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Abstract. We survey some results on ordinary differential equations in Ba-

nach spaces and pose several related open problems. This survey has been
prepared for a special volume celebrating the profound mathematical work of

Professor Manuel Valdivia. We wish Professor Valdivia many years of wonder-

ful mathematics in the future.

1. Introduction

The purpose of the present note is to draw attention of Banach space theorists to
the topic of ordinary differential equations, particularly in the Banach space setting.
Our approach is to consider a few fundamental theorems of the finite-dimensional
theory and survey their analogues in the infinite-dimensional setting. By doing so
we will present some well-known as well as some new theorems and open problems.
The main difference between the finite and the infinite-dimensional situation lies in
the absence of compactness in the latter case. So in order to obtain positive results
strong additional assumptions are usually needed. On the other hand, the lack of
compactness is utilized in constructions of counterexamples. However, and this is
perhaps the most interesting part, the infinite dimensional theory in its arguments
often rely on nontrivial structural properties and results from Banach space theory.
For example reflexivity and James’ theorem, Markushevich and Schauder basis,
smooth renormings or properties of operators. Theorems on infinite dimensional
spaces usually call for restrictive assumptions on the Banach space involved. So
it is not completely clear, at the moment, if the infinite dimensional theory is
”trivial”, in the sense that it depends only on the infinite dimensionality, or if it
distinguishes among particular classes of Banach spaces. This seems to be the
main broad question of the subject in the infinite dimensional case, and the main
motivation for our survey.
Let us start by formulating the classical initial value problem for ordinary differen-
tial equations. Let X be a real Banach space and f : R×X → X be a continuous
mapping. We have the corresponding ordinary differential equation

x′ = f(t, x) (1)
together with the initial condition

x(t0) = x0 (2)
Given an open interval J ⊂ R, we say that x : J → X is a solution to (1) if x is a
differentiable function and x′(t) = f(t, x). If t0 ∈ J and (2) holds, we say that the
solution satisfies the initial condition. If J = R, we say that the solution is global.
If there exists no interval L % J admitting a solution y : L → X such that x = y
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on J , then we say that J is a maximal interval of existence and x is a maximal
solution.
In the finite-dimensional case X = Rn, there are two main approaches to the prob-
lem (1). The classical one, systematically employed in the monograph of Hartmann
[Ha82], is based on the analytical study of approximate solutions and their con-
vergence properties usually in the form of the Arzela-Ascoli theorem. The modern
functional analytic approach is better suited for generalizations into infinite dimen-
sional Banach spaces (see e.g. [P91] [D77] and [DMNZ]). The idea is to study the
continuous (but not necessarily linear) operator T : C(I) → C(I) on the Banach
space (C(I), ‖ · ‖∞), where I is a suitable interval containing t0, defined by

T (x)(t) = x0 +

t∫
t0

f(τ, x(τ))dτ (3)

A function x on I is a solution of (1), (2) if and only if it is a fixed point of
the operator T of (3), i.e. Tx = x. This brings into play abstract fixed point
theorems like Banach contraction principle or Schauder fixed point theorem. Both
the classical (implicitly) and the modern approach rely on the presence of some
compactness properties.

Let us begin by stating the results for finite dimensional Banach spaces first, and
then pass to the discussion of the infinite dimensional case in subsequent sections.

Theorem 1. (Peano)
Let X = Rn, f : R ×X → X be a continuous mapping, t0 ∈ R, x0 ∈ X. Then the
ordinary differential equation

x′ = f(t, x) (4)
together with the initial condition

x(t0) = x0 (5)
has a solution on some open interval containing t0.

Under additional assumptions on f one gets the uniqueness and/or extendability
of x to a global solution. The classical condition due to Picard-Lindeloff is when f
is Lipschitz in variable x, ie. ‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖ holds for all x, y ∈ X,
where L is a constant. Under this assumption, all solutions to (1) are unique
and extendable to global solutions. An optimal result in this direction belongs to
Osgood. Let ω : [0,∞) → [0,∞) be an increasing function, ω(0) = 0, ω(t + s) ≤
ω(t) + ω(s) whenever s, t ∈ [0,∞).

Theorem 2. (Osgood; Szufla, Shkarin )
Let X be a Banach space. Suppose that

∫ 1

0
dt

ω(t) = ∞, and ‖f(t, x) − f(t, y)‖ ≤
ω(‖x − y‖) for all t, x, y. Then (1) has a unique global solution for every initial
condition (2).

Osgood ([Ha82]) proved his theorem for X = Rn. Szufla [Sz98] and Shkarin [S03]
observed that Osgood’s theorem remains valid for any Banach space X. Shkarin
[S03] proved that the theorem is optimal in the class of spaces admitting a com-
plemented subspace with an unconditional basis, see Theorem 20. If X is finite
dimensional, then every solution can be extended into a maximal solution. If we
only assume the continuity of f , then maximal solutions are not necessarily global
solutions, i.e. their maximal interval of existence is a proper subset of R. More-
over, for a given initial condition, the solutions may not be unique. In fact there are
examples when no uniqueness holds for any initial condition (first by Lavrentieff
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see [Ha82]). On the other hand, given an initial condition x(t0) = x0 there exists
an open interval (a, b) = I 3 t0 such that every solution of (1) with x(t0) = x0 is
extendable to the whole I. It is therefore natural to study the solution sets which
share the same initial condition and the same domain.

Definition 3. Let (t0, x0) ∈ R × X, t0 ∈ I where I is an interval. Suppose that
every solution to (1) with (2) is extendable to I. The overlying solution funnel on
I is the set of all solutions on I, i.e.

F (f, (t0, x0)) = {x ∈ C(I ×X) : x(t0) = x0, x
′(t) = f(t, x) on I} (6)

Definition 4. Given t ∈ I, we say that St(f, (t0, x0)) = {x(t) : where x ∈
F (f, (t0, x0))} is a cross-section of the solution funnel at time t.

Definition 5. The solution funnel is the set

S(f, (t0, x0)) = {(t, x(t)) ∈ I ×X : x(t) ∈ St(f, (t0, x0))} (7)

The most complete information is contained in the overlying solution funnels. Solu-
tion funnels are their images, and their cross-sections are still more special objects
that were studied first by Kneser. In order to facilitate the study of solution funnels
we remove the issue of interval I by introducing the following class.

Definition 6. Fm is the set of all continuous f : R × Rm → Rm which have
supports in sets of the form R× compact.

If f ∈ Fm then every solution can be extended into a global solution. It is known
that studying solution funnels for the class Fm is essentially equivalent to studying
the local funnels on intervals [P75]. With this definition we can formulate the
main results concerning funnel properties in the finite dimension. Recall that a
topological space is called continuum if it is nonempty, compact and connected.

Theorem 7. (Kneser [Kn23])
If f ∈ Fm then every cross-section of the solution funnel of f is a continuum (in
fact, from Theorem 9 we see that it is a continuous image of an Rδ).

Peano proved the result first for F1. A more precise description of the more general
overlying solution funnels was obtained by Aronszajn [A42]. Recall that an absolute
retract is a topological space that is a continuous retract for every overspace.

Definition 8. (Aronszajn) A topological space belongs to class R if it is compact
and absolute retract. A topological spaces belongs to class Rδ if it is an intersection
of a decreasing sequence of members of R, i.e. R = ∩∞n=1Rn, where Rn ∈ R.

It is well-known that every member of Rδ is a continuum.

Theorem 9. (Aronszajn [A42])
If f ∈ Fm then each overlying solution funnel of f is Rδ.

Hukuhara [Hu28] proved earlier that this set is a continuum. Aronszajn’s paper uses
modern functional analytic approach. It consists of a study of regular approxima-
tions of the operator T from (3) that suits well infinite dimensional generalizations.
Pugh [P75] and Horst [H86] gave examples showing that the overlying funnel need
not be arcwise connected in Theorem 9.

A detailed study of finer properties of cross-sections of solution funnels was carried
out by Pugh [P75], and Rogers [R77]. Pugh constructed continua in Rn, n ≥ 2
that are not cross-sections of the solution funnels (a spiral tending to a circle), and
cross-sections that are not arcwise connected. Every C1-smooth polyhedron is a
cross-section of the solution funnel. Pugh introduced the funnel cobordism between
compact sets A,B ⊂ Rm so that A and B are funnel cobordant if there exists an



SOME PROBLEMS ON ORDINARY DIFFERENTIAL EQUATIONS IN BANACH SPACES 4

f ∈ Fm such that ∪x∈AF (f, (0, x)) = ∪y∈BF (f, (1, y)). Of course, A is funnel
cobordant to a point {0} iff there exists f ∈ Fm such that A is a funnel section
at t = 1 for the initial condition (t0, x0) = (0, 0), and x(1) /∈ A for all solutions
with x(0) 6= 0. For this special class of cross-sections of the solution funnels, Pugh
obtained a complete topological characterization.

Theorem 10. (Pugh)
If A is funnel cobordant to a point {0}, then there is a C∞-diffeomorphism from
Rm \ A onto Rm \ {x0}, which is constant outside of some large ball. If A is
compact and there is a C∞-diffeomorphism (if n 6= 4 it suffices a homeomorphism)
from Rm \ A onto Rm \ {x0} then A is funnel cobordant to a point {0}, and thus
a cross-section of some solution funnel. In particular, A is funnel cobordant to a
point iff Rm \A is diffeomorphic to Sm−1 × R.

In spite of the wealth of information contained in [P75], a characterization of cross-
sections of solution funnels in finite-dimensional spaces remains open. The following
problems come from [P75].

Open problem 11. Pugh conjectured [P75] that Theorem 7 is a characterization,
i.e. a continuous image of an Rδ set is a cross-section of the solution funnel for
some equation from Fm. It seems to be unknown even for R sets.

Open problem 12. If A ⊂ Rk is not a cross-section, is it true that it is not a
cross-section in Rm ←↩ Rk?

Open problem 13. Is being the cross-section of the solution funnel property pre-
served for homeomorphic images that can be extended to diffeomorphisms on some
neighbourhoods?

An important aspect of the global behavior of the solution is described by the
following notion of ω-limit set.

Definition 14. Let x : [0,∞) → X be a solution of an autonomous differential
equation x′ = f(x). We say that A ⊂ X is a ω-limit set of the solution, if for every
p ∈ A, ε > 0, n ∈ N there is tn > n such that ‖x(tn)− p‖ < ε.

The structure of ω-limit sets has been studied extensively ever since the times of
Poincaré, and forms an extensive field of research in its own right in the setting of
dynamical systems and ergodic theory. In [Ha82] the reader can find the following
result.

Theorem 15. Let X = Rm and x : [0,∞) → X be a bounded solution of an
autonomous differential equation x′ = f(x) in X. Then an ω-limit set of a x is
non-empty, compact and connected.

A complete description is available in R2.

Theorem 16. (Poincaré-Bendixon)
Let A be a ω-limit set of a bounded global solution x in X = R2. Assume that A
contains no critical points of f . Then A is a Jordan curve, which is a periodic
solution of the equation.

The study of ω-limit sets in higher dimensions is an extensive field of study, and it is
impossible for us to give an adequate description here. We restrict ourselves to just
one important fact. The following result appears to be well-known to specialists
in ergodic theory. It follows from the results in [Ka79] and [BMK81] applying the
torus technique that we outline at the end of our note in the infinite dimensional
setting.
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Theorem 17. Let X = Rm,m > 2. Then there exist ω-limit sets with nonempty
interior.

Let us now pass to the description of infinite-dimensional results.

2. Peano theorem

Using an infinite dimensional Banach space X = c0, Dieudonné [D50] constructed
the first counterexample to Theorem 1. Many counterexamples in various infinite
dimensional Banach spaces followed, e.g. [LL72], [B61], [Y70], [G72], and impor-
tantly [C72] for every nonreflexive Banach space by Cellina. Finally, Godunov in
[G75] proved that Theorem 1 is false in every infinite dimensional Banach space.

Theorem 18. (Godunov)
Let X be an infinite dimensional Banach space. Then there exists a continuous
function f : R×X → X and an initial condition x(t0) = x0, such that the equation
(1) has no solution satisfying (2).

In trying to negate Peano’s theorem in infinite-dimensional spaces it is natural to
consider the following problem.

Open problem 19. Let X be an infinite dimensional Banach space. Is there a
continuous function f : R × X → X such that (1) has no solution on any open
interval?

In [G74], Godunov constructed such f in the Hilbert space. Shkarin [S03] proved
the following remarkable result.

Theorem 20. (Shkarin)
Let X be an infinite dimensional Banach space admitting a complemented subspace
with an unconditional basis. Let ω be a function as in Osgood’s theorem, satisfying

1∫
0

dt

ω(t)
<∞. (8)

Then there exists a function f satisfying ‖f(t, x) − f(t, y)‖ ≤ ω(‖x − y‖) for all
t, x, y, and such that (1) has no solution for any initial condition (2).

As a particular case, we get that for any α < 1 there exists a α-Holder function
f which satisfies the previous theorem. The class of spaces satisfying Shkarin’s
assumptions contains most of the classical Banach spaces such as Lp, 1 ≤ p < ∞,
C[0, 1]. However, due to Gowers and Maurey [GM93] and Ferenczi’s [F97] results, is
does not even cover all separable reflexive spaces. It also fails to cover `∞, because
all its complemented subspaces are again isomorphic to `∞, by a result of Rosenthal
([LT77]).

Open problem 21. Let X be an infinite dimensional Banach space. Let ω be a
function as above, satisfying

1∫
0

dt

ω(t)
<∞. (9)

Does there exists a function f satisfying ‖f(t, x) − f(t, y)‖ ≤ ω(‖x − y‖) for all
t, x, y, and such that (1) has no solution for any initial condition (2)?

The result covering the widest class of Banach spaces is the following one from
[HJ]. It applies in particular to all separable and all reflexive (or WCG) Banach
spaces, as well as all C(K) spaces. In fact, it is still an open question whether every
Banach space has a separable quotient.
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Theorem 22. ([HJ]) Let X be a Banach space with an infinite-dimensional sep-
arable quotient. Then there is a continuous mapping f : X → X such that the
autonomous equation x′ = f(x) has no solutions.

It seems that most of the positive results proceed along the lines of Kneser’s and
Aronszajn’s theorems and methods. We refer to [DMNZ] for a thorough treatment
of this subject, and give just two results. Let M be a subset of a Banach space
X. Recall the definition of measure of noncompactness α(M) = inf{ε : M ⊂
∪n

i=1B(xi, ε)}.

Theorem 23. Let f : [0, 1]×BX → X be continuous and bounded in norm by M.
Suppose that

α(f(I ×A)) ≤ L(α(A)) for all A ⊂ BX (10)

where L > 0. The the overlying solution funnel for x(0) = 0 on J × BX , J =
[0,min{a, 1

M }) is a continuum.

We say that an operator T : X → X satisfies the Palais-Smale condition if for
each sequence {xn}∞n=1 in X such that xn − T (xn) = 0 there exists a convergent
subsequence.

Theorem 24. Let I be an interval such that the integral operator (3), T (x)(t) =
x0 +

∫ t

t0
f(s, x(s))ds satisfies the Palais-Smale conditions. Then the overlying solu-

tion funnel on I is a compact Rδ set.

Approaching the problem from another angle, Lasota and Yorke [LY73] (see also
Vidossich [V74]) proved that for every Banach space X, and every initial condition
x(t0) = x0, the set of all continuous mappings f : R×X → X, such that x′ = f(t, x),
x(t0) = x0 has a solution is a generic set. In other words, functions not admitting
a solution to an initial problem are rare. Let us describe the result in more detail.

Definition 25. We say that x is an unlimited solution if it is maximally defined
and moreover (t, x(t)) has no limit points at the time boundary.

Theorem 26. (Lasota-Yorke)
Let B be a σ-compact set in X. Then the set of continuous functions f : R×X → X
for which there fails to exists an unlimited solution for any initial condition from
B is meager in the uniform topology.

Open problem 27. Decide whether the assumptions in Kneser and Aronszajn-
type theorems hold true only for topologically small (in the uniform topology) sets
of functions f . Describe some conditions which guarantee the solutions of (1)
outside these cases.

Open problem 28. Given f find a description of the set of initial conditions that
admit a solution.

3. Peano funnel and its cross sections

Studying the solution funnels in infinite-dimensional spaces involves the question
of the existence of solutions in the first place. Some examples do not pay attention
to the global behavior of the equation, but it is natural to consider functions that
behave well with respect to existence.

Definition 29. Denote by F the class of continuous functions f such that (1) has
a solution for every initial condition, that extends to a global solution.

An simple early result on cross-sections is the following.
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Theorem 30. (Binding [B77])
Let X be an infinite dimensional Banach space. Then there is a function f ∈ F
such that BX is a cross-section of the solution funnel.

Using ideas of Godunov, Binding constructs non-connected funnel cross-sections
(but f /∈ F). Further progress in the study of funnels comes from the connection
with negligibility theory [BP75]. Let us formulate some important results on this
subject in the infinite dimensional setting.

Theorem 31. (Klee, Bessaga)
Let X be an infinite dimensional Banach space, A compact set. Then there exists
a homeomorphism h : X onto X \A, such that h(x) = x whenever ‖x‖ > K.

Theorem 32. (Dobrowolski)
Let X be an infinite dimensional Banach space admitting a nonequivalent Ck-
smooth norm, K ⊂ X be compact. Then there exists a Ck-diffeomorphism h :
X \K → X.

Mappings h with properties above are known, for obvious reasons, as deleting home-
omorphisms (diffeomorphisms). The relevance of negligibility theory was clear al-
ready in the work of Pugh in the finite dimensional case. Garay in [Ga91b] applied
the infinite dimensional results to disprove the Peano theorem in every infinite di-
mensional Banach space. The proof splits into the nonreflexive case, motivated by
Cellina’s approach [C72], and the reflexive case which uses negligibility of sets in
Banach spaces.
Similarly, Garay obtains the following result.

Theorem 33. (Garay [Ga90])
Let X be an infinite dimensional Banach space , A ⊂ X be a two-point subset. Then
there is a function f ∈ F(X) such that A is the cross-section of the solution funnel
from (0, 0) and (0, 0) is the only initial condition of non-uniqueness (condition (*)).

The proof of this result again splits into the reflexive and the nonreflexive part.
The reflexive case depends on C1-smooth renormings of reflexive spaces.

Theorem 34. (Garay [Ga90])
Let X be a Banach space, A ⊂ X be nonempty bounded and closed. Assume that
there exists a C1-smooth diffeomorphism h : X \A onto X \ {0}, such that h(x) =
Id(x) for ‖x‖ > K. Then there is a function f ∈ F(X) such that A is a cross-
section of the solution funnel. Moreover, if A has at least two points, then f can
be chosen such that (0, 0) is the only initial condition of nonuniquness.

Using some known results, Garay obtained a number of instances covered by The-
orem 34. In particular, it holds for every separable Asplund space with a Schauder
basis, and A a compact set. The strongest result in this direction seems to be due
to Azagra and Dobrowolski, who investigated smooth negligibility.

Theorem 35. (Azagra-Dobrowolski [AD98])
Let X be a infinite dimensional Banach space admitting a Ck smooth (not neces-
sarily equivalent) norm ‖| · ‖|, A compact. Then there exists a Ck-diffeomorphism
h : X onto X \A, such that h(x) = x for ‖|x‖| > K.

Note that the class of spaces admitting a C∞-smooth norm includes all spaces
with an injection into c0(Γ), in particular all spaces having a Markushevich basis
[HMVZ].

Open problem 36. Let X be an Asplund space. Does X admit a (nonequivalent)
C1-smooth norm?
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Combining this result with the work of Garay [Ga90] they obtain the following
theorem. Note that in the next result the C1-smooth norm must be equivalent to
the original norm.

Theorem 37. (Azagra-Dobrowolski)
Let X be an infinite dimensional Banach space with a C1-smooth equivalent norm.
Let A be either compact or C1-smooth equivalent unit ball. Then there is a function
f ∈ F(X) such that A is a cross-section of the solution funnel.

Comparing Theorem 33 with Theorem 34, Garay in [Ga90] asked the natural ques-
tion if the deleting diffeomorphism exist in `1. We have the following negative
answer. As every Banach space with a C1-smooth bump function is an Asplund
space ([F˜]), we see that assumptions used in the method of proof of Theorem 37
are nearly optimal

Theorem 38. Let X be a Banach space admitting no C1-smooth bump function.
Then there is no C1-smooth diffeomorphism from X \ {0} onto X \ {a, 0} which is
identity outside a large enough ball.

Proof. We proceed by contradiction. Let T : X → X be a diffeomorphism from
X\{0} ontoX\{a, 0} which is identity outside kBX . Clearly, T (x)−x is zero outside
kBX and it is nonzero at a. Choose a suitable φ ∈ X∗ such that b(x) = φ(T (x)−x)
is a C1-bump defined away from the origin. Assume WLOG that b ≤ 0, and set
b(0) = infy→0b(y). Clearly, b is a non-constant, lower-semicontinuous function,
bounded below and defined on the whole X.
Given any ε > 0 and composing b with a suitable nondecreasing and smooth φ :
R → R, we may WLOG assume that b(z) = −1 for some 0 6= z ∈ kBX and
b ≥ −1 − ε. Consider a Hahn-Banach functional φ for z, φ ∈ BX∗ , φ(z) = ‖z‖,
and compose φ again with a suitable C∞-smooth function ρ : R → R, to obtain a
C∞-smooth function ψ = ρ ◦ φ, such that ψ(z) = minψ = 0, ψ(0) = 1 + ε. Then
q = b + ψ is a lower semicontinuous function, C1-smooth away from the origin,
bounded below by −1 − ε, and q ≥ 0 outside kBX . Next compose q again with a
C∞-smooth nondecreasing function η : R → R, η(t) = t for t < − 1

2 , η(t) = 0 for
t > −ε. The function η ◦ q is now easily seen to be C1-smooth, non-constant, and
with support contained in kBX . This is a contradiction. �

The following problem was posed by several authors in connection with negligibility
theory.

Open problem 39. Suppose that X has a Ck-smooth norm. Does X admit a
Ck-smooth nonequivalent norm?

Open problem 40. Is every compact set K in an infinite dimensional Banach
space X a cross-section of a solution funnel?

Open problem 41. Describe the most general conditions for some set to be a
cross-section of the solution funnel.

4. ω-limit sets

It is clear that an ω-limit set of a global solution of an autonomous differential
equation is always closed, so it is always a Polish space (i.e. separable and com-
pletely metrizable space). The first examples of failure of Theorem 15 in infinite
dimensional Hilbert space seem to be due to Horst [H86], where noncompact and
disconnected sets are obtained. A wealth of results on ω-limit sets in infinite di-
mensional spaces is in the paper of Garay [Ga91a]. However, his paper is mainly
dealing with dynamical systems, and so its importance for the case of autonomous
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differential equations lies primarily in the techniques used. In fact, the techniques
are very natural, and we have discovered our results below independently of Garay’s
work, by using the same approaches, paying closer attention to the smoothness and
Lipschitness issue, motivated by the work of Herzog [H00].

Theorem 42. (Herzog)
Let P be any Polish space, X = `2 ⊕ c0. Then there exists a locally Lipschitz
function f : X → X such that P is homeomorphic to a ω-limit set of some solution
to the autonomous equation x′ = f(x).

This theorem is a characterization, up to homeomorphism, of all possible ω-limit
sets in X. Herzog relied on a theorem of Aharoni in his proof and his ω-limit set is
contained in a hyperplane of X. Recall that Aharoni’s theorem asserts that every
Polish space (i.e. separable complete metric space) embeds into c0 by means of
a bi-Lipschitz mapping ([F˜]). By a theorem of Kadets ([F˜]) all separable infi-
nite dimensional Banach spaces are mutually homeomorphic. Consequently, every
Polish space is homeomorphic to a subset of a hyperplane (with empty interior, of
course) in every infinite dimensional Banach space. Thus our next theorem is a
substantial improvement of Theorem 42. Apart from analogous topological char-
acterization of all ω-limit sets, it also identifies the precise position (for some of
them) in the space X.

Theorem 43. (Garay, [HV]) Let X be a Banach space, S ⊂ X be a separable and
closed subset, such that there exists an open set U ⊂ X with the properties:
1. U is arcwise connected.
2. S ⊂ ∂U .
Then there exists an autonomous differential equation x′ = f(x), where f : X → X
is a Lipschitz mapping, and its solution x(t), with the property S = ω(x). (S
consists of all ω-limit points of x(t), t ∈ [0,∞). Moreover, if X admits a Ck-
smooth renorming, then f may be chosen Ck-smooth as well.

The idea of the proof is to construct a smooth curve γ : [0,∞) → X \ S, together
with a fast thinning out tubular neighbourhood not intersecting itself and the set
S, that keeps returning progressively closer to all points of S. In order to define
the field inside the tube we use the direction of the tangent to the curve and its
parallels, with decreasing norm to zero as we approach the topological boundary
and as the parameter grows to infinity. In the rest of the space we put the field to
be zero.

Theorem 44. ([HV]) Let X be a separable infinite dimensional Asplund space.
Then there exists a C1-smooth and Lipschitz autonomous equation with a solution
whose ω-limit set has nonempty interior. Moreover, if the original space has Ck-
smooth norm, then the function f can be chosen Ck-smooth as well.

In the proof we utilize hypercyclic operators on these spaces ([An97], [Sa95]) in order
to create an open torus, inside which some trajectory is dense. The geometrical idea
is to create a torus-like body which results from rotation of a ball of codimension
one around an axis. The hypercyclic operator serves to create a diffeomorphism on
the ball, that is transformed into a homotopy parametrized by the rotation angle.
The vector field than consistes of tangent vectors to the homotopical mapping.

Using the continuous dependence of a solution on the initial condition, which holds
for locally Lipschitz equations, the next result follows by standard argument.

Proposition 45. ([HV]) Let S be a ω-limit set for a locally Lipschitz autonomous
equation x′ = f(x). If intS 6= ∅, then there is a solution x(t) such that
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S = ∪t∈[0,∞)x(t) (11)

In particular, S is connected.

More generally,

Proposition 46. ([HV]) Let S be a ω-limit set for a locally Lipschitz autonomous
equation x′ = f(x). Suppose that there exists p ∈ S such that f(p) 6= 0. Then
again, there is a solution x(t) such that

S = ∪t∈[0,∞)x(t) (12)

In particular, S is connected.

This allows to find examples of sets that cannot be ω-limit sets for locally Lipschitz
autonomous equations. Take e.g. as set S the union of a unit sphere, a non-empty
set inside the interior of unit ball, and a point outside, everything connected with
a curve.

Open problem 47. Let X be a separable Banach space, U ⊂ X be an open and
arcwise connected set. Is there a Lipschitz autonomous equation whose solution has
U as its ω-limit set?

Acknowledgement. The authors wish to thank Professors C. Pugh and V. Muller
for valuable help during the preparation of this note.
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