
Remarks on Bishop - type operators

Călin Ambrozie

INTRODUCTION

Let α ∈ (0, 1) be an irrational number and Tα : L2[0, 1) → L2[0, 1) be
the operator acting on the space L2[0, 1) consisting of all classes of square
integrable functions on the real interval [0, 1) by

(Tαh)(x) = xh({x + α}), x ∈ [0, 1)

where for any real number y,

{y} := the fractional part of y,

namely we write y = n + s with n ∈ Z, s ∈ [0, 1) and set {y} := s; we note
[y] := n for the integer part of y.

Equivalently, if we identify the interval [0, 1) and the unit circle T =
{e2πix : x ∈ [0, 1)} endowed with the normalized Lebesgue measure, then

(Tαh)(e2πix) = xh(e2πi(x+α))

on the space H := L2(T).
The operator Tα was suggested in the 50’s by E. Bishop as a candidate

for an operator without closed linear invariant subspaces 6= {0}, H .
The main answer to the this question concerning the operators of the

form Tα was given in the 70’s by A. Davie [D]:

1 Theorem [D] For almost all α the operator Tα does have a hyperin-
variant (in particular, invariant) subspace.

We call a subspace hyperinvariant for Tα if it is invariant under all bounded
linear maps S : H → H such that STα = TαS (in particular, under Tα).
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Let us note that if α ∈ Q, one easily shows that Tα does have invariant
subspaces; while if α 6∈ Q, then Tα has no eigenvectors [D]. More general
operators like

Tα,ϕh (x) = ϕ(x)h(e2πi(x+α))

with ϕ ∈ L∞(T) were then considered by MacDonald, Blecher, Flattot, Chal-
endar, Partington etc, on various spaces Lp(T) etc. Theorem 1 was subse-
quently extended to wider classes of numbers α as well as multipliers ϕ,
including for instance the real analytic ones in neighborhoods of [0, 1].

We remind below a few known number theoretic topics.

Definition The index ind α of an irrational number α is the supremum of
all l > 0 such that for any k > 0 there exist p, q with

|α − p

q
| <

k

ql
.

As it is well known by Liouville’s theorem, if ind α = ∞ then α is tran-
scendent. Recall also that by Dirichlet’s theorem, for all irrational α we have
ind α ≥ 2. It’s been proved by Roth that if α is algebraic irrational then
ind α = 2. Also, Jarnik has shown that almost all numbers α ∈ (0, 1) have
finite index.

Theorem 1 from above [D] thus holds for all irrational α ∈ (0, 1) with
ind α < ∞, and ϕ(x) = x on L2. The result was generalized in [M] to the
case of those multipliers ϕ with ln |ϕ| well-approximable by step functions of
intervals; also, for those ϕ with ln |ϕ| ∈ Lp piecewise monotone and p > ind α;
in particular, for ϕ analytic in a neighbourhood of [0, 1] on spaces Lp with
1 < p < ∞. The case ϕ(x) = xs was considered in [F] on L2 for a larger class
of α’s including some non–Liouville numbers. Then a slight generalization
was stated in [CP] for products of two such Bishop type operators. In [M2] the
existence of joint invariant subspaces was proved for finitely many commuting
Bishop operators, too.

However, even for the simplest case ϕ(x) = x the question of the existence
of invariant subspaces remains open in general, that is, the answer is still
unknown for highly transcendent numbers α.

We give in this note some versions of the various existing results of this
type.
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PRELIMINARIES

Following [D], let us note T := eTα. Hence the spectral radius r(T ) of T
is 1. More generally, we have

r(Tϕ,α) = e
R 1
0 ln |ϕ(x)| dx

for a wide class of ϕ’s including the continuous ones [M]; then we let T :=
r(Tα)−1Tα so that r(T ) = 1. Using the well known formula for the spectral
radius r(T ) = limn→∞ ‖T n‖, one can derive, briefly speaking, good estimates
of ‖T±n‖ for large n, which leads to the existence of invariant subspaces by
known techniques of Wermer, Atzmon etc. A first obstacle to this aim is that
generally T is not invertible. Moreover, using the technique mentioned from
above requires to deal with operators T having a rich functional calculus -
almost unitaries, in some sense. For these (and other) reasons, a renorming
of the space under consideration will be necessary, so that T extends to a
more suitable (invertible etc) operator, say T̃ : H̃ → H̃ on some Hilbert
space H̃ that contains H densely.

Then the main tool in obtaining the existence of a rich functional calculus
for T̃ is Denjoy-Carleman’s theorem on quasi-analytic functions. We remind
below some known facts in this sense.

Given a sequence of weights ρn ≥ 1 where n ∈ Z such that ρn+m ≤ ρnρm

for all n, m and lim|n|→∞ ρ
1/|n|
n = 1, the space of all continuous functions

f(eit) =
∑

n cne
int on the unit circle such that

‖f‖ :=
∑
n∈Z

|cn|ρn < ∞

becomes a Banach algebra A (ρn).
If Beurling’s condition

∑
n∈Z

ln ρn

n2 + 1
< ∞

is verified (for example, if ρn := |n||n|ρ, where 0 < ρ < 1 is fixed), the algebra
A (ρn) is regular. In particular, A (ρn) contains functions f, g 6≡ 0 such that
fg ≡ 0.

For an arbitrary complex Hilbert space H , let B(H) denote the algebra
of all bounded linear maps on H .
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Definition (see [CF]) Let T ∈ B(H) be invertible. Set ρn = ‖T n‖ and
AT := A(ρn)n

. We call T AT -unitary if AT is regular and there exists a
continuous morphism of algebras

AT ∋ f 7→ f(T ) ∈ B(H)

taking any polynomial
∑

n cnz
n into

∑
n cnT

n.

2 Theorem (Wermer) If T is AT -unitary, it has invariant subspaces.

Proof: One applies, roughly speaking, the multiplicativity property of the
functional calculus of T , namely write that f(T )g(T ) = (fg)(T ) = 0, while
f(T ) 6= 0 and g(T ) 6= 0. Then set H0 := ker f(T ). We have TH0 ⊂ H0 , since
f(T )h = 0 implies that f(T )Th = Tf(T )h = 0, too. We omit the details,
that are known [W].

We need certain topics on diophantine approximation. Remind that every
irrational number x ∈ (0, 1) has a continuous fraction representation

x =
1

a1 + 1
a2+ 1

a3+···

(a1, a2, a3, . . . ∈ N).

That is, we write 1
x

= a1 + t1 with a1 integer and 0 < t1 < 1, namely a1 = [ 1
x
]

and t1 = { 1
x
}, then 1

t1
= a2 + t2 with a2 ∈ N and t2 ∈ (0, 1), namely a2 = [ 1

t1
]

etc. By the formula tn+1 = { 1
tn
} for n ≥ 1, it follows inductively that all

tn = tn(x) (and hence, all partial quotients an = an(x)) are measurable
functions of x ∈ (0, 1)\Q. Truncating the continued fraction of x at the n-th
partial quotient an for each n ≥ 1 provides the convergents pn

qn
of x

pn

qn
:=

1

a1 + 1
a2+··· 1

an

(n ≥ 1),

namely p1

q1
= 1

a1
, p2

q2
= 1

a1+ 1
a2

= a2

a1a2+1
etc where p1 = 1 and q1 = a1, p2 = a2

and q2 = a1a2 + 1 etc. Then pn = pn(x) ≥ 1 and qn = qn(x) ≥ 1 also
are (integer-valued) measurable functions of x. For these topics we refer for
instance to [EN]
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3 Theorem (see [EN]) For every irrational x ∈ (0, 1) we have limn→∞
pn

qn
=

x, and for every n ≥ 1 the numbers pn and qn are relatively prime such that

|x − pn

qn
| <

1

q2
n

and
p2n

q2n
< x <

p2n−1

q2n−1
.

4 Theorem (see [EN]) For almost all irrational x ∈ (0, 1), we have
limn→∞

1
n

ln qn(x) = π2

12 ln 2
.

5 Corollary For every ǫ1, ǫ2, µ ∈ (0, 1) with ǫ1 < ǫ2, there exist a number
m0 ≥ 1 and a measurable subset M ⊂ (0, 1) with λ(M) > µ, such that for
each natural number m ≥ m0 and every point x ∈ M there are relatively
prime integers p ≥ 1 and q ≥ 1 with

0 < x − p

q
<

1

q2

and
m1−ǫ2 ≤ q ≤ m1−ǫ1 .

Moreover, for m fixed we can select p = p(x) and q = q(x) (x ∈ M) such
that p( · ) and q( · ) are measurable functions.

Proof. Let ǫ1, ǫ2, µ ∈ (0, 1) with ǫ1 < ǫ2. Set c = π2

12 ln 2
. Fix a positive

ǫ = ǫ(ǫ1, ǫ2) sufficiently small such that

1 − ǫ1

c + ǫ1
− 1 − ǫ2

c − ǫ2
>

1

2

ǫ2 − ǫ1

c
. (1)

By Levy’s theorem from above, the sequence of almost everywhere defined
measurable functions 1

n
ln qn is almost everywhere convergent to the constant

function c. By Egorov’s theorem, there exists a measurable set M ⊂ (0, 1)
with λ(M) > µ such that 1

n
ln qn → c uniformly on M as n → ∞. Let

n0 ≥ 1 such that 1
n

ln qn(x) ∈ (c − ε, c + ε) for all n ≥ n0 and almost all

x ∈ M . Take m0 = max( e
(c+ǫ)(n0+1)

1−ǫ1 , e
4c

ǫ2−ǫ1 ). Now let m ≥ m0 be arbitrary.

Set ν = [ ln m1−ǫ1

c+ǫ
]. Since m ≥ m0 ≥ e

(c+ǫ)(n0+1)
1−ǫ1 , lnm1−ǫ1

c+ǫ1
− 1 ≥ n0 and so
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ν − 1 ≥ n0. If ν is even, let n = ν; if ν is odd, let n = ν − 1. In any case
n is even and n ≥ n0. For every irrational x ∈ M , we may let p

q
be the

n-th convergent of x, namely define p := pn(x) and q = qn(x). By Dirichlet’s
theorem on rational approximation from above, p

q
< x and x− p

q
< 1

q2 . Using

that y − 1 ≤ [y] for y = lnm1−ǫ1

c+ǫ
, we obtain

ln m1−ǫ1

c + ǫ
− 2 ≤ ν − 1 ≤ n ≤ ν ≤ ln m1−ǫ1

c + ǫ
. (2)

Since m ≥ e
4c

ǫ2−ǫ1 , ln m ≥ 4c
ǫ2−ǫ1

. By (1), this gives

(
1 − ǫ1

c − ǫ
− 1 − ǫ2

c + ǫ
) ln m ≥ 2

and so
ln m1−ǫ2

c − ǫ
≤ ln m1−ǫ1

+ǫ
− 2 (3)

From (2) and (3) we derive

lnm1−ǫ2

c − ǫ
≤ n ≤ ln m1−ǫ1

+ǫ
.

Hence
m1−ǫ2 ≤ en(c−ǫ) ; en(c+ǫ) ≤ m1−ǫ1 .

Since n ≥ n0, we have c − ǫ ≤ 1
n

ln qn(x) ≤ c + ǫ for almost all x ∈ M , that
is, en(c−ǫ) ≤ q ≤ en(c+ǫ) almost everywhere. Then m1−ǫ2 ≤ q ≤ m1−ǫ1.

6 Lemma Fix a real p > 1, a positive ω < 1− 1
p

and a decreasing sequence

of numbers tk > 0 (k ≥ 1) with limk→∞ tk = 0. Then for any f ∈ Lp[0, 1]
nonnegative almost everywhere, the sequence of sets

Ek = {x ∈ [0, 1) : f({x − nα}) ≥ n1−ω

tk
for all n ≥ 1} (k ≥ 1)

is increasing and satisfy λ(∪kEk) = 1.

Proof For every k ≥ 1, [0, 1) \ Ek = ∪n≥1Mkn where Mkn = {x ∈ (0, 1) :

f(x − nα) > n1−ω

tk
. For every n ≥ 1, define the function σn on the real

line by σn(y) = y − nα. Set also σ(y) = y. Now σn is a translation of σ
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by nα. Then a brief look at the graph of τ shows that the restriction τ |I is
measure-preserving on any interval I ⊂ R of length one. In particular, τn|[0,1)

is measure-preserving. Also, Mkn = τn(Nn) where Nn = {s ∈ (0, 1) : f(s) >
n1−ω

tk
}. Then

λ(Mkn) = λ(τn(Nn)) = λ(Nn).

It follows that

λ([0, 1) \ Ek) = λ(∪nMkn) ≤
∑

n

λ(Mkn) =
∑

n

λ(Nn).

Now

(
n1−ω

tk
)pλ(Nn) ≤

∫
Nn

f p dλ ≤ ‖f‖p
p.

Hence

λ([0, 1) \ Ek) ≤
∑

n

‖f‖p
p(

tk
n1−ω

)p = ‖f‖p
p(

∑
n

1

n(1−ω)p
= c · tpk

for a constant c since (1 − ω)p > 1. Hence λ([0, 1) \ Ek) → 0 as k → ∞.

A TECHNIQUE OF INVARIANT SUBSPACES FOR Tα

We summarize in what follows, in a unified way, the main six steps of the
various proofs known so far to have provided invariant subspaces for Bishop
type operators.

(1) We extend T to a space L of (classes of) Lebesgue measurable functions
defined almost everywhere on [0, 1), so that T−n also exists for n = 1, 2, . . .,
given by the formula

T−nf(x) = Fn(x)f({x − αn})

where

Fn(x) =
e−n

{x − α} · · · {x − nα} .

(2) We write [0, 1] = ∪tEt with Et = {x : {x − nα} are bounded from
below }, see Lemma 6.
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(3) We make use of Dirichlet’s theorem (see Corollary 5) stating that for
every integer n there are p, q relatively prime such that |α− p

q
| < 1

q2 , q ≤ √
n;

moreover, for almost all α, we can take q ≥ n1/4.

To this aim, a Levy’s theorem is used, providing us with approximations: α ≈
pn(α)
qn(α)

by continuous fractions, so that limn
1
n

ln qn(α) = a universal constant.
The proof of this fact is a nice application of the ergodic theory of numbers.

(4) Since we have good approximations of the form {x − nα} ≈ {x − np
q
},

then we can derive suitable estimates for the multipliers Fn(x) on each of the
sets Et (by Stirling’s fomula, in the case ϕ(x) = x).

Therefore, we obtain estimates of the form

‖T±n‖L2(Et) ≤ nnρ

.

(5) We take, for example, H̃ := {f : ‖f‖H̃ < ∞} where for suitable constants
ct (with countably many positive t = tk → 0 as k → +∞),

‖f‖H̃ :=
∑

t

ct

∫
Et

∑
n∈Z

|T nf (x)e−|n|ρ|2dx

Using (4) we obtain
‖f‖H̃ ≤ ct. ‖f‖L2

Let T̃ denote the operator T acting on H̃ . Then by Beurling’s condition, T̃
is AT̃ -unitary; moreover, one proves that its spectrum σ(T̃ ) = the unit circle.

Let A : L2 → H̃ denote the inclusion L2 ⊂ H̃. Then A is bounded with
dense range.
Also, AT = T̃A, that is, T = A−1T̃A.

Definition (see [CF]) We call T from above as a quasiaffine transformation
of T̃ , and write

T < T̃

7 Proposition (see [CF]) If B < C, then C∗ < B∗.
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If B is AB-unitary, then B∗ is AB∗-unitary.

Now, as one can esaily check, T ∗ also is a Bishop-type operator. Then
similarly one obtains that

T ∗ < U

for an AU -unitary operator U . Hence

U∗ < T ∗∗ = T

with U∗ = AU∗-unitary. Thus U∗ < T < T̃ .

(6) The existence of a hyperinvariant subspace of T follows then from the
theorem:

7 Theorem (see [CF]) If V < T < W with V = AV -unitary and W =
AW -unitary such that σ(V ) 6= a single point, then T has hyperinvariant sub-
spaces.

CONCLUSIONS

The general idea behind all known proofs seems to be the following: once
the multiplier Fn that appears in the formula T−nf(x) = Fn(x)f({x − αn})
has a rather concrete form (in the case ϕ(x) = x for instance), then estimating
Fn(x) is equivalent to find estimates for | 1

n
ln Fn(x) | =

= | 1

n
[F (x) + F (τ(x)) + · · · + F (τn−1(x))] −

∫
F dx | ≤ an

where F (x) := ln x and τ(z) := ze2πiα acts on the unit circle by a rotation
of angle 2πα (Weyl automorphism), with a suitable sequence of constants
an → 0 when n → ∞, for example of the form an := 1

nε with ε > 0 for
very good ϕ’s (this is not the case for ϕ(x) = x, by the way). That is,
good hypotheses on α and ϕ should lead to uniform estimates of the speed of
convergence in this case of Birkhoff’s ergodic theorem. There are few concrete
results on the speed of convergence (an)n, for example let F := ln |ϕ| and
write F (e2πix) =

∑
k cke

2πi·kx; if F ∈ L1 with |ck| ≤ ct
kind α+1+ε , we may take

an = O(1/n) [Ko]; if |ck| ≤ ct
k2+ε , we may take an = O(1/ nǫ) using results
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in [K]; if α is well approximable by rationals then τ is well approximable by
periodic automorphisms, which also leads to an ergodic behaviour [SC]. As
it is known however, there cannot be a universal estimate of the speed of
convergence in the ergodic theorem, even for a continuous function F .

Moreover, there exist examples [M2], [N] of Bishop-type operators with a
bad behaviour of the sequence of norms ‖T n‖ so that the known techniques
presented here can not lead to significant improvements. New ideas are then
necessary in order to deal with the general case, more precisely with the case
of the highly transcendent parameters α.
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