
Adaptive BDDC in Three Dimensions

Jan Mandel, Bedřich Soused́ık and Jakub Š́ıstek ∗

Abstract

The adaptive BDDC method is extended to the selection of face constraints in three
dimensions. A new implementation of the BDDC method is presented based on a global
formulation without an explicit coarse problem, with massive parallelism provided by
a multifrontal solver. Constraints are implemented by a projection and sparsity of the
projected operator is preserved by a generalized change of variables. The effectiveness
of the method is illustrated on several engineering problems.

1 Introduction

The Balancing Domain Decomposition by Constraints (BDDC) was developed by
Dohrmann [6] as a primal alternative to the Finite Element Tearing and Interconnecting
- Dual, Primal (FETI-DP) by Farhat et al. [7]. Both methods use constraints to impose
equality of new “coarse” variables on substructure interfaces, such as values at substructure
corners or weighted averages over edges and faces. Primal variants of the FETI-DP were
also independently proposed by Cros [4] and by Fragakis and Papadrakakis [10]. It has
been shown in [28, 38] that these methods are in fact the same as BDDC. Polylogarithmic
condition number bounds for FETI-DP were first proved in [30] and generalized to the case
of coefficient jumps between substructures in [14]. The same bounds were obtained for
BDDC in [24, 25]. A proof that the eigenvalues of the preconditioned operators of both
methods are actually the same except for the eigenvalues equal to one was given in [25] and
then simplified in [2, 20, 28]. FETI-DP, and, equivalently, BDDC are quite robust. It can be
proved that the condition number remains bounded even for large classes of subdomains with
rough interfaces in 2D [12, 40] as well as in many cases of strong discontinuities of coefficients,
including some configurations when the discontinuities cross substructure boundaries [32, 33].
However, the condition number does deteriorate in many situations of practical importance
and an adaptive method is warranted. Enriching the coarse space so that the iterations
run in a subspace devoid of “difficult” modes has been a long-standing trick in iterative
substructuring methods and used, e.g., in the development of BDD and FETI for plates
from the base BDD and FETI methods [8, 18, 19, 31]. Methods that build a coarse space

∗Corresponding author at: Institute of Mathematics, Academy of Sciences of the Czech Republic, Žitná 25,
CZ–115 67 Praha 1, Czech Republic. Tel.: +420 222 090 710; fax: +420 222 211 638, sistek@math.cas.cz.

1

Preprint, Institute of Mathematics, AS CR, Prague. 2009-11-2 IN
ST
IT
U
TE

of
M
ATH

EMATICS

A
ca
d
em

y
o
f
Sc
ie
n
ce
s

C
ze
ch

R
ep
u
b
lic

adaptively from local eigenvalue calculations were also devised in a number of other contexts
[3, 9, 21, 22, 34]. Adaptive enrichment for BDDC and FETI-DP was proposed in [26, 27], with
the added coarse functions built from eigenproblems based on adjacent pairs of substructures
in 2D. The adaptive method, however, was formulated in terms of FETI-DP operators, and
it was quite complicated.

Here, we develop the adaptive algorithm directly in terms of BDDC operators, resulting
in a much simplified formulation and implementation. Of course, the algorithm still allows a
translation into the language of the FETI-DP. We then extend the construction from [26, 27]
to 3D. We find that the heuristic eigenvalue-based estimates still work reasonably well and
that our adaptive approach can result in the concentration of computational work in a small
troublesome part of the problem, which leads to a good convergence behaviour at a small
added cost.

We also develop a new implementation framework that operates on global matrices, builds
no explicit coarse problem, and gets much of its parallelism through the direct solver used
for solution of an auxiliary decoupled system. To preserve sparsity, we use a variant of the
change of variables from [20], extended to an arbitrary number of constraints. Our current
parallel implementation is built on top of the multifrontal massively parallel sparse direct
solver MUMPS [1], motivated also by an earlier implementation of the BDDC preconditioner
based on the frontal solver [35].

The rest of the paper is organized as follows. In Section 2, we establish the notation and
review the BDDC algorithm in a form suitable for our purposes. In Section 3, we describe
the adaptive method. Section 4 then describes the implementation on top of a massively
parallel direct solver. Section 5 presents the generalized change of variables to preserve
sparsity. Section 6 describes some further details of the implementation. Numerical results
are presented in Section 7. Section 8 contains the summary and concluding remarks.

Some of results in this paper were presented in the thesis [37].

2 Notation, substructuring, and BDDC

To establish notation, we first briefly review standard substructuring concepts and state
the BDDC method in a form suitable for our purposes. The setting and notation here is
compatible with [29], with some additions. See, e.g., [36, 39] for more details about iterative
substructuring and [16, 24, 29, 36, 39] for BDDC.

Consider a bounded domain Ω ⊂ R3 discretized by conforming finite elements. The
domain Ω is decomposed into N nonoverlapping subdomains Ωi, i = 1, . . . N , also called
substructures, so that each substructure Ωi is a union of finite elements. Each node is
associated with one degree of freedom in the scalar case, and with 3 displacement degrees
of freedom in the case of linear elasticity. The nodes contained in the intersection of at
least two substructures are called boundary nodes. The union of all boundary nodes of all
substructures is called the interface, denoted by Γ, and Γi is the interface of substructure Ωi.
The interface Γ may also be classified as the union of three different types of sets: faces,
edges and corners. We will adopt here a simple (geometric) definition: a face contains all

2

nodes shared by the same two subdomains, an edge contains all nodes shared by same set
of more than two subdomains, and a corner is a degenerate edge with only one node; for a
more general definition see, e.g., [13]. Similarly as in [23], edges, and faces are called globs.

We identify finite element functions with the vectors of their coefficients in the standard
finite element basis. These coefficients are also called variables or degrees of freedom. We
also identify linear operators with their matrices, in bases that will be clear from the context.

The space of all (vectors of the degrees of freedom of) finite element functions on
subdomain Ωi is denoted by Wi, and let

W = W1 × · · · ×WN . (1)

The space W is equipped with the standard Rn basis.
The Euclidean inner product 〈w, v〉 = wTv. For a symmetric positive semidefinite

matrix M , 〈u, v〉M = 〈Mu, v〉, and ‖u‖M = 〈Mu, u〉1/2.
Let Ai : Wi → Wi be the local substructure stiffness matrix, obtained by the subassembly

of element matrices only in substructure Ωi. The matrices Ai are symmetric positive
semidefinite. We can write vectors and matrices in the block form

w =

 w1
...
wN

 , w ∈ W, A =

A1

. . .

AN

 : W → W. (2)

Now let U ⊂ W be the space of all functions from W that are continuous across
substructure interfaces. We are interested in solving the problem

u ∈ U : 〈Au, v〉 = 〈f, v〉 ∀ v ∈ U , (3)

where f ∈ W is a given right-hand side. Vectors from U are called vectors of global degrees
of freedom, while vectors from Wi are called local. The space U is equipped with the basis of
0-1 vectors with one basis vector for each global degree of freedom. The basis vectors have
1s in the places where the global degree of freedom coincides with a local one. The matrix

R : U → W,

formed from these basis vectors as columns, is the familiar global-to-local mapping that
restricts the global vectors of degrees of freedom to local degrees of freedom on each Ωi.
Thus, RTAR is the global stiffness matrix, and (3) is equivalent to the assembled system
RTARv = RTf . The matrix R is also the matrix of the canonical embedding U ⊂ W in the
given bases.

Denote by UI ⊂ W the space of all (vectors of) finite element functions with nonzero
values only in the interiors of the substructures Ωi. Then UI ⊂ U , and the space W is
decomposed as the A-orthogonal direct sum

W = UI ⊕WH , UI ⊥A WH , (4)

3

where the functions from WH are called discrete harmonic. Such functions are fully
determined by the values of the degrees of freedom at the boundaries of the substructures, and
they have minimal energy on every subdomain. Therefore, in a computer implementation,
only the boundary values of discrete harmonic functions need to be stored.

The A-orthogonal projection onto UI is denoted by

P : W → UI .

For w ∈ W , (I − P)w is the discrete harmonic extension from the values of w on the
substructure boundaries. The evaluation of Pw consists of the solution of N independent
Dirichlet problems, one in each substructure.

The space of all discrete harmonic functions from W that are continuous across the
substructure interfaces is denoted by Ŵ . We have

Ŵ = WH ∩ U = (I − P)U,

and the A-orthogonal decomposition

U = UI ⊕ Ŵ , UI ⊥A Ŵ . (5)

The solution v ∈ RangeR is split as

v = u+ w, u ∈ UI , w ∈ Ŵ .

Solving for the interior component u ∈ UI decomposes into N independent Dirichlet
problems. We are interested in finding the discrete harmonic component w ∈ Ŵ , which
is the solution of the reduced problem

w ∈ Ŵ : 〈Aw, z〉 = 〈f, z〉 ∀z ∈ Ŵ . (6)

We require also an averaging operator

E : W → U. (7)

The operator E replaces the variables on the interfaces between the substructures by their
averages from all adjacent subdomains, and it preserves variables in the interiors of the
substructures. The operator E is a projection in W onto U . Then the operator

(I − P)E : W → Ŵ (8)

is a projection in W onto Ŵ . Its evaluation consists of averaging between the substructures,
followed by the discrete harmonic extension from the substructure boundaries. Also, note
that

(I − (I − P)E)w = (I − P) (I − E)w ∀w ∈ WH , (9)

since Pw = 0 if w ∈ WH .

4

Proper weights (e.g., proportional to the substructure stiffness) in the averaging by E are
important for the performance of BDDC (as well as other iterative substructuring methods)
independent of different stiffness of substructures [13, 25].

The BDDC preconditioner is characterized by a selection of coarse degrees of freedom,
such as values at corners and averages over edges or faces. The action of the BDDC
preconditioner is then defined in the space given by the requirement that the coarse degrees
of freedom on adjacent substructures coincide, which is enforced in the algorithms by
constraints. So, the design of the BDDC preconditioner is characterized by a selection
of an intermediate space W̃ satisfying these constraints,

Ŵ ⊂ W̃ ⊂ WH . (10)

The BDDC then consists of preconditioned conjugate gradients (PCG) applied to the
problem (6) with the preconditioner

MBDDC : r 7→ u = (I − P)Ew, w ∈ W̃ : 〈Aw, z〉 = 〈r, (I − P)Ez〉 , ∀z ∈ W̃ , (11)

where r is the residual in the PCG method. The following condition number bound for
BDDC will play an essential role in our design of the adaptive method.

Theorem 1 ([25]) The eigenvalues of the preconditioned operator of the BDDC method
satisfy 1 ≤ λ ≤ ωBDDC, where

ωBDDC = sup
w∈fW

‖(I − (I − P)E)w‖2A
‖w‖2A

. (12)

BDDC enforces the equality of corner coarse degrees of freedom directly by using the
space W c, consisting of all functions where the local degrees of freedom on the substructure
corners coincide. Then

U ⊂ W c ⊂ W.

Just like U , space W c is equipped with a basis consisting of 0-1vectors. The basis vector
corresponding to a corner degree of freedom has 1s in the places where the global degree of
freedom coincides with the corresponding substructure degree of freedom. The global-to-local
matrix

Rc : W c → W,

formed from these basis vectors as columns, is the matrix of the canonical embedding
W c ⊂ W , and

Ac = RcTARc. (13)

is the stiffness matrix assembled at the subdomain corners only (Figure 1).
We assume that there are sufficiently many of corner constraints:

Assumption 1 The matrix A is positive definite on W c.

5

Denote by W̃ c the space all of discrete harmonic functions in W c. Then,

Ŵ ⊂ W̃ ⊂ W̃ c = W c ∩WH ⊂ WH , (14)

and we construct the space W̃ by enforcing the remaining constraints weakly,

W̃ =
{
w ∈ W̃ c : Dw = 0

}
. (15)

Each row of matrix D defines one constraint. We require that the constraints are satisfied
by all functions that are continuous across the interfaces,

Dw = 0, ∀w ∈ U. (16)

Note that (16) implies that Ŵ ⊂ W̃ , and that the constraints Dw = 0 involve boundary
variables only. The adaptive algorithm will construct such matrix D.

Lemma 2 The BDDC preconditioner (11) satisfies

MBDDC : r 7→ u = (I − P)ERcwc, (17)

where for some λ,
Acwc + DcTλ = RcTET (I − P)T r,
Dcwc = 0.

(18)

where
Dc = DRc (19)

differs from D only by omitting some zero columns corresponding to corners.

Proof. The saddle point problem (18) is equivalent to the constrained minimization,

1

2
〈Aw,w〉 − 〈r, (I − P)Ew〉 → min subject to w ∈ W c, Dw = 0, (20)

with w = Rcwc. Let w be a solution of (20) and z ∈ UI . Since w is optimal with respect
to variation z, and (I − P) z = 0, we have 〈Aw, z〉 = 0. Thus, w is discrete harmonic. It
follows (20) is equivalent to

1

2
〈Aw,w〉 − 〈r, (I − P)Ew〉 → min subject to w ∈ W̃ c, Dw = 0, (21)

which, by (15), is the same as (11).
Finally, matrix DRc differs from D only by omitting zero columns because the constraints

Dw = 0 do not involve corners.

Remark 1 In practice, the computation of (I − P)T r can be omitted, because r = Ae, where
the error e is discrete harmonic, and then〈

PTr, z
〉

=
〈
PTAe, z

〉
= 〈Ae, Pz〉 = 〈r, Pz〉 = 0 ∀z ∈ UI ,

thus PTr = 0, that is, r = 0 in the interiors. The condition that the error e is discrete
harmonic is preserved in the iteration by induction, and the initial error can be made discrete
harmonic by a suitable choice of initial approximation for the reduced problem (e.g., zero).

6

3 Adaptive selection of constraints

We first briefly review the principle of the adaptive method from [27], in a form suitable
for our purposes. The condition number bound from Theorem 1 equals to the maximum
eigenvalue λ1 of the associated generalized eigenvalue problem

w ∈ W̃ : 〈(I − (I − P)E)w, (I − (I − P)E) z〉A = λ 〈w, z〉A ∀z ∈ W̃ . (22)

The following statement is well known from linear algebra, e.g. [5, Theorem 5.2].

Lemma 3 (Courant-Fisher-Weyl minmax principle) Let d (·, ·) be symmetric positive
semidefinite bilinear form on vector space V of dimension n and e (·, ·) symmetric positive
definite bilinear form on V . Then the generalized eigenvalue problem

w ∈ V : c (w, u) = λb (w, u) ∀u ∈ V,

has n linearly independent eigenvectors wk and the corresponding eigenvalues are real
and nonnegative and the eigenvectors are stationary points of the Rayleigh quotient
c (w,w) /b (w,w), with the stationary values equal to λi. Order λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0.
Then, for any subspace Vk ⊂ V of dimension n− k,

max
w∈Vk,w 6=0

c (w,w)

b (w,w)
≥ λk+1,

with equality if
Vk = {w ∈ V : d(w`, w) = 0, ∀` = 1, . . . , k} . (23)

Since the bilinear form on the left-hand side of (22) is symmetric positive semidefinite
and the bilinear form on the right-hand side is symmetric positive definite, Lemma 3 applies:

Corollary 4 ([27]) The generalized eigenvalue problem (22) has eigenvalues λ1 ≥ λ2 ≥
. . . ≥ λn ≥ 0. Denote the corresponding eigenvectors w`. Then, for any k = 1, . . . , n − 1,
and any linear functionals L` on W , ` = 1, . . . , k,

max

{
‖(I − (I − P)E)w‖2A

‖w‖2A
: w ∈ W̃ , L` (w) = 0 ∀` = 1, . . . , k

}
≥ λk+1,

with equality if
L` (w) = 〈(I − (I − P)E)w`, (I − (I − P)E)w〉A . (24)

Therefore, the optimal decrease of the condition number bound (12) can be achieved by

adding to the constraint matrix D in the definition of W̃ the rows d` defined by dT
` w = L` (w).

However, solving the global eigenvalue problem (22) is expensive, and the vectors d` are not
of the form required for substructuring, i.e., each d` with nonzeros in one glob only.

7

For these reasons, we replace (22) by a collection of local problems, each defined by
considering only two adjacent subdomains Ωi and Ωj. Here, subdomains are considered
adjacent if they share an edge in 2D, or a face in 3D (Figure 2). All quantities associated
with such pair will be denoted by the subscript ij. Using also (9), the generalized eigenvalue
problem (24) becomes

w ∈ W̃ij : 〈(I − Pij) (I − Eij)w, (I − Pij) (I − Eij) z〉Aij
= λ 〈w, z〉Aij

∀z ∈ W̃ij. (25)

Assumption 2 The corner constraints are already sufficient to prevent relative rigid body
motions of any pair of adjacent substructures, so

∀w ∈ W̃ij : Aijw = 0⇒ (I − Eij)w = 0,

i.e., the corner degrees of freedom are sufficient to constrain the rigid body modes of the
two substructures into a single set of rigid body modes, which are continuous across the
interface Γij.

The maximal eigenvalue ωij of (25) is finite due to Assumption 2, and we define the
heuristic condition number indicator

ω̃ = max {ωij : Ωi and Ωj are adjacent} . (26)

Considering two adjacent subdomains Ωi and Ωj only, we get the added constraints
L` (w) = 0 from (24) as

〈(I − Pij) (I − Eij)w`, (I − Pij) (I − Eij)w〉Aij
= 0 ∀` = 1, . . . , k, (27)

where w` are the eigenvectors corresponding to the k largest eigenvalues from (25).
To avoid complicated notation, we now drop the subscripts ij, or, equivalently, consider

a domain which consists of only two substructures.

Algorithm 1 (Adaptive BDDC [27]) Find the smallest k for every two adjacent
substructures to guarantee that λk+1 ≤ τ , where τ is a given tolerance, and add the constraints

(27) to the definition of W̃ .

The adaptive BDDC method assures that the condition number indicator ω̃ ≤ τ with
the minimum number of added constraints. It was presented in [27] starting from corner
constraints only, formulated in terms of FETI-DP, and the result translated to BDDC. We
extend the method to the case a general space W̃ and give a much simpler implementation
in BDDC directly.

The next lemma shows that the added constraints L` (w) = 0 satisfy the compatibility
condition (16).

Lemma 5 The constraints L` (w) = 0, with L` given by (24), are satisfied for any w ∈ U .

8

Proof. From (9), (I − (I − P)E) = (I − P) (I − E). For any w ∈ U , (I − E)w = 0,
because E is a projection on U .

To formulate a numerical algorithm, we need to write the generalized eigenvalue problem
(25) and the added constraints (27) in terms of matrices and vectors. Consider the space

W̃ given by the corner constraints and some initial constraint matrix D. Recall that W c is
the space of functions continuous at corners into W with the basis consisting of 0-1vectors
such that the basis vector corresponding to a degree of freedom has 1 in the places where the
global degree of freedom coincides with the corresponding substructure degree of freedom,
Rc : W c → W is the identity embedding so the matrix of Rc has the basis vectors of W c

as columns, Ac = RcTARc is the matrix assembled at the corners, and Dc = DRc, and

Π = I −DcT
(
DcDcT

)−1
Dc is the orthogonal projection onto nullDc. The initial constraint

matrix D can be empty; then Π = I. The generalized eigenvalue problem (22) now becomes

Π (I − E)T Sc (I − E) Πw = λΠScΠw. (28)

where
Sc = (I − P)TAc (I − P) .

Since
null ΠScΠ ⊂ null Π (I − E)T Sc (I − E) Π, (29)

the eigenvalue problem (28) reduces in the factorspace modulo null ΠScΠ to the problem
with the operator on the right-hand side positive definite. In some of the computations, we
have used the subspace iteration method LOBPCG [15] to find the dominant eigenvalues
and their eigenvectors. The LOBPCG iterations then simply run in the factorspace. To use
standard eigenvalue solvers, (28) is converted to a matrix eigenvalue problem by penalizing
the components in nullDc and rigid body modes, as already described in [27].

From the matrix form (29) of the eigenvalue problem, the constraints to be added are

L` (w) = wT
` Π (I − E)T Sc (I − E) Πw = 0.

That is, we wish to add to the constraint matrix D the rows

d` = wT
` Π (I − E)T Sc (I − E) Π. (30)

Proposition 6 The vectors d`, constructed for a domain consisting of only two substructures
Ωi and Ωj, have matching entries on the interface between the two substructures, with
opposite signs.

Proof. Consider the vector w ∈ W that has two entries equal to 1, corresponding to a
degree of freedom on the interface, and all other entries equal to 0. Using the definition of
d` and Lemma 5, we get d`w = L` (w) = 0.

In 2D, one can simply add rows (30) to the constraint matrix D, which is equivalent to the
method from [27]. In 3D, unfortunately, the added rows will generally have nonzero entries
over all of the interface of Ωi and Ωj, including the edges.(where Ωi and Ωj intersect other

9

substructures). Consequently, the added d` are not of the form required for substructuring,
i.e., each d` with nonzeros in one glob only, and they will couple the globs together: the
matrix DDT is in general no longer block diagonal with one block per glob. To preserve the
block diagonal structure, we have to split each d` into one row that contains the nonzero
entries of the face, and one row for each edge that contains the nonzero entries of that
edge. From Proposition 6, it follows that these split constraints satisfy the compatibility
condition (16), and thus the space W̃ is well defined.

Remark 2 In the computations reported in Section 7, we drop the adaptively generated edge
constraints in 3D. Then it is no longer guaranteed that the condition number indicator ω̃ ≤ τ .
However, the method is still observed to perform well.

4 Parallel framework with global matrices and on top

of multifrontal solver

The main purpose of BDDC, just like any other iterative substructuring method, is
to split the problem into independent subproblems, which are solved independently on
separate nodes in a multiprocessor system. Therefore, the usual implementation results
in independent local problems on the spaces Wi and a small coarse problem [6, 24]. Parallel
implementation then requires a fair amount of custom coding. To reduce the amount of new
code, a BDDC implementation was developed [35] that uses specially crafted calls to a frontal
solver to compute almost all quantities on the substructures. However, the frontal solver
implementation needs to construct a coarse problem (which is solved by the same frontal
solver), and the programmer needs to handle the parallelism explicitly. Fortunately, highly
efficient massively parallel direct solvers exist, and an implementation based on such solver
may avoid dealing with parallel issues completely. When there are only corner constraints,
i.e., D is empty, the BDDC preconditioner (17)–(19) reduces to

MBDDC : r 7→ (I − P)ERc Ac−1RcTET (I − P)T r. (31)

All coupling in the matrix Ac between the substructures is concentrated at the corner degrees
of freedom, while most computation work rests inside the subdomains, which an efficient
solver should be able to perform independently in parallel. Our implementation is based on
the multi-frontal solver MUMPS [1] and numerical results show that MUMPS can indeed
handle matrices of this type reasonably well. Our MATLAB implementation also uses global
matrices, with the MATLAB expressions involving sparse matrices operating on vectors in
the space W just as in the formulas here.

However, if there are any constraints in the globs, one has to solve the constrained system
(18), and MUMPS cannot do this directly. Thus, we will transform (18) to a symmetric,
positive definite system that MUMPS can solve.

One way to solve system (18) is to introduce the orthogonal projection Π onto the
nullspace of Dc, which is given by

Π = I −DcT
(
DcDcT

)−1
Dc. (32)

10

Due to the block structure of Dc, where each block corresponds to a different glob and
because by definition each degree of freedom belongs to at most one glob, the construction
of Π can be performed in parallel.

Using projection Π, (18) is equivalent to

ΠAcΠwc = ΠRcTET (I − P)T r, wc ∈ nullDc. (33)

However, the operator ΠAcΠ is singular for nontrivial D, so we solve instead a modified
system

[ΠAcΠ + t(I − Π)]wc = ΠRcTET (I − P)T r, (34)

where t > 0 is some scaling constant, e.g. chosen as the maximal diagonal entry in Ac. Now,
the operator ΠAcΠ + t(I − Π) is regular, while the solutions of the systems (18) and (34)
are the same.

The projection Π enforces constraints that couple all degrees of freedom on the same
globs. For this reason, action of Π introduces new off-diagonal elements (called fill-in) in
the projected system operator ΠAcΠ + t(I − Π). This is illustrated in Figure 3. Since the
averages couple all variables in a glob, there are new dense off-diagonal blocks between globs,
and the performance of sparse direct solvers would seriously deteriorate.

5 Generalized change of variables

To reduce the fill-in in enforcing the constraints following (32)–(33), we revisit and generalize
the change of variables proposed in [11, 20]. On each substructure i, consider first the change
of variables by the transformation

wnew
i = Hiwi, Hi =

[
Havg

i

0 I

]
=

[
Ū V̄
0 I

]
. (35)

That is, the averages (the coarse degree of freedom) are at the beginning of the vector
wnew

i , replacing the variables in wi, and the remaining variables in wi are unchanged. We
assume that the vectors of weights in the averages are linearly independent, that is, Havg

i

has full row rank. While this assumption guarantees that there exists a square submatrix
of Havg

i consisting of linearly independent columns, this does not necessarily needs to be the
matrix Ū , so the inverse transformation H−1

i may not exists. To correct this, we use QR
decomposition with column pivoting to choose which variables in w will be replaced by the
averages. Decompose

Havg
i = Q

[
U V

]
K,

where Q is orthogonal matrix, U is upper triangular square matrix, and K is a permutation
matrix. We now define the generalized change of variables by

wnew
i = Hiwi, Hi =

[
U V
0 I

]
K. (36)

11

Now the inverse change of variable exists,

Ti = H−1
i = K−1

[
U−1 −U−1V

0 I

]
. (37)

The matrix U , though invertible, is not guaranteed to be well conditioned. This is a well-
known problem in QR decomposition [17]. However, we can drop the rows of [U V] where the
diagonal entry of U is small, and one can argue that the constraints that were transformed
into rows with negligible leading entry are (numerically) redundant. Our implementation of
the change of variable uses QR decomposition by the LAPACK routine DGEQP3.

To compare with the change of variable from [11, 20], consider the case where there is
just one average with unit weights. Then

Havg = [1, . . . , 1] , U = [1] , K = I, Hi =


1 1 . . . 1

1
. . .

1

 ,
and we have the change of variable

wi = Tiw
new
i , Ti = H−1

i =


1 −1 . . . −1

1
. . .

1

 , (38)

while the transformation of variable in [11, 20] is

wi =


1 −1 . . . −1
1 1

1
. . .

1 1

wnew
i .

With the change of basis, the BDDC preconditioner can be written as

MBDDC : r 7−→ u = (I − P)ETRw, w ∈ W̃ : 〈ATw, Tz〉 = 〈r, (I − P)ETz〉 , ∀z ∈ W̃ ,

where T = diag [Ti]. Thus, A is replaced the transformed matrix TTAT , and, by assembly
at corners following (13), Ac becomes RcTTTATRc. Then, Lemma 2 yields the matrix form
of the algorithm: solving the system

RcTTTATRcwc + D
cT
λ = RcTTTETr,

D
c
wc = 0,

(39)

followed by computation of the approximate solution u ∈ Ŵ by u = (I − P)ETRcwc. Here,
the matrix D

c
= DcT is much sparser than Dc because, thanks to the change of variables, it

12

couples only explicit new degrees of freedom on each subdomain and thus has only one +1
and one −1 entry on each row. In fact, the construction of D

c
is similar to the construction

of the operator B used in FETI methods. In computations, D
c

can be constructed directly
without using either Dc or T , knowing only which pairs of the interface degrees of freedom
have to be coupled after the change of basis.

Instead of solving the saddle point problem (39) directly, we now use the projection
as in (34) with Dc replaced by D

c
, resulting in a projection Π. The sparsity structure of

projection Π and the projected operator ΠRcTTTATRcΠ + t(I −Π) are illustrated Figure 3.
As can be observed, change of basis preceding the projection can lead to much lower fill-in
in the off-diagonal blocks of the projected matrix.

The BDDC preconditioner in an algebraic form can finally be rewritten in the form that
is actually used in our implementation based on the MUMPS solver as follow.

Algorithm 2 The action of the BDDC preconditioner MBDDC : r 7→ w with the generalized
change of variables consists of solving the system

Ãwc = ΠRcTTTETr,

where
Ã = ΠRcTTTATRcΠ + t(I − Π), (40)

with an arbitrary t > 0, followed by w = (I − P)ETRcwc.

Remark 3 Since the transformation of variables makes averages into separate degrees of
freedom, one can treat these degrees of freedom as corners and assemble them just as
in [11, 13, 20] to make all constraints primal. This gives no additional fill-in beyond the
one caused by the change of variables, i.e., replacing Ac by RcTTTATRc. In the adaptive
method (Section 3), the corners are already set and used to compute the constraints to be
added adaptively. Treating all constraints as corners then requires redefining which variables
are corners. This is not supported in the code described here. See Section 6 for more details.

6 Implementation

We have first implemented the proposed method in Matlab. Later, we have also developed
a parallel version using Fortran 90 programming language with MPI.

First, we have implemented the BDDC preconditioner based on the formulation (18).
In the case of corner constraints only, i.e. D is empty, the method is reduced to solving
a problem with matrix Ac in each iteration. In the current version, we rely on the parallel
direct solver MUMPS [1] (version 4.8.4) for this purpose.

In our implementation, two separate instances of MUMPS are necessary – one for solving
problems with matrix Ac and another for a realization of the operator I − P of the discrete
harmonic extension in (8) globally, instead of solving an independent Dirichlet problem on
each subdomain separately.

13

In the case of a nontrivial matrix D, i.e. for additional constraints on edges and/or faces,
explicit change of variables with projection (Section 5) is performed in parallel to form the
distributed sparse matrix (40), which is then supplied to MUMPS. We have observed a great
advantage in projecting the matrix after the change of variables compared to the direct
projection on null D. It greatly decreases time and memory consumption due to reduced
fill-in, as described in Section 5. In our experience, the amount of extra work needed for the
transformation and the projection is only a small fraction of the time saved by lower number
of PCG iterations, compared to the case of corner constraints only.

The projection approach instead of assembling the matrix again after the change of
variables allows us to store the sparse matrix in memory only once, and use it in the
preconditioner as well as in the PCG method, which runs on vectors from the space W̃ c,
represented by their values on substructures’ boundary. For the preconditioner, new entries
arising from the transformation and projection are stored in the memory behind the original
matrix and the convention of repeated indices allowed by MUMPS is exploited.

Later, the adaptive selection of constraints described in Section 3 has been added to
the implementation. As the parallelization of solving generalized eigenvalue problems (28)
on pairs of adjacent subdomains does not follow the scheme of the natural parallelization
by subdomains, this part of the code has been written as a self-standing module that just
passes the constraints to the main BDDC solver. Multiplication by Sc in the eigenvalue
problem (28) is implemented by performing interior correction on each of the two adjacent
subdomains separately, and only then assembling the result; thus, the matrices Sc and Ac

for the two adjacent substructures are never formed explicitly.

7 Numerical results

We have tested the adaptive algorithm on several three-dimensional linear elasticity problems
coming from engineering practice. As a consistency check, we have also tested the method in
two dimensions with essentially the same results as in [27]. The computations were done in
Matlab and the parallel implementation described in Section 6. The generalized eigenvalue
problems for pairs of adjacent substructures were solved by setting up the matrices and
using standard methods for the symmetric eigenvalue problem in Matlab, and we have also
tested the Matlab version of the LOBPCG algorithm [15]. The averaging operator was
constructed with weights proportional to the diagonal entries of the substructure matrices
before elimination of interiors.

The first problem is a nozzle box of a ŠKODA steam turbine 28 MW for the electric
power plant Nováky, Slovakia, loaded by steam pressure. The body of the nozzle box
was discretized using 2 696 isoparametric quadratic finite elements with 40 254 degrees of
freedom and decomposed into 16 substructures with 37 corners, 19 edges and 32 faces,
see Fig. 4. Convergence of the algorithm with non-adaptive constraints is displayed in
Table 1. Note that the corner coarse degrees of freedom were not sufficient to guarantee the
convergence. Comparing the last two rows in Table 1 we see that constraints obtained from
the adaptive algorithm work quite better than arithmetic averages. Our explanation is that

14

such constraints might approximate better the direction of global eigenvectors corresponding
to the extreme eigenvalues. Table 2 then contains results obtained using the adaptive
selection of constraints. Each row corresponds to a different value of the threshold τ . All
eigenvectors corresponding to eigenvalues greater or equal to τ were used to generate adaptive
constraints. Comparing the results in Tables 1–2, we see that the adaptive method leads to
a redistribution of the number of constraints on different faces and that, e.g., with τ = 20
the total number of constraints is still lower compared to the total number of constraints
obtained by using arithmetic averages, but the number of iterations is improved by almost
25% and the condition number estimate κ is improved by more than 50%.

The second problem is a beam with a mesh refinement around a notch, discretized using
245 687 tetrahedral finite elements with 143 451 degrees of freedom, and decomposed into
8 substructures with 31 corners, 18 edges and 19 faces, see Fig. 5. The results with non-
adaptive constraints are summarized in Table 3, and results of the adaptive method in
Table 4. Comparing these two tables, we see that, similarly as in the nozzle box problem,
doubling the number of constraints reduces number of iterations to a half. Nevertheless, for
both problems, the adaptive algorithms leads to a relatively small improvement in terms of
number of iterations and condition number estimate. This indicates that for these problems
the simple arithmetic averages already work well enough as there are no interfaces that would
require extra work - the quality of the decomposition is uniform, as seen in Figures 4–5.

The power of the adaptive algorithm seems to dominate on finite element discretization
with bad aspect ratios. An example of such problem is a bridge construction discretized by
39 060 hexahedral finite elements with 157 356 degrees of freedom, and distributed into 16
substructures with 250 corners, 30 edges and 43 faces, see Fig. 6. The results are summarized
in Tables 5–6. Comparing the last two rows in Table 5, we see that relatively poor
convergence with arithmetic averages improves quite significantly when arithmetic averages
over faces are replaced by the same number of adaptive averages. Moreover, from Table 6
we see that, e.g., doubling the number of constraints with τ = 5 decreases the number of
iterations more than six times, and with τ = 2 the number of iterations is reduced more
than ten times while the number of constraints increases approximately four times.

In order to test the performance of the algorithm in the presence of jumps in material
coefficients we have created a problem of a cube with material parameters E = 106 Pa and
ν = 0.45, penetrated by four bars with parameters E = 2.1 · 1011 Pa and ν = 0.3, consisting
of 107 811 degrees of freedom, and distributed into 8 substructures with 30 corners, 16
edges and 15 faces, see Fig. 7 (note that the bars cut the substructures only through faces).
Similar problems are solved in practice to determine numerically (anisotropic) properties of
composite materials. Comparing the results in Tables 7 and 8 we see that with τ = 10 000
only 10 additional averages over faces are used to decrease the number of iterations 2.6 times,
and with τ = 2 the number of iterations decreased 10 times compared to the non-adaptive
algorithm with arithmetic averages over all globs (c+e+f) whereas the number of constraints
increased less than three times.

To test the parallel behaviour of the MUMPS solver at our applications, we run the solver
only with corner coarse degrees of freedom on a benchmark problem of cubic subdomains, the

15

number of which was growing in two dimensions (see Figure 8). As the size of the subdomains
is fixed, the problem fixed at one side with load at the opposite side is changing its nature
and so some growth in number of iterations is expected. The sequence of problems is run
on increasing number of processors that matches the number of subdomains. Presented
computations were performed on 1.5 GHz Intel Itanium 2 processors of SGI Altix 4700
computer in CTU Supercomputing Centre, Prague.

We can see in Table 9, that after a jump in times between 16 and 25 subdomains related
probably to the computer’s architecture, the times of analysis, factorization, as well as per one
iteration remain almost constant. The ‘total wall time’ includes also the second factorization
of MUMPS for computing the discrete harmonic extensions and all I/O operations.

In the presented algorithm, a considerable amount of work is spent in generating the
adaptive constraints. This part, where a number of local eigenproblems is solved, may
eventually dominate the whole computation. Each of these eigenproblems is common to
two subdomains so the natural parallelism is different than the ‘natural’ one for domain
decomposition methods, i.e. one processor per z subdomains, where z is an integer. For this
reason, an independent distribution of eigenproblems among processors is performed and
each processor which solves an eigenproblem is linked with the two processors which store
the data of subdomains within the pair.

An investigation of scaling of this part on variable number of processors was performed
on the problem of turbine nozzle box with 16 subdomains. A summary is shown in Figure 9
for the sequence of 2k, k = 0, 1, 2, . . . , 5 processors.

8 Conclusion

The adaptive BDDC method has been presented. The paper contains several original
contributions. First, the definition of space where BDDC runs is given as the nullspace
of global matrix of constraints. For an efficient and straightforward implementation of this
formulation, a generalization of change of variables is proposed. This allows efficient handling
of multiple arbitrary constraints on a substructure face. This functionality is required for
the implementation of constraints that are generated adaptively. The adaptive selection
of constraints from [27] has been reformulated in a mathematically equivalent way to use
only the operators of BDDC and to match the overall approach of the rest of the paper
to minimize programming requirements. The adaptive method is based on simultaneous
solution of generalized eigenvalue problems defined for each face in the decomposition. The
eigenvalues serve as a condition number indicator, so the minimal number of constraints is
added to guarantee that the condition number indicator is below a given threshold. The
corresponding eigenvectors are used to derive the coefficients of the constraints. Numerical
experiments confirm that the eigenvalues provide a good prediction of the final condition
number of the preconditioned operator.

A parallel implementation of the method has been developed and presented. It is based
on a global formulation of the matrix of the BDDC preconditioner, and it is built on top of
solver MUMPS, which provides most of the parallelism and minimizes custom coding. The

16

implementation has been tested on a number of problems of 3D elasticity. Results for several
real world problems are included.

In our experiments, adaptive BDDC has shown to be quite powerful. Many times, it
has been able to save the situation in the case of poorly selected corners, even in the
case of disconnected subdomains, a situation often faced in real applications of domain
decomposition when using graph partitioners. Adaptive BDDC is able to handle very ill-
conditioned problems (e.g. problems with jumps in coefficients, complicated geometries with
deformed elements, etc.), which are almost impossible to solve by standard BDDC method
using only arithmetic averages on edges and faces. Such problems would either require
a prohibitive number of PCG iterations or may not converge at all. This class of problems is
the target application of the proposed method, as the extra costs of generating the constraints
adaptively is not negligible, and would not pay for well-conditioned problems.

The solution of local eigenproblems by LOBPCG to generate the adaptive constraints
requires many iterations and accounts for most of the time for some problems.
Preconditioning of the eigenproblems to reduce the number of iterations will be studied
elsewhere.

Acknowledgement

We would like to thank to Jaroslav Kruis, Jaroslav Novotný and Jan Leština for providing
us with real engineering problems. We are also grateful to Marian Brezina for visualization
of some meshes by his own graphic tool. Part of this work was done when Jakub Š́ıstek was
visiting University of Colorado Denver.

This work was supported in part by National Science Foundation under grants
DMS-0713876 and CNS-0719641, by Czech Science Foundation under grant GA ČR
106/08/0403, and by Academy of Sciences of the Czech Republic under grant AV0Z10190503.

References

[1] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, Multifrontal parallel distributed
symmetric and unsymmetric solvers, Comput. Methods Appl. Mech. Engrg. 184
(2000) 501–520.

[2] S. C. Brenner, L.-Y. Sung, BDDC and FETI-DP without matrices or vectors,
Comput. Methods Appl. Mech. Engrg. 196 (8) (2007) 1429–1435.

[3] M. Brezina, C. Heberton, J. Mandel, P. Vaněk, An iterative method with convergence
rate chosen a priori, UCD/CCM Report 140, University of Colorado at Denver,
Denver, CO, http://ccm.ucdenver.edu/reports/rep140.pdf (1999).

[4] J.-M. Cros, A preconditioner for the Schur complement domain decomposition
method, in: I. Herrera, D. E. Keyes, O. B. Widlund (eds.), Domain Decomposition

17

Methods in Science and Engineering, National Autonomous University of Mexico
(UNAM), México, 2003, pp. 373–380, 14th International Conference on Domain
Decomposition Methods, Cocoyoc, Mexico, January 6–12, 2002.

[5] J. W. Demmel, Applied numerical linear algebra, Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 1997.

[6] C. R. Dohrmann, A preconditioner for substructuring based on constrained energy
minimization, SIAM J. Sci. Comput. 25 (1) (2003) 246–258.

[7] C. Farhat, M. Lesoinne, K. Pierson, A scalable dual-primal domain decomposition
method, Numer. Linear Algebra Appl. 7 (2000) 687–714, Preconditioning techniques
for large sparse matrix problems in industrial applications (Minneapolis, MN, 1999).

[8] C. Farhat, J. Mandel, The two-level FETI method for static and dynamic plate
problems. I. An optimal iterative solver for biharmonic systems, Comput. Methods
Appl. Mech. Engrg. 155 (1-2) (1998) 129–151.

[9] J. Fish, V. Belsky, Generalized aggregation multilevel solver, Internat. J. Numer.
Methods Engrg. 40 (23) (1997) 4341–4361.

[10] Y. Fragakis, M. Papadrakakis, The mosaic of high performance domain decomposition
methods for structural mechanics: Formulation, interrelation and numerical efficiency
of primal and dual methods, Comput. Methods Appl. Mech. Engrg. 192 (2003)
3799–3830.

[11] A. Klawonn, O. Rheinbach, A parallel implementation of dual-primal FETI methods
for three dimensional linear elasticity using a transformation of basis, SIAM J. Sci.
Comput. 28 (5) (2006) 1886–1906.

[12] A. Klawonn, O. Rheinbach, O. B. Widlund, An analysis of a FETI-DP algorithm on
irregular subdomains in the plane, SIAM J. Numer. Anal. 46 (5) (2008) 2484–2504.

[13] A. Klawonn, O. B. Widlund, Dual-primal FETI methods for linear elasticity, Comm.
Pure Appl. Math. 59 (11) (2006) 1523–1572.

[14] A. Klawonn, O. B. Widlund, M. Dryja, Dual-primal FETI methods for
three-dimensional elliptic problems with heterogeneous coefficients, SIAM J. Numer.
Anal. 40 (1) (2002) 159–179.

[15] A. V. Knyazev, Toward the optimal preconditioned eigensolver: locally optimal block
preconditioned conjugate gradient method, SIAM J. Sci. Comput. 23 (2) (2001)
517–541, copper Mountain Conference (2000).

[16] J. Kruis, Domain decomposition methods for distributed computing, Saxe-Coburg
Publications, Kippen, Stirling, Scotland, 2006.

18

[17] J. Langou, Private communication (2008).

[18] P. Le Tallec, J. Mandel, M. Vidrascu, Balancing domain decomposition for plates,
Contemp. Math. 180 (1994) 515–524, proceedings of the 7th International Symposium
on Domain Decomposition Methods, Penn State, November 1993.

[19] P. Le Tallec, J. Mandel, M. Vidrascu, A Neumann-Neumann domain decomposition
algorithm for solving plate and shell problems, SIAM J. Numer. Anal. 35 (1998)
836–867.

[20] J. Li, O. B. Widlund, FETI-DP, BDDC, and block Cholesky methods, Internat. J.
Numer. Methods Engrg. 66 (2) (2006) 250–271.

[21] J. Mandel, Intelligent block iterative methods, in: J. Robinson (ed.), FEM Today and
the Future, Robinson and Associates, Okehampton, Devon EX20 4NT, England, 1993,
pp. 471–477, proceedings of the 7th World Congress on Finite Elements, Monte Carlo,
November 1993.

[22] J. Mandel, An iterative solver for p-version finite elements in three dimensions,
Comput. Methods Appl. Mech. Engrg. 116 (1-4) (1994) 175–183, iCOSAHOM’92
(Montpellier, 1992).

[23] J. Mandel, M. Brezina, Balancing domain decomposition for problems with large
jumps in coefficients, Math. Comp. 65 (216) (1996) 1387–1401.

[24] J. Mandel, C. R. Dohrmann, Convergence of a balancing domain decomposition by
constraints and energy minimization, Numer. Linear Algebra Appl. 10 (7) (2003)
639–659.

[25] J. Mandel, C. R. Dohrmann, R. Tezaur, An algebraic theory for primal and dual
substructuring methods by constraints, Appl. Numer. Math. 54 (2) (2005) 167–193.

[26] J. Mandel, B. Soused́ık, Adaptive coarse space selection in the BDDC and the
FETI-DP iterative substructuring methods: Optimal face degrees of freedom, in:
O. B. Widlund, D. E. Keyes (eds.), Domain Decomposition Methods in Science and
Engineering XVI, Lecture Notes in Computational Science and Engineering, vol. 55,
Springer-Verlag, 2006, pp. 421–428.

[27] J. Mandel, B. Soused́ık, Adaptive selection of face coarse degrees of freedom in the
BDDC and the FETI-DP iterative substructuring methods, Comput. Methods Appl.
Mech. Engrg. 196 (8) (2007) 1389–1399.

[28] J. Mandel, B. Soused́ık, BDDC and FETI-DP under minimalist assumptions,
Computing 81 (2007) 269–280.

[29] J. Mandel, B. Soused́ık, C. R. Dohrmann, Multispace and multilevel BDDC,
Computing 83 (2-3) (2008) 55–85.

19

[30] J. Mandel, R. Tezaur, On the convergence of a dual-primal substructuring method,
Numer. Math. 88 (2001) 543–558.

[31] J. Mandel, R. Tezaur, C. Farhat, A scalable substructuring method by Lagrange
multipliers for plate bending problems, SIAM J. Numer. Anal. 36 (5) (1999)
1370–1391.

[32] C. Pechstein, R. Scheichl, Analysis of FETI methods for multiscale PDEs, Numer.
Math. 111 (2) (2008) 293–333.

[33] C. Pechstein, R. Scheichl, Analysis of FETI methods for multiscale PDEs - Part II:
Interface variations, Numerische Mathematik, submitted (2009).

[34] G. Poole, Y.-C. Liu, J. Mandel, Advancing analysis capabilities in ANSYS through
solver technology, Electronic Transactions on Numerical Analysis 15 (2003) 106–121,
tenth Copper Mountain Conference on Multigrid Methods, April 2001.

[35] J. Š́ıstek, J. Novotný, J. Mandel, M. Čert́ıková, Burda, P., BDDC by a frontal solver
and stress computation in a hip joint replacement, Mathematics and Computers in
Simulation, in print, available online January 21, 2009, DOI
10.1016/j.matcom.2009.01.002 (2009).

[36] B. F. Smith, P. E. Bjørstad, W. D. Gropp, Domain decomposition : parallel multilevel
methods for elliptic partial differential equations, Cambridge University Press,
Cambridge, 1996.

[37] B. Soused́ık, Comparison of some domain decomposition methods, Ph.D. thesis, Czech
Technical University in Prague, Faculty of Civil Engineering, Department of
Mathematics (2008).

[38] B. Soused́ık, J. Mandel, On the equivalence of primal and dual substructuring
preconditioners, Electron. Trans. Numer. Anal. 31 (2008) 384–402, published online
September 30, 2009.
URL http://etna.mcs.kent.edu/vol.31.2008/pp384-402.dir/pp384-402.html

[39] A. Toselli, O. Widlund, Domain decomposition methods—algorithms and theory,
vol. 34 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin,
2005.

[40] O. Widlund, Accomodating irregular subdomains in domain decomposition theory, in:
Eighteenth International Conference on Domain Decomposition, Springer-Verlag,
2008, to appear.

20

Figure 1: Example of an actual mesh (top) and the corresponding fictitious mesh for
construction of space W c (bottom), the dots mark corners.

Ωi Ωj
ui

ui

ui

ui uj

uj

uj

uj

Figure 2: Illustration of two adjacent subdomains in 2D for the computation of the condition
number indicator.

21

(a) nnz = 136, 937 (b) nnz = 141, 773

(c) nnz = 5, 301 (d) nnz = 3, 141

(e) nnz = 228, 954 (f) nnz = 156, 982

Figure 3: Sparsity patters for 3D elasticity problem for a cube decomposed into 2 × 2 × 2
substructures (H/h = 4) with 7 corners, 6 edges, 12 faces, and 2, 187 degrees of freedom. The
matrix Dc (resp. D

c
) contains 54 rows to enforce the equality of arithmetic averages over

edges. The matrices (a), (c), (e) are in the original degrees of freedom, while (b), (d), (f) are
after the change of variables (37): the operators Ac in panel (a) and RcTTTATRc in panel
(b), projections Π in panel (c) and Π in panel (d), and projected operators ΠAcΠ + t(I −Π)
in panel (e) and ΠRcTTTATRcΠ + t(I − Π) in panel (f). All are square matrices with size
2, 925. 22

Figure 4: Finite element discretization and substructuring of the nozzle box, consisting of
40 254 degrees of freedom, 16 substructures, 37 corners, 19 edges and 32 faces.

constraints Nc κ it
c 0 NA NA

c+e 117 1 021.7 103
c+e+f 213 40.3 47

c+e+f (3eigv) 213 26.5 40

Table 1: Results for the turbine nozzle box problem. The first three rows correspond to non-
adaptive approach with corner constraints and arithmetic averages over edges/faces, and the
last row corresponds to corner constraints with arithmetic averages over edges and three
weighted averages over faces obtained from eigenvectors of the local generalized eigenvalue
problems, Nc is number of constraints (rows in the matrix D), κ is approximate condition
number estimate from the Lanczos sequence in conjugate gradients, and it is number of
iterations for relative residual tolerance 10−8.

23

τ ω̃ Nc κ it
∞(=c+e) NA 117 1 021.7 103

50 49.8 158 44.9 48
20 19.8 200 16.9 36
10 > 10 274 11.2 27
5 > 5 408 8.8 20

Table 2: Results for the turbine nozzle box problem using the adaptive approach. τ is the
threshold, and ω̃ is the condition number indicator from (26). The other headings are same
as in Table 1.

Figure 5: Finite element discretization and substructuring of the beam with a notch,
consisting of 143 451 degrees of freedom, 8 substructures, 31 corners, 18 edges and 19 faces.

constraint Nc κ it
c 0 127.1 79

c+e 111 101.0 61
c+e+f 168 22.4 32

c+e+f (3eigv) 168 13.2 30

Table 3: Results for the beam with a notch. The headings are same as in Table 1.

24

τ ω̃ Nc κ it
∞(=c+e) 149.0 111 101.0 61

20 18.3 119 19.0 41
10 > 10 134 8.5 31
5 > 5 163 4.7 24
3 > 3 215 2.9 18
2 > 2 340 2.1 14

Table 4: Results for the beam with a notch. The headings are same as in Table 2.

Figure 6: Finite element discretization and substructuring of the bridge construction,
consisting of 157 356 degrees of freedom, 16 substructures, 250 corners, 30 edges and 43
faces.

constraint Nc κ it
c 0 2 301.4 224

c+e 180 2 252.4 220
c+e+f 309 653.6 160

c+e+f (3eigv) 309 177.8 103

Table 5: Results for the bridge construction. The headings are same as in Table 1.

25

τ ω̃ Nc κ it
∞(=c+e) 6 500.5 180 2 252.4 220

650 589.3 185 483.5 169
30 29.6 292 28.7 64
5 > 5 655 5.0 26
2 > 2 1301 2.0 14

Table 6: Results for the bridge construction. The headings are same as in Table 2.

Figure 7: Finite element discretization and substructuring of the cube with jumps in
coefficients, consisting of 107 811 degrees of freedom, 8 substructures, 30 corners, 16 edges
and 15 faces.

constraint Nc κ it
c 0 408 101.0 326

c+e 108 125 390.0 234
c+e+f 153 18 914.9 169

c+e+f (3eigv) 153 1 266.4 71

Table 7: Results for the cube with jumps in coefficients. The headings are same as in Table 1.

τ ω̃ Nc κ it
∞(=c+e) 270 000.0 108 125 390.0 234

10 000 5 145.3 118 1 843.4 90
1 000 380.0 129 173.6 35

100 77.2 132 6.4 24
5 > 5 173 4.4 20
2 > 2 451 2.8 16

Table 8: Results for the cube with jumps in coefficients. The headings are same as in Table 2.

26

Figure 8: Example of a configuration of planar cubes test problem with 36 subdomains and
H/h = 8, red dots represent corners.

number of subdomains 4 9 16 25 36 49 64
degrees of freedom 7 803 16 875 29 403 45 387 64 827 87 723 114 075

condition number est. 28.3 38.0 42.2 44.4 45.7 46.5 47.1
number of PCG iterations 13 26 36 42 44 46 47
analysis by MUMPS (sec) 0.2 0.5 1 15 14 16 19

factorization by MUMPS (sec) 0.5 0.4 0.8 12 10 12 14
PCG iterations (sec) 0.8 3.6 13 613 524 579 643

one PCG iteration (sec) 0.06 0.14 0.4 15 12 13 14
total wall time (sec) 3 6 19 715 616 696 794

Table 9: Weak scaling on planar cubes problem (e.g. Fig. 8), corners only , H/h = 8.

27

 10

 100

 1000

 10000

 1 10 100

tim
e

[s
ec

]

number of processors [/]

Strong scaling of eigenproblem computations
SGI Altix 4700

eigenproblem solution
optimal scaling

Figure 9: Dependence of computational time on number of processors for solution of local
eigenproblems, nozzle box problem, 16 subdomains, 30 eigenproblems.

28

