

(
1 + s(z)

)−3/2 ]
.

 (3.20)
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Via estimates similar to (3.19), inequality (3.3) and Lemma 5 imply that∫
R3
|E(%)(x)|r dx ≤ C(p, q)

in the case of (3.16), and∫
R3
|∂lE(%)(x)|r dx ≤ C(p, q)

in the situation of (3.17). Now we obtain (3.16) and (3.17) applying again Theorem
1. Finally, as concerns (3.18), we refer to the estimates in (3.20) once more, which
allows us to apply Theorem 2 to E(%) ∗ f and (χB1 · ∂lE(%)) ∗ f , and Theorem 1
with p = 2, q = 6/5, r = 3/2 as well as Lemma 5 to (χBc1 · ∂lE

(%)) ∗ f . Inequality
(3.18) then follows. �

Theorem 11. Let % ∈ C with Re % ≥ 0, |%| ≤ (τ/2)2. Take Φ ∈ C∞0 (R3), and
put u := E(%) ∗ Φ. Then u ∈ C∞(R3), u verifies (3.1), and

∂αu = E(%) ∗ ∂αΦ for α ∈ N3
0,

∂lu = (∂lE(%)) ∗ Φ for 1 ≤ l ≤ 3.

}
(3.21)

Let q ∈ (1,∞) and R ∈ (0,∞). Then

‖∂l∂mu‖q;BR ≤ C(q,R) ‖Φ‖q. (3.22)

Proof. Theorem 9 yields that for any S > 0,

|∂βE(%)(z)| ≤ C(S) |z|−1−|β| for z ∈ BS r {0}, β ∈ N3
0 with |β| ≤ 1. (3.23)

In particular, we have E(%) ∈ L1
loc(R

3), and we may conclude that u ∈ C∞(R3),

∂αu(x) =
∫
R3
E(%)(y) ∂αΦ(x− y) dy for x ∈ R3, α ∈ N3

0.

This proves the first equation in (3.21). Let R0 > 0 with supp(Φ) ⊂ BR0 , and take
l ∈ {1, 2, 3}, x ∈ R3. It follows from the first equation in (3.21) that

∂lu(x) = lim
ε↓0

∫
BR0+|x|rBε(x)

E(%)(x− y) ∂lΦ(y) dy. (3.24)

However, we can integrate by parts in (3.24) for ε > 0, say, smaller than (R0+|x|)/2.
Since in view of (3.23), we have∫

∂Bε(x)

E(%)(x− y) Φ(y)
xl − yl
ε

dSy −→ 0 for ε ↓ 0, (3.25)
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we thus obtain the second equation in (3.21). Returning to the proof of the claim
that u verifies (3.1), we observe that by (3.9), (3.10), for any S > 0,

|∂α(E(%) − E)(z)| ≤ C(S) |z|−|α| (3.26)

for z ∈ BS r {0}, α ∈ N3
0 with |α| ≤ 2, where function E was introduced in

Theorem 3. Estimate (3.26) with α ∈ N3
0, such that |α| = 1, yields that∫

∂Bε(x)

∂l(E(%) − E)(x− y) Φ(y)
xl − yl
ε

dSy −→ 0 (ε ↓ 0) for 1 ≤ l ≤ 3.

(3.27)

Since the function Φ is Lipschitz continuous, we obtain∫
∂Bε(x)

∂lE(x− y)
(

Φ(y)− Φ(x)
) xl − yl

ε
dSy −→ 0 (ε ↓ 0) for 1 ≤ l ≤ 3.

(3.28)

We further note that for 1 ≤ l ≤ 3,∫
∂Bε(x)

∂lE(x− y)
xl − yl
ε

dSy = −1
3

− ∆E(%) + τ ∂1E
(%) + %E(%) = 0

 (3.29)

−∆u+ τ ∂1u+ % u = E(%) ∗ (−∆Φ + τ ∂1Φ + %Φ) (3.30)

where the last equation follows from (3.21). After expressing the right–hand side
of (3.30) as a limit like in (3.24), we integrate by parts and afterwards apply (3.25),
(3.27)–(3.30). It follows that u satisfies (3.1).

This leaves us to establish (3.22). So, let l,m ∈ {1, 2, 3}. Theorem 1 with r = 1
and (3.26) yield∥∥ (χ(0,2R) ∂l∂m(E(%) − E)

)
∗ Φ

∥∥
q
≤ C(q,R) ‖Φ‖q. (3.31)

By Theorem 9, we have

|∂l∂m(E(%) − E)(z)| ≤ C
[
|z|−3 + |z|−2

(
1 + s(z)

)−2 ] for z ∈ R3
r {0}.

Thus, Hölder’s inequality and Lemma 5 now imply that∣∣ [ (χ(2R,∞) ∂l∂m(E(%) − E)
)
∗ Φ

]
(x)

∣∣ ≤ C(q) ‖Φ‖q for x ∈ R3.

Hence∥∥ (χ(2R,∞) ∂l∂m(E(%) − E)
)
∗ Φ

∥∥
2;BR

≤ C(q,R) ‖Φ‖q. (3.32)

Combining (3.31), (3.32) and the last inequality in Theorem 3, we obtain (3.22).
�

By the density argument, we may deduce from Theorem 10 and 11:
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Corollary 1. Let q ∈ (1, 2), % ∈ C with Re % ≥ 0 and |%| ≤ (τ/2)2. Let f ∈
Lq(R3), and put u := E(%) ∗ f . Then u ∈W 2,q

loc (R3), ∂lu = (∂lE(%)) ∗ f (1 ≤ l ≤ 3),
u satisfies (3.1), and

‖∂l∂mu‖q;BR ≤ C(q,R) ‖f‖q for 1 ≤ l,m ≤ 3.

Moreover,

∂l(E(%) ∗ h) = E(%) ∗ ∂lh for l ∈ {1, 2, 3} and h ∈W 1,q(R3). (3.33)

Due to Corollary 1, we need not distinguish between ∂l(E(%)∗f) and (∂lE(%))∗f
for f ∈ Lq(R3). Therefore we may write ∂lE

(%) ∗ f instead of ∂l(E(%) ∗ f) or
(∂lE(%)) ∗ f .

We can use some of the preceding results in order to prove the uniqueness of
solution of the scalar Oseen equation.

Theorem 12. Let % ∈ C with Re % ≥ 0, |%| ≤ (τ/2)2. Suppose that u ∈W 2,1
loc (R3)

satisfies the equation −∆u+ τ ∂1u+% u = 0 and that u |BRc0 ∈ L
p(BRc0), ∇u |BRc0 ∈

Lp(BRc0)3 for some R0 ∈ (0,∞) and some p, p ∈ (1,∞). Then u = 0.

Proof. Let Φ ∈ C∞0 (R3). Put x := (−x1, x2, x3), Φ(x) := Φ(x) and w(x) :=
(E(%) ∗ Φ)(x) for x ∈ R3. Then we know by Theorem 11 that w ∈ C∞(R3) and
that the equation −∆w − τ ∂1w + %w = Φ is satisfied.

Let R ∈ [R0,∞) with supp(Φ) ⊂ BR. Note that |x − y| ≥ |x|/2 for x ∈ Bc
2R

,
y ∈ BR. Thus, by referring to Lemma 6 and Theorem 9, we get for x ∈ Bc2R,
α ∈ N3

0 with |α| ≤ 1:

|∂αw(x)| ≤ C(R) ‖Φ‖1 |x|−1−|α|/2 (1 + s(x)
)−1−|α|/2

. (3.34)

Moreover, due to our assumptions on u |BRc0 and ∇u |BRc0 , we may choose a se-

quence {Rn} in [R,∞) such that Rn → ∞ and the sequences {‖u‖p; ∂BRn} and
{‖∇u‖p; ∂BRn} are bounded. However, by Hölder’s inequality, (3.34) and Lemma
5, we obtain∫

∂BRn

( ∣∣u (∂lw)
∣∣+ |uw|+

∣∣(∂lu)w
∣∣) dSx

≤ C(R) ‖Φ‖1
(
‖u‖p; ∂BRn + ‖∇u‖p; ∂BRn

)
·R−εn (3.35)

for n ∈ N, with some ε = ε(p, p) > 0. Note that the right–hand side of (3.35) tends
to zero for n→∞. We further find that∫

R3
u Φ dx =

∫
BR

u Φ dx = lim
n→∞

∫
BRn

u (−∆w − τ ∂1w + %w) dx. (3.36)
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Integrating by parts on the right–hand side, we obtain an integral over BRn which
vanishes because −∆u+ τ ∂1u+ % u = 0. Moreover, we obtain surface integrals on
∂BRn which tend to zero for n→∞ due to (3.35). Since Φ was chosen arbitrarily
in C∞0 (R3), we may conclude that u = 0. �

We further note

Theorem 13. Let f ∈ L2(R3), λ ∈ C r {0} with Reλ ≥ 0, |λ| ≤ (τ/2)2. Then
E(λ) ∗ f ∈W 2,2(R3) and ‖∂l∂m(E(λ) ∗ f)‖2 ≤ ‖f‖2 for 1 ≤ l,m ≤ 3.

Let g ∈ L2(R3) ∩ Lp(R3) for some p ∈ (1, 2) (so that E(0) ∗ g ∈ W 2,p
loc (R3) by

Corollary 1). Then ‖∂l∂m(E(λ) ∗g)‖2 ≤ ‖g‖2 for 1 ≤ l,m ≤ 3 and ‖∂1E
(λ) ∗g)‖2 ≤

‖g‖2.

Proof. We know by inequality (3.15) that E(λ) ∗ f ∈ L2(R3). Denoting by
ĝ the Fourier transform of a function g ∈ L1(R3) (which means that ĝ(ξ) :=
(2π)−3/2

∫
R3 e−i ξ·y g(y) dy ), we get Ê(%)(ξ) = (2π)−3/2 (% + |ξ|2 + τ i ξ1)−1 for

ξ ∈ R3; compare with [23, p. 19–20]. Thus, if Φ ∈ C∞0 (R3), we get ‖∂l∂m(E(λ) ∗
Φ)‖2 ≤ ‖Φ‖2 for 1 ≤ l,m ≤ 3 by Plancherel’s theorem. If Imλ = 0, we further get
‖∂1(E(λ) ∗ Φ)‖2 ≤ ‖Φ‖2. Now the first part of the theorem may be shown by the
density argument and, as concerns derivatives of order 1, by interpolation. The
second part follows by a continuity argument with respect to λ. �

The following lemma is a consequence of Theorem 13.

Lemma 7. The inequalities ‖∇E(%) ∗ w‖2 ≤ C ‖w‖−1,2 and ‖E(%) ∗ w‖p
≤ C(p) ‖w‖−1,2 hold for % ∈ C with Re % ≥ 0, |%| ≤ (τ/2)2, p ∈ (4, 6), w ∈ C∞0 (R3).

Moreover, if % = 0 then the estimate ‖∂1E
(%) ∗ w‖−1,2 ≤ C ‖w‖−1,2 holds for

w ∈ C∞0 (R3).

Proof. Let w ∈ C∞0 (R3), and choose g = (g1, g2, g3) := g(w) as in Lemma 4.
Then we find for k ∈ {1, 2, 3}, using (3.33), that

‖∂kE(%) ∗ w‖2 =
∥∥∥ 3∑
l=1

∂k∂l(E(%) ∗ gl)
∥∥∥

2
≤ C ‖g‖2 ≤ C ‖w‖−1,2, (3.37)

where we applied Theorem 13 in the last but one inequality and Lemma 4 in the
last one. Moreover, referring to (3.33), inequality (3.17) with q = 2, and finally to
Lemma 4, we find for p ∈ (4, 6)

‖E(%) ∗ w‖p =
∥∥∥ 3∑
l=1

(∂lE(%) ∗ gl)
∥∥∥
p
≤ C(p) ‖g‖2 ≤ C(p) ‖w‖−1,2.

If % = 0, we can prove the last inequality in Lemma 7 by an estimate as in (3.37),
again based on (3.33), Theorem 13 and Lemma 4. �

By the density argument, we may now define convolutions of E(%) with w ∈
D−1,2

0 (R3)3. The details are stated in the next corollary:
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Corollary 2. Let % ∈ C with Re % ≥ 0 and |%| ≤ (τ/2)2. Then there is a unique
linear mapping Γ% : D−1,2

0 (R3)3 7→ D1,2
0 (R3)3 such that

Γ%(w) = E(%) ∗w for w ∈ C∞0 (R3)3, (3.38)

‖∇Γ%(w)‖2 ≤ C ‖w‖−1,2 for w ∈ D−1,2
0 (R3)3. (3.39)

Moreover, operator Γ% satisfies the inequality

‖Γ%(w)‖p ≤ C(p) ‖w‖−1,2 for w ∈ D−1,2
0 (R3)3, p ∈ (4, 6], (3.40)

and in the case % = 0, ∂1Γ%(w) belongs to D−1,2
0 (R3)3.

If w ∈ D−1,2
0 (R3)3 ∩ L2(R3)3 and 1 ≤ l,m ≤ 3 then

∂lΓ%(w) = (∂lE(%)) ∗w

Γ%(w) ∈W 2,1
loc (R3)3

∂l∂mΓ%(w) ∈ L2(R3)3

 (3.41)

−∆Γ%(w) + τ ∂1Γ%(w) + %Γ%(w) = w. (3.42)

Furthermore, if w ∈ D−1,2
0 (R3)3 ∩H2(R3) then div Γ%(w) = 0.

Finally, if w ∈ L2(R3)3 ∩L6/5(R3)3, or if % 6= 0 and w ∈ D−1,2
0 (R3)3 ∩L2(R3)3,

we have Γ%(w) = E(%) ∗w.

Proof. Let w ∈ D−1,2
0 (R3)3. By Lemma 2, there is a sequence {wn} in C∞0 (R3)3

with ‖wn −w‖−1,2 → 0. Thus, by (3.18) and Lemma 3, the sequence (E(%) ∗wn)
converges in L6(R3)3, and Lemma 7 yields that the sequence (∇E(%)∗wn) converges
in L2(R3)3. In the case % = 0, Lemma 7 further yields the convergence of {∂1E

(%) ∗
wn} in D−1,2

0 (R3)3. These references additionally imply that the respective limit
functions do not depend on the choice of the sequence {wn} such that wn → w
in D−1,2

0 (R3)3. Thus, the linear operator Γ% : D−1,2
0 (R3)3 7→ D1,2

0 (R3)3, verifying
the first relation in (3.38), can be defined in an obvious way, and this operator
satisfies the second relation in (3.38) as well as (3.40) with q = 6. Furthermore,
due to Lemma 7, this operator fulfills (3.40) with q ∈ (4, 6), and it also satisfies
the inclusion Γ%(w) ∈ D−1,2

0 (R3)3 if % = 0.
Let w ∈ D−1,2

0 (R3)3 ∩ L2(R3)3. Then we know by Lemma 2 that there is a
sequence {wn} in C∞0 (R3)3 such that ‖wn −w‖∗ → 0. Inequality (3.17) and the
relation ‖wn −w‖2 → 0 imply that

‖∂lE(%) ∗wn − (∂lE(%)) ∗w‖p → 0 (n→∞) for l ∈ {1, 2, 3}, p ∈ (4, 6).

On the other hand, since ‖wn −w‖−1,2 → 0, we may conclude with (3.39) that

‖∂lE(%) ∗wn − ∂lΓ%(w)‖2 → 0 (n→∞) for l ∈ {1, 2, 3}.
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We have thus proved the first identity in (3.41). The other statements in (3.41),
as well as validity of equation (3.42), follow from Theorem 13, (3.39), (3.40) (the
convergence of (E(%) ∗wn) in L6(R3)3), and Theorem 11.

If w ∈ D−1,2
0 (R3)3 ∩H2(R3), we may choose a sequence {ϕn} in C∞0 (R3)3 with

‖ϕn −w‖2 → 0 and divϕn = 0 for n ∈ N. Then ∂lΓ%(w) = (∂lE(%)) ∗w by (3.41),
‖(∂lE(%)) ∗ (ϕn − w)‖p → 0 (n → ∞) for p ∈ (4, 6), 1 ≤ l ≤ 3 by (3.17), and
(∂lE(%)) ∗ ϕn = E(%) ∗ ∂lϕn for n ∈ N, 1 ≤ l ≤ 3 by (3.21). In this way we obtain
that div Γ%(w) = 0.

If w ∈ L2(R3)3 ∩ L6/5(R3)3, we have w ∈ L2(R3)3 ∩D−1,2
0 (R3)3 by Lemma 3,

hence ∂lΓ%(w) = ∂lE
(%) ∗w by (3.41). On the other hand, the functions Γ%(w) and

and E(%) ∗w belong to D1,2
0 (R3)3, as follows from the definition of Γ% and (3.18),

respectively. Now the inequality (2.10) implies Γ%(w) = E(%) ∗ w. If % 6= 0 and
w ∈ D−1,2

0 (R3)3 ∩ L2(R3)3, the preceding equation follows from (3.15). �

4. Estimates of operators B, Bsym and PB, PBsym

In this section, any generic constant may depend on τ and U . Other quantities
entering into these constants will be indicated explicitly.

The operators B and Bsym were defined in Section 1 in the domain of L. These
operators can be naturally extended to the space W 1,1

loc (R3)3.

Lemma 8. If q ∈ [6/5, 2] and v ∈ D1,2
0 (R3)3 then Bv ∈ Lq(R3)3 and

‖PBv‖q ≤ C(q) ‖Bv‖q ≤ C(q) ‖∇v‖2.

In particular, PBv ∈ D−1,2
0 (R3)3 ∩H2(R3).

Proof. Take q, v as in the lemma. Then (1/q − 1
6 )−1 ∈ [ 3

2 , 3] and (1/q − 1
2 )−1 ∈

[3,∞], so that ‖∇U‖(1/q−1/6)−1 < ∞ and ‖U‖(1/q−1/2)−1 < ∞ by (2.14), (2.15)
and (2.16). Thus, due to inequality (2.10), we have

‖Bv‖q ≤ C
(
‖∇U‖(1/q−1/6)−1 ‖v‖6 + ‖U‖(1/q−1/2)−1 ‖∇v‖2

)
≤ C(q) ‖∇v‖2.

Now the first part of the lemma follows from Theorem 4. The last statement is
a consequence of Lemma 3 and the fact that P maps L2(R3)3 into H2(R3) and
L6/5(R3)3 into H6/5(R3) (see Theorem 5). �

Lemma 9. Let w ∈ D−1,2
0 (R3)3, q ∈ (1, 2) and % ∈ C with Re % ≥ 0, |%| ≤ (τ/2)2.

Then B
(

Γ%(w)
)
∈ L2(R3)3 ∩ Lq(R3)3 and PB

(
Γ%(w)

)
∈ H2(R3) ∩D−1,2

0 (R3)3 ∩
Lq(R3)3. Moreover, if Φ ∈ Lq(R3)3 then B(E(%) ∗ Φ) ∈ Lq(R3)3 and

‖PB
(

Γ%(w)
)
‖∗ ≤ C ‖w‖−1,2, (4.1)

‖PB(E(%) ∗ Φ)‖q ≤ C(q) ‖Φ‖q. (4.2)
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Furthermore, there exist non–increasing functions D1, D
(q)
2 : [0,∞) 7→ (0,∞)

depending on τ , U , and in the case of D
(q)
2 also on q, such that D1(R) →

0, D(q)
2 (R)→ 0 for R→∞, and∥∥P[χBcR B

(
Γ%(w)

) ] ∥∥
∗ ≤ D1(R) ‖w‖−1,2, (4.3)∥∥P[χBcR B(E(%) ∗ Φ)

] ∥∥
q
≤ D

(q)
2 (R) ‖Φ‖q (4.4)

for R ∈ (0,∞), w ∈ D−1,2
0 (R3)3 and Φ ∈ Lq(R3)3.

Proof. Recall that the norm ‖ . ‖∗ was defined in (2.12). Let q̃ ∈ { 6
5 , q, 2}. Then

q̃ ≤ 2, so (1/q̃ − 1
3 )−1 ≤ 6. Moreover we have q̃ > 1, hence (1/q̃ − 3

4 )−1 > 4 in
the case q̃ < 4

3 . Obviously (1/q̃ − 1
3 )−1 < (1/q̃ − 3

4 )−1 in that latter case. Thus
we may choose p ∈ (4, 6] with (1/q̃ − 1

3 )−1 ≤ p, and with p < (1/q̃ − 3
4 )−1 in the

case q̃ < 4
3 . As a consequence, (1/q̃ − 1/p)−1 ∈ ( 4

3 , 3], so ‖∇U‖(1/eq−1/p)−1 < ∞
by (2.14). Moreover (1/q̃ − 1

2 )−1 ∈ (2,∞], hence ‖U‖(1/eq− 1
2 )−1 <∞ by (2.15) and

(2.16). In addition, we get for w ∈ D−1,2
0 (R3)3, R ∈ [0,∞),

‖χBcR B
(

Γ%(w)
)
‖eq

≤ C
(
‖∇U‖(1/eq−1/p)−1;BcR

‖Γ%(w)‖p + ‖U‖(1/eq−1/2)−1;BcR
‖∇Γ%(w)‖2

)
≤ C

(
‖∇U‖(1/eq−1/p)−1;BcR

+ ‖U‖(1/eq−1/2)−1;BcR

)
‖w‖−1,2, (4.5)

where the last inequality follows from (3.39), (3.40) and the fact that p ∈ (4, 6]. Now
we may conclude that B

(
Γ%(w)

)
∈ Leq(R3)3 for q̃ ∈ { 6

5 , q, 2}, w ∈ D−1,2
0 (R3)3,

so the inclusion PB
(

Γ%(w)
)
∈ H2(R3) ∩D−1,2

0 (R3)3 ∩ Lq(R3)3 now follows from
Theorem 4 and Lemma 3. The latter references, inequality (4.5) with q̃ ∈ { 6

5 , 2},
as well as the inequalities ‖∇U‖(1/eq−1/p)−1 <∞, ‖U‖(1/eq−1/2)−1 <∞ (see above)
and ‖U |BcR‖∞ → 0 (R→∞) (see Corollary (2.15) and (2.16)) yield that the first
inequality in (4.1) is valid (R = 0 in (4.5)), and that there is a function D1 with
the properties stated in the lemma. Next take

r ∈
(

(1/q − 1
2 )−1, ∞) if q ≥ 3

2 ,

r ∈
(

(1/q − 1
2 )−1, (1/q − 2

3 )−1
)

if q < 3
2

and choose r0 ∈
(

(1/q− 1
4 )−1, (1/q− 1

3 )−1
)
. Then (1/q− 1/r)−1 ∈ ( 3

2 , 3), (1/q−
1/r0)−1 ∈ (3,∞), and

‖χBcR B(E(%) ∗ Φ)‖q ≤ C
(
‖∇U‖(1/q−1/r)−1;BcR

‖E(%) ∗ Φ‖r

+ ‖U‖(1/q−1/r0)−1;BcR
‖∇E(%) ∗ Φ‖r0

)
(4.6)

for Φ ∈ Lq(R3)3. Now the second estimate in (4.2) as well as inequality (4.4) follow
from (4.6), (2.14)–(2.16), (3.16) and (3.17). �
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The ensuing theorem is a key technical result of our theory. It will allow us
to solve the resolvent problem (5.9) related to the perturbed Oseen system (5.2),
under the assumption that the resolvent parameter λ is small (Theorem 19), and
to establish resolvent estimates for small λ (Theorem 21).

Theorem 14. Let q ∈ (1, 2). Then there exist functions D3, D
(q)
4 : (0,∞) 7→

(0,∞) depending on τ , U , and in the case of D
(q)
2 also on q, such that

‖PB
(

Γλ(w)
)
− PB

(
Γ0(w)

)
‖∗

≤
{

2D1(R) +D3(R)
[

1√
R̃
− 1

2
ln
(

1− 1

R̃

)]
+D3(R̃) |λ|1/3

}
‖w‖∗ (4.7)

for λ ∈ C r {0} with Reλ ≥ 0, |λ| ≤ (τ/2)2, R ∈ (0,∞), R̃ ∈ [2R + 1, ∞),
w ∈ D−1,2

0 (R3)3 ∩ L2(R3)3 and

‖PB(E(λ) ∗ Φ)− PB(E(0) ∗ Φ)‖q

≤
(

2D(q)
2 (R) +D

(q)
4 (R) R̃−1+2/q′ +D

(q)
4 (R̃) |λ|1/3

)
‖Φ‖q (4.8)

for λ, R, R̃ as in (4.7), and for Φ ∈ Lq(R3)3. (The functions D1 and D
(q)
2 were

introduced in Lemma 9.)

Proof. Let ψ ∈ C∞(R) with ψ |(−∞,−1] = 0, 0 ≤ ψ ≤ 1, ψ |[0,∞) = 1. For
R ∈ (1,∞), x ∈ R3, put ψR(x) := ψ(|x| − R), so that ψR ∈ C∞(R3) with
ψR |BR−1 = 0, ψ |BcR = 1, and |∇ψR(x)| ≤ C for x ∈ R3. Note that the upper
bound of |∇ψR(x)| is independent of R.

Take λ, R, R̃ as in the theorem, and suppose that g ∈ C∞0 (R3)3. Then

PB(E(λ) ∗ g)− PB(E(0) ∗ g) =
3∑
i=1

Ni, (4.9)

where N1 := P
(
χBcR B(E(λ) ∗ g − E(0) ∗ g)

)
and

N2 := P
[
χBR B

(
E(λ) ∗ (χBceR g)− E(0) ∗ (χBceR g)

) ]
,

N3 := P
[
χBR B

(
E(λ) ∗ (χB eR

g)− E(0) ∗ (χB eR
g)
) ]
.

Let us abbreviate u(λ) := E(λ) ∗ (χB eR
g), u(0) := E(0) ∗ (χB eR

g). By (3.16), (3.17),
Theorem 11 and 12, we have

u(λ) − u(0) = −E(0) ∗ λu(λ). (4.10)

Take γ ∈ ( 3
2 , 2), for example γ = 7

4 , and set s :=
[

(1/γ − 1
4 )−1 + (1/γ − 1

3 )−1
]
/2.

Then we get from (4.10) and (3.15)–(3.17) that

‖u(λ) − u(0)‖∞ + ‖∇(u(λ) − u(0))‖s = ‖E(0) ∗ λu(λ)‖∞ + ‖∇E(0) ∗ λu(λ)‖s
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≤ C |λ| ‖u(λ)‖γ ≤ C |λ|3−4/γ ‖g‖1;B eR
≤ C |λ|1/3 ‖g‖1,;B eR

where the last inequality holds because γ > 3
2 and |λ| ≤ (τ/2)2. Thus, due to

Theorem 4, for q̃ ∈ { 6
5 , q, 2}, we have

‖N3‖eq ≤ C
(
‖∇U‖eq;BR ‖u(λ) − u(0)‖∞

+ ‖U‖(1/eq−1/s)−1;BR ‖∇(u(λ) − u(0))‖s
)

≤ C
(
R3/eq−1 ‖∇U‖3 +R3/eq−3/s ‖U‖∞

)
|λ|1/3 ‖g‖1;B eR

.

We can conclude, using Lemma 3, that

‖N3‖∗ ≤ C(R̃) |λ|1/3 ‖g‖2, (4.11)

‖N3‖q ≤ C(q, R̃) |λ|1/3 ‖g‖q. (4.12)

As an immediate consequence of (4.3), (4.4), we get

‖N1‖∗ ≤ 2D1(R) ‖g‖−1,2, (4.13)

‖N1‖q ≤ 2D(q)
2 (R) ‖g‖q. (4.14)

Let us now turn our attention to the estimate of N2. At the beginning, we observe
that for q̃ ∈ {q, 6

5 , 2}, we have

‖N2‖eq ≤ C
(
‖∇U‖eq;BR + ‖U‖eq;BR

)
·
∑

%∈{0, λ}

(∥∥ [E(%) ∗ (χBceR g)
] ∥∥
∞;BR

+
∥∥ [∇E(%) ∗ (χBceR g)

] ∥∥
∞;BR

)
≤ C(q̃, R)

(
‖∇U‖2 + ‖U‖3

)
·
∑

%∈{0, λ}

3∑
j=1

(
sup
x∈BR

∣∣∣∣ ∫
BceR

E(%)(x− y) gj(y) dy
∣∣∣∣

+
3∑
l=1

sup
x∈BR

∣∣∣∣ ∫
BceR

∂lE
(%)(x− y) gj(y) dy

∣∣∣∣). (4.15)

Now let x ∈ BR, j ∈ {1, 2, 3}. Then∣∣∣∣ ∫
BceR

E(%)(x− y) gj(y) dy
∣∣∣∣

≤
∣∣∣∣ ∫
R3
E(%)(x− y) (ψR gj)(y) dy

∣∣∣∣+
∣∣∣∣ ∫
B eRrB eR−1

E(%)(x− y) (ψR gj)(y) dy
∣∣∣∣
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≤
∣∣∣∣ ∫
R3
v eR gj dy

∣∣∣∣+
(∫

B eRrB eR−1

|E(%)(x− y)|2 dy
)1/2

‖g‖2;B eRrB eR−1
, (4.16)

where v eR(y) := E(%)(x − y) ψ eR(y) for y ∈ R3. Note that ψ eR |B eR−1
= 0. This

latter observation, (3.3), Lemma 5, 6 and the estimates

|x− y| ≥ |y|
2

+
|y|
2
− |x| ≥ |y|

2
+ (R̃− 1)/2− |x|

≥ |y|
2

+R− |x| ≥ |y|
2

(4.17)

for y ∈ BceR−1
imply that v eR ∈ C

∞(R3) ∩D1,2
0 (R3). Thus∣∣∣∣ ∫

R3
v eR gj dy

∣∣∣∣ ≤ ‖g‖−1,2

(∫
BceR

|∇y
(
E(%)(x− y) ψ eR(y)

)
|2 dy

)1/2

≤ C ‖g‖−1,2

(∫
BceR−1

|x− y|−3
(

1 + s(x− y)
)−3 dy

+
∫
B eRrB eR−1

|x− y|−2
(

1 + s(x− y)
)−2 dy

)1/2

≤ C(R) ‖g‖−1,2

(∫
BceR−1

|y|−3
(

1 + s(y)
)−3 dy

+
∫
B eRrB eR−1

|y|−2
(

1 + s(y)
)−2 dy

)1/2

, (4.18)

where the last inequality follows from (4.17) and Lemma 6. Now we apply Lemma
5 to obtain∣∣∣∣ ∫

R3
v eR gj dy

∣∣∣∣ ≤ C(R) ‖g‖−1,2

[
1√
R̃

+
1
2

ln
(

R̃

R̃− 1

)]
. (4.19)

Again using (3.3), (4.17), Lemma 6 and 5, we find that(∫
B eRrB eR−1

|E(%)(x− y)|2 dy
)1/2

≤ C(R)
2

ln
(

R̃

R̃− 1

)
. (4.20)

Combining (4.16), (4.19) and (4.20), we get∣∣∣∣ ∫
BceR

E(%)(x− y) gj(y) dy
∣∣∣∣ ≤ C(R) ‖g‖∗

[
1√
R̃

+
1
2

ln
(

R̃

R̃− 1

)]
. (4.21)
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A similar reasoning, albeit somewhat simpler because ∇E(%) decays more rapidly
that E(%), allows us to conclude that∣∣∣∣ ∫

BceR

∂lE
(%)(x− y) gj(y) dy

∣∣∣∣ ≤ C(R)
‖g‖∗√
R̃

(1 ≤ l ≤ 3). (4.22)

Here and in (4.21), x was an arbitrary point from BR. Thus, we may conclude
from (4.15), (4.21) and (4.22), for q̃ ∈ { 6

5 , 2}:

‖N2‖eq ≤ C(q̃, R) ‖g‖∗
[

1√
R̃

+
1
2

ln
(

R̃

R̃− 1

)]
, (4.23)

hence by Lemma 3,

‖N2‖−1,2 ≤ C(R) ‖g‖∗
[

1√
R̃

+
1
2

ln
(

R̃

R̃− 1

)]
. (4.24)

Since q < 2 (hence q′ > 2), we get by a much simpler computation, based on
Hölder’s inequality, (3.3), (4.17), Lemma 5 and 6, that∣∣∣∣ ∫

BceR

∂αE(%)(x− y) gj(y) dy
∣∣∣∣ ≤ (∫

BceR

|∂αE(%)(x− y)|q
′
dy
)1/q′

‖g‖q

≤ C(q) R̃−1−|α|/2+2/q′ ‖g‖q

for x ∈ BR, 1 ≤ j ≤ 3, α ∈ N3
0 with |α| ≤ 1. Now we again refer to (4.15), to

obtain

‖N2‖q ≤ C(q,R) ‖g‖q R̃−1+2/q′ . (4.25)

Next, using a density argument based on Lemma 2 and the first inequality in
(4.1), we may deduce (4.7) from (4.9), (4.11), (4.13), (4.23) and (4.24). Finally the
estimate in (4.8) follows from the second estimate in (4.2) (the density argument),
(4.9), (4.12), (4.14) and (4.25). �

Lemma 10. Let q ∈ [1, 6
5 ]. Then ‖Bsym(Φ)‖q ≤ C(q) ‖Φ‖2 for Φ ∈ L2(R3)3.

In particular, PBsym(Φ) is well defined for Φ ∈ L2(R3)3. Moreover Bsym(Φ) ∈
L2(R3)3 for Φ ∈W 2,2(R3)3.

Proof. Since (1/q−1/2)−1 ∈ (2, 3], we have by (2.14) that ‖∇U‖(1/q−1/2)−1 <∞.
Thus, for Φ ∈ L2(R3)3,

‖Bsym(Φ)‖q ≤ C ‖∇U‖(1/q−1/2)−1 ‖Φ‖2 ≤ C(q) ‖Φ‖2.

If Φ ∈ W 2,2(R3)3, the standard Sobolev inequality yields ‖Φ‖∞ ≤ C ‖Φ‖2,2, so
‖Bsym(Φ)‖2 ≤ C ‖∇U‖2 ‖Φ‖∞ <∞. �
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Theorem 15. Let ξ ∈ R. Let σ be a positive eigenvalue of the operator ∆ +
ξ PBsym and f be a corresponding eigenfunction. (I.e. f belongs to space H ′2 –
see Section 1.) Then f ∈W 2,s(R3)3 for s ∈ [1, 6

5 ] and

‖∇f‖2 ≤ C(ξ) ‖f‖2, ‖f‖2,s ≤ C(ξ, s, σ) ‖f‖2. (4.26)

In particular f ∈ D−1,2
0 (R3)3.

Proof. A simple variational argument yields ‖∇f‖22 +σ ‖f‖22 =
∫
R3 g ·f dx, where

g := ξ PBsymf . It follows from Lemma 10, (2.10) and Theorem 4 that

‖∇f‖22 + σ ‖f‖22 ≤ |ξ| ‖PBsymf‖6/5 ‖f‖6 ≤ C(ξ) ‖f‖2 ‖∇f‖2.

This implies that ‖∇f‖2 ≤ C(ξ) ‖f‖2.
We know due to Lemma 10 that g ∈ H2(R3). Moreover −∆f + σf = g and

div f = 0 in R3, where the equation div f = 0 follows from Theorem 6. In this
situation, we may conclude by means of Theorem 8 that

f =
( 3∑
k=1

F
(σ)
jk ∗ gk

)
1≤j≤3

with F
(σ)
jk introduced in that reference. However, g ∈ Ls(R3)3 for s ∈ [1, 6

5 ]
according to Lemma 10, so Theorem 8 implies that f ∈ W 2,s(R3)3 and ‖f‖2,s ≤
C(s, σ) ‖g‖s for s ∈ (1, 6

5 ]. The second inequality in (4.26) now follows from Lemma
10. Since the case s = 6

5 is admitted, Lemma 3 yields f ∈ D−1,2
0 (R3)3. �

5. Solving the perturbed Oseen system (5.2) and the related resolvent
problem (5.9).

In this section, we use the same convention on generic constants as in Section 4.
Let us start with a simple result from operator theory, which the reader can

easily verify.

Lemma 11. Let X,Y be vector spaces, A : X 7→ Y a linear and bijective operator
and B : X 7→ Y a linear operator. Let IY denote the identical mapping of Y
onto itself. Then the operator IY + B ◦ A−1 : Y 7→ Y is bijective if and only if
A+B : X 7→ Y has the same property. If one (and hence both) of these statements
is true, we have

(A+B)−1 = A−1 ◦ (IY +B ◦A−1)−1,

(IY +B ◦A−1)−1 = A ◦ (A+B)−1.
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In the following, the role of A will be played by the operator −∆ + τ ∂1, set up in
a suitable function space, whereas B will correspond to −PB. A suitable function
space is given by

Theorem 16. Let H denote the space of all functions v ∈ D1,2
0 (R3)3 ∩W 2,1

loc (R3)3

such that ∂l∂mv ∈ L2(R3)3 for l,m ∈ {1, 2, 3}, ∂1v ∈ D−1,2
0 (R3)3 and div v = 0.

Define A(v) := −∆v + τ ∂1v for v ∈ H. Then A : H 7→ D−1,2
0 (R3)3 ∩ H2(R3) is

linear and bijective, with A−1 = Γ0 |D−1,2
0 (R3)3∩H2(R3).

Proof. Obviously A(v) ∈ L2(R3)3 and
∫
R3 A(v) · ∇ϕ dx = 0 for ϕ ∈ C∞0 (R3)3

and v ∈ H. Thus, Theorem 6 yields A(v) ∈ H2(R3) for v ∈ H. It is obvious
that ∆v ∈ D−1,2

0 (R3)3, so A(v) ∈ D−1,2
0 (R3)3 (v ∈ H). Therefore A : H 7→

D−1,2
0 (R3)3 ∩H2(R3) is well defined. We know by Corollary 2 that Γ0(w) ∈ H and

A
(

Γ0(w)
)

= w for w ∈ D−1,2
0 (R3)3∩H2(R3). This shows that A is onto. Theorem

12 implies that A is one–to–one. �

We further suppose that the following assumption (A1) is satisfied:

(A1) For any ` ∈ D−1,2
0 (R3)3 there is a unique function u ∈ D1,2

0 (R3)3 such that
divu = 0 and∫

R3

(
∇u · ∇v + τ ∂1u · v − PBu · v

)
dx = `(v) (5.1)

for all v ∈ C∞0 (R3)3 with div v = 0.

This means: we assume that the perturbed Oseen system

−∆u+ τ ∂1u−Bu+∇π = g, divu = 0 in R3 (5.2)

admits a unique weak solution in the same way as the Oseen system does (compare
with Theorem 7). We will now solve a version of (5.2) in which the pressure is
eliminated.

Theorem 17. The relation PBv ∈ D−1,2
0 (R3)3 ∩H2(R3) holds for v ∈ H.

Define Ã : H 7→ D−1,2
0 (R3)3 ∩H2(R3) by Ã(v) := A(v)−PBv for v ∈ H. Then

Ã is well defined, linear and bijective.

Proof. Since H ⊂ D1,2
0 (R3)3, the first claim of the theorem holds according to

Lemma 8. In view of Theorem 16, we may conclude that the operator Ã : H 7→
D−1,2

0 (R3)3 ∩ H2(R3) is well defined. As an easy consequence of the uniqueness
statement in (A1), we obtain that Ã is one–to–one. This leaves us to show that Ã
is onto. To that end, take Φ ∈ D−1,2

0 (R3)3 ∩H2(R3), and let u ∈ D1,2
0 (R3)3 be the

solution of (5.1) with ` given by

`(ϕ) :=
∫
R3

Φ ·ϕ dx for ϕ ∈ C∞0 (R3)3. (5.3)
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Then ∫
R3

(
∇u · ∇ϕ+ τ ∂1u ·ϕ

)
dx =

∫
R3
f ·ϕ dx for ϕ ∈ C∞0 (R3)3, (5.4)

with f := Φ + PBu. By the first statement of Theorem 17, we have f ∈
D−1,2

0 (R3)3 ∩H2(R3)3. Due to this and Theorem 16, we know that there is ṽ ∈ H
with A(ṽ) = f . Now (5.4) and the uniqueness result in Theorem 7 yield u = ṽ,
hence u ∈ H. At this point we may deduce from (5.4) and the definition of f that
Ã(u) = Φ. This proves that Ã is onto. �

Corollary 3. The mapping Z̃0 : D−1,2
0 (R3)3 ∩ H2(R3) 7→ D−1,2

0 (R3)3 ∩ H2(R3),
with Z̃0(w) := w − PB

(
Γ0(w)

)
for w ∈ D−1,2

0 (R3)3 ∩ H2(R3), is well defined,
linear, bijective and bounded.

Proof. The operators A and Ã, from Theorem 16 and 17, respectively, are bijective,
so we get by Lemma 11 and the first statement in Theorem 17 that the operator
V from the space D−1,2

0 (R3)3 ∩H2(R3) into itself, with

V(w) := w − PB
(
A−1(w)

)
(w ∈ D−1,2

0 (R3)3 ∩H2(R3)),

is bijective. Since A−1 = Γ0 |D−1,2
0 (R3)3∩H2(R3) by Theorem 16, we see that V = Z̃0,

hence Z̃0 is bijective. The boundedness of Z̃0 follows from (4.1). �

Theorem 18. Let q ∈ (1, 2), and define an operator Z
(q)
0 : Lq(R3)3 7→ Lq(R3)3 by

Z
(q)
0 (Φ) := Φ − PB(E(0) ∗ Φ) for Φ ∈ Lq(R3)3. Then Z

(q)
0 is well defined, linear,

bounded and bijective.

Proof. We know from Lemma 9 that Z(q)
0 : Lq(R3)3 7→ Lq(R3)3 is well defined

and bounded. The claim that Z(q)
0 is bijective will be proved by reducing it to

the fact that Z̃0 is one–to–one (Corollary 3). To this end take R ∈ (0,∞) and
define SR : Lq(R3)3 7→ Lq(R3)3 by SR(Φ) := P

(
χBR · B(E(0) ∗ Φ)

)
for Φ ∈

Lq(R3)3. In order to show that SR is compact, we take a bounded sequence (Φn)
in Lq(R3)3. Then we may deduce from (3.16), (3.17) and Corollary 1 that the
sequence

(
(E(0) ∗ Φn) |BR

)
n≥1

is bounded in W 2,q(BR)3. On the other hand, let
ε ∈ (0, 1). Then, for Φ ∈ Lq(R3)3,

‖SR(Φ)‖q ≤ C
(
‖∇U‖a(ε);BR ‖(E

(0) ∗ Φ)‖b(ε);BR
+ ‖U‖3+ε;BR ‖(∇E(0) ∗ Φ)‖( 1/q−1/(3+ε) )−1;BR

)
, (5.5)

where a(ε) := q+ ε, b(ε) :=
(

1/q− 1/(q+ ε)
)

in the case q ≥ 3
2 , and a(ε) := 3

2 + ε,
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b(ε) :=
(

1/q − 1/( 3
2 + ε)

)−1 if q < 3
2 . However,(

1
q
− 1

3
2 + ε

)−1

<
3q

3− 2q
if q <

3
2
,(

1
q
− 1

3 + ε

)−1

<
3q

3− q
.

Since the sequence
(

(E(0) ∗Φn)BR
)
n≥1

is bounded in W 2,q(BR)3, as noted above,
we may now apply the standard theory of compact imbeddings in Sobolev spaces.
This theory implies that there is a subsequence {Φ̃}n of {Φn} such that the se-

quence
{

( (E(0)∗Φ̃n) |BR
}
n≥1

converges in L
(

1/q−1/(q+ε)
)−1

(BR)3 (the case q ≥ 3
2 ),

or in L

(
1/q−1/(3/2+ε)

)−1

(BR)3 (the case q < 3
2 ), respectively, and the sequence{

(∇E(0) ∗ Φ̃n) |BR
}
n≥1

is convergent in L

(
1/q−1/(3+ε)

)−1

(BR)3. In view of (5.5)
and (2.14)–(2.16), we may conclude the sequence

{
SR(Φn)

}
n≥1

converges in
Lq(R3)3. Thus we have shown that the operator SR : Lq(R3)3 7→ Lq(R3)3 is
compact. This is true for any R > 0. We further note that by (4.4), we may choose
R ∈ (0,∞) so large that

‖P
(
χBcR B(E(0) ∗ Φ)

)
‖q ≤ (2τ)−1 ‖Φ‖q for Φ ∈ Lq(R3)3. (5.6)

Let us now fix such a value R. Then the operator

GR : Lq(R3)3 3 Φ 7→ Φ− P
(
χBcR B(E(0) ∗ Φ)

)
∈ Lq(R3)3 (5.7)

is one–to–one. Moreover, a simple fixed point argument based on (5.6) yields that
GR is onto. Thus GR is linear and bijective, in particular with Fredholm’s index
zero. Since SR is compact and Z

(q)
0 = GR + SR, we may conclude that Z(0)

q is
Fredholm with index zero.

Let us now show that Z(q)
0 is one–to–one. To this end, take Φ ∈ Lq(R3)3 with

Z
(q)
0 (Φ) = 0. Let (1/q − 1

4 )−1 < p < (1/q − 1
3 )−1 with p > 3

2 ,

p ∈
(

(1/q − 1
2 )−1, ∞

)
if q ≥ 3

2 ,

p ∈
(

(1/q − 1
2 )−1, (1/q − 2

3 )−1
)

else.

Since p < (1/q − 1
3 )−1, we have 2

3 − 1/p < 1
2 . Obviously ( 2

3 + 1/p)−1 < 3
2 . Thus

we may choose

γ0 ∈ (1, 3
2 ) ∩

(
( 2

3 + 1/p)−1, 3
2

)
with 1/γ0 − 1/p < 1

2 .

Then γ0 <
3
2 < p, so the last relation implies (1/γ0 − 1/p)−1 > 2, hence

‖U‖(1/γ0−1/p)−1 < ∞ by (2.15), (2.16). Since γ0 > ( 2
3 + 1/p)−1, we further have

(1/γ0 − 1/p)−1 > 3
2 .
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Now suppose that q ≥ 3
2 . Then p > (1/q − 1

2 )−1 > 3. On the other hand,
1/γ0 − 1

3 >
1
3 , so we may conclude that (1/γ0 − 1/p)−1 < 3. It follows from (2.14)

that ‖∇U‖(1/γ0−1/p)−1 <∞. Now we get from (3.16), (3.17),

B(E(0) ∗ Φ)‖γ0 ≤ C
(
‖∇U‖(1/γ0−1/p)−1 ‖E(0) ∗ Φ‖p

+ ‖U‖(1/γ0−1/p)−1 ‖∇E(0) ∗ Φ‖p
)
≤ C(p, p) ‖Φ‖q. (5.8)

Since Z(q)
0 (Φ) = 0, we may conclude with Theorem 4 that Φ ∈ Lγ0(R3)3. Thus

there is always some q1 ∈ (1, 3
2 ) with Φ ∈ Lq1(R3)3.

Let p1 ∈
(

(1/q1− 1
4 )−1, (1/q1− 1

3 )−1
)
. Since q1 <

3
2 , we have (1/q1− 1

2 )−1 < 6,
so we may choose p1 ∈

(
(1/q1 − 1

2 )−1, (1/q1 − 2
3 )−1

)
with p1 < 6. Then

(
5
6 −

1/p1)−1 > 2,
(

5
6−1/p1)−1 ∈ ( 3

2 , 3), so that by (2.14)–(2.16), ‖U‖(5/6−1/p1)−1 <∞
and ‖∇U‖(5/6−1/p1)−1 <∞. As a consequence, by an estimate as in (5.8), and by
referring again to (3.15), (3.16), we get ‖B(E(0)∗Φ)‖6/5 ≤ C(p1, p1, q1) ‖Φ‖q1 . Thus
we have found that B(E(0)∗Φ) ∈ L6/5(R3)3. In view of Theorem 4 and the assump-
tion Z

(q)
0 (Φ) = 0, we thus arrive at the relation Φ ∈ L6/5(R3)3. Now inequality

(3.18) yields E(0) ∗Φ ∈ D1,2
0 (R3)3, hence PB(E(0) ∗Φ) ∈ H2(R3) ∩D−1,2

0 (R3)3 by
Lemma 8. Since Z(q)

0 (Φ) = 0, we thus obtain Φ ∈ H2(R3)∩D−1,2
0 (R3)3∩L6/5(R3)3,

so Corollary 2 implies Z(q)
0 (Φ) = Z̃0(Φ). Therefore Z̃0(Φ) = 0, and we may con-

clude with Corollary 3 that Φ = 0. This proves that Z(q)
0 is one–to–one. However,

a Fredholm operator with index zero which in addition is one–to–one is bijective,
so the proof of Theorem 18 is completed. �

Corollary 4. Let q ∈ (1, 2), λ ∈ C r {0} with Reλ ≥ 0, |λ| ≤ (τ/2)2. Then the
operators

Z̃λ : D−1,2
0 (R3)3 ∩H2(R3) 3 Φ

7−→ Φ− PB(E(λ) ∗ Φ) ∈ D−1,2
0 (R3)3 ∩H2(R3),

Z(q) : Lq(R3)3 3 Φ 7→ Φ− PB(E(λ) ∗ Φ) ∈ Lq(R3)3

are well defined, linear and bounded. If ψ, g ∈ D−1,2
0 (R3)3∩H2(R3) with Z̃λ(ψ) =

g, and if we set u := E(λ) ∗ψ, then u ∈W 2,2(R3)3 ∩ L6(R3)3 and

−∆u+ τ ∂1u+ λu− PBu = g, divu = 0. (5.9)

If, in addition, g ∈ Lq(R3)3 then the relations ψ ∈ Lq(R3)3, Z
(q)
λ (ψ) = g hold.

Proof. The corollary follows from Lemma 9, Theorem 13 and Corollary 2. In
particular, the last statement is a consequence of the inclusion PB

(
Γ%(w)

)
∈

H2(R3) ∩D−1,2
0 (R3)3 ∩ Lq(R3)3 (for w ∈ D−1,2

0 (R3)3) in Lemma 9. �
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Theorem 19. There exists ε1 ∈ (0, (τ/2)2], depending on U , such that Z̃λ :
D−1,2

0 (R3)3 ∩H2(R3) 7→ D−1,2
0 (R3)3 ∩H2(R3) is bijective and ‖Φ‖∗ ≤ C ‖Z̃λ(Φ)‖∗

for Φ ∈ D−1,2
0 (R3)3 ∩H2(R3), λ ∈ Cr {0} with Reλ ≥ 0, |λ| ≤ ε1.

Let q ∈ (1, 2). Then there exists ε2(q) ∈ (0, (τ/2)2], depending on U and

q, such that the operator Z
(q)
λ : Lq(R3)3 7→ Lq(R3)3 is bijective and ‖Φ‖q ≤

C(q) ‖Z(q)
λ (Φ)‖q for Φ ∈ Lq(R3)3, λ ∈ Cr {0} with Reλ ≥ 0, |λ| ≤ ε2(q).

Proof. By Corollary 3 and the open mapping theorem, there exists C0 > 0 such
that

‖w‖∗ ≤ C0 ‖Z̃0(w)‖∗ for w ∈ D−1,2
0 (R3)3 ∩H2(R3). (5.10)

Similarly, by Theorem 18, there is C̃0(q) > 0 such that

‖Φ‖q ≤ C̃0(q) ‖Z(q)
0 (Φ)‖q for Φ ∈ Lq(R3)3. (5.11)

Now, in view of (4.7), we may choose R > 0 so large that 2D1(R) ≤ (12C0 τ)−1,
with D1(R) from Lemma 9. Since ln(1/(1 − 1/R̃)) → 0 ( R̃ → ∞), we may fix
some R̃ ∈ [2R+ 1, ∞) such that

D3(R)
[

1√
R̃

+
1
2

ln
(

1

1− 1/R̃

)]
≤ 1

12C0 τ
,

where the constant D3(R) was introduced in Theorem 14. Finally we choose ε1 ∈
(0, (τ/2)2] so small that D3(R̃) · ε1/31 ≤ (12 · C0 · τ)−1. Then it follows from (4.7)
and the last statement of Corollary 2 that

‖Z̃λ(w)− Z̃0(w)‖∗ ≤
1

4C0
‖w‖∗ (5.12)

for w ∈ D−1,2
0 (R3)3 ∩H2(R3), λ ∈ Cr {0} with Reλ ≥ 0, |λ| ≤ ε1. Thus, we may

deduce with (5.10) and a simple shoestring argument that ‖w‖∗ ≤ 2C0 ‖Z̃λ(w)‖∗.
Let g ∈ D−1,2

0 (R3)3 ∩H2(R3), and put Φ0 := (Z̃0)−1(g), Φn+1 := (Z̃0)−1
(
g −

(Z̃λ − Z̃0)(Φn)
)

for n ∈ N0. Then (5.10) and (5.12) yield the convergence of
the sequence {Φn} in the norm ‖ . ‖∗. The limit function Φ verifies the equation
Z̃λ(Φ) = g. This proves that Z̃λ is bijective. An analogous argument based on
(5.11) and (4.8) implies existence of ε2(q) ∈ (0, (τ/2)2] with the desired properties.

�

6. Resolvent estimates for the perturbed Oseen system (5.2)

In the rest of this article, we write I for the identical mapping of H2(R3) onto itself.
Put D(L) := H2(R3) ∩W 2,2(R3)3. Since W 2,2(R3)3 ⊂ D1,2

0 (R3)3 and because of
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Lemma 8, the term PBv is well defined and belongs to H2(R3) for v ∈ D(L), so
we may define

Lv := ∆v − τ ∂1v + PBv (v ∈ D(L)). (6.1)

Then L : D(L) 7→ H2(R3) is linear and densely defined in H2(R3). We will use the
usual notation %(L) for the resolvent set of L.

Note that if g ∈ L2(R3)3, u ∈ D(L) with Lu = Pg, Theorem 4 yields some
π ∈ W 1,1

loc (R3) such that the pair (u, π) solves the perturbed Oseen problem (5.2).
Thus, estimates of the operator (λI−L)−1, for λ ∈ %(L), correspond to estimates
of solutions of the resolvent problem (5.9).

The ensuing theorem is due to [3], [10], [17, Theorem 1.3.2].

Theorem 20. There is at most a countable set K ⊂ C such that Sp(L) r K ⊂
{λ ∈ C; Reλ ≤ −(Imλ)2/τ2}. Set K consists of eigenvalues of operator L.

There exist a ∈ (0,∞) and ϑ ∈ (π/2, π) such that

Sϑ,a :=
{
λ ∈ Cr {a}; | arg(λ− a)| ≤ ϑ

}
⊂ %(L).

From now, we assume that operator L satisfies condition (A2) – see
Section 1 for its formulation. It means, in particular, that Reλ < 0 for all λ ∈ K.
Note that by (A2) and Theorem 20, we have{

λ ∈ Cr {0}; Reλ ≥ 0
}
∪
(
{λ ∈ C; Reλ < 0} ∩ Sϑ,a

)
⊂ %(L). (6.2)

In this section and in Section 7, we write C for constants which may depend on
τ , U , a or ϑ. As usual in this article, if such a constant depends on additional
quantities γ1, ..., γn, for some n ∈ N, we denote it by C(γ1, ..., γn).

Lemma 12. Let λ ∈ C r {0} with Reλ > 0 and |λ| ≤ ε1, with ε1 from Theorem

19. Take g ∈ D∩H2(R3). Then (λI−L)−1g = E(λ)∗(Z̃λ)−1(g) and (λ I−L)−1g ∈
D ∩D(L).

Proof. We have to compare u := (λI − L)−1g and ũ := E(λ) ∗ (Z̃λ)−1(g).
Corollary 4 and Theorem 6 yield that ũ ∈ D(L) and (λI − L)(ũ) = g. Since
λ ∈ %(L) by (6.2), it follows that u = ũ. Observing that D(L) ⊂ D1,2

0 (R3)3 and
u = (1/λ) · (Lu+ g), and recalling Lemma 8, we obtain u ∈ D−1,2

0 (R3)3. �

The next theorem is the crucial element of our theory; it states resolvent esti-
mates for the perturbed Oseen system (5.2), under the assumption that the resol-
vent parameter λ has a small modulus and non–negative real part.

Theorem 21. The inequality ‖∇(λI− L)−1g‖2 ≤ C ‖g‖∗ holds for g ∈
D−1,2(R3)3∩H2(R3), λ ∈ Cr{0} with Reλ ≥ 0, |λ| ≤ ε1, where ε1 was introduced
in Theorem 19.
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Let s ∈ (1, 6
5 ], δ ∈ (0, 1]. Then there is ε3(s, δ) ∈ (0, ε1], also depending on τ

and U , such that for f ∈ Ls(R3)3∩H2(R3), R ∈ (0,∞), λ ∈ Cr{0} with Reλ ≥ 0,
|λ| ≤ ε3(s, δ), the ensuing estimates hold:

‖∇(λI− L)−2f‖2;BR +
∥∥∇[ (λ I− L)−1 ◦ (λI− L)−1(f)

] ∥∥
2;BR

≤ C(s, δ, R) |λ|−4(1−1/s)−δ ‖f‖s, (6.3)

‖∇(λI− L)−3f‖2;BR ≤ C(s, δ, R) |λ|−2−4(1−1/s)−δ ‖f‖s. (6.4)

Proof. Take g ∈ D−1,2
0 (R3)3 ∩H2(R3) and λ ∈ C r {0} with Reλ ≥ 0, |λ| ≤ ε1.

Then we get by Lemma 12, Corollary 2 and Theorem 19 that

‖∇(λI− L)−1g‖2 = ‖E(λ) ∗ (Z̃λ)−1(g)‖2 ≤ C ‖(Z̃λ)−1(g)‖−1,2 ≤ C ‖g‖∗.

This proves the first claim of the theorem. Now let f ∈ Ls(R3)3∩H2(R3), and take
λ as before. Then f ∈ L6/5(R3)3 by interpolation, hence f ∈ D−1,2

0 (R3)3∩H2(R3).
Thus we may define u(1) := E(λ) ∗ (Z̃λ)−1(f), and obtain u(1) ∈ D−1,2

0 (R3)3 ∩
H2(R3) ∩W 2,2(R3)3 by Lemma 12. Repeating this argument, we put u(i+1) :=
E(λ) ∗ (Z̃λ)−1(u(i)) for i ∈ {1, 2}, w := E(λ) ∗ (Z̃λ)−1(u(1)), and obtain u(2), u(3),
w ∈ D−1,2

0 (R3)3 ∩W 2,2(R3)3 ∩H2(R3). Moreover Lemma 12 yields

u(i) = (λI− L)−if , w = (λ I− L)−1 ◦ (λI− L)−1f . (6.5)

Take q ∈ [ 4
3 , 2), and suppose that |λ| ≤ min

{
ε2(r); r ∈ {s, q}

}
, with ε2(q), ε2(s)

from Theorem 19. Put p :=
(

(1/q − 1
4 )−1 + (1/q − 1

3 )−1
)
. Since q ≥ 4

3 , we have
p ≥ 2. (Actually only values of q close to 2 are of interest because it is them who
lead to values of δ close to 0 in (6.3) and (6.4), as will be seen below.)

Since f ∈ D−1,2
0 (R3)3 ∩H2(R3) ∩ Ls(R3)3, as explained above, we have

(Z̃λ)−1(f) = (Z(s)
λ )−1(f) by Corollary 4. In addition, inequality (3.15) implies

u(1) ∈ Ls(R3)3 ∩ Lq(R3)3. Again referring to Corollary 4 and (3.15), we may
conclude that u(2) ∈ Lq(R3)3,

(Z̃λ)−1(u(1)) = (Z(r)
λ )−1(u(1)) for r ∈ {q, s},

(Z̃λ)−1(u(2)) = (Z(q)
λ )−1(u(2)).

 (6.6)

Recalling (6.5), and applying (3.17), (6.6), Theorem 19 and (3.15), we find that

‖∇(λI− L)−2f‖2;BR ≤ ‖∇u(2)‖2;BR ≤ C(R) ‖∇u(2)‖p

≤ C(R, p, q) ‖(Z(q)
λ )−1(u(1))‖q ≤ C(R, p, q) ‖u(1)‖q

≤ C(R, p, q, s) |λ|2−4(1−1/s+1/q) ‖(Z(s)
λ )−1(f)‖s

≤ C(R, p, q, s) |λ|2−4(1−1/s+1/q) ‖f‖s
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= C(R, p, q, s) |λ|−4(1−1/s)−δ ‖f‖s, (6.7)

with δ := 4(1/q − 1/2). An analogous argument, starting with (6.5), yields

‖(λ · I− L)−1 ◦ (λI− L)−1f‖2 ≤ C(R, p, q, s) |λ|−4(1−1/s)−δ ‖f‖s.

Thus, since q may be chosen arbitrarily in [ 4
3 , 2), we have proved (6.3). In order to

estimate (λI − L)−3f , we again proceed as in (6.7), but with f replaced by u(1).
Note that f may in fact be replaced by u(1) since u(1) ∈ Ls(R3)3 ∩D−1,2

0 (R3)3 ∩
H2(R3), as explained above, and because of (6.6). In this way we arrive at the
inequality

‖∇(λI− L)−3f‖2;BR ≤ C(R, p, q, s) |λ|−4(1−1/s)−δ ‖u(1)‖s. (6.8)

However, by (3.15) and Theorem 19, we have

‖u(1)‖s ≤ C(s) |λ|−2 · ‖(Z(s)
λ )−1(f)‖s ≤ C(s) |λ|−2 ‖f‖s. (6.9)

By combining (6.8) and (6.9), we arrive at (6.4). �

Corollary 5. The inequality

‖∇(λI− L)−1f‖2 ≤ C(ξ, σ) ‖f‖2 (6.10)

holds for ξ, σ, f as in Theorem 15 and for λ ∈ Cr {0} with Reλ ≥ 0, |λ| ≤ ε1.

Let δ ∈ (0, 1]. Then there is ε4(δ) ∈ (0, ε1], also depending on τ and U , such
that

‖∇(λI− L)−2f‖2;BR +
∥∥∇[ (λ I− L)−1 ◦ (λI− L)−1(f)

] ∥∥
2;BR

≤ C(ξ, σ, δ, R) |λ|−δ ‖f‖2, (6.11)

‖∇(λI− L)−3f‖2;BR ≤ C(ξ, σ, δ, R) |λ|−2−δ ‖f‖2 (6.12)

for R ∈ (0,∞), λ ∈ C r {0} with Reλ ≥ 0, |λ| ≤ ε4(δ), and for σ, ξ, f as in
Theorem 15.

Proof. Take σ, ξ, f as in Theorem 15. Then ‖f‖∗ ≤ ‖f‖2 + C ‖f‖6/5 ≤
C(ξ, σ) ‖f‖2 by Lemma 3 and (4.26). Inequality (6.10) now follows with the first
statement of Theorem 21. Let δ ∈ (0, 1], and put s := 1/(1−δ/8). Then s ∈ (1, 6

5 ),
so ‖f‖s ≤ C(δ, ξ, σ) ‖f‖2 by (4.26), and −4(1 − 1/s) − δ/2 = −δ. From these
observations and inequalities (6.3) and (6.4) with δ replaced by δ/2, we obtain
(6.11) and (6.12), respectively. �

Lemma 13. Let λ ∈ C with Reλ ≥ 0, and g ∈ H2(R3). Then

‖∇(λI− L)−1g‖2 ≤ C (‖g‖2 + ‖(λI− L)−1(g)‖2).
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Proof. Put u := (λI−L)−1g. Then u ∈ D(L) and −∆u+λu = g−τ ∂1u+PBu,
so that

Re
∫
R3

(−∆u · u+ λ |u|2) dx = Re
∫
R3

(
g − τ ∂1u+ PBu

)
· u dx. (6.13)

But
∫
R3 −∆u · u dx = ‖∇u‖22, Re

∫
R3 ∂1u · u dx = 0, so we deduce from (6.13)

and Lemma 8 that

‖∇u‖22 + Reλ ‖u‖22 ≤ ‖g‖2 ‖u‖2 + C ‖∇u‖2 ‖u‖2.

Since Reλ ≥ 0, the lemma now follows by a simple shoestring argument. �

Lemma 14. Let γ1, γ2 ∈ (0,∞) with γ1 < γ2. Put Mγ1,γ2 := {λ ∈ C; Reλ ≥
0, γ1 ≤ |λ| ≤ γ2}. Then Mγ1,γ2 ⊂ %(L) (see (6.2)) and

‖(λI− L)−1(Φ)‖2 + ‖∇(λI− L)−1Φ‖2 ≤ C(γ1, γ2) ‖Φ‖2 for Φ ∈ H2(R3).

Proof. Recall that %(L) is an open set in C, and the mapping %(L) 3 λ 7→
(λI − L)−1 is holomorphic, in particular continuous, with respect to the operator
norm of linear bounded operators from H2(R3) into H2(R3). Thus, an elementary
argument involving finite coverings of Mγ1,γ2 and Neumann series of operators
yields that ‖(λI − L)−1(Φ)‖2 ≤ C(γ1, γ2) ‖Φ‖2. Now the lemma follows from
Lemma 13. �

Theorem 22. There is a constant C1 > 0 depending on τ , U , ϑ and a such that

1) the estimate

|λ| ‖(λI− L)−1g‖2 ≤ C ‖g‖2 (6.14)

holds for g ∈ H2(R3), λ ∈ C r {0} with Reλ ≥ 0, |λ| ≥ C1, and for λ ∈ Sϑ,a with
Reλ < 0 and |λ| ≥ C1 and

2) the estimate

|λ| ‖∇(λI− L)−1g‖2 ≤ C ‖∇g‖2 (6.15)

holds for g ∈ H2(R3) ∩W 1,2(R3)3, and for λ as in (6.14).

Proof. Let λ ∈ C r {0} with Reλ ≥ 0 or λ ∈ Sϑ,a. This means by (6.2) that
λ ∈ %(L). Let g ∈ H2(R3) ∩W 1,2(R3)3, and put u := (λI− L)−1g. Then

−∆u+ λu = g − τ ∂1u+ PBu. (6.16)

Multiplying this equation by −∆u, integrating over R3, separating real and imag-
inary parts, and then applying Hölder’s inequality and Lemma 8, we get

‖∆u‖22 + Reλ ‖∇u‖22 ≤ C
(
‖∇g‖2 ‖∇u‖2 + ‖∇u‖2 ‖∆u‖2

)
, (6.17)
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|Imλ| ‖∇u‖22 ≤ C
(
‖∇g‖2 ‖∇u‖2 + ‖∇u‖2 ‖∆u‖2

)
. (6.18)

Now we distinguish between the cases Reλ ≥ 0 and Reλ < 0. First consider the
(more difficult) case Reλ < 0. Then λ ∈ Sϑ,a, hence

Re (λ− a) > − cos(π − ϑ) · |λ− a|, |Imλ| ≥ |λ− a| · sin(π − ϑ).

We may thus deduce from (6.17) and (6.18), respectively, that

‖∆u‖22 +
(
− cos(π − ϑ) · |λ− a|+ a

)
‖∇u‖22 ≤ ‖∆u‖22 + Reλ ‖∇u‖22

≤ C
(
‖∇g‖2 ‖∇u‖2 + ‖∇u‖2 ‖∆u‖2

)
,

|λ− a| · sin(π − ϑ) · ‖∇u‖22 ≤ C
(
‖∇g‖2 ‖∇u‖2 + ‖∇u‖2 ‖∆u‖2

)
.

The second inequality is multiplied by 2 cot(π−ϑ) and then added to the first one.
It follows

‖∆u‖22 +
(
cos(π − ϑ) · |λ− a|+ a

)
‖∇u‖22

≤ C
(
‖∇g‖2 ‖∇u‖2 + ‖∇u‖2 ‖∆u‖2)

≤ α1

(
‖∇g‖2 ‖∇u‖2 + ‖∇u‖22

)
+ 1

2 ‖∆u‖
2
2, (6.19)

with a constant α1 depending on τ , U and ϑ. Now suppose in addition that
|λ| ≥ 2α1/ cos(π − ϑ). Then cos(π − ϑ) · |λ− a|+ a ≥ cos(π − ϑ) · |λ| ≥ 2α1, hence
from (6.19)

‖∆u‖22 +
(

cos(π − ϑ) · |λ− a|/2 + a/2 + α1

)
‖∇u‖22

≤ α1

(
‖∇g‖2 ‖∇u‖2 + ‖∇u‖22

)
+ 1

2 ‖∆u‖
2
2,

so that

1
2 ‖∆u‖

2
2 +

(
cos(π − ϑ) · |λ− a|/2 + a/2

)
‖∇u‖22 ≤ α1 ‖∇g‖2 ‖∇u‖2.

Since cos(π − ϑ) · |λ − a| + a ≥ |λ| · cos(π − ϑ), we now get |λ| · ‖∇u‖22 ≤
C ‖∇g‖2 ‖∇u‖2, hence |λ| ‖∇u‖2 ≤ C ‖∇g‖2. Recall that this inequality was
proved under the assumptions λ ∈ Sϑ,a, Reλ < 0, |λ| ≥ 2α1/ cos(π − ϑ).

Now we consider the case Reλ ≥ 0. Adding (6.17) and (6.18), we obtain

‖∆u‖22 +
(
Reλ+ |Imλ|

)
‖∇u‖22 ≤ C

(
‖∇g‖2 ‖∇u‖2 + ‖∆u‖2 ‖∇u‖2

)
.

But Reλ+ |Imλ| ≥ |λ|, so we may conclude that

‖∆u‖22 + |λ| ‖∇u‖22 ≤ C
(
‖∇g‖2 ‖∇u‖2 + ‖∇u‖2 ‖∆u‖2

)
≤ α2

(
‖∇g‖2 ‖∇u‖2 + ‖∇u‖22

)
+ 1

2 ‖∆u‖
2
2,
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with a constant α2 > 0 depending on τ and U . Thus, if |λ| ≥ 2α2, we arrive at
the inequality

1
2 ‖∆u‖

2
2 + |λ| ‖∇u‖22 ≤ α2 ‖∇g‖2 ‖∇u‖2.

It follows |λ| ‖∇u‖2 ≤ C ‖∇g‖2. This completes the proof of (6.15). In order to
show (6.14), we multiply (6.16) by u instead of −∆u. Then we obtain (6.14) by
repeating the previous arguments with obvious modifications. �

Note that Theorem 21 presents the resolvent estimates related to the operator
L for the case that |λ| is small, whereas Theorem 22 deals with the case of large
|λ|. Lemma 14 might be considered as an (obvious) result for intermediate values.

7. Estimates of the semigroup eLt.

We recall that our convention at the beginning of Section 6 with respect to generic
constants remains valid in this section. Furthermore, we recall that we assume that
the operator L satisfies conditions (A1) (Section 5) and (A2) (Section 6).

By Theorem 20, (6.14) and [17, Theorem 1.3.4], the operator L defined in (6.1)
generates an analytic semigroup in H2(R3) ([17, Definition 1.3.3]), which we denote
by eLt. In what follows, we will exploit the resolvent estimates from Section 6 in
order to evaluate this semigroup. We begin by introducing the constant

C2 := max
{
C1; ε4( 1

16 ); 1/
√

2; 2a tan(π − ϑ)
}
,

where C1 was chosen in Theorem 22, and ε4( 1
16 ) in Corollary 5. For the quantities

a and ϑ, we refer to Theorem 20. Since C2 ≥ 2a tan(π − ϑ), we may choose
ϑ0 ∈ (π/2, ϑ) so close to π/2 that for any s ∈ [C2,∞), the inclusion{

s eiϕ; ϕ ∈ [−ϑ0, −π/2] ∪ [π/2, ϑ0]
}
∪
{
r eiϑ0 ; r ∈ [s,∞)

}
⊂ Sϑ,a (7.1)

holds. Let α, β ∈ (0,∞) with α < β, β ≥ C2. Then we define the curves Γ(α,β)
i ⊂ C,

with i ∈ {1, ..., 5}, by setting

Γ(α,β)
1 :=

{
α · eiϕ; ϕ ∈ [−π/2, π/2]

}
, Γ(α,β)

2 :=
{

i r; r ∈ [α, β]
}
,

Γ(α,β)
3 :=

{
iβ + r eiϑ; r ∈ [0,∞)

}
, Γ(α,β)

i :=
{
y; y ∈ Γ(α,β)

i−2

}
for i ∈ {4; 5}. Let s ∈ [C2,∞) and define

Λ(s)
1 :=

{
s eiϕ; ϕ ∈ [−ϑ0, ϑ0]

}
, Λ(s)

2 :=
{
r eiϑ0 ; r ∈ [s,∞)

}
,

Λ(s)
3 :=

{
y; y ∈ Λ(s)

2

}
.

Then, in view of (6.2), (7.1) and Theorem 20, and since β ≥ C2 > a tan(π − ϑ),
we have Γ(α,β)

ν , Λ(s)
µ ⊂ %(L) (1 ≤ ν ≤ 5, 1 ≤ µ ≤ 3). As a consequence of these
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relations and [17, Theorem 1.3.4], we obtain

eLt(w) = (2πi)−1
5∑

ν=1

∫
Γ

(α,β)
ν

eλt (λ I − L)−1w dλ

= (2πi)−1
3∑

µ=1

∫
Λ

(s)
µ

eλt (λ I − L)−1w dλ (7.2)

for t ∈ (0,∞), w ∈ H2(R3). As to the arguments we present in this section, we
can note: The main difficulty consists in showing that for large t and for ξ, σ, f
as in Theorem 15, the term ‖∇eLt(f)‖2;BR is bounded by C(R, ξ, σ) t−1−ε ‖f‖2,
for some ε > 0. (Incidentally we will choose ε = 1

8 , but this will only be for
definiteness.) We will obtain such an estimate by considering the first sum on the
right–hand side of (7.2). This means in particular that we have to show that∥∥∥∥∫

Γ
(α,β)
1

eλt∇(λ I − L)−1f dλ
∥∥∥∥

2;BR

≤ C(ξ, σ,R) ‖f‖2 t−1−ε

for large t. In view of (6.10), this should require α ≤ t−1−ε. On the other hand,
in order to produce a factor t−γ for some γ > 0 in the estimate of the integral∫

Γ
(α,β)
ν

eλt∇(λ I − L)−1f |BR dλ for ν = 2 and ν = 4, we introduce the local
parameter ϕ(r) := i r (r ∈ [α, β]), and then integrate by parts with respect to r,
so that the factor eirt is transformed into eirt (it)−1. But this means that a single
partial integration does not suffice to generate a factor t−1−ε. On the other hand,
after two such integrations, we obtain a term ∇(ir I −L)−3f |BR , which gives rise
to a factor r−2−δ for some δ > 0 (see (6.12)). The integration of this term on the
interval [α, β] leads to the factor α−1−δ = t(1+ε)(1+δ) which cancels the effect of the
second partial integration. Therefore, recalling that the term ∇(ir I − L)−2f |BR
only produces a factor r−δ (see (6.11)), we perform a kind of interpolation between
one and two partial integrations. To this end, we use fractional derivatives, as
introduced in the next lemma.

Lemma 15. Let κ, b ∈ R with κ < b, µ ∈ (0, 1), h ∈ C1([κ, b]) with h(b) = 0.
Define h : [κ, b] 7→ C by

h(r) := Γ(1− µ)−1

∫ b

r

(s− r)−1+µ h(s) ds for r ∈ [κ, b].

Then h ∈ C1([κ, b]) with

h
′
(r) = Γ(1− µ)−1

∫ b

r

(α− r)−1+µ h′(α) dα for r ∈ [κ, b]. (7.3)

Define γ : [κ, b] 3 r 7−→ Γ(µ)−1

∫ b

r

(s− r)−µ h′(s) ds ∈ C. Then h = −γ.
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(Note that Γ without any subscript or superscript denotes the Gamma function.)
We leave the proof of this lemma to the reader, and only note that the equation
γ = −h may be reduced to the relation B(µ, 1−µ) = Γ(µ) ·Γ(1−µ) for µ ∈ (0, 1),
where B denotes the usual beta function.

Now we can prove an inequality which will be the key element in our estimate
of the integrals over Γ(α,β)

2 and Γ(α,β)
4 .

Lemma 16. Let δ ∈ (0, 1
4 ) and abbreviate b := min

{
ε4(δ); 1/

√
2
}

, with ε4(δ)
from Corollary 5. Then, for ξ, σ, f as in Theorem 15, R ∈ (0,∞), κ ∈ (0, b),
t ∈ (0,∞),∥∥∥∥∫ b

κ

eirt∇(irI− L)−2f dr
∥∥∥∥

2;BR

≤ C(ξ, σ, δ, R) t−1/4 κ−δ ‖f‖2.

Proof. Take ξ, σ, f , R, κ, t as in the lemma. Note that by (6.2), we have
{ir; r ∈ [κ, b]} ⊂ %(L). Therefore the mapping g : [κ, b] 3 r 7→ ∇(ir I−L)−1f |BR ∈
L2(BR)9 is in particular twice continuously differentiable, with

g(ν)(r) = (−i)ν ν∇(ir I− L)−(ν+1)(f) |BR
for ν ∈ {1; 2}, r ∈ [κ, b]. Thus, due to the assumption b ≤ ε4(δ), inequalities (6.11)
and (6.12) yield

rδ ‖g′‖2 + r2+δ ‖g′′(r)‖2 ≤ C(ξ, σ, δ, R) ‖f‖2 (7.4)

for r ∈ [κ, b]. Put h(r) := (it)−1 (eirt − eibt) for r ∈ [κ, b]. Define h and γ as in
Lemma 15, with µ = 1

4 . Then we get a partial integration, using the equation
γ′ = −h′ (Lemma 15), and changing the order of integration,∫ b

κ

eirt∇(irI− L)−2(f) |BR dr = (−i)
∫ b

κ

γ′(r) g′(r) dr

= i Γ( 1
4 )−1

∫ b

κ

h
′
(s)
(∫ s

κ

(s− r)−1/4 g′′(r) dr
)

ds

+ i Γ( 1
4 )−1

∫ b

κ

(s− κ)−1/4 h
′
(s) ds g′(κ). (7.5)

Note that h
′

is a fractional derivative of h (of order 3
4 ). Thus we have transformed

an integral of the form
∫ b
κ
h′ ·g′ dr involving the derivative h′ of h, into an integral

of the form
∫ b
κ
h
′ · ψ dr (modulo boundary terms) involving a fractional derivative

of h, in contrast to the function h itself, which would arise by the standard partial
integration.

The lemma follows from (7.4), (7.5) and the inequalities |h(r)| ≤ 2/t, |h′(r)| ≤ 2
for r ∈ [κ, b]. We omit the details because they were already elaborated in [7, proof
of Lemma 6.2]. �
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In the following theorem, we estimate ∇eLt(f) |BR for large values of t, with f
given as in Theorem 15.

Theorem 23. Put b := min
{
ε4( 1

16 ); 1/
√

2
}

, with ε4( 1
16 ) from Corollary 5. Let

R ∈ (0,∞), t ∈ [b−1,∞), and take ξ, σ, f as in Theorem 15. Then

‖∇eLt(f)‖2;BR ≤ C(ξ, σ,R) ‖f‖2 · t−9/8.

Proof. We start from the first equation in (7.2), with α = t−2. The latter
assumption means in particular that α = t−2 ≤ t−1 ≤ b. We further take β ∈
[C2,∞), where C2 was introduced at the beginning of this section. We find that∥∥∥∥∇ ∫

Γ
(α,β)
1

eλt (λI− L)−1f dλ
∥∥∥∥

2;BR

≤ α

∫ π/2

−π/2
|etα eiϕ

|
∥∥∇(α eiϕ I− L)−1f

∥∥
2;BR

dϕ

≤ C(ξ, σ) ‖f‖2 α eαt ≤ C(ξ, σ) ‖f‖2 t−2, (7.6)

where the last but one inequality holds because of (6.10). The last one is a conse-
quence of the choice α = t−2. If λ ∈ Γ(α,β)

3 ∪ Γ(α,β)
5 , we have |λ| ≥ |β| ≥ C2 ≥ C1

and λ ∈ Sϑ,a, Reλ ≥ 0, so inequality (6.15) is valid for such λ. This allows us to
conclude that∥∥∥∥∇( ∑

ν∈{3; 5}

∫
Γ

(α,β)
ν

eλt (λ I− L)−1f dλ
)∥∥∥∥

2;BR

≤ C ‖∇f‖2
∫ ∞

0

∣∣eiβ+reiϑ ∣∣ |iβ + r eiϑ|−1 dr

≤ C ‖∇f‖2 β−1

∫ ∞
0

ert cosϑ dr ≤ C(ξ) ‖f‖2 (βt)−1, (7.7)

where the last estimate follows from the first inequality in (4.26). This leaves us
to deal with the main difficulty of this proof, that is, the estimate of the integrals
over Γ(α,β)

2 and Γ(α,β)
4 . To this end, we perform a partial integration. Noting that

b ≤ C2 ≤ β, we obtain

∇
(∫

Γ
(α,β)
2

eλt (λI− L)−1f dλ
) ∣∣∣

BR

= i
∫ β

α

eirt∇(ir I− L)−1(f)
∣∣
BR

dr =
4∑
j=1

Nj , (7.8)

where

N1 := t−1 eitβ ∇(iβ I− L)−1(f)
∣∣
BR
,
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N2 := −t−1 eitα ∇(iα I− L)−1(f)
∣∣
BR
,

N3 :=
i
t

∫ b

α

eitr ∇(ir I− L)−2(f)
∣∣
BR

dr,

N4 :=
i
t

∫ β

b

eitr ∇(ir I− L)−2(f)
∣∣
BR

dr.

The integral over Γ(α,β)
4 is split into the sum

∑4
j=1 Nj , where Nj is defined in an

analogous way as Nj , for j ∈ {1; ...; 4}. Recalling that C1 ≤ C2 ≤ β, we get from
(6.15) and (4.26),

‖N1‖1 + ‖N1‖2 ≤ C(ξ) (tβ)−1 ‖f‖2. (7.9)

We further find, using the standard resolvent equation, (6.10) and (6.11) with
δ = 1

16 , that

‖N2 + N2‖2 ≤ t−1 |e−iαt − eiαt| ‖∇(−iα I− L)−1(f)‖2;BR

+ t−1 |eiαt|
∥∥2iα∇

[
(−iα I− L)−1 ◦ (iα I− L)−1(f)

]∥∥
2;BR

≤ C(ξ, σ,R) ‖f‖2 t−1
(
| sin(αt)|+ α15/16

)
≤ C(ξ, σ,R) ‖f‖2 (α+ α15/16 t−1). (7.10)

Lemma 16 with δ = 1
16 yields

‖N3‖2 + ‖N3‖2 ≤ C(ξ, σ,R) ‖f‖2 t−5/4 α−1/16. (7.11)

As to N4, we perform an additional partial integration, to obtain

N4 = 2it−2

∫ β

b

eirt ∇(ir I− L)−3(f)
∣∣
BR

dr + t−2 eiβt ∇(iβ I− L)−2(f)
∣∣
BR

− t−2 eibt ∇(ib I− L)−2(f)
∣∣
BR
.

Now we apply (6.15) with λ = iβ, (6.11) with λ = ib, the inequality b ≤ ε4( 1
16 ) and

(4.26), to obtain

‖N4‖2 ≤ C t−2

∫ β

b

‖∇(ir I− L)−3f‖2 dr + C(ξ, σ,R) t−2 ‖f‖2. (7.12)

The remaining integral in (7.12) is split into an integral from b to C2 and into
another one from C2 to β. (Recall that b ≤ C2 ≤ β.) But

∫ C2

b
‖(ir I−L)−3f‖2 dr ≤

C ‖f‖2 by Lemma 14 with γ1 = b, γ2 = C2, whereas∫ b

C2

‖∇(ir I− L)−3f‖2 dr ≤ C ‖∇f‖2
∫ β

C2

r−3 dr ≤ C ‖∇f‖2
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by (6.15). Thus, referring to (4.26), we obtain from (7.12),

‖N4‖2 ≤ C(ξ, σ,R) ‖f‖2 t−2. (7.13)

An analogous estimate for ‖N4‖2 may be derived by the same arguments. Now,
combining (7.8), the analogue of (7.8) for the integral over Γ(α,β)

4 , (7.9)–(7.11),
(7.13) and the analogue of (7.13) for N4, we obtain∥∥∥∥∇( ∑

ν∈{2; 4}

∫
Γ

(α,β)
ν

eλt (λ I− L)−1f dλ
)∥∥∥∥

2;BR

≤ C(ξ, σ,R) ‖f‖2
(

(tβ)−1 + α+ t−1 α15/16 + t−5/4 α−1/16 + t−2
)

≤ C(ξ, σ,R) ‖f‖2
(

(tβ)−1 + t−9/8
)
, (7.14)

where the last inequality holds because we chose α = t−2. By referring to (7.2),
(7.6), (7.7), (7.14), we may conclude that ‖∇eLt(f)‖2;BR ≤ C(ξ, σ,R)

(
(tβ)−1 +

t−9/8
)
. Letting β tend to infinity, we obtain the statement of the theorem. �

Theorem 24. Choose b as in Theorem 23. Then, for t ∈ (0, b−1], Φ ∈ H2(R3) ∩
H1(R3)3, the inequality ‖∇eLt(Φ)‖2 ≤ C(ϑ0) ‖∇Φ‖2 holds.

Proof. Take t,Φ as in the theorem. Put s0 := 1/t if t ≤ 1/C2, and s0 := C2 if
t > 1/C2. Then we have s0 ≥ C2 in any case, so we may represent eLt(Φ) by the
second sum in (7.2). Moreover, for λ ∈ Λ(s0)

i , 1 ≤ i ≤ 3, we have |λ| ≥ s0 ≥ C2 ≥
C1, and in the case Reλ ≤ 0 in addition λ ∈ Sϑ,a (see (7.1)), hence

‖∇(λI− L)−1Φ‖2 ≤ C |λ|−1 ‖∇Φ‖2 (7.15)

by (6.15). In addition, we observe that s0t = 1 if t ≤ 1/C2, and s0t ≤ C2 b
−1 else.

As a consequence, s0t ≤ C in any case. Choosing ψ1(ϕ) := s0 eiϕ (ϕ ∈ [−ϑ0, ϑ0])
as a representation of Λ(s0)

1 , we get with (7.15):

‖eψ1(ϕ) t ψ′1(ϕ) ∇
(
ψ1(ϕ) I− L)−1Φ‖2

≤ es0 cosϕt s0 C |s0 eiϕ|−1 ‖∇Φ‖2 ≤ C ‖∇Φ‖2,

where we have used that s0t ≤ C, as noted above. Moreover, introducing the local
representation ψ2(r) := r eiϑ0 (r ∈ [s0,∞)) of Λ(s0)

2 , we find with (7.15) that

‖eψ2(r) t ψ′2(r) ∇
(
ψ2(r) I− L

)−1Φ‖2 ≤ C(ϑ0) ert cosϑ0 r−1 ‖∇Φ‖2.

Furthermore, observing that s0t ≥ 1,∫ ∞
s0

ert cosϑ0 r−1 dr =
∫ ∞
s0t

eα cosϑ0 α−1 dα ≤
∫ ∞

1

eα cosϑ0 α−1 dα ≤ C(ϑ0).
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The same argument also works for an analogous representation of Λ(s0)
3 . Combining

the preceding results, we get∥∥∥∥∇(∫
Λ

(s0)
i

eλt (λI− L)−1(Φ) dλ
)∥∥∥

2
≤ C(ϑ0) ‖∇Φ‖2

for i ∈ {1; 2; 3}. This proves the theorem. �

Theorem 25. Let ξ ∈ R and R ∈ (0,∞). There exists a non–increasing function
ϕ belonging to L1

(
(0,∞)

)
∩ L2

(
(0,∞)

)
, depending on τ , U , ϑ, a, ϑ0, ξ and R,

such that

‖∇eLt(f)‖2;BR ≤ ϕ(t) ‖f‖2

for t ∈ (0,∞) and for f ∈ H ′2 (i.e. for f being an eigenfunction of the operator
∆ + ξ PBsym, associated with a positive eigenvalue).

Proof. Again we abbreviate b := min{ε4( 1
16 ); 1/

√
2}. By Theorem 23, there is

γ1 > 0 depending on τ , U , R, ϑ, a, ξ, σ such that ‖∇eLt(f)‖2;BR ≤ γ1 t
−9/8 ‖f‖2

for t ∈ [b−1,∞) and for f ∈ D(L) verifying the differential equation stated at
the end of Theorem 25. Moreover Theorems 24 and 15 yield the existence of
a constant γ2 > 0 depending on the same quantities and also on ϑ0 such that
‖∇eLt(f)‖2 ≤ γ2 ‖f‖2 for t ∈ (0, b−1] and for f as before. Thus, the function ϕ
defined by ϕ(t) := γ1 t

−9/8 for t ∈ [b−1,∞), ϕ(t) := γ2 for t ∈ (0, b−1), has all the
desired properties. �
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