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Abstract

We consider a triple of N -functions (M,H, J) that satisfy the ∆
′
-condition, µ = |x|α dx

and suppose that an additive variant of interpolation inequality holds∫
Rn

M(|∇u|)µ(dx) ≤ C
(∫

Rn

H(|u|)µ(dx) +
∫
Rn

J(|∇(2)u|)µ(dx)
)
,

where u ∈ R ⊆W 2,1
loc (Rn), R is an arbitrary set invariant with respect to external and internal

dilations. We show that the above inequality implies its certain nonlinear variant involving
the expressions

∫
Rn H(|u|)µ(dx) and

∫
Rn J(|∇(2)u|)µ(dx). Various generalizations of this

inequality to the more general class of N -functions, measures and to higher order derivatives
are also discussed and the examples are presented.

MSC (2000): Primary 26D10, Secondary 46E35.

1 Introduction and statement of results

The purpose of this paper is to study an Orlicz variant of the classical Gagliardo-Nirenberg in-
equality, [13, 30]

‖∇(k)u‖q ≤ C‖u‖1− k
m

r ‖∇(m)u‖
k
m
p , 1

q
= (1− k

m
)1
r

+ k
m

1
p
, u ∈ Wm,1

loc (Rn). (1.1)

Gagliardo-Nirenberg inequalities have been studied in a large number of papers, starting with
the celebrated classical paper by Nirenberg [30]. Inequalities of this type can be traced back to
[25], which deals with the case of supremum norms in (1.1), and inequalities obtained earlier by
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Hadamard, Landau and others. It is impossible to give a representative list of relevant references
here, let us recall at least monographs [7, 28, 29].

The case of Orlicz spaces is somewhat difficult because of non-homogeneity of N-functions and
a rather indirect definition of the norm. It is usually impossible to transfer simply the Lp-technique
to the Orlicz setting. Therefore the progress here is slower and at the moment there are many
topical unsolved problems. We refer to the papers [3, 4, 5, 6, 20, 21, 22, 23, 24].

The study of Orlicz case is partially motivated by possible applications in linear and nonlinear
PDEs and in calculus of variations, arising from mathematical physics, see e.g. [1, 2, 10, 14, 15, 27,
32].

Let us recall what is presented here. As proved in [22, 23] one still has inequalities like

‖∇(k)u‖LM ≤ C‖u‖1− k
m

LM1
‖∇(m)u‖

k
m

LM2
,

within certain class of Orlicz spaces LM , LM1 , LM2 , but in some cases we cannot expect such inequal-
ities to hold (see e.g. [24]). Sometimes we may expect only an additive variant of those inequalities
‖∇(k)u‖LM ≤ C(‖u‖LM1 + ‖∇(m)u‖LM2 ), deduced as a consequence of the additive inequality∫

Rn

M(∇(k)u)µ(dy) ≤ C

(∫
Rn

M1(|u(y)|)µ(dy) +

∫
Rn

M2(|∇(m)u|)µ(dy)

)
, (1.2)

see e.g. [24]. On the other hand, there are another inequalities which are expressed in terms of
modulars. For example we show that(∫

Rn
M(|∇(k)u|) dµ

) 1
q

≤ C

(∫
Rn
H(|u|) dµ

) 1
p

(1− k
m

)(∫
Rn
J(|∇(m)u|) dµ

) 1
r
k
m

·

·

(
ln

(
2 +

∫
Rn J(|∇(m)u|) dµ∫

Rn H(|u|) dµ

))β
p

(1− k
m

)(
ln

(
2 +

∫
Rn H(|u|) dµ∫

Rn J(|∇(m)u|) dµ

)) γ
r
k
m

,

where M,H, J are Orlicz functions like Ms,` = ts (ln(2 + t))`, under certain constraints on the

involved parameters. Some other nonlinear inequalities dealing with N-functions like ts (ln(1 + t))`

were obtained in [20]. Even within Lp-setting but with more general measures one cannot expect
general inequalities of the form (1.1), see e.g. [17].

Our concern is to study inequalities∫
Rn
M(|∇(k)u|)w(x) dx ≤ C̃Ψ

(∫
Rn J(|∇(m)u|)w(x) dx∫

Rn H(|u|)w(x) dx

)
·
∫

Rn
H(|u|)w(x) dx,

holding for some M,J,H,Ψ. They are extension of (1.1).

We present a tool to deduce such a nonlinear variant of multiplicative inequality from simpler
additive inequality (1.2) directly, or from its more precise variant∫

Rn
M(|∇(k)u|) dµ ≤ C

(∫
Rn
H(s1|u|) dµ+

∫
Rn
J(s2|∇(m)u|) dµ

)
where s

1− k
m

1 s
k/m
2 = 1, si > 0.

It seems that this is the first approach to study systematically nonlinear variants of interpolation
inequalities involving modulars.
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We suppose that the N -functions M1 and M2 satisfy the ∆
′
-condition (see Definition 2.1).

Examples of admissible N-functions can be found among logarithmic Zygmund-type functions. In
particular our analysis is supported by inequalities holding in such spaces, they seem to be of
particular interest, see, e.g. [9, 11, 16, 18, 19].

They might find use in proving apriori estimates in the regularity theory for nonlinear PDEs.

2 Notation and preliminaries

Notation. By C∞0 (Rn) we denote as standard smooth compactly supported functions defined
on Rn. The symbol Wm,p(Rn) and Wm,p

loc (Rn) denotes Sobolev spaces. By R−1 we denote the
inverse function to the given function R when it is well defined. If M is an N-function, then
M∗(t) := supτ>0(tτ−M(τ)) is the complementary N -function (see [26]). Having two functions M,R
we will write M ∼ R if there exist constants C1, C2 > 0 such that C1M(λ) ≤ R(λ) ≤ C2M(λ). In
the same way we will also compare functions for arguments near zero and near infinity respectively.

Definition 2.1. We say that the function Φ : [0,∞)→ [0,∞) satisfies the ∆′-condition (Φ ∈ ∆
′
)

if there exists the constant C > 0 such that for every λ1, λ2 > 0 we have

Φ(λ1λ2) ≤ CΦ(λ1)Φ(λ2). (2.1)

We refer e.g. to [26] for details about this family of Orlicz spaces. Let us note that the ∆
′
-

condition is stronger than the usual ∆2-condition, which asserts that there exists the constant
C > 0 such that Φ(2λ) ≤ CΦ(λ), for every λ > 0 (we write Φ ∈ ∆2).

We have the following easy observation.

Fact 2.1. Let M∆′ := {Φ : [0,∞) → [0,∞) : Φ ∈ ∆
′}. The family M∆′ is invariant with respect

to multiplications and compositions.

Using Fact 2.1 it is easy to generate elements ofM∆′ . The typical examples among N -functions
can be found among Zygmund type logarithmic functions. This is illustrated on the following
example. For the proof of part 2 and 3 see [21], similar arguments as to get (4.5).

Example 2.1. The following N-functions are elements of M∆′ ;

1. Φ(λ) = λp, 1 < p <∞,

2. Mp,α(λ) = λp(ln(2 + λ))α, 1 < p <∞, α ≥ 0

3. M1
p,α(λ) = λp(ln(1 + λ))α, 1 < p <∞, α ≥ 0

4. Φ(λ) = Mp1,α1 ◦Mp2,α2 ◦ · · · ◦Mpk,αk(λ), α1, . . . , αk ≥ 0, pi > 1 for i = 1, . . . , k.

We consider triples of N functions (M,H, J) and the measures µ which are absolutely continuous
with respect to the Lebesgue measure and satisfy an additive variant of interpolation inequality∫

Rn
M(|∇u|)µ(dx) ≤ C

(∫
Rn
H(|u|)µ(dx) +

∫
Rn
J(|∇(2)u|)µ(dx)

)
, (2.2)

or its stronger variant, namely, the one parameter family of inequalities∫
Rn
M(|∇u|)µ(dx) ≤ C

(∫
Rn
H

(
1

s
|u|
)
µ(dx) +

∫
Rn
J(s|∇(2)u|)µ(dx)

)
. (2.3)
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This should be satisfied with a constant C > 0 independent on u and (in second case) arbitrary
s > 0. In both cases we assume that u belongs to some set R ⊆ W 2,1

loc (Rn).

If (2.2) holds with the triple (M,H, J), the measure µ and set R, we will say that this objects
support (2.2). Analogous concept will be used for (2.3) and in some other places.

3 Homogeneous measure and modeling inequality

Our goal here is to present the most representative technique illustrating our issue. It will be
successively developed in next sections.

Our first result reads as follows.

Proposition 3.1. Suppose that N-functions (M,H, J), the measure µ(dx) = |x|κ dx and set R
support an additive inequality (2.2). Assume that set R is invariant with respect to internal and
external dilations, i.e. for every t, s ∈ R and u ∈ R the mapping ut,s(x) = tu(sx) also belongs to
R.

Moreover, assume that functions H and J satisfy the ∆′-condition. Then for every u ∈ R,
u 6≡ 0, we have∫

Rn
M(|∇u|)µ(dx) ≤ 2CΨ

(∫
Rn J(|∇(2)u|)µ(dx)∫

Rn H(|u|)µ(dx)

)
·
∫

Rn
H(|u|)µ(dx), (3.1)

where Ψ(λ) = H ◦R−1(λ), R(λ) = H(λ)

J( 1
λ

)
, C is the same constant as in (2.2).

Proof.
We apply (2.2) to the function us(x) = 1

s
u(sx) and compute directly that∫

Rn
M(|∇us(x)|)µ(dx) = s−(κ+n)

∫
Rn
M(|∇u(y)|)µ(dy),∫

Rn
H(|us(x)|)µ(dx) = s−(κ+n)

∫
Rn
H(

1

s
|u(y)|)µ(dy),∫

Rn
J(|∇(2)us(y)|)µ(dy) = s−(κ+n)

∫
Rn
J(s|∇(2)u(y)|)µ(dy).

Therefore (2.2) implies∫
Rn
M(|∇u(x)|)µ(dx) ≤ C

(∫
Rn
H

(
1

s
|u(x)|

)
µ(dx) +

∫
Rn
J(s|∇(2)u(x)|)µ(dx)

)
,

holding for every u ∈ R, s > 0, with the constant independent on u and s. Using the ∆′-condition
(2.1) we obtain the one parameter family of inequalities:∫

Rn
M(|∇u(x)|)µ(dx) ≤ C

(
H

(
1

s

)∫
Rn
H(|u(x)|)µ(dx) + J(s)

∫
Rn
J(|∇(2)u(x)|)µ(dx)

)
,

holding with C independent of u and s. In other terms

a ≤ H

(
1

s

)
b+ J(s)c, (3.2)
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where

a =

∫
M(|∇u(x)|)µ(dx), b = C

∫
H(|u(x)|)µ(dx), c = C

∫
J(|∇(2)u(x)|)µ(dx). (3.3)

Let us choose s0 such that H( 1
s0

)b = J(s0)c, i.e. according to our notation R( 1
s0

) = c
b
, equivalently

1
s0

= R−1( c
b
) (note that R−1 is well defined).

Inequality (3.2) implies

a ≤ 2H

(
1

s0

)
b = 2H ◦R−1

(c
b

)
· b,

which is exactly what we have claimed. �

Remark 3.1. Inequality (3.1) looks stronger than (2.2) at first glance. Indeed, if∫
Rn J(|∇(2)un(x)|)µ(dx) → 0 as n → ∞, for some {un} ⊆ C∞0 (Rn), while

∫
Rn H(|un(x)|)µ(dx)

remains to be bounded and bounded away from 0, we observe from (3.1) that
∫
M(|∇u(x)|)µ(dx)

converges to 0. This is not readily seen from (2.2).

Remark 3.2. Proposition 3.1 shows that inequality (2.2) implies (3.1). Let us show that inequality
(3.1) implies (2.2). Hence those inequalities are equivalent, possibly with different constants.

To prove the implication “(3.1) =⇒ (2.2)”, we use the notation (3.3) and observe that inequality
(3.1) reads:

a ≤ 2H ◦R−1
(c
b

)
· b = 2H

(
1

s0

)
· b, (3.4)

where we put R−1( c
b
) = 1

s0
. From the very definition of R we have H( 1

s0
)b = J(s0)c. Moreover,

H

(
1

s0

)
b ≤ H

(
1

s

)
b+ J(s)c, for every s > 0.

Indeed, for s > s0 we have J(s)c > J(s0)c = H( 1
s0

)b, while for s ≤ s0 we have 1
s0
≤ 1

s
, therefore

H( 1
s0

)b ≤ H(1
s
)b. Therefore (3.4) implies

a ≤ 2inf

{
H

(
1

s

)
b+ J(s)c, s > 0

}
≤ C̃(b+ c), C̃ = 2max(H(1), J(1)).

This implies (2.2).

4 Inequalities with Lebesgue measure

4.1 More general inequalities

We will now discuss inequalities which can be proved when one considers the Lebesgue measure.
It turns that in such a case one obtains more general inequalities, taking into account the choice
of admissible Orlicz spaces.

Before we formulate the result, let us introduce the following auxiliary function Mn : (0,∞)→
(0,∞) :
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Mn(λ)=
|λM ′(λ)−M(λ)|+

√
n− 1M(λ)

λ2
=

∣∣∣∣(M(λ)

λ

)′∣∣∣∣+

√
n− 1M(λ)

λ2
, (4.1)

and a notation of a suitable compatibility. Note that if M satisfies ∆2-condition, then Mn ∼
M(λ)/λ2 as in such a case M

′
(λ) ∼M(λ)/λ.

Definition 4.1. A couple of continuous functions Ψ1,Ψ2 : Rn × [0,∞) × [0,∞) → [0,∞) will be
called compatible if Ψ1(x, λ1, λ2)Ψ2(x, λ1, λ2) = λ1λ2 for every x ∈ Rn, λ1, λ2 ≥ 0.

Remark 4.1. As typical examples of a compatible couple we consider Ψ1(x, λ1, λ2) = sw(x)λθ11 λ
θ2
2

and Ψ2(x, λ1, λ2) = s−1w(x)−1λ1−θ1
1 λ1−θ2

2 , with parameters (θ1, θ2) ∈ [0, 1]2 \ {(0, 0), (1, 1)}, s >
0, and an arbitrary measurable function w > 0 a.e. The simplest case is Ψ1(x, λ1, λ2) = λ1,
Ψ2(x, λ1, λ2) = λ2.

The following result is a special case of Theorem 3.1 in [22].

Theorem 4.1. Let M be an N-function and suppose that M
′
(λ)/λ is bounded in some neighborhood

of 0, Mn is given by (4.1), and that H, J : [0,∞) → [0,∞) are continuous functions satisfying
inequality

∀ x, y, z ≥ 0 Mn(x)yz ≤M(x) +H(y) + J(z). (4.2)

Let (Ψ1,Ψ2) be a couple of continuous compatible functions. Then for an arbitrary u ∈ C∞0 (Rn),∫
M(|∇u(x)|) dx

≤
∫
H(
√

2 ·Ψ1(x, |u(x)|, |∇(2)u(x)|)) dx+

∫
J(
√

2 ·Ψ2(x, |u(x)|, |∇(2)u(x)|)) dx.
(4.3)

Remark 4.2. In [22] the authors considered inequality (4.3) with Ψ1 and Ψ2 independent of x.
The proof given there works in the general case as well without changes.

Remark 4.3. In other words we deduce that under the assumptions of Theorem 4.1 the triple
(M,H, J), the Lebesgue measure and set R = C∞0 (Rn) support (4.3), for any compatible couple
(Ψ1,Ψ2).

Remark 4.4. Replacing (Ψ1,Ψ2) by (1
s
Ψ1, sΨ2) one obtains the following inequality∫

M(|∇u|) dx ≤ C

(∫
H

(
1

s
Ψ1(x, |u|, |∇(2)u|)

)
dx+

∫
J(sΨ2(x, |u|, |∇(2)u|)) dx

)
, (4.4)

where s > 0 can be an arbitrary given parameter. The constant C > 0 is such that H(
√

2λ) ≤
CH(λ), J(

√
2λ) ≤ CJ(λ) for every λ > 0.

The variant of Proposition 3.1 (considering Lebesgue measure) reads as follows.

Proposition 4.1. Suppose that N-function M is such that M
′
(λ)/λ is bounded next to 0, Mn is

given by (4.1) and assume that N-functions H, J satisfy (4.2) and the ∆′-condition. Let (Ψ1,Ψ2)
be a couple of compatible functions. Then for every u ∈ C∞0 (Rn), u 6≡ 0 we have∫

Rn
M(|∇u(x)|) dx ≤ 2CΨ

( ∫
Rn J(w2(x)) dx∫
Rn H(w1(x)) dx

)
·
∫

Rn
H(w1(x)) dx,
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where w1 = Ψ1(x, |u|, |∇(2)u|), w2 = Ψ2(x, |u|, |∇(2)u|), Ψ(λ) = H ◦ R−1(λ), R(λ) = H(λ)

J( 1
λ

)
, C is a

constant satisfying H(
√

2λ) ≤ CH(λ) and J(
√

2λ) ≤ CJ(λ).

Proof. We start with inequality (4.4) and repeat the same arguments as in the proof of
Proposition 3.1. The difference is that now we deal with Ψ1(x, |u|, |∇(2)u|) instead of |u| and
Ψ2(x, |u|, |∇(2)u|) instead of |∇(2)u|. �

Various methods for construction of triples (M,H, J) supporting (4.2) are discussed in [22].

4.2 The case of logarithmic functions

Set Ms,l = ts (ln(2 + t))l, and consider M(λ) = Mq,α(λ), H(λ) = Mp,β(λ), J(λ) = Mr,γ(λ), where

2

q
=

1

p
+

1

r
,

2α

q
=
β

p
+
γ

r
, p ≥ 2, q, r > 1, α, β, γ ≥ 0. (4.5)

It is proved in [21], Theorem 1.1 that the triple (H,M, J), the measure µ = dx, and R = C∞0 (Rn)
support (2.2).
Direct computation (see (4.10) in [21]) gives

R−1(λ) ∼
(
λ

(ln(2 + λ−1))γ

(ln(2 + λ))β

) 1
p+r

and (see (4.12) in [21])

Ψ(λ) ∼ λ
p
p+r
(
ln(2 + λ−1)

) γp
p+r (ln(2 + λ))

βr
p+r .

Therefore

Ψ(
c

b
) · b ∼ b

r
p+r c

p
p+r ·

(
ln

(
2 +

b

c

)) γp
p+r

·
(

ln
(

2 +
c

b

)) βr
p+r

.

This leads to the following multiplicative inequality obtained in [21] (in the slightly more general
version).

Theorem 4.2 ([21], Theorem 4.2). Suppose that p, q, r, α, β, γ are given real numbers satisfying
(4.5). Let (Ψ1,Ψ2) be the pair of compatible functions,
w1(x) = Ψ1(x, |u(x)|, |∇(2)u(x)|), w2(x) = Ψ2(x, |u(x)|, |∇(2)u(x)|), u ∈ C∞0 (Rn).

Then there exists a constant C = C(p, r, β, γ) > 0 such that:(∫
Mq,α(|∇f(x)|) dx

) 2
q

≤ C

(∫
Mp,β(w1(x)) dx

) 1
p
(∫

Mr,γ(w2(x)) dx

) 1
r

·

·
(

ln

(
2 +

∫
Mp,β(w1(x)) dx∫
Mr,γ(w2(x)) dx

)) γ
r
(

ln

(
2 +

∫
Mr,γ(w2(x)) dx∫
Mp,β(w1(x)) dx

))β
p

.

Remark 4.5. In the case α = β = γ = 0 the above statement reduces to the classical Gagliardo-
Nirenberg inequality.
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5 Higher order derivatives and more general measures

Our next goal is to generalize inequalities like∫
Rn
M(|∇u|) dx ≤ 2CΨ

(∫
Rn J(|∇(2)u|) dx∫

Rn H(|u|) dx

)
·
∫

Rn
H(|u|) dx,

with a suitable choice of functions M , J , H and Ψ, to the more general ones having the form∫
Rn
M(|∇(k)u|)w(x) dx ≤ 2CΨm,k

(∫
Rn J(|∇(m)u|)w(x) dx∫

Rn H(|u|)w(x) dx

)
·
∫

Rn
H(|u|)w(x) dx, (5.1)

holding for some M,J,H,Ψm,k, depending on m, k ∈ N. Note that we take ∇(m)u and ∇(k)u
instead of ∇(2)u and ∇u, respectively, and we replace the Lebesgue measure by a weighted measure
µ = w(x) dx. The measure needs to be sufficiently regular, see Remark 5.1 below.

Contrary to the approach using Lebesgue measure now we cannot deduce inequalities like
(5.1), where u and ∇(m)u are substituted by more general expressions like Ψ1(x, |u|, |∇(m)u|),
Ψ2(x, |u|, |∇(m)u|) as in Proposition 4.1.

Our first result in this direction reads as follows.

Proposition 5.1. Suppose that N-functions (M,H, J), the measure µ = w(x) dx and set R ⊆
Wm,1
loc (Rn) support inequalities∫

Rn
M(|∇(k)u|) dµ ≤ C

(∫
Rn
H(s1|u|) dµ+

∫
Rn
J(s2|∇(m)u|) dµ

)
, (5.2)

holding for every s1, s2 > 0 such that s
1− k

m
1 s

k/m
2 = 1, with some general constant C independent of

u, s1, s2. Moreover, assume that functions H and J satisfy the ∆′-condition. Then for every u ∈ R,
u 6≡ 0, we have∫

Rn
M(|∇(k)u|)µ(dx) ≤ 2CΨm,k

(∫
Rn J(|∇(m)u|)µ(dx)∫

Rn H(|u|)µ(dx)

)
·
∫

Rn
H(|u|)µ(dx), (5.3)

where Ψm,k(λ) = H ◦R−1
m,k(λ), Rm,k(λ) = H(λ)

J(λ−(m−k
k

))
, the constant C is the same as in (5.2).

Proof. Inequality (5.2) and the ∆
′
-condition imply

a =

∫
Rn
M(|∇(k)u|) dµ ≤ H(s)b+ J(s−(m−k

k
))c := I(s) + II(s), s > 0,

b = C

∫
Rn
H(|u|) dµ, c = C

∫
Rn
J(|∇(m)u|)µ(dx).

Choosing s = s0 such that I(s) = II(s), i.e. s0 = R−1
m,k(

c
b
), we get a ≤ 2Ψm,k(

c
b
)b, which is the same

as (5.3). �

To proceed further we recall some useful definitions.
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Definition 5.1 (the class WΦ,[8]). Suppose that Φ : [0,∞)→ [0,∞) is an N-function. We say that
a weight w : Rn → [0,∞) belongs to the class WΦ if and only if for all cubes S ⊂ Rn and all λ > 0∫

S

Φ∗
(

Φ(λ)µ(S)

cλ|S|w(x)

)
w(x) dx ≤ Φ(λ)µ(S) < +∞,

with the constant c > 0 independent of S, where µ(A) =
∫
A
ω(x)dx.

In the particular case of Φ(λ) = λp, p > 1, the class WΦ coincides with the class of Ap-weights,
see e.g. [31].

The following result was obtained in [23], Theorem 4.3.

Theorem 5.1. Suppose that M : [0,∞) → [0,∞) and F : [0,∞) → [0,∞) are two N-functions.
Let µ(dx) = w(x) dx, where w is a nonnegative weight on Rn. For k,m ∈ Z+, 0 < k < m, define

H(λ) = M(F (λ1− k
m )), J(λ) = M(F ∗(λ

k
m )).

When the functions H, J are N-functions, H∗, J∗ ∈ ∆2, and w ∈ WH ∩WJ , then for every u ∈
Cm

0 (Rn), and arbitrary positive numbers s1, s2 such that 1 = s
1− k

m
1 s

k
m
2 , one has∫

Rn
M(|∇(k)u|) dµ ≤

∫
Rn
H(s1B1|u|) dµ+

∫
Rn
J(s2B2|∇(m)u|) dµ;

with some constants B1 and B2 independent of u and s1, s2.

Taking into account Theorem 5.1 and Proposition 5.1 we obtain the following result.

Theorem 5.2. Let the assumptions of Theorem 5.1 be satisfied and additionally let H, J ∈ ∆
′
.

Then for every u ∈ Cm
0 (Rn),∫

Rn
M(|∇(k)u|)µ(dx) ≤ CΨm,k

(∫
Rn J(|∇(m)u|)µ(dx)∫

Rn H(|u|)µ(dx)

)
·
∫

Rn
H(|u|)µ(dx),

where Ψm,k(λ) = H ◦R−1
m,k(λ), Rm,k(λ) = H(λ)

J(λ−(m−k
k

))
, and the constant C is independent of u.

If H∗ or J∗ does not satisfy the ∆2-condition we use another approach.

We recall the following definitions.

Definition 5.2. We say that a weight function w : Rn → [0,∞) belongs to the A1-class (w ∈ A1),
if there exists a constant C > 0 such that for every cube S ⊆ Rn we have

1

|S|

∫
S

w(y)dy ≤ C ess infx∈Sw(x).

Definition 5.3. We say that a weight function w : Rn → [0,∞) belongs to the A
′
∞-class (w ∈ A′∞)

if there exists a constant C > 0 such that for every cube S ⊆ Rn we have

1

|S|

∫
2S

w(y)dy ≥ C ess supx∈Sw(x).
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The following theorem holds true.

Theorem 5.3 ([23], Theorem 4.4). Let k,m ∈ Z+, 0 < k < m and µ(dx) = w(x) dx, where
w ∈ A1 ∩ A

′
∞. Suppose that M : [0,+∞) → [0,+∞) is an increasing function of class C1((0,∞))

such that M(0) = (M)′+(0) = 0, and that F : [0,+∞)→ [0,+∞) is an N-function of class C1. Set

H(λ) = M(F (λ1− k
m )), J(λ) = M(F ∗(λ

k
m )).

Assume further that
∫ 1

0
R(v)
v2

dv <∞ for R ∈ {M,H, J} and define

R̃(λ) =

∫ 1

0

R(λv)

v2
dv, R ∈ {M,H, J}. (5.4)

Then there exist constants C,K > 0 such that for every u ∈ Cm
0 (Rn) and for every positive

numbers s1, s2 such that 1 = s
1− k

m
1 s

k
m
2 ,∫

Rn
M̃(C|∇(k)u|) dµ ≤ K

(∫
Rn
H̃(s1|u|) dµ+

∫
Rn
J̃(s2|∇(m)u|) dµ

)
As direct consequence of Theorem 5.3 and Proposition 5.1 we obtain the following theorem.

Theorem 5.4. Let the assumptions of Theorem 5.3 be satisfied and additionally H̃, J̃ ∈ ∆
′
. Then

for every u ∈ Cm
0 (Rn),∫

Rn
M̃(|∇(k)u|)µ(dx) ≤ CΨm,k

(∫
Rn J̃(|∇(m)u|)µ(dx)∫

Rn H̃(|u|)µ(dx)

)
·
∫

Rn
H̃(|u|)µ(dx),

where Ψm,k(λ) = H̃ ◦R−1
m,k(λ), Rm,k(λ) = H̃(λ)

J̃

(
λ−(m−k

k
)
) , the constant C is independent on u.

Remark 5.1. It follows that for every weight function ω of class WΦ and for every N -function
Φ, the measure µ = ω dx necessarily satisfies doubling property: µ(B(x, 2r)) ≤ Cµ(B(x, r)), with
constant C independent on r. The same property holds for ω ∈ A1 and for ω ∈ A′∞, see [31]. In
particular every such a measure is rather regular.

More comments concerning admissible weights and functions can be found in [23], Section 5.
For example when the N -function R in (5.4) is strictly monotone and R∗ ∈ ∆2, then functions R

and R̃ are equivalent (see Proposition 5.1 in [23], the statement (6)).

5.1 Logarithmic case revisited

As in Subsection 4.2 we deal with Ms,l = ts (ln(2 + t))l and consider

M(λ) = Mq,α(λ), H(λ) = Mp,β(λ), J(λ) = Mr,γ(λ). (5.5)

We have the following result.
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Theorem 5.5. Let k,m ∈ Z+ be given and such that 0 < k < m. Suppose that the parameters
p, q, r and α, β, γ satisfy the conditions

1

q
=

(
1− k

m

)
1

p
+
k

m

1

r
,

α

q
=

(
1− k

m

)
β

p
+
k

m

γ

r
, p, q, r > 1, α, β, γ ≥ 0

and let µ(dx) = w(x) dx be a weighted measure with weight belonging to the class
WMp,β

∩WMr,γ . Then for every function u ∈ Cm
0 (Rn) we have(∫

Rn
M(|∇(k)u|) dµ

) 1
q

≤ C

(∫
Rn
H(|u|) dµ

) 1
p

(1− k
m

)(∫
Rn
J(|∇(m)u|) dµ

) 1
r
k
m

·

·

(
ln

(
2 +

∫
Rn J(|∇(m)u|) dµ∫

Rn H(|u|) dµ

))β
p

(1− k
m

)(
ln

(
2 +

∫
Rn H(|u|) dµ∫

Rn J(|∇(m)u|) dµ

)) γ
r
k
m

.

with a constant C independent of u.

Proof. Let M,H, J be as in (5.5) and consider F (λ) = Ms,κ(λ), where we choose s = p
q

m
m−k ,

κ = β−α
q

. It is proved in [23], the proof of Theorem 6.1 that for our choice of parameters we have

H ∼M(F (λ1− k
m )) J ∼M(F (λ

k
m )).

Theorem 5.1 implies∫
Rn
M(|∇(k)u|) dµ ≤ C

(∫
Rn
H(s1|u|) dµ+

∫
Rn
J(s2|∇(m)u|) dµ

)
,

with some universal constant C (depending on the ∆2-condition for H and J only), s1, s2 > 0 are

arbitrary parameters such that s
1− k

m
1 s

k
m
2 = 1. By Proposition 5.1∫

Rn
M(|∇(k)u|) dµ ≤ 2CΨm,k(

c

b
)b, where b =

∫
Rn
H(|u|) dµ, c =

∫
Rn
J(|∇(m)u|) dµ. (5.6)

Now it suffices to compute Ψm,k. We have

Rm,k(λ) =
H(λ)

J(λ−
m−k
k )
∼ Mp,β(λ)

Mr,γ(λ
−m−k

k )
.

For λ close to 0 we have

Rm,k(λ) ∼ λp

λ−r(
m
k
−1)
· 1

(ln(λ−(m
k
−1)))γ

∼ λp+r(
m
k
−1)

(ln(λ−1))γ
∼ λp+r(

m
k
−1) (ln(2 + λ))β

(ln(2 + λ−1))γ
.

By similar arguments, for λ tending to ∞, we have Rm,k(λ) ∼ λp+r(
m
k
−1) (ln(2+λ))β

(ln(2+λ−1))γ
. Therefore

Rm,k(λ) ∼ λp+r(
m
k
−1) (ln(2 + λ))β

(ln(2 + λ−1))γ
.
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One readily checks that

R−1
m,k(λ) ∼

(
λ

(ln(2 + λ−1))γ

(ln(2 + λ))β

) 1
p+r(m

k
−1)

. (5.7)

Let us compute Ψm,k(λ). Using (5.7) and (5.5) we get

Ψm,k(λ) =
[
λ

p
p+r(m

k
−1)

]
·

[(
(ln(2 + λ−1))γ

(ln(2 + λ))β

) p
p+r(m

k
−1)

]
·

(ln

(
2 +

{
λ

(ln(2 + λ−1))γ

(ln(2 + λ))β

} 1
p+r(m

k
−1)

))β


:=
[
λ

p
p+r(m

k
−1)

]
· [A(λ)] · [B(λ)] .

For λ close to 0 we have (ln(2+λ−1))γ

(ln(2+λ))β
∼ (lnλ−1)

γ
, therefore for λ ∼ 0,(

λ
(ln(2 + λ−1))γ

(ln(2 + λ))β

) 1
p+r(m

k
−1)

∼ λ
1

p+r(m
k
−1)
(
lnλ−1

) γ
p+r(m

k
−1) λ→0→ 0.

Therefore B(λ) ∼ C for λ close to 0.
For λ near ∞,

λ
(ln(2 + λ−1))γ

(ln(2 + λ))β
∼ λ

(lnλ)β
λ→∞→ ∞.

Hence in such a case

B(λ) ∼
[
ln

(
λ

(lnλ)β

)]β
∼ (lnλ)β ∼ (ln(2 + λ))β .

Therefore for λ close to 0,

A(λ) ·B(λ) ∼
(
ln(2 + λ−1)

) γp
p+r(m

k
−1) ,

while for λ close to ∞,

A(λ) ·B(λ) ∼ (ln(2 + λ))β

(ln(2 + λ))
βp

p+r(m
k
−1)

= (ln(2 + λ))
βr(m

k
−1)

p+r(m
k
−1) .

In both cases

Ψm,k(λ) ∼
[
λ

p
p+r(m

k
−1)

]
· [A(λ)] · [B(λ)] ∼ λ

p
p+r(m

k
−1) ·

(
ln(2 + λ−1)

) γp
p+r(m

k
−1) · (ln(2 + λ))

βr(m
k
−1)

p+r(m
k
−1) .

Therefore

Ψm,k

(c
b

)
b ∼ b

r(m
k
−1)

p+r(m
k
−1) c

p
p+r(m

k
−1)

(
ln

(
2 +

b

c

)) γp
p+r(m

k
−1)

·
(

ln
(

2 +
c

b

)) βr(m
k
−1)

p+r(m
k
−1)

= b
q
p

(1− k
m

)c
q
r
k
m

(
ln

(
2 +

b

c

))q γ
r
k
m

·
(

ln(2 +
c

b
)
)q β

p
(1− k

m
)

.

This and (5.6) implies the thesis. �
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