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Abstract This note proposes to modify the definition of quasiconvexity of a function
f Úìm�n r Ïñ Ú¨ ñ T  −ðÙð( on the space ìm�n of m � n matrices in such a way
that (i) the polyconvexity implies quasiconvexity without any additional measurability or
continuity assumption on f and (ii) the pointwise supremum of any family of quasiconvex
functions is a quasiconvex function. Property (ii) allows one to define the quasiconvex
envelope f qc of any f Ú ìm�n r Ïñ as the largest quasiconvex minorant of f ; this, in
turn, makes it possible to establish the formula similar to that in Dacorogna [4, 6] for f qc: If
E ⊂ ñn is a nonempty bounded open set with |ãE| ¨ 0 then for any A Xìm�n we have

f qc�A� ¨ inf "|E|−1 �
E
f �A + Du� dx*

where the infimum is taken over all u X W 1Ùð0 �EÙñm� such that the integral �E f �A+Du� dx
is well defined and there exists a partition of E into a set of measure 0 and a finite number
of open sets such that Du is essentially constant on each of these open sets. The definition
of quasiconvexity coincides with the original definition of Morrey [12], [13; Section 4.4]
and Ball [1] if f is finite valued. If f Ú ìm�n r �−ðÙð� then the definition coincides
with those in [3, 10–11, 14]; if f has ð in its range then there are functions quasiconvex in
the present sense but not quasiconvex in the sense of [3, 10–11, 14]. An example is given to
show this.

MSC 2000 49J45, 49J99
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1 Introduction

Morrey’s quasiconvexity [12], [13; Section 4.4] is one of the central notions in
the calculus of variations. With appropriate growth conditions it is equivalent to
the weak sequential lowersemicontinuity of the multiple integrals of the calculus of
variations and thus opens the way to the direct methods of proofs of the existence of
minimizers. The quasiconvexity is expressed by the inequality (5) below in which f
is the integrand and u a Sobolev function. Clearly, conditions are needed to ensure
that the integral makes sense as a Lebesgue integral. For example, one can assume
that f is Borel measurable to ensure the Lebesgue measurability of the compound

Preprint, Institute of Mathematics, AS CR, Prague. 2009-6-30 IN
ST
IT
U
TE

of
M
ATH

EMATICS

A
ca
d
em

y
o
f
Sc
ie
n
ce
s

C
ze
ch

R
ep
u
b
lic



2

function f �A+Du�ċ�� for any u etc. The literature contains a number of definitions of
quasiconvexity which express the same basic idea of Morrey but differ in the technical
details imposed on f Ø The existing definitions do not guarantee that the supremum
of any family of quasiconvex functions is quasiconvex so that the quasiconvex
envelope can be defined only in certain special (albeit broad) cases. Also, with the
existing definitions the convexity or polyconvexity does not unconditionally imply
quasiconvexity since there are non-Borelian convex or polyconvex functions. These
facts may be interpreted as esthetically displeasing.

The purpose of this note is to give a definition of quasiconvexity which does
not involve any measurability or continuity assumptions on f . The idea is to let
f Ú ìm�n r Ïñ Ú¨ ñ T  −ðÙð( be arbitrary but to require that u in (5) be
piecewise affine in the sense that the essential range of Du contains only a finite
number of points realized on open subsets of EØ Then f �A + Du�ċ�� is Lebesgue
measurable for any f and one may postulate (5) for every piecewise affine u for which
the integral makes sense. This makes the quasiconvexity condition “algebraic” since
the integral reduces to the obvious sum. Under this definition, (i) the polyconvexity
implies quasiconvexity without any additional measurability or continuity assumption
on f and (ii) the pointwise supremum of any family of quasiconvex functions is a
quasiconvex function. The present definition coincides with the existing definitions
for a broad class of integrands f which includes the finite valued functions but there
are circumstances when the present definition is less restrictive than those given
hitherto. These matters are discussed in detail below in this introduction.

Let mÙ n be positive integers and letìm�n denote the set of all m � n matrices.
If E is an open bounded subset of ñn we say that a function u Ú E r ñm is
Q-piecewise affine if u is Lipschitz continuous and E can be partitioned into a set
of measure 0 and a finite number of open sets such that Du is essentially constant
on each of these open sets. We say that a function u Ú E r ñm is piecewise affine
if u is Lipschitz continuous and E can be partitioned into a set of measure 0 and
a finite number of open sets such that u is affine on each of these open sets. Thus
every piecewise affine function is Q-piecewise affine but not conversely. We denote
by Q�EÙñm� the set of all Q-piecewise affine functions u on E whose extension by
0 onñn∼E is Lipschitz continuous. If A Xìm�n we denote byM�A� Xñ s�mÙn�
the collection of all minors (of all orders) of A ordered in some definite way; here
s�mÙ n� is the number of all possible minors of an m � n matrix. Note that minors of
order 1 constitute the elements of the matrix. If t X Ïñ we denote by �t�± X �0Ù ð� the
positive and negative parts of tØ If m Ú E r Ïñ is a function we say that the integral�E mdx is well defined if m is Lebesgue measurable and either �E�m�+ dx ° ð or�E�m�− dx ° ðÛ we then define the integral in the usual way. If f Úìm�nr Ïñ and

Ai Xìm�nÙ αi ³ 0Ù i ¨ 1ÙÜ Ù pÙ and
p�
i¨1
αi ¨ 1 (1)

where p is a positive integer, we say that the sum�pi¨1 αif �Ai� is well defined if either�pi¨1 αi�f �Ai��+ ° ð or �pi¨1 αi�f �Ai��− ° ðÛ we then define the sum in the usual
way.

Definition 1.1. If f Úìm�nr Ïñ and A Xìm�n we say that
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(i) f is convex at A if

f �A� ² p�
i¨1
αif �Ai� (2)

for any collections as in (1) such that the sum in (2) is well defined and

A ¨ p�
i¨1
αiAiÛ (3)

(ii) f is polyconvex at A if (2) holds for any collections as in (1) such that the sum
in (2) is well defined and

M�A� ¨ p�
i¨1
αiM�Ai�Û (4)

(iii) f is quasiconvex at A if

|E|f �A� ² �
E
f �A + Du� dx (5)

for every nonempty bounded open set E ⊂ ñn with |ãE| ¨ 0 and for every
u X Q�EÙñm� for which the integral in (5) is well defined;

(iv) f is rank 1 convex at A if

f �A� ² �1 − α�f �A + αa � b� + αf �A − �1 − α�a � b� (6)

for every α X �0Ù 1� and every a X ñmÙ b X ñn such that the sum in (6) is well
defined.

We say that f Úìm�n r Ïñ is convex (polyconvex, quasiconvex, rank 1 convex) if
f is convex (polyconvex, quasiconvex, rank 1 convex) at every point ofìm�nØ

In (iii) the function m Ú¨ f �A + Du�ċ�� is always Lebesgue measurable on E.
The definition of convexity is the standard one [16, 7]. A more usual definition of
polyconvexity is to assume the existence of a convex function g Ú ñ s�mÙn� r Ïñ
such that f ¨ g �MØ Under the present definition one can define g as the convex
envelope of the function h Úñ s�mÙn� r Ïñ defined by

h�A� ¨ 



f �A� if A ¨M�A� for some A Xìm�nÙð otherwise,
(7)

A X ñ s�mÙn�Ø Indeed the condition of polyconvexity ensures that the convex enve-
lope g of h satisfies f ¨ g �MØ

The main point of this note is the definition of quasiconvexity in (iii). Morrey’s
original definition [12], [13; Section 4.4] requires that f be finite valued and contin-
uous and that (5) holds for any bounded open set E ⊂ ñnÙ any A X ìm�nÙ and
any u X W 1Ùð0 �EÙñm�Ø HereW 1Ùð0 �EÙñm� is the space of all Lipschitz continuous
functions u Ú ñn r ñm such that u ¨ 0 on ñn ∼ EØ We note that the continuity
of f implies that the function m Ú¨ f �A + Du�ċ�� is Lebesgue integrable on EØ We
shall see below that in the class of finite valued functions the present definition is
equivalent to Morrey’s. If f is a general function and u X W 1Ùð0 �EÙñm� then a
restriction on f or u is needed to make the function m Lebesgue measurable and the
integral in (5) well defined. Thus Ball & Murat [3] assume additionally that f is a
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Borel function, bounded from below, Dacorogna [6] that f is a finite valued Borel
function, locally bounded, and Hüsseinov [10–11], Müller [14] postulate (5) for a
general f Úìm�nr Ïñ and only for those u X W 1Ùð0 �EÙñm� for which the integral
in (5) is well defined.

Since (4) implies (3), the definitions above give

f convex j f polyconvex.

We shall also see below that

f polyconvex j f quasiconvex, (8)

and

the supremum of any family of quasiconvex functions is quasiconvex. (9)

We consider it desirable to have (8)to hold unconditionally for the economy of thought
(as well as to have the definition of quasiconvexity applicable to any function). The
assertion (9) is parallel to the similar assertions for convex, polyconvex, and rank 1
convex functions; the assertion (9) implies that

every f has the largest quasiconvex minorant.

By a minorant of f Úìm�nr Ïñ we mean any g Úìm�nr Ïñ such that g ² f on
ìm�nØ The largest quasiconvex minorant is clearly unique, it is denoted by f qc and
called the quasiconvex envelope of f Ø Such a function exists since by (9) one can put

f qc�A� ¨ sup !g�A� Ú g a quasiconvex minorant of f)Ù (10)

A X ìm�nØ (Without (9) it is not clear whether the right hand side of (10) is
quasiconvex.)

Clearly, the implication (8) and the assertion (9) are not satisfied by the definition
in [13]. Since there are non–Borelian convex functions and since there is a family of
Borelian convex functions whose supremum is not Borelian (see Example 2.4), the
definition in [3] does not satisfy (8), (9) and there exists a function f Úìm�nr Ïñ
which does not have a quasiconvex envelope under the definition of quasiconvexity
in [3]. With the definition of quasiconvexity in [10–11] and [14] we have (8) (see
below) but it is not clear if (9) holds (see Remark 2.3).

We now employ Definition 1.1 and use standard arguments in the theory of
quasiconvex functions to establish the following results (see Section 2 for the proofs).
First, we use the Vitali covering argument of [3] to prove

Proposition 1.2. If (5) holds for one nonempty bounded open set E ⊂ ñnÙ some
A Xìm�n and all u X Q�EÙñm� then f is quasiconvex at AØ
We note that this proposition is no longer true if (5) is postulated to hold only for
piecewise affine functions u X W 1Ùð0 �EÙñm�Û indeed this is the reason why (5) is
postulated for functions from Q�EÙñm�Ø
Proposition 1.3. Let E ⊂ñn be a nonempty bounded open set and let f Úìm�n r
ñ be finite-valued.

(i) If f is continuous then f is quasiconvex at A X ìm�n h (5) holds for all
u X W 1Ùð0 �EÙñm� h (5) holds for all u X Cð0 �EÙñm�Ø
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(ii) f is quasiconvex h f is continuous and (5) holds for all A and all u X
W 1Ùð0 �EÙñm�h f is continuous and (5) holds for all A and all u X Cð0 �EÙñm�Ø

Item (i) above is proved by the density of piecewise affine functions inW 1Ùð0 �EÙñm�
(see Proposition 2.2, below). By (ii), within the class of finite valued functions the
present definition is equivalent to the original definition of Morrey and also to the
definition in [1]. In particular, the lower semicontinuity and relaxation theorems,
which are available only for finite valued functions, continue to hold also with the
present definition. The main point in (ii) is the continuity as a consequence of the
global quasiconvexity; this is proved by showing that f is rank 1 convex by an
argument by Fonseca [9] and by invoking the result [13; Theorem 4.4.1] that each
finite valued rank 1 convex function is locally Lipschitz continuous.

Proposition 1.4. If f Ú ìm�n r �−ðÙð� is quasiconvex then either f ª −ð on
ìm�n or f is finite valued and hence (5) holds for all nonempty bounded open
subsets E ofñnÙ all A and all u X W 1Ùð0 �EÙñm�.

Hence the present definition of quasiconvexity is equivalent to that given in [10–11,
14] if f ° ð onìm�nØ For functions f taking the value ð the present definition of
quasiconvexity is less restrictive than those given in [3, 10–11, 14] as the following
example, based on [2], shows.

Example 1.5. If m ³ n ³ 3 or n ¨ 2 and m ³ 4 then there exists a quasiconvex
and rank 1 convex lower semicontinuous function f Ú ìm�n r  0Ù ð( such that
f �B� ¨ ð for some B Xìm�n and yet�

F
f �B + Dv� dx ¨ 0

for some nonempty bounded open set F with |ãF | ¨ 0 and some v X W 1Ùð0 �F Ùñm�Ø
See Section 2 for the justification.

Proposition 1.6. Let f Úìm�nr Ïñ and A Xìm�nØ Then

(i) we have

f convex at A j f polyconvex at A j 



f quasiconvex at AÙ
f rank 1 convex at AÛ (11)

in fact if f is polyconvex at A then we have (5) for any nonempty bounded open
set E ⊂ ñn and any u X W 1Ùð0 �EÙñm� such that the integral in (5) is well
defined;

(ii) if f ° ð in some neighborhood of A then

f quasiconvex at A j f rank 1 convex at AØ
The second part of (i) shows that the implications (11) hold also with the definitions
of quasiconvexity in [10–11] and [14]. This second part of (i) is proved using minors
relations and a version of Jensen’s inequality for possibly non–Borelian convex
functions. Item (ii) follows from the fact that under the present definition, (5) holds in
particular for each piecewise affine function fromW 1Ùð0 �EÙñm�Ù and this is enough
to infer the rank 1 convexity by an argument of Fonseca [9] mentioned above.

The main results of this note are the following two assertions:
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Theorem 1.7. A pointwise supremum of any family of quasiconvex functions is
quasiconvex.

This allows us to define the quasiconvex envelope f qc of f Úìm�nr Ïñ as the
largest quasiconvex minorant of f Ù i.e., by (10). We have

Theorem 1.8. If f Ú ìm�n r Ïñ and E ⊂ ñn is a nonempty bounded open set
then

(i) if |ãE| ¨ 0Ù we have for any A Xìm�n the formula

f qc�A� ¨ inf"|E|−1 �
E
f �A + Du� dx* (12)

where the infimum is taken over all u X Q�EÙñm� such that the integral in (12)
is well defined;

(ii) if f ° ð on ìm�n then (12) also holds with the infimum over all u X
W 1Ùð0 �EÙñm� such that the integral in (12) is well defined;

(iii) if f is finite valued and continuous then (12) holds with the infimum over all
u X W 1Ùð0 �EÙñm�Ø

We interpret Item (i) as an analogue of the formulas for the convex, polyconvex and
rank 1 convex envelopes, f cÙ f pcÙ f rcÙ defined as the largest minorants of f having
the corresponding convexity property. Namely, letting s stand for cÙ pcÙ or rcÙwe have,
for any A Xìm�nÙ

f s�A� ¨ inf " p�
i¨1
αif �Ai�* (13)

where the infimum is is taken over all collections AiÙ αi such that the sum in (13) is
well defined and (1) and (3) hold in case of s ¨ cÙ (1) and (4) hold in case s ¨ pc and (1)
and (3) hold and AiÙ αi satisfy �Hp� condition [5] in case s ¨ rcØ These formulas hold
without any restrictions on f Ø Item (iii) is the original construction by Dacorogna
[4]; Item (ii) was established in [10] under the additional assumption that f be locally
bounded onìm�nØ
2 Proofs

Proof of Proposition 1.2 Let F be a nonempty open bounded subset of ñn with
|ãF | ¨ 0 and prove that

|F |f �A� ² �
F
f �A + Dv� dx (14)

for any v X Q�F Ùñm� for which the integral in (14) is well defined. This is clear if�F f �A+Dv� dx ¨ ðÛ hence assume that �F f �A+Dv� dx ° ðÙ i.e., f �A+Dv�ċ�� ° ð
for a.e. point of F Ø Consider the family of closed sets of the form a + ε¯ contained in
EÙwhere a XñnÙ ε ± 0Ø This family clearly covers E in the sense of Vitali, and hence
there exists a finite or countable disjoint sequence ai + εi¯ of subsets of E such that

|E ∼U
i
�ai + εi¯�| ¨ 0Ø

Extend the function v to a Lipschitz function onñn by setting v ¨ 0 onñn∼ E and
denote the extended function by v again. Define u Úñn rñm by
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u�x� ¨




εiv�x − ai
εi

� if x X ai + εiF Ù
0 otherwise,

x X ñnØ It is easy to see that u X Q�EÙñm� and f �A + Du� ° ð for a.e. point of EÛ
hence (5) holds. For scaling reasons we have

|E|−1 �
E
f �A + Du� dx ¨ |F |−1 �

F
f �A + Dv� dx

and thus (5) implies (14). è
Lemma 2.1. Let m be a probability measure on a measure space �Y Ù M�, let
b Ú Y r X be an m integrable map into a finite dimensional linear space X and let
f Ú X r Ïñ. Then

(i) �Y b dm belongs to the convex hull of the range of bÛ
(ii) if f is convex at �Y b dm then

f ��
Y
b dm
 ² �

Y
f � b dm (15)

provided the integral on the right hand side is well defined.

We here extend the terminology of Definition 1.1(i) and say that f Ú X r Ïñ is convex
at A X X if Definition 1.1(i) holds with the spaceìm�n replaced by X Ûmoreover we
say that the integral �Y f � b dm is well defined if f � b is m measurable and either�Y �f � b�+ dm ° ð or �Y �f � b�− dm ° ðØ Jensen’s inequality (15) is proved in [7;
Chapter X, Lemma 2.7] under the additional assumption that f is (globally) convex
and lower semicontinuous.

Proof (i): Assertion (i) is similar to [15; Proposition 1]; the present form is stated
without proof in [8] and the proof is given in [17; Proposition 16.1.4]. (ii): Inequality
(15) is clear if �Y f �b dm ¨ ðÛ hence assume that �Y f �b dm ° ðØWe can then change
the map b on a set on m measure 0 in such a way that the resulting function, again
denoted by bÙ satisfies f �b ° ð for every point of Y without changing the values of the
integrals in (15). For each a Xñ define fa Ú X r Ïñ by fa�z� ¨ max  aÙ f �z�(Ù z X X
and note that �Y fa � b dm XñØ We apply (i) to X replaced by X �ñ and b replaced
by the map βa Ú¨ �bÙ fa � b� Ú Y r X �ñ. The construction ensures that βa is m

integrable and thus by (i) there exist αi ³ 0Ù ti X Y Ù i ¨ 1ÙÜ Ù p such that

�
Y
b dm ¨ p�

i¨1
αib�ti�Ù �

Y
fa � b dm ¨ p�

i¨1
αifa�b�ti��Ù p�

i¨1
αi ¨ 1Ø

The convexity of f at �Y b dm then gives

f ��
Y
b dm
 ¨ f � p�

i¨1
αib�ti�
 ² p�

i¨1
αif �b�ti�� ² p�

i¨1
αifa�b�ti�� ¨ �

Y
fa � b dmØ

Noting that �Y fa � b dm r �Y f � b dm as a r −ð by the monotone convergence
theorem then completes the proof. è

Proof of Proposition 1.6 (i): The implication f convex at A j f polyconvex at
A is immediate. The implication f polyconvex at A j f rank 1 convex at A follows
from the fact that if AÙ a and b are as in Definition 1.1(iv) then
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M�A� ¨ �1 − α�M�A + αa � b� + αM�A − �1 − α�a � b�
since minors are rank 1 affine functions [14]. The implication f polyconvex at A j
f quasiconvex at A will be proved if we show the second part of (i), i.e., that if f is
polyconvex at A then (5) holds for every u X W 1Ùð0 �EÙñm� such that the integral
in (5) is well defined. Thus let u X W 1Ùð0 �EÙñm� be such a function. We define the
function h Úñ s�mÙn� r Ïñ by (7) and note that f is polyconvex at A if and only if h
is convex atM�A�Ø We apply Lemma 2.1(ii) to Y ¨ EÙ to m defined as the restriction
of the Lebesgue measure to E divided by |E|Ù to X ¨ ñ s�mÙn�, to f replaced by h
and to the map b Ú E r ñ s�mÙn� given by b�x� ¨ M�A + Du�x��Ù x X EØ Minors
relations [14] give �

E
M�A + Du� dx ¨ |E|M�A�

and thus (15) reduces to |E|h�M�A�� ² �E h�M�A + Du�� dx ¨ �E f �A + Du� dx
which is (5). (ii): This has been proved in the introduction. è
Proposition 2.2. If u X W 1Ùð0 �EÙñm� then there exists a sequence of piecewise
affine functions uj X W 1Ùð0 �EÙñm� such that

supp uj ⊂ EÙ (16)

uj r u uniformly on EÙ (17)

Duj r Du a.e. on EÙ (18)

‖Duj‖Lð�E� ² c‖Du‖Lð�E�Ø (19)

Here c ¨ b�mÙ n� is a constant depending only on mÙ nØ Also, there exists a sequence
uj X Cð0 �EÙñm� such that (16)–(19) hold.

We include a proof for completeness.

Proof We extend u by 0 outside E and denote the extended function again by uØ We
define a sequence vj of functions by

vj�x� ¨ ��j dist�xÙ ãE��u�x�Ù
j XíÙ x XñnÙ where � Úñrñ is given by

��t� ¨




0 if t ² 1/2Ù
2�t − 1/2� if 1/2 ² t ² 1Ù
1 if t ³ 1Ù

t XñØ One finds that vj are Lipschitz functions with

supp vj ⊂  x X E Ú dist�xÙ ãE�� ³ 1/j(Ù
vj r u uniformly onñnÙDvjr Du pointwise onñnÙ and with the Lipschitz constant
Lip�vj� satisfying Lip�vj� ² 3Lip�u�Ø Thus if ε ± 0 then taking j sufficiently large
and putting v ¨ vj we have constructed a function v X W 1Ùð0 �EÙñm� with

supp v ⊂ EÙ (20)

‖v − u‖Lð�E� ° εÙ (21)
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‖Dv‖Lð�E� ² 3‖Du‖Lð�E�Ù (22)

�
E
|Dv − Du| dx ° εØ (23)

By passing to a sufficiently fine mollification of v we find a function, to be denoted by v
again, such that v X Cð0 �EÙñm� and (20)–(23) still hold. Finally we use a sufficiently
fine triangulation of supp v to find a piecewise affine function w X W 1Ùð0 �EÙñm�
such that

suppw ⊂ EÙ
‖w − u‖Lð�E� ° 3εÙ

‖Dw‖Lð�E� ² 3k‖Du‖Lð�E�Ù
�
E
|Dw − Du| dx ° 3εÙ

cf. [7; Chapter 10, Proposition 2.1] where k ¨ k�mÙ n� is a constant depending only
on m and nØ Thus taking ε ¨ 1/3j we find a sequence uj X W 1Ùð0 �EÙñm� satisfying
(16), (17), and (19) with c ¨ 3k and

�
E
|Duj − Du| dx ° 1/jØ

Thus for a subsequence of ujÙ to be denoted by uj again, we have (16)–(19). The proof
also gives the sequence uj X Cð0 �EÙñm�Ø è

Proof of Proposition 1.3 (i): This follows from Lebesgue’s theorem and Propo-
sition 2.2. (ii): This follows from (i) if one notes that any quasiconvex function
f Ú ìm�n r ñ is rank 1 convex by Proposition 1.6 and hence locally Lipschitz
continuous by [13; Theorem 4.4.1]. è

Proof of Proposition 1.4 The function f Úìm�nr �−ðÙð� is rank 1 convex
by Proposition 1.6. If f �A� ¨ −ð for some A X ìm�n then the rank 1 convexity
implies that f ª −ð on every rank 1 line through A, i.e., f �A + a � b� ¨ −ð for
every a X ñmÙ b X ñn. The same argument then gives that f ª −ð on every rank
1 line through A + a � b and proceeding inductively one then obtains that f ª −ð
onìm�nØ Thus either f ª −ð onìm�nÙ in which case (5) trivially holds for each
u X W 1Ùð0 �EÙñm� or f is finite valued onìm�n in which case (5) holds for each
u X W 1Ùð0 �EÙñm� by Proposition 1.3(ii). è

Proof of Theorem 1.7 Thus let g Úìm�nr Ïñ be defined by

g�A� ¨ sup  f �A� Ú f X F(Ù A Xìm�nÙ
where F is any set of quasiconvex functions f Ú ìm�n r ÏñØ Prove that g is
quasiconvex at any A Xìm�nØ Let A be fixed. Let E ⊂ñn be open bounded with
|ãE| ¨ 0 and prove that

|E|g�A� ² �
E
g�A + Du� dx (24)

for any u X Q�EÙñm� such that the integral in (24) is well defined. This is clear if�E g�A+Du� dx ¨ ðÛ hence assume �E g�A+Du� dx ° ðÙ i.e., g�A+Du� ° ð for a.e.
point of EØ Assume first that g�A� ° ðØ Then for every ε ± 0 there exists an f X F

such that g�A� − ε ² f �A�Ø Then f �A + Du� ° ð for a.e. point of E and thus
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|E|g�A� − ε|E| ² |E|f �A� ² �
E
f �A + Du� dx ² �

E
g�A + Du� dxØ (25)

Thus (24) holds. Next assume that g�A� ¨ ðØ For every k Xñ there exists an f X F

such that k ° f �A� and then

k|E| ² |E|f �A� ² �
E
f �A + Du� dx ² �

E
g�A + Du� dx ° ð

for all k X ñÙ which is a contradiction. Thus there is no u X Q�EÙñm� with
g�A + Du� ° ð for a.e. point of EÛ hence the condition of quasiconvexity of f at A is
vacuously satisfied. è
Remark 2.3. With the definition of quasiconvexity in [10–11] and [14] the above
argument breaks down at (25): with a general u X W 1Ùð0 �EÙñm� there seems to be
no guarantee that the function f �A + Du�ċ�� is measurable on E.

Proof of Theorem 1.8 (i): Denote by g the function defined by the right-hand
side of (12). Clearly f qc ² g and the proof will be complete if we show that g is
quasiconvex. Thus let A Xìm�nÙ let F ⊂ ñn be open bounded with |ãF | ¨ 0 and
prove that

|F |g�A� ² �
F
g�A + Du� dx (26)

for any u X Q�F Ùñm� for which the integral in (26) is well defined. This is clear if�F g�A+Du� dx ¨ ðÛ hence assume that �F g�A+Du� dx ° ðÙ i.e., f �A+Du� ° ð for
a.e. point of F . Since u is Q-piecewise affine, there exists a finite number of disjoint
open sets Gα ⊂ F such that

|F ∼U
α
Gα| ¨ 0

Du ¨ Bα ¨ const on GαØ




(27)

Since g�A + Bα� ° ðÙ for every ε ± 0 and every α there exists a Q-piecewise affine
function vα X W 1Ùð0 �EÙñm� such that

g�A + Bα� + ε ³ |E|−1 �
E
f �A + Bα + Dvα� dxØ (28)

We now invoke the construction in the proof of Proposition 1.2 to find wα X
Q�GαÙñm� such that

|E|−1 �
E
f �A + Bα + Dvα� ¨ |Gα|−1 �

Gα

f �A + Bα + Dwα� dxØ (29)

Define s Úñn rñm by

s ¨ 



u + wα on Gα for any αÙ
u otherwise.

(30)

Then s X Q�F Ùñm�ØWe invoke the construction in the proof of Proposition 1.2 again
to find r X Q�EÙñm� such that

|F |−1 �
F
f �A + Ds� dx ¨ |E|−1 �

E
f �A + Dr� dxØ (31)

Since Du ¨ Bα on GαÙ we have
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Ds ¨ Bα + Dwα on GαØ (32)

Then (27)–(32) give

�
F
g�A + Du� dx + ε|F | ¨ �

α
|Gα|�g�A + Bα� + ε�

³ �
α

|Gα|
|E| �E f �A + Bα + Dvα� dx

¨ �
α
�
Gα

f �A + Bα + Dwα� dx

¨ �
F
f �A + Ds� dx

¨ |F |
|E| �E f �A + Dr� dx

³ |F |g�A�Ø
(ii): Let f ° ð onìm�n; hence f qc ° ð onìm�nØ By Proposition 1.4 the either
f ª −ð onìm�n or f qc is finite valued and

|E|f qc�A� ² �
E
f qc�A + Du� dx

for any u X W 1Ùð0 �EÙñm�Ø The inequality f qc ² f implies �E f qc�A + Du� dx ²�E f �A + Du� dx provided the last integral is well defined, which gives

f qc�A� ² |E|−1 �
E
f �A + Du� dxÛ

hence the infimum over the larger set specified in (ii) is the same as the infimum in
(i). (iii): This follows from (ii) and the fact that the integral �E f �A + Du� dx is well
defined for any u X W 1Ùð0 �EÙñm�Ø è

Proof of Example 1.5 Let F be the unit open ball in ñn. Ball [2; Theorems
3.3 and 3.8] proves that if m ³ n ³ 3 or n ¨ 2 and m ³ 4 then there exists
a B X ìm�n and a w X C 1�¯ Ùñm� with w�x� ¨ Bx on ãF such that the set
K Ú¨ graphDw ¨  Dw�x� Ú x X ¯( contains no rank 1 connection (i.e., there is no
pair CÙ D X K with rank�C − D� ¨ 1) and B Z K Ø If f Úìm�nr  0Ù ð( is defined
by

f �D� ¨ 



0 if D X K Ùð otherwise,

D Xìm�nÙ and if u X W 1Ùð0 �EÙñm� is defined by v�x� ¨ w�x� − BxÙ x X F Ù then

ð ¨ |F |f �B� ± �
F
f �B + Dv� dx ¨ �

F
f �Dw� dx ¨ 0Ø

Prove that f is quasiconvex. Thus let E be a nonempty bounded open subset ofñnÙ
A Xìm�nÙ u X Q�EÙñm� and prove that (5) holds. This is clear if �E f �A+Du� dx ¨ðÛ hence assume that �E f �A + Du� dx ° ðÙ i.e., f �A + Du� ° ð for a.e. point of
EÙ which by the definition of f implies that f �A + Du� ¨ 0 for a.e. point of EØ
By the definition of a Q-piecewise affine function there exist disjoint open subsets
EiÙ i ¨ 1ÙÜ Ù p of E of positive measure and elements Ai such that
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|E ∼
pU
i¨1
Ei| ¨ 0

and
Du ¨ Ai for a.e. point of EiÛ (33)

we furthermore assume that Ai © Aj if i © jØ From f �A+Du� ¨ 0 for a.e. point of E we
deduce that A + Ai X K for every i and from the fact that K has no rank 1 connection
we deduce that rank��A + Ai� − �A + Aj�� ³ 2 if i © jØ From (33) we deduce that
u is affine on each connceted component C of EiØ Each such a component C can be
decomposed into a finite number of simplexes in the sense that C ¨ N TUkj¨1 E P ∆j
where ∆j are nonempty simplexes and |N | ¨ 0Ø Since each Ei has at most a countable
number of connected components, we conclude that there is at most a countable
number of disjoint simplexes Sl ⊂ñnÙ l X LÙ such that

|E ∼ U
lXL
E P Sl| ¨ 0

and u is affine on eachSlØFor any two simplexesSjÙSm such that ã�EPSl�Pã�EPSm�
has a positive area we have that the values of Du on E P Sl and E P Sm are rank
1 connected. Since the range of Du contains no rank 1 connection, we deduce that
necessarily Du is constant on EØ Combining this with the boundary condition u ¨
0 on ãE we finally obtain that u ª 0 on E. Thus the only u X Q�EÙñm� with�E f �A + Du� dx ° ð is u ¨ 0 and hence

�
E
f �A + Du� dx ¨ �

E
f �A� dx ¨ |E|f �A�

which proves (5). Thus f is quasiconvex.

Finally, we give

Example 2.4. Let m ± 1 or n ± 1.
(i) There exists a non–Borelian convex (and hence polyconvex, quasiconvex, and

rank 1 convex) function f Úìm�nr ÏñÛ
(ii) there exists a family F of Borelian convex functions on ìm�n such that the

pointwise supremum of F is not Borelian.

LetB andS be the unit open ball and the unit sphere inìm�n, and let f Úìm�n r Ïñ
be a function such that f �A� ¨ 0 if A X BÙ f �A� ¨ ð if A Xìm�n ∼ �B T S�Ù and
f |S Ú S r ñ an arbitrary non–Borelian nonnegative function. Such a function exists
since the dimension of S is ³ 1Ø The function f is convex. Consider further a family
F Ú¨  gBÙ B X S(Ù of functions gB Úìm�nr Ïñ defined by

gB�A� ¨




0 if A X B T SÙ A © BÙ
f �B� if A ¨ BÙ
ð if A Xìm�n∼ �B T S�Ù

A X ìm�nÙ B X SØ Then each gB is a Borelian convex function. However, the
pointwise supremum of F is the function f Ø
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