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Abstract

In this note we consider three questions which can be traced to our early col-
laboration with Jan “Honza” Pelant. We present them from the contemporary
perspective, sometimes complementing our earlier work. The questions relate
to a Ramsey problem, uniform spaces and tournaments.

1 Introduction

In this note we discuss some of Jan’s mathematical interactions with the authors
that date back to early 70ies. Jan Pelant was a remarkable man whose influence
on his contemporaries transcendented in Prague mathematical life. He had a
gift to understand and to solve problems, he was an excellent mathematician.
However, Jan Pelant was not just an expert in his own field. His interests and
talents were broad and he could have been successful in other areas. His passing
away is a great loss to all of us.

Here we deal with his work related to 3 problems: Ramsey topological spaces,
characters of uniformities and tournaments algebras.

2 Ramsey topological spaces

Ramsey theory was developing very rapidly during 70ies. One of the most
significant changes was the fact that the original set theory (and graph theory)
setting of Ramsey theory was generalized to other structures. In this context
the notions of Ramsey class and Ramsey property were defined and understood.
This development is nicely described in the first monograph devoted to Ramsey
theory [6]. Motivated by our work on Ramsey graphs [25] we discussed the
Ramsey problems intensively, and so it was only natural that soon we translated
the Ramsey theory also to a topological setting.

Definition 1

A topological space Y is said to be point Ramsey for the space X if for every
(set) partition Y = Y1 ∪ Y2 one of the classes Yi contains a subspace which is
homeomorphic to X .
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In the classical Erdös-Rado notation this is denoted by Y → (X)12. If α parts
are allowed then we write Y → (X)1α. We say that a class T of topological spaces
is point Ramsey if for every X ∈ T and every cardinal α there exists Y ∈ T
such that

Y → (X)1α.

Jointly with J. Pelant we proved [26]:

Theorem 1

1. The class T1 of all T1-topological spaces is point Ramsey.

2. The class T0 of all T0-topological spaces is point Ramsey.

This is an easy result which is obtained by the lexicographic (nested) prod-
uct.

It is not known whether the class T2 of Hausdorf topological spaces is point
Ramsey. Particularly, the following problem concerning the unit interval I pop-
ularized the study of Ramsey topological spaces.

Problem 1

Is it true that for every α there exists β such that Iβ → (I)1α?

This is clearly equivalent to the question whether the class of completely
regular spaces is point Ramsey. The above is contained in the conference volume
of TOPOSYM’76 [26].

We were pleased to learn that this note was quickly followed by research
by W. Weiss, V. I. Malyhin, S. Todorčević and others [13, 40, 39]. A survey
article by W. Weiss about this research appeared in [41]. In fact the TOPOSYM
paper [26] contains only a sketch of the proof of Theorem 1 and, in the hindsight,
it proves more. Thus after 30 years we take the liberty to include here the
following mild strengthening of [26]:

Theorem 2

For every topological space X , every linear ordering ≤ of its points and every
cardinal α there exists a linearly ordered topological space (Y,≤Y ) such that
(Y,≤Y ) → (X,≤X)1α.

Proof. Let (X,≤X) and α be given. We define the base set of Y as Xα. Let ≤Y

be the lexicographic ordering of sequences (xι; ι < α). The topology of Y will be
defined by the subbase neighbourhods U(x0, U, γ): For γ < α, x0 = (x0

ι ; ι < α)
and a neighbourhood U of xγ (in X) we put (xι; ι < α) ∈ U(x0, U, γ) iff xι = x0

ι

for ι < γ and xγ ∈ U .
We prove (Y,≤) → (X,≤)1α. Thus let c : Y → α be a coloring of points of

Y . We construct by the transfinite induction points xλ ∈ X such that c(u) 6= λ
whenever u ∈ Y , uγ = xγ(γ ≤ λ). Suppose that λ < α and xγ ∈ X(γ < λ) have
already been constructed. Suppose on the contrary that there is no xλ with the
required property. This means that for each v ∈ X there exists yv ∈ Y satisfying
yv

γ = xγ (γ < λ), yv
λ = v and c(yv) = λ. Then the set {yv : v ∈ X} induces

an ordered subspace of Y monotone homeomorphic to (X,≤). Clearly the set
is homogeneous for the coloring c, a contradiction. Hence we can construct
the elements xλ(λ < α) with the required property. Then the sequence x =
(xλ)λ<α ∈ Y satisfies c(x) 6= λ for each λ < α, a contradiction.



Remark 1

One should note that the above definition of (point) Ramsey property deals with
partitions of points only. If we consider the partitions of arbitrary subspaces
then, in the positive case, we speak about Ramsey classes.

One has to stress that no non-trivial Ramsey class of topological spaces is
known. This perhaps is not even a good question (as also indicated by examples
given in [26]). (However, an interesting graph-theory proof of κ 6→ (ω)ω

2 [28]
found other applications [38].) The more fruitful area was developed here in
the context of topological restricted colorings which led to the intensive devel-
opment [5, 3, 12].

On the other hand for finite topological spaces the full characterization of
Ramsey classes is given in [22, 23]. Ramsey classes of finite structures are related
to ultrahomogeneous structures [21, 22, 11] and this connection found recently
a spectacular application in the context of topological dynamics [11].

Remark 2

Ramsey problems depend very much on the underlying category. The more re-
strictive maps lead to fewer subspaces and thus we can expect a richer spectrum
of results. Examples of this phenomenon are Euclidean and geometric Ramsey
theorems [15] and also metric Ramsey theorems [2], [16] (which should be dis-
tinguished from Ramsey theorem for finite metric spaces [24]). However, these
questions were studied much later.

3 A point character of `p(κ)

Let (X, ρ) be a metric space. An open covering U of (X, ρ) is a family of open
subsets of X with X =

⋃

U . We say that U is bounded if there exists b > 0 with
the property that diam U < b for all U ∈ U . The covering U is called uniform if
there exists ε > 0 such that for every x ∈ X there is a U ∈ U which contains the
ε-ball Bε(x) = {y; ρ(x, y) < ε}. By the well-known theorem of A. H. Stone [36],
each metric space is paracompact and hence each open covering U of (X, ρ) has
an open locally finite refinement V - i.e., there is an open covering V with the
following two properties:

1. for each x ∈ X there is a neighborhood of x which meets only finitely
members of V

2. for every V ∈ V there is a U ∈ U with V ⊂ U .

The question whether in Stone’s theorem the open coverings may be replaced
by the uniform ones (i.e., whether every uniform covering has a locally finite
uniform refinement) was originally formulated by A.H. Stone [37] and is also
mentioned in Isbell’s book [8]. The answer to this question is clearly positive
for any Euclidean or more generally separable space. However, it was shown
independently by Pelant [29] and Shepin [35] that the space `∞(κ) for κ suffi-
ciently large does not have the property. Subsequently in [34] and in [32] we
proved that the space `p(κ), 1 ≤ p < ∞ (κ large) does not have the property,
either. Here we describe the result from [32] which is related to a paper from
this volume [1].



Definition 2

Let (X, ρ) be a metric space. A point character pc(X, ρ) of (X, ρ) is the least
infinite cardinal β with the property that for each uniform cover U and each
cardinal λ < β there exists x ∈ X which is in at least λ members of U .

A space with pc(X, ρ) ≤ ℵ0 is also called point finite. For any Euclidean
space En clearly pc(En) = n + 2. So the point character provides a suitable
generalization of the notion of dimension for the ”infinite dimensional case”.

The Stone question is equivalent to the problem whether every metric space
is point finite.

For an infinite cardinal κ and p ≥ 1 recall that `p(κ) is the Banach space
whose elements are the real functions on κ such that

∑

i<κ |f(i)|p converges,
the operations are pointwise and the norm is defined by

‖f‖ =

(

∑

i<κ

|f(i)|p

)1/p

.

The main objection of this paragraph is to prove the following.

Theorem 3

Let α be a limit ordinal number. Then pc `1(ωα) ≥ ωα.

For the proof we shall need the following lemma. Let X be a set. By a
symbol [X ]n we denote the system of all n-element subsets of X .

Lemma 1

Let n be a positive integer, n ≥ 2 and γ an ordinal number. Then for every
mapping f : [ωγ+n−1]

n → ωγ+n−1 satisfying x, y ∈ [ωγ+n−1]
n, x∩ y = ∅ implies

f(x) 6= f(y) there exists C ⊂ [ωγ+n−1]
n with the following properties:

1. |C| = ωγ ,

2. x1 6= x2, x1, x2 ∈ C → f(x1) 6= f(x2),

3. | ∩ C| = n − 1.

For the proof see [1].

Proof. (Theorem) We will prove that pc `1(ωα) ≥ ωα.
Let U be an arbitrary bounded uniform covering of `1(ωα). Without loss of

generality we may assume that diamU ≤ 1 for any U ∈ U .
Let us consider the topological subspace of `1(ωα) on the set

{f |f : ωα → 〈0, 1〉, |cozf | < ω0 and f(x) = 1/|cozf |, for x ∈ cozf}

where cozf = {m|f(m) 6= 0}. This subspace we denote by F (ωα). Let U be
a uniform cover of F (ωα) such that U is a refinement of L(1) = {B(x, 1) : x ∈
F (ωα)} (for short U ≺ L(1)).

As U is a uniform covering, there exists ε > 0 such that for every x ∈ F (ωα)
there is a U ∈ U with B(x, ε) ⊂ U . Let us take n so large that 1/n < ε/2.
Consider

Fn(ωα) = {f |f ∈ F (ωα) and |cozf | = n}



Let us define the mapping g : [ωα]n → U so that if f ∈ Fn(ωα) with
cozf = M then B(f, ε) ⊂ g(M). (Recall that for each M ∈ [ωα]n there exists
the only mapping f ∈ Fn(ωα) such that cozf = M ; denote this mapping by
fM ). The mapping g satisfies the assumption of Lemma 1 as for x,y disjoint we
have dist(fx, fy) = 2. Since U ≺ L(1), g(x) and g(y) must be different elements
of U .

Let now γ < α. As α is a limit ordinal we have also ωγ+n−1 < ωα and thus,
by Lemma 1, there is a family C ⊂ Fn(ωα) with the properties

1. |C| = ωγ ,

2. c1, c2 ∈ C, c1 6= c2 ⇒ g(c1) 6= g(c2),

3. | ∩ C| = n − 1. Fix c ∈ C. For each c′ ∈ C we have ρ(fc, fc′) = 2

n < ε,
and so fc ∈ B(fc′ , ε) ⊂ g(c′). Hence c is containned in ωγ elements of U .

Since ωγ < ωα and U were arbitrary, we have pcFn(ωα) ≥ ωα, and conse-
quently, pc`1(ωα) ≥ ωα.

Finally, let us note that the proof for p > 1 is analogous.
For more details see [29, 30, 33].

4 Tournaments and algebras

The first two papers [31, 17] of Jan Pelant deal with relations: [31] can be
traced to a dimension question of M. Katětov while [17] is an abstract of the
main activity of the combinatorial seminars in 1970 − 1971. It deals with the
following notion:

Definition 3

A tournament (X, R) is a reflexive relation which is complete and antisymmetric.
Explicitly, R satisfies

R ∪ R−1 = X2, R ∩ R−1 = ∆X

In [17, 18, 19] we studied tournaments from the algebraic point of view:
Every tournament T = (X, R) corresponds uniquely to the binary tourna-

ment algebra (X, ·T ) defined by x ·T y = z if (x, y) ∈ R and x = z.
Clearly tournament algebras are just quasitrivial (x · y ∈ {x, y}), commu-

tative and idempotent algebras. Note also that f : (X, R) → (X ′, R′) is a
(relational) homomorphism iff f : (X, ·T ) → (X ′, ·T ′) is an (algebraic) homo-
morphism.

This connection led us to investigate the tournament algebras thoroughly.
This resulted in papers [18, 19] where we (among others) characterized the
congruence lattices of tournaments algebras. It also led to new notions such as
the simple tournament.

Definition 4

A tournament T = (X, R) is simple if every non-constant homomorphism
f : T → T is an automorphism. (In today terminology these are just core
tournaments [7].)



Inspired by the characterization of the groups automorphism of tournaments
we proved that every such group can be represented by a simple tournament. We
also characterized scores of simple tournaments and scores for which every tour-
nament is simple (these are just scores (1, 1, 1), (2, 2, 2, 2, 2),(3, 3, 3, 3, 3, 3, 3)).
It came then as a surprise that the same notion was studied independently at
the same time by P. Erdös, E. Milner and Moon [4, 20]. This was a great
encouragement to our work.

Tournament algebras proved to be useful. Denote by VT the variety gen-
erated by the finite tournament algebras. In [18] we isolated infinitely many
irreducible equations valid in VT and posed as a problem whether VT is finitely
axiomatizable. This problem was solved by J. Ježek, M. Márosi and R. McKen-
zie [9] (there is no finite axiomatization). It appeared that tournament algebras
form an important class, see e.g. [14]. They played a role in Ramsey theory as
well. Let us finish this paper by stating explicitely this connection.

Let K be a class of idempotent algebras (by this we mean that every single
element subset induces a subalgebra). The notation B → (A)1k has the analogous
meaning as above in Section 2 (for topological spaces). More generally given
algebras A, B we also write C → (B)A

K if the following statement holds:
For every partition of the set

(

C
A

)

of all subalgebras of C which are isomorphic

to A into k classes there exists a subalgebra B′ of C, B′ ' B, such that
(

B′

A

)

is
a subset of one of the classes of the partition. We say that K has the A-Ramsey
property if for every positive k and every A, B ∈ K there exists C such that
C → (B)A

k .
In [10] we proved:

Theorem 4

1. Every variety V of idempotent algebras has point Ramsey property.

2. The variety VT generated by the tournament algebras has A-Ramsey prop-
erty iff A is a singleton.

In [27] we investigated varieties of partially ordered sets and lattices. Partic-
ularly we characterized those lattices A for which the class of all finite distribu-
tive lattices has A-Ramsey property and for which the class of all lattices have
A-Ramsey property. However, for the class Mod of all finite modular lattices
the situation is not clear and still presents an open problem:

Problem 2

Characterize those modular lattices A for which the class Mod has A Ramsey
property.

We thank to D. Hartman for technical help with this paper.
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