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Abstract. We construct a Banach space operator T ∈ B(X) such that the set

JT (0) has a nonempty interior but JT (0) 6= X. This gives a negative answer

to a problem raised by G. Costakis and A. Manoussos.

1. introduction and preliminaries

Let X be an infinite dimensional complex Banach space and let B(X) be the
algebra of all bounded linear operators on X. For T ∈ B(X) and x ∈ X let
Orb(T, x) = {x, Tx, T 2x, ...} be the orbit of T at x.

By a result of Bourdon and Feldman [?], if the closure Orb(T, x) has a non-empty
interior, then Orb(T, x) = X, and so x is a hypercyclic vector for T .

In [?], a weaker concept to that of the limit set of an orbit was introduced and
studied. For T ∈ B(X) and x ∈ X, let JT (x) be the set of all vectors y ∈ X such
that there exist a strictly increasing sequence (kn) ⊆ N and a sequence (xn) ⊆ X
with xn → x and T knxn → y as n → ∞. It is easy to see that the set JT (x) is
always closed.

In [?], Problem 1, it was asked whether there is an analogue of the Bourdon-
Feldman theorem in the case of J-sets: if the set JT (x) has a nonempty interior,
does it imply that JT (x) = X?

The goal of this paper is to give a negative answer to this question.

Let X be a Banach space, x ∈ X and r > 0. We denote by B(x, r) = {y ∈ X :
‖y − x‖ ≤ r} the closed ball with radius r and center x. We denote by intA the
interior of any subset A ⊂ X.

2. Main result

Example. There exist a Banach space X and an operator T ∈ B(X) such that
intJT (0) 6= ∅ and JT (0) 6= X.

Construction. Let (kn)∞n=1 be a fixed fast increasing sequence of positive integers.
It is sufficient to assume that kn+1 ≥ 5k2

n for all n ∈ N. Let X be the `1 space with
the standard basis{

ui : i = 0, 1, ...
}
∪

{
vn,j : n ∈ N, 1 ≤ j ≤ kn

}
.
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More precisely, the elements of X can be expressed as

x =
∞∑

i=0

αiui +
∞∑

n=1

kn∑
j=1

βn,jvn,j

with complex coefficiens αi, βn,j such that

‖x‖ :=
∞∑

i=0

|αi|+
∞∑

n=1

kn∑
j=1

|βn,j | < ∞.

Let {wn : n ∈ N} be a countable dense set in B(0, 1
4 ). Without loss of generality

we may assume that each wn belongs to the space
∨{

u0, u1, ..., un, vm,j : 1 ≤ m <

n, 1 ≤ j ≤ km

}
.

We are going to construct an operator T with JT (0) ⊃ B(u0, 1/4). To this end
it is sufficient to have u0 + wn ∈ T knB(0, 1/n) for each n. The purpose of the
finite-dimensional subspace

∨
{vn,j : 1 ≤ j ≤ kn} is to achieve this relation. The

infinite-dimensional subspace
∨
{ui : i = 0, 1, . . . } will ensure that JT (0) 6= X.

Let T ∈ B(X) be defined by

Tui = 2ui+1 (i = 0, 1, ...),
T vn,j = 2vn,j+1 (n ∈ N, 1 ≤ j ≤ kn − 1),

T vn,kn =
n

2kn−1
(u0 + wn) (n ∈ N).

It is easy to see that ‖T‖ = 2. For each n ∈ N we have

T kn(n−1vn,1) = 2kn−1n−1Tvn,kn
= u0 + wn.

This implies that B(u0,
1
4 ) ⊂ JT (0). Indeed, let z ∈ X with ‖z‖ ≤ 1

4 and let (ni) be
an increasing sequence in N satisfying wni

→ z as i →∞. Then n−1
i vni,1 → 0 and

limi→∞ T kni (n−1
i vni,1) = limi→∞(u0 + wni

) = u0 + z. In particular, int JT (0) 6= ∅.
It remains to show that JT (0) 6= X. Suppose on the contrary that JT (0) = X. In

particular, it means that v1,1 ∈ JT (0), and so there exist k ∈ N and y ∈ X, ‖y‖ ≤ 1
with

‖T ky − v1,1‖ <
1
4
. (1)

Moreover, we may assume that k > k2 +k1. Write mn = kn +kn−1 + · · ·+k1. Since
ki+1 ≥ 5k2

i ≥ 5ki, we have mn ≤ 5kn

4 , and so kn ≤ mn ≤ 5
4kn.

Let n ∈ N satisfy mn−1 ≤ k < mn. By assumption, n ≥ 3. Write X0 =
∨
{ui :

i = 0, 1, . . . }. For n ∈ N let Xn =
∨
{vn,i : 1 ≤ i ≤ kn}. Let Pj be the natural

projection onto Xj , i.e., ker Pj =
∨

i 6=j Xi. Clearly ‖Pj‖ = 1 for each j.

Write y = y0 + y1 + x + y2, where y0 = P0y, y1 =
(∑n−1

i=1 Pi

)
y, x = Pny and

y2 =
(∑∞

i=n+1 Pi

)
y. We have ‖y0‖ + ‖y1‖ + ‖x‖ + ‖y2‖ = ‖y‖ ≤ 1. Obviously

T ky0 ∈ X0 and

T ky1 ∈ T k
(n−1∨

i=1

Xi

)
⊂ T k−kn−1

(n−2∨
i=0

Xi

)
⊂ · · · ⊂ T k−kn−1−···−k1

(
X0

)
⊂ X0.

Finally,
∥∥∥(∑n−1

i=0 Pi

)
T ky2

∥∥∥ ≤ 2k(n+1)

2kn+1−1 ≤ n+1
2kn+1−mn

≤ n+1
2kn

< 1
4 .



A NOTE ON J-SETS OF LINEAR OPERATORS 3

If mn−1 ≤ k < mn − 2mn−1 = kn −mn−1, then

‖P1T
ky‖ ≤ ‖P1T

kx‖+ ‖P1T
ky2‖ ≤

2kn

2kn−1
+

1
4
≤ n

2mn−1
+

1
4

<
1
2
.

So ‖T ky − v1,1‖ ≥ ‖P1(T ky − v1,1)‖ ≥ 1− 1
2 = 1

2 , a contradiction with (1).
So we may assume that kn−mn−1 ≤ k ≤ kn +mn−1 = mn. Write for short m =

mn−1. For j = 1, 2, . . . let Yj =
∨
{u(j−1)m, . . . , ujm−1}. Write also Y0 =

⋃n−1
i=1 Xi.

Let Qj be the natural projection onto Yj (j = 0, 1, . . . ). Note that k − m ≥
kn − 2m ≥ 5k2

n−1 − 2m ≥ 16
5 m2 − 2m ≥ m2, and so T k(y0 + y1) ∈

∨
{ui : i ≥ m2}.

Thus
(∑m

i=0 Qj

)
T k(y0 + y1) = 0 and∥∥∥(∑m

j=0 Qj

)
(T kx− v1,1)

∥∥∥ =
∥∥∥(∑m

j=0 Qj

)
(T k(y0 + y1 + x)− v1,1)

∥∥∥
≤

∥∥∥(∑m
j=0 Qj

)
(T ky − v1,1)

∥∥∥+
∥∥∥(∑m

j=0 Qj

)
T ky2

∥∥∥ ≤ 1
4 + 1

4 = 1
2 .

(2)

Let x =
∑kn

i=1 αivn,i. Let i0 = kn− k + 1 and x0 =
∑i0−1

i=1 αivn,i (if i0 ≤ 1 then
x0 = 0). For j = 1, ...,m let

xj =
i0+jm−1∑

i=i0+(j−1)m

αivn,i.

We have T kx0 ∈ Xn, and so
(∑m

j=0 Qj

)
T kx0 = 0. For j = 1, ...,m, we have

T kxj =
i0+jm−1∑

i=i0+(j−1)m

αiT
kvn,i =

∑
i

αi2kn−iT k−kn+ivn,kn

=
∑

i

αi
2kn−in

2kn−1
T k−kn+i−1(u0 + wn) = sj + qj ,

where

sj = 2k−knn

i0+jm−1∑
i=i0+(j−1)m

αiuk−kn+i−1

and

qj =
i0+jm−1∑

i=i0+(j−1)m

αi21−inT k−kn+i−1wn.

Note that

‖sj‖ = n2k−kn

i0+jm−1∑
i=i0+(j−1)m

|αi| = n2k−kn‖xj‖

and

‖qj‖ ≤
i0+jm−1∑

i=i0+(j−1)m

|αi|21−in2k−kn+i−1‖wn‖ ≤
1
4
‖sj‖.

Note also that
T kxj ∈ Yj−1 ∨ Yj ∨ Yj+1.

Write tj = Qj−1qj , t
′
j = Qjqj and t′′j = Qj+1qj . For j = 1, . . . ,m− 1, we have∥∥∥( j∑

i=0

Qi

)
(T kx− v1,1)

∥∥∥ = ‖t1 − v1,1‖+ ‖s1 + t′1 + t2‖+ ‖s2 + t′′1 + t′2 + t3‖+ · · ·
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· · ·+ ‖sj−1 + t′′j−2 + t′j−1 + tj‖+ ‖sj + t′′j−1 + t′j + tj+1‖
≥ 1− ‖t1‖+ ‖s1‖ − ‖t′1‖ − ‖t2‖+ ‖s2‖ − ‖t′′1‖ − ‖t′2‖ − ‖t3‖+ · · ·

· · ·+ ‖sj‖ − ‖t′′j ‖ − ‖t′j‖ − ‖tj+1‖
≥ 1 +

(
‖s1‖ − ‖t1‖ − ‖t′1‖ − ‖t′′1‖

)
+ · · ·

· · ·+
(
‖sj−1‖ − ‖tj−1‖ − ‖t′j−1‖ − ‖t′′j−1‖

)
+

(
‖sj‖ − ‖tj‖ − ‖t′j‖

)
− ‖tj+1‖

≥ 1 +
3
4
(‖s1‖+ ‖s2‖+ · · ·+ ‖sj‖)−

‖sj+1‖
4

.

Since
∥∥∥(∑j

i=0 Qi

)
(T kx− v1,1)

∥∥∥ ≤ 1
2 by (2), we have

‖sj+1‖ ≥ 3(‖s1‖+ ‖s2‖+ · · ·+ ‖sj‖) ≥ 3‖sj‖. So ‖xj+1‖ ≥ 3‖xj‖.
By induction, ‖xm‖ ≥ 3‖xm−1‖ ≥ · · · ≥ 3m−1‖x1‖. Since ‖xm‖ ≤ ‖x‖ ≤ 1, we have
‖x1‖ ≤ 31−m. Hence

‖Q0T
kx‖ = ‖Q0T

kx1‖ = ‖t1‖ ≤ 2k−knn
‖x1‖

4
≤ 2k−kn−2n31−m ≤ 2mn

3m
≤ 1

2
,

which is a contradiction with the fact that

‖Q0T
kx‖ ≥ ‖Q0v1,1‖ − ‖Q0(T kx− v1,1)‖ ≥ 1− ‖T kx− v1,1‖ ≥

3
4
.

Remark. The construction above can be modified easily so that we obtain an
operator V ∈ B(Y ) and a non-zero vector y ∈ Y such that int JV (y) 6= ∅ and
JV (y) 6= Y.

Let X and T ∈ B(X) be as in the previous example. Let Y = X ⊕ `1 and let
V = T ⊕ 2S, where S ∈ B(`1) is the backward shift. Let y 6= 0 and Sy = 0. Then
V (0 ⊕ y) = 0. It is easy to see that JV (0 ⊕ y) = JV (0 ⊕ 0). Clearly JV (0 ⊕ 0) ⊂
JT (0) ⊕ J2S(0). Furthermore, it is easy to see that for all ε > 0, y′ ∈ `1 and all n
sufficiently large there exists yn ∈ `1 with ‖yn‖ < ε and (2S)nyn = y′. This implies
that JV (0⊕ 0) = JT (0)⊕ `1.

Hence intJV (0⊕ y) 6= ∅ and JV (0⊕ y) 6= Y.
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