
Covering an uncountable square by countably many
continuous functions

Wies law Kubís ∗

Institute of Mathematics

Czech Academy of Sciences, Prague

Czech Republic

kubis@math.cas.cz

Benjamin Vejnar

Department of Mathematical Analysis

Charles University, Prague

Czech Republic

January 9, 2010

Abstract

We prove that there exists a countable family of continuous real functions
whose graphs together with their inverses cover an uncountable square, i.e. a
set of the form X × X, where X ⊆ R is uncountable. This extends Sierpiński’s
theorem from 1919, saying that S × S can be covered by countably many graphs
of functions and inverses of functions if and only if |S| 6 ℵ1. Our result is also
motivated by Shelah’s study of planar Borel sets without perfect rectangles.

MSC (2000): Primary 03E05, 03E15; Secondary 54H05.
Keywords: Uncountable square, covering by continuous functions, set of cardi-
nality ℵ1.

1 Introduction

A classical result of Sierpiński from 1919 (see [11, 12] or [13, Chapter I]) says that, given
a set S of cardinality ℵ1, there exists a countable family of functions fn : S → S such
that

(1) S × S =
∪
n∈ω

(fn ∪ f−1
n ),
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where f−1
n is the inverse of fn, i.e. f−1

n = {⟨fn(x), x⟩ : x ∈ S}. A typical proof proceeds
as follows. Assume S = ω1 and for each positive β < ω1 choose a surjection gβ : ω → β.
Define fn : ω1 → ω1 by the equation fn(β) = gβ(n). For every ⟨α, β⟩ ∈ S × S with
α < β there exists n such that gβ(n) = α; thus ⟨α, β⟩ ∈ fn and ⟨β, α⟩ ∈ f−1

n . Finally,
it suffices to add the identity function to the family {fn}n∈ω in order to get (1). It is
worth noting that the sets f−1

n (α) form an Ulam matrix on ω1. See e.g. [4, Chapter 10]
or [8, Chapter II, §6] for applications of Ulam matrices.

An easy argument (also noted by Sierpiński) shows that the above statement fails
for a set S of cardinality ℵ2. In particular, the continuum hypothesis is equivalent to
the statement “there exists a countable family of functions which, together with their
inverses, cover the plane”.

Let us say that a set M is covered by a family of functions F , if for every ⟨x, y⟩ ∈ M
there is f ∈ F such that either y = f(x) or x = f(y).

Question 1. Does there exist a sequence {fn : R → R}n∈ω of continuous functions that
covers an uncountable square?

One can hope for a positive answer only when the side S of the square has some
smallness properties, besides having cardinality ℵ1. In fact, by a result of Zakrzewski
[15, Theorem 2.1], if S×S is covered by countably many functions (and their inverses)
whose graphs are Borel sets, then S is universally small, i.e. S belongs to every Borel
σ-ideal I ⊆ P(R) such that Borel (R) /I satisfies the countable chain condition.

Actually, consistent affirmative answers to Question 1 already exist in the literature.
Namely, Abraham and Geschke [1] showed that for every set X ⊆ R of cardinality ℵ1

there is a ccc forcing notion adding countably many continuous functions that cover
X × X. Consequently, under Martin’s Axiom every ℵ1-square in the plane is covered
by a countable family of continuous functions. The Open Coloring Axiom of Abraham,
Rubin and Shelah [2] implies that for every set X ⊆ 2ω of size ℵ1 there is a countable
family of 1-Lipschitz functions that covers X ×X (see [3] for more details).

Yet another motivation for addressing Question 1 comes from the work of Shelah [10],
continued in [7], where planar Borel sets without perfect squares were studied. It is not
hard to prove (see e.g. [6, Thm. 2.2]) that a Gδ subset of the plane containing countable
squares of arbitrarily large countable Cantor-Bendixson ranks, contains also a perfect
square. On the other hand, using Keisler’s completeness, it has been proved in [10] that
there exists in ZFC a planar Fσ set C such that S×S ⊆ C for some uncountable set S,
while P0 × P1 ̸⊆ C whenever P0, P1 are perfect sets. A significant part of [7] is devoted
to a ZFC construction of certain Fσ sets in the plane which do not contain perfect
squares, while consistently they contain squares of a prescribed cardinality below ℵω1 .
These sets moreover have certain universality property, among sets of the same type
(see [7] for details). Based on the results of [10] and [7], it is natural to ask for the
existence of a more special planar Fσ set which covers an uncountable square: namely,
a set consisting of countably many continuous real functions and their inverses. There
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are natural restrictions here. Namely, such a set cannot contain rectangles of the form
S0 × S1, where |Si| = ℵ1 and |S1−i| > ℵ2. Easy absoluteness arguments show that it
cannot contain perfect rectangles, therefore the best property we can expect is covering
a square of cardinality ℵ1.

In the present note we find a family of continuous functions F = {fn : 2ω → 2ω}n∈ω
such that every maximal square covered by F is uncountable. The functions fn are
not Lipschitz with respect to any natural metric on 2ω, however we describe a natural
ccc forcing notion which introduces a countable family of 1-Lipschitz functions on the
Cantor set that covers an uncountable square. Using Keisler’s completeness theorem
[5], we deduce that such a family exists in ZFC, although we do not know any direct
construction.

Finally, we observe that it is impossible to cover the square of any uncountable compact
Hausdorff space by countably many continuous functions and their inverses.

It is worth noting that there exists no uncountable set S ⊆ R whose square can be
covered by countably many non-decreasing functions and their inverses. This is because
the graphs of such functions (and of their inverses) are chains with respect to the
coordinatewise ordering and consequently the order of S would be a Countryman type
(see [9] or [14, p. 258]), not embeddable into the real line.

2 Main result

Theorem 2.1. Let X be a space containing at least two points and suppose there exists
a continuous onto mapping φ : X → Xω. Then there exists a countable family of con-
tinuous mappings of X to itself such that every maximal square covered by this family
is uncountable.

Proof. Consider a mapping f : X → Xω which is defined as a composition π0 ◦ φω ◦ φ,
where φω : Xω → (Xω)ω is a product of countable many copies of the mapping φ and
π0 : (Xω)ω → Xω is the projection to the first coordinate. We get that f is a continuous
onto mapping with the property, that preimages of points are uncountable.

Define fn : X → X to be a composition πn◦f where πn : Xω → X is the n-th projection.
It remains to show that the system {fn : n ∈ ω} together with the identity function is
the desired family. Thus suppose for a contradiction that there is a maximal countable
set S = {sn : n ∈ ω} whose square is covered by our family of functions. Take arbitrary

point x from the uncountable set f−1
(
⟨s0, s1, . . .⟩

)
\ S. Clearly the set

(
S ∪ {x}

)2
is

covered by our family of functions since fn(sn) = x for every n ∈ ω and the point ⟨x, x⟩
lies on the graph of the identity. This contradicts the maximality of S.

Notice that the Axiom of Choice was not used in the above proof but it is heavily used
in the simple proof of the following corollary.
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Corollary 2.2. There exists a family of continuous functions of the Cantor space to
itself which covers an uncountable square.

This answers Question 1 since any continuous function of the Cantor space to itself can
be extended to a continuous real function.

3 Forcing countably many Lipschitz functions

It is easy to see that the functions constructed in Theorem 2.1 are not Lipschitz with
respect to the natural metric on the Cantor set. We do not know a direct construction
of a countable family of 1-Lipschitz functions covering an uncountable square. This
section is devoted to showing that such a family can be introduced by a natural forcing
notion. Using Keisler’s completeness, we later conclude that this family exists in ZFC,
namely:

Theorem 3.1. There exists a countable family of 1-Lipschitz functions on the Cantor
set which covers an uncountable square.

We first show the consistency of the above statement with the axioms of ZFC. The
metric on 2ω which we have in mind is given by the formula d(x, y) = 2−k, where k is
the smallest natural number such that x � k ̸= y � k.

Given a natural number n, we shall denote by 2n the complete binary tree consisting of
all zero-one sequences of length n. Trees of the form 2n serve as finite approximations of
the Cantor set 2ω. We consider 2n with the lexicographic ordering and with the metric
defined above, like in the case of 2ω. Denote by L1(n) the set of all 1-Lipschitz functions
of the form g : 2n → 2n.

We are going to define a forcing notion P which will introduce a countable family of
Lipschitz functions covering an uncountable square.

A condition p ∈ P is, by definition, of the form p = ⟨np, sp, vp,Fp, γp, ϱp⟩, where

(1) np ∈ ω, sp ∈ [ω]<ω and vp ∈ [ω1]
<ω;

(2) Fp = {fp
i }i∈sp ⊆ L1(n

p) and ϱp : [vp]2 → sp;

(2’) ϱp(α, β) ̸= ϱp(α′, β) whenever α < α′ < β;

(3) γp : vp → 2np
is one-to-one;

(4) γp(α) = f p
ϱp(α,β)(γ

p(β)) whenever α < β and α, β ∈ vp.

Note that condition (2’) is actually implied by the conjunction of (3) and (4). The order
of P is defined naturally. Namely, p 6 q (q is stronger than p) iff

(5) np 6 nq, sp ⊆ sq, vp ⊆ vq;
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(6) f q
i (η) � np = f p

i (η � np) for each i ∈ sp and for every η ∈ 2nq
;

(7) γq(α) � np = γp(α) for every α ∈ sp;

(8) ϱq � [vp]2 = ϱp.

It is easy to see (the details are given below) that the forcing P introduces a countable
family {fn}n∈ω of continuous functions on the Cantor set together with a function
ϱ : [ω1]

2 → ω and a one-to-one function γ : ω1 → 2ω such that γ(α) = fϱ(α,β)(γ(β)) for
every α < β < ω1. We need to prove that P does not collapse ℵ1.

Lemma 3.2. P satisfies the countable chain condition.

Proof. Fix a family G ⊆ P with |G| = ℵ1. Replacing G by an uncountable subfamily,
we may assume that there exist n ∈ ω, s ∈ [ω]<ω and F = {fi}i∈s ⊆ L1(n) such that
np = n, sp = s and Fp = F for every p ∈ G. Further refining G, we may assume that

(9) {vp : p ∈ G} forms a ∆-system with root a ⊆ ω1.

(10) For every p, q ∈ G the structures ⟨vp, γp, ϱp, <⟩ and ⟨vq, γq, ϱq, <⟩ are isomorphic,
where < is the linear order inherited from ω1. In other words, there exists an
order preserving bijection φ : vp → vq such that γp(α) = γq(φ(α)) and ϱp(α, β) =
ϱq(φ(α), φ(β)) for every α, β ∈ vp.

For the remaining part of the proof we fix p, q ∈ G such that max(a) < min(vp \ a) and
max(vp) < min(vq \ a). Our aim is to construct r ∈ P with p 6 r and q 6 r.

Define nr = n + 1 and vr = vp ∪ vq. Note that by (10), ϱp, ϱq coincide on a = vp ∩ vq.
Extend ϱp ∪ ϱq to a function ϱr : [vr]2 → ω in such a way that ϱr restricted to the set

σ = [vr]2 \ ([vp]2 ∪ [vq]2) = {{α, β} : α ∈ vp \ a, β ∈ vq \ a}

is a bijection onto t ⊆ ω \ s. Clearly, ϱr satisfies (2’), i.e. ϱ(α, β) ̸= ϱr(α′, β) whenever
α < α′ < β. Define sr = s ∪ t. Then ϱr : [vr]2 → sr. Further, define

γr(α) =

{
γp(α)a0 if α ∈ vp,

γq(α)a1 if α ∈ vq \ a.

Observe that γr : vr → 2nr
is one-to-one. It remains to define F r = {f r

i }i∈sr .
If i ∈ t then we define f r

i to be the constant function with value γr(α), where α ∈ vp \a,
β ∈ vq \ a are such that i = ϱr(α, β). Note that α, β are uniquely determined, so there
is no ambiguity here and f r

i satisfies (4). Finally, fix i ∈ s, η ∈ 2n, ε ∈ 2 and define

f r
i (ηaε) =

{
fi(η)aε (∃ α, β ∈ vp \ a) α < β ∧ i = ϱp(α, β) ∧ η = γp(β),

fi(η)a0 otherwise.
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By this way we have finished the definition of r = ⟨nr, sr, vr,F r, γr, ϱr⟩. In order to
show that r ∈ P, we need to verify condition (4) only, since conditions (1)–(3) are
rather clear.

For fix α < β in vr and let ℓ = ϱr(α, β). If ℓ ∈ t then f r
ℓ is constantly equal to γr(α),

therefore (4) holds in this case. So assume ℓ ∈ s and let η = γr(β) � n. We consider the
following two cases.

Case 1. α ∈ vq \ a.

Notice that also β ∈ vq \ a, because α < β. By (10), there exist α′, β′ ∈ vp such that
ϱp(α′, β′) = ϱq(α, β) = ℓ and γp(β′) = γq(β) = η. Thus the first possibility in the
definition of f r

ℓ occurs and we have

f r
ℓ (γr(β)) = f r

ℓ (ηa1) = fℓ(η)a1 = γq(α)a1 = γr(α),

therefore (4) holds.

Case 2. α ∈ vp.

Now γr(α) = γp(α)a0 and either β ∈ vp or else α ∈ a and β ∈ vq (because ℓ ∈ s implies
that either {α, β} ⊆ vp or {α, β} ⊆ vq). Observe that f r

ℓ (γr(β)) � n = γr(α) � n, by
the definition of f r

ℓ and by the fact that p, q ∈ P. Thus, the only possibility for the
failure of (4) is that f r

ℓ (γr(β)) = γp(α)a1. Suppose this is the case. By the definition
of f r

ℓ , we conclude that γr(β) = ηa1 and in particular β ∈ vq \ a and α ∈ a. Moreover,
the first case in the definition of f r

ℓ occurs, so there exist α′ < β′ in vp \ a such that
ℓ = ϱp(α′, β′) and η = γp(β′). Let φ : vp → vq be the bijection appearing in condition
(10). In particular γp(β) = η = γq(φ(β′)), therefore φ(β′) = β, because γq is one-to-one.
Further,

ϱr(φ(α′), β) = ϱq(φ(α′), φ(β′)) = ϱp(α′, β′) = ℓ = ϱr(α, β).

Thus φ(α′) = α, because ϱr satisfies (2’). This leads to a contradiction, because α ∈ a,
α′ ∈ vp \ a and φ[vp \ a] = vq \ a. Thus (4) holds.

We have proved that r ∈ P. Clearly p 6 r and q 6 r.

Lemma 3.3. Let k ∈ ω and ξ ∈ ω1. The sets

D(k) = {p ∈ P : np > k and k ∈ sp}, E(ξ) = {p ∈ P : ξ ∈ vp}.

are dense in P.

Proof. Fix p ∈ P. Define nq = np + 1, sq = sp ∪ {k}, vq = vp, ϱq = ϱp, γq(η) =
γp(η)a0 and f q

i (ηaε) = fp
i (η)aε for i ∈ sp, η ∈ 2np

, ε ∈ 2. Finally, if k /∈ sp, let
f q
k be any function from L1(n

p + 1). By this way we have extended p to a condition
q = ⟨nq, sq, vq,F q, γq, ϱq⟩ ∈ P so that nq > np, k ∈ sq. Repeating this procedure finitely
many times we obtain r > p such that nr > k and k ∈ sr. This shows that D(k) is
dense in P.
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In order to show the density of E(ξ) again fix p ∈ P and assume ξ /∈ vp. Define nq = np+1
and vq = vp ∪ {ξ}. Let σ = {{ξ, α} : α ∈ vp}. Extend ϱp to a function ϱq : [vq]2 → ω so
that ϱq � σ is one-to-one onto t ⊆ ω\sp. Let sq = sp∪t. Further, define γq(α) = γp(α)a0
for α ∈ vp and let γq(ξ) be the constant one function in 2nq

. It remains to define F q.

Given i ∈ sp, define f q
i (ηaε) = f p

i (η)aε for every η ∈ 2np
, ε ∈ 2. Fix i ∈ t and let α ∈ vp

be such that i = ϱq(α, ξ). If ξ < α, define f q
i to be the constant function with value

γq(ξ). If α < ξ, define f q
i to be the constant function with value γq(α). Observe that

conditions (1) – (4) are satisfied, therefore q = ⟨nq, sq, vq,F q, γq, ϱq⟩ ∈ P. It is clear that
p 6 q and q ∈ E(ξ).

Lemma 3.4. The poset P forces a family F = {fn : n ∈ ω} of 1-Lipschitz functions on
the Cantor set 2ω and an uncountable set X ⊆ 2ω whose square is covered by F .

Proof. Let G be a P-generic filter over a fixed ground model V. Define functions
fk : 2ω → 2ω (k ∈ ω), γ : ω1 → 2ω and ϱ : [ω1]

2 → ω by the following equations:

fk(x) � np = f p
k (x � np),

γ(α) � np = γp(α),

ϱ(α, β) = ϱp(α, β),

where x ∈ 2ω and p is any element of G such that α, β ∈ vp and k ∈ sp. The fact that
G is a filter and the density of sets D(k) and E(ξ) (Lemma 3.3) imply that the above
definitions are correct. Let X = {γ(ξ) : ξ < ω1}. By the definition of P, the set X ⊆ 2ω

is uncountable, the functions fk are 1-Lipschitz and for every α < β < ω1 we have that
γ(α) = fϱ(α,β)(γ(β)). It follows that X2 ⊆ {id2ω} ∪

∪
n∈ω(fn ∪ f−1

n ).

Proof of Theorem 3.1. The above forcing shows that the existence of a countable family
of 1-Lipschitz functions on the Cantor set covering an uncountable square is consistent
with ZFC. We are going to argue, using Keisler’s completeness theorem [5], that such
a family actually exists in ZFC.

To be more precise, we shall use completeness theorem for the logic Lω(Q), see Corol-
lary 3.10 in [5]. Here, Lω stands for the ω-logic, which is an extension of the classical
predicate logic with identity by adding a unary predicate symbol N and constant sym-
bols 0, 1, 2, . . . which are supposed to denote natural numbers. The meaning of N(x)
is “x is a natural number”. The letter Q stands for a new quantifier that means “there
exist uncountably many”. For the completeness theorem, the language is assumed to
be countable, i.e. only countably many function, relation and constant symbols are al-
lowed. A standard model for Lω(Q) is a model M of Lω(Q) in which constant symbols
0, 1, 2, . . . are interpreted as the “real” natural numbers (in particular ω ⊆ M), further
M |= N(x) if and only if x ∈ ω and M satisfies (Q x)φ if and only if the set

{t ∈ M : M |= φ[t]}

is uncountable, where φ[t] is obtained from φ by replacing each free occurence of x by t.
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Completeness theorem for Lω(Q) says that a set of sentences of Lω(Q) is consistent if
and only if it has a standard model. We remark here that the logic Lω(Q) has some
natural axioms—we refer the reader to [5] for details. For instance, the following is an
axiom

¬(Q x)N(x)

which simply says that the set of natural numbers is countable. Finally, Lω(Q) has three
rules of inference: modus ponens, generalization and the ω-rule that allows to conclude
(∀ x)(N(x) =⇒ φ(x)) from

φ(0), φ(1), φ(2), . . . .

Thus, it is rather clear that the property of being consistent in Lω(Q) is absolute
between transitive models of ZFC (In fact, we need downward absoluteness only).

We can use finitely many predicates and the quantifier Q to describe a countable family
of 1-Lipschitz functions on the Cantor set that covers an uncountable square.

More precisely, let C and L be unary predicates which will denote elements of the
Cantor set and 1-Lipschitz self-maps of the Cantor set respectively. For elements of the
Cantor set we need to compute their coordinates and for maps of the Cantor set we
need to compute their values, therefore we need another two function symbols P and
V , where P (x, k) will mean “the k-th coordinate of x” and V (f, x) will mean “f(x)”.
Finally, we need a binary function symbol D such that, assuming x, y ∈ 2ω, D(x, y)
will denote the minimal k with x(k) ̸= y(k). It will be convenient to add the relation
symbol 6 describing the usual linear ordering of natural numbers.

We now describe (omitting some details) the required set of sentences θ. First of all, let
θ0 be a finite set of sentences saying that the sets described by C and L are disjoint and
do not consist of natural numbers. Let θ1 be a finite set of sentences describing that
P (x, k) is x(k) for x ∈ 2ω and k ∈ ω. Namely, the following sentences should be in θ1:

(∀ x)(∀ k) C(x) ∧N(k) =⇒ P (x, k) = 0 ∨ P (x, k) = 1,

(∀ x, y) (C(x) ∧ C(y) ∧ x ̸= y =⇒ (∃ k)N(k) ∧ P (x, k) ̸= P (y, k)).

Further, let θ2 be a finite set of sentences describing the meaning of V (f, x) and the
fact that f is a 1-Lipschitz map of the Cantor set. The following sentence says that f
is 1-Lipschitz:

(∀ x, y, f) (C(x) ∧ C(y) ∧ L(f) ∧ x ̸= y)) =⇒ D(V (f, x), V (f, y)) 6 D(x, y).

Let θ3 be an infinite set of sentences describing the order 6. Namely, θ3 should consist
of sentences of the form “i 6 j”, where i, j ∈ ω are such that i 6 j in ω.

Using the predicate C we cannot describe the full Cantor set, however we can add an
infinite set of sentences θ4 which says that C is dense in the Cantor set. This will ensure
that the 1-Lipschitz functions are indeed defined on the full Cantor set, not only on its
proper closed subset. So, θ4 should consist of sentences of the form

(∃ x) C(x) ∧ P (x, 0) = s(0) ∧ P (x, 1) = s(1) ∧ · · · ∧ P (x, n− 1) = s(n− 1)
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where s ∈ 2n and n ∈ ω.

Finally, let θ5 consist of the following three sentences:

(∀ x, y) C(x) ∧ C(y) =⇒ (∃ f) L(f) ∧ (V (f, x) = y ∨ V (f, y) = x),

(Q x) C(x),

¬(Q f) L(f).

These sentences say that the square of C is covered by functions from the set L and,
what is most important, C is uncountable while L is countable.

Let θ = θ0 ∪ · · · ∪ θ5. A standard model M of θ formally consists of ω and two other
disjoint sets CM and LM , however it is obviously isomorphic to a model of the form
ω ∪ C ∪ L, where C is an uncountable dense subset of 2ω and L is a countable family
of 1-Lipschitz functions of the Cantor set into itself. Finally, C × C is covered by L.

The forcing arguments described above show that θ is consistent in some extension of
the universe of set theory. Since this property is absolute, θ is consistent and hence, by
Keisler’s theorem, it has a standard model. This model, by the above remarks, gives
the desired countable family of 1-Lipschitz functions.

4 Final remarks

It is natural to ask whether there exists an uncountable (necessarily scattered) compact
space K such that K2 is covered by countably many graphs of continuous functions and
their inverses. Below we show that the answer is negative.

Theorem 4.1. Let K be a compact Hausdorff space and let {fn}n∈ω be a family of
continuous functions such that for each n ∈ ω the set dom(fn) is closed in K and
K ×K =

∪
n∈ω(fn ∪ f−1

n ). Then |K| 6 ℵ0.

Proof. By the Baire Category Theorem, a compact K satisfying the above assertion
must be scattered. Suppose the theorem is false and fix a counterexample K of mini-
mal Cantor-Bendixson rank λ. Denote by K(α) the α-th derivative of K. Passing to a
subspace, we may further assume that K(λ) is a singleton, which we shall denote by ∞.
Note that every closed set not containing ∞ is countable. Indeed, if A ⊆ K is closed and
∞ /∈ A, then by compactness, A∩K(γ) = ∅ for some γ < λ. Thus the Cantor-Bendixson
rank of A is 6 γ, therefore by the minimality of λ, A must be countable because it
satisfies the above assertion.

Let M = {fn(∞) : n ∈ ω and ∞ ∈ dom(fn)} and choose y ∈ K \M . Let

A = K \ (M ∪ {fn(y) : n ∈ ω}).

Then A is uncountable and for each x ∈ A there exists k ∈ ω such that y = fk(x). Find
k ∈ ω such that the set B = {x ∈ A : y = fk(x)} is uncountable. Note that ∞ ∈ clB,
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because every closed set not containing ∞ is countable. Thus ∞ ∈ dom(fk) and, by
continuity, y = fk(∞) ∈ M ; a contradiction.

By the above result, it is impossible to cover ω1×ω1 by countably many functions which
are continuous with respect to the order topology. Indeed, all these functions would be
extendable onto the Čech-Stone compactification of ω1 which equals ω1+1 and therefore,
adding one more function, we would obtain a countable family of continuous functions
covering the square of ω1 + 1.

It is easy to see, using Sierpiński’s theorem, that the one point compactification of the
discrete space of cardinality ℵ1 can be covered by countably many partial continuous
functions and their inverses. Thus, Theorem 4.1 fails when we drop the assumption that
dom(fn) be closed.
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