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Abstract

We use Hörmander’s results on the method of the stationary phase
to elaborate a technique of obtaining systems of algebraic equations,
that can help the computation of the parameters defining the maxi-
mum entropy representing density of a finite set of moments.
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1 Statement of the problem

Fix n, m ≥ 1 and let R
n be the n-dimensional Euclidian space, endowed with

the Lebesgue measure dt, where t = (t1, . . . , tn) denotes the variable in R
n.

Let A = An,m = {α ∈ Z
n
+ : |α| ≤ 2m}, where |α| = α1 + · · ·+ αn for any

multiindex α. Given an arbitrary set γ = (γα)α of numbers γα (α ∈ A), the
truncated problem of moments under consideration here requires to establish
if there are nonnegative, absolutely continuous measures µ = f dt ≥ 0 on R

n

such that ∫
tαf(t) dt = γα (α ∈ A). (1)
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Thus we consider absolutely continuous representing measures f dt, with
nonnegative density f from L1(Rn) – the space of all classes of Lebesgue
measurable functions that Lebesgue integrable on R

n. Set a := cardA.
In a previous work [] we characterized the existence of such representing

densities by the solvability of the following system∫
Rn

tαe
P

β∈A xβ tβ dt = γα (α ∈ A) (2)

of a equations with a unknowns xα (α ∈ A). Therefore if our problem (1) has
any absolutely continuous solution µ = f dt, then it will necessarily have also
a solution of the form from above. The concrete form of (2) then should allow
to study the existence of (or approximate) the vector x = (xα)α∈A ∈ R

a, see
for instance [?], [3] and [].

For powers moment problems, it is known [], [] that if there exists an
integrable representing density of the form f∗ = exp (

∑
α∈A xαuα) on the

whole space R
n, then knowing a large set of its moments, namely all γα,

α ∈ A + A, provides the values of xα (α ∈ A) by solving a compatible and
determined linear system (??). Note the following example. Let n = 1 and
γ0, γ1, γ2 ∈ R. Set uα(t) = tα (α = 0, 1, 2). In this case one can use (2) to
compute xα by hand. Namely, assume that f∗(t) := exp (x0 +x1t+x2t

2), t ∈
R is integrable and satisfies (2). Since f∗ ∈ L1(R), then x2 < 0. Hence by the
Leibniz–Newton formula we have

∫
f ′
∗dt = 0 and

∫
(tf∗(t))

′dt = 0, where f ′

denotes the derivative of f . It follows x1γ0+2x2γ1 = 0 and γ0+x1γ1+2x2γ2 =
0. Then x1 = γ0γ1d

−1, x2 = −γ2
0d

−1 and x0 = ln(γ0/
∫

exp (x1t + x2t
2)dt),

where d := γ0γ2 − γ2
1 . Hence f∗(t) = C exp [−(t− s)2/d ] is a multiple of the

Gauss distribution of mean s = γ1/2 and dispersion d. Thus we get the well–
known fact that the maximum entropy probability density of given mean
and dispersion is the normal one, see [11] for instance. Similar computations
providing x in terms of the known data γα, α ∈ A can be done also when
A = {α = (α1, . . . , αn) ∈ Z

n
+ | α1 + · · ·+ αn ≤ 2} (this moment problem has

been solved in [8] by different methods).
Namely, f∗ maximizes the Boltzmann’s integral −

∫
f ln fdm amongst all

the absolutely continuous measures µ = fm ≥ 0 satisfying the equalities (1).
To briefly recall the significance of the maximum entropy solution [7], [11],

[12], let V : (Ω,A, P )Rightarrow(T,m) be a random variable with values in
T and absolutely continuous repartition P ◦V −1 = µ = fm, where (Ω,A, P )
is a probability field. Let T be finite with m := the normalized cardinal
measure. The average of the minimum amount of information necessary
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to determine the position of V in T proves then to be equal to Shannon’s
entropy

H(f) := −

∫
Ω

log2 f(V (ω)) dP (ω) (= −
∑
t∈T

f(t) log2 f(t)),

see for instance [11]. In general, if T is endowed with some arbitrary non-
negative measure m, then the corresponding degree of randomness of V is
measured by

H(V ) := −

∫
Ω

ln f ◦ V dP (= −

∫
T

f ln f dm).

Suppose that the repartition f of V is unknown, but we can find the mean
values of some quantities uα, α ∈ A depending on V . The available data on
V are thus given by the knowledge of the numbers

γα :=

∫
Ω

uα(V (ω)) dP (ω) (=

∫
T

uα(t)f(t) dm(t)) (α ∈ A).

The problem is now to choose the most reliable f by using all this (and only
this) information. The repartition f∗ of the highest degree of randomness
allowed by the conditions (1) is then the natural choice for f , see for instance
[11], [12] for details. Note also in this sense the very interesting result from
below.

Theorem 0 [7] Let n := 1 and T := [a, b] ⊂ R. Let V be a random variable

with uniform distribution on T . If V1, V2, . . . are independent copies of V ,

then the conditional probability of V given the observation

k−1
k∑

i=1

uα(Vi) = γα (α ∈ A, k = 1, 2, . . .)

converges to f∗,x as kRightarrow∞.

Therefore in certain moment–type problems it could be of interest to approx-
imate f∗,x (that is, x ∈ R

a).

The main concern of the present paper is then to find a way of computing
/ approximating the vector x = (xα)α in the equation (2) from
above.
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2 Main results

Let p be a polynomial of degree 2m in n variables t = (t1, . . . , tn), with real
coefficients xi,

p(t) =
∑

i∈Z
n
+

,|i|≤2m

xit
i,

s.t. p(t) ≤ −c‖t‖2 + c′ for all t ∈ R
n, where c, c′ > 0.

Set x = (xi)i ∈ R
N , where N := card {i : |i| ≤ 2m}.

Let gi = gi(x) be defined by

gi =

∫
Rn

tiep(t)dt (|i| ≤ 2m)

and set g = (gi)i ∈ R
N . Thus g = g(x).

Our problem is then to find a suitable way (analytic, numerical etc) of ex-
pressing x in terms of g; x = x(g) =?

Our Main theorem is the following.

Theorem There exist N − 1 nontrivial polynomial functions fk of N − 1
variables, the coefficients of which depend on g, s.t. the sets x̃ := (xi)i6=0

satisfy

f1(x̃) = 0, . . . , fN−1(x̃) = 0.

Lemma 1 Let C ⊂ R
n be a closed convex cone and L, M ⊂ R

n be linear

subspaces with L ⊂ M and dimM/L = 1 s.t. L + C ∩M 6= M . Let f be

a linear functional on L s.t. fx > 0 for every nonzero x ∈ C ∩ L. Then

there exists a linear extension F of f to M s.t. Fx > 0 for every nonzero

x ∈ C ∩M .

Proof. We can suppose that C ∩M 6⊂ L (in particular, C ∩M 6= ∅). Fix
also a unit vector u ∈ M , orthogonal to L. By a compactness argument,
there is a constant a > 0 s.t.

d(x, C) ≥ a‖x‖ (x ∈ L, fx ≤ 0), (3)
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for otherwise we can find a sequence of unit vectors xk ∈ L with fxk ≤ 0
s.t. d(xk, C) → 0 as k → ∞, and hence, a subsequence convergent to a unit
vector x ∈ C ∩ L with fx ≤ 0, contrary to the hypotheses.

Let C := ri (C ∩M). We prove that C ∩ L = ∅. Suppose there exists a
vector v ∈ C with v ∈ L. Let c1 ∈ (C ∩M) \ L. Then the inner product
〈c1, u〉 6= 0. Since v is in the relative interior C of the set C ∩M and c1 ∈
C∩M , by [Theorem II.6.4, [?]] we can find an ǫ > 0 s.t. c2 := −ǫc1 +(1+ ǫ)v
is in C ∩M . Since v ∈ L and u⊥L, we have 〈c2, u〉 = −ǫ〈c1, u〉. The number
〈c2, u〉 is then 6= 0 and has opposite sign to 〈c1, u〉. Write ci = 〈ci, u〉u + hi

where hi ∈ L for i = 1, 2. Then 〈ci, u〉u ∈ (C ∩M)+L. It follows, due to the
signs of the coefficients, that both u, −u ∈ C∩M+L, and so R·u ∈ C∩M+L,
whence M = R · u + L ⊂ C ∩M + L, that is contrary to the hypotheses
L+ C ∩M 6= M .

Since C ∩ L = ∅, one of the half-spaces associated to the hyperplane L
in M must contain C entirely, for if C contained points x and y in the two
opposing half-spaces, some point of the line segment between x and y would
be in L, that is impossible. The corresponding closed half-space of M must
then contain the closure

C = ri (C ∩M) = C ∩M = C ∩M.

Then there is a unit vector x0 ∈ M , namely one of the vectors u or −u
orthogonal to L in M , s.t. 〈c, x0〉 ≥ 0 for all c ∈ C ∩M . Extend f by taking
Fx0 > ‖f‖a−1. Then for any c ∈ C ∩M , the orthogonal decomposition

c = λx0 + h (λ ∈ R, h ∈ L)

gives 0 ≤ 〈c, x0〉 = λ‖x0‖
2 + 0 = λ. To prove that Fc ≥ 0 with strict

inequality if c 6= 0, consider two cases.
If fh ≥ 0, we obtain Fc = λFx0 + fh ≥ 0, and Fc 6= 0 unless both

λ, fh = 0 which means c = h ∈ C ∩ L and fh = 0 that implies c = 0 by our
hypotheses.

If fh < 0, by (3) we have

|fh| ≤ ‖f‖ ‖h‖ ≤ ‖f‖ a−1d(h, C) ≤ ‖f‖a−1‖h− c‖ ≤ ‖f‖a−1λ,

whence Fc = λFx0 + fh ≥ (Fx0 − ‖f‖a−1)λ ≥ 0, with strict inequality be-
cause Fc = 0 only when λ = 0 in which case c = h ∈ C∩LRightarrow fh ≥
0 that is impossible when fh < 0.
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For any multiindex i = (i1, . . . , in) ∈ Z
n
+ we write as usual i! = i1! · · · in!,

|i| = i1 + · · · + in and xi = xi1
1 · · ·xin

n for a variable x = (x1, . . . , xn). Also,
i ≤ j means i1 ≤ j1, . . . , in ≤ jn. Let deg p denote the degree of a polynomial
p. Let ph denote the homogeneous part of maximal degree of p.

Let GL(n), resp. O(n) denote as usual the group of all invertible, resp.
orthogonal linear maps on R

n.
Remind that a positive definite form in n variables is a polynomial p =∑n

i,j=1 aijXiXj s.t. the n × n matrix [aij ]
n
i.j=1 is positive definite, namely∑n

i,j=1 aijxixj > 0 for every vector (xi)
n
i=1 6= 0 in R

n or, equivalently, s.t.

p(x) ≥ c‖x‖2 for some constant c = cp > 0 (⇔ lim‖x‖→∞ p(x) = +∞, too).

Definition We call an arbitrary polynomial p ∈ R[X] positive definite if
there exist constants c > 0 and R s.t.

p(x) ≥ c‖x‖2

for all x ∈ R
n with ‖x‖ ≥ R, or, equivalently, if there exist c > 0, c′ s.t.

p(x) + c′ ≥ c‖x‖2 ∀x ∈ R
n,

condition that easily proves also to be equivalent to

lim
‖x‖→∞

p(x) = +∞.

Let P = Pn = { p ∈ R[X1, . . . , Xn] : p is positive definite }.

Remark 2 (a) If p =
∑n

i,j=1 aijXiXj +
∑n

i=1 biXi + c, then p ∈ Pn ⇔ the
form

∑n
i,j=1 aijXiXj is positive definite.

(b) Pn is a convex cone, stable under multiplication.
(c) If p ∈ Pn, then for every T ∈ GL(n), x0 ∈ R

n and c ∈ R the
polynomial p(TX + x0) + c also is in Pn.

(d) If X = (X1, . . . , Xk) is a partition of the set X = (X1, . . . , Xn) of
variables and pj ∈ R[Xj] ⊂ R[X] is a positive definite form in R[Xj] for each
j = 1, k then p1 + · · ·+ pk ∈ Pn.

(e) Pn is the minimal set containing all polynomials p1 + · · · + pk with
1 ≤ k ≤ n from (e) and stable under the operations from (b) and (c).

(f) If p ∈ P , then deg p must be even ≥ 2.
(g) For p homegeneous, p ∈ P ⇔ inf‖x‖=1 p(x) > 0 ⇔ p(x) ≥ c‖x‖deg p ∀x

for some c > 0.
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(h) If the homogeneous part ph of p is in P , then p ∈ P , but the converse
is not true: for example, the polynomial p = X4

1 + X2
2 ∈ R[X1, X2] is in P2

while ph = X4
1 6∈ P2.

We remind from [?] the following lemma.

Lemma 3 For any p ∈ R[X] there exists a unique minimal linear subspace

Y ⊂ R
n s.t. p = p ◦ PY .

Let supp p denote the unique minimal linear subspace provided by Lemma
3. We call supp p the support of the polynomial p.

Lemma 4 Let P : R
n → R

n be linear s.t. P 2 = P and dim imP = n− 1. If

p ∈ R[X] s.t. p = p ◦ P , then p = p ◦ Pker (I−P ∗)
.

Proof. Let Z = ker (I − P ∗). Since P is a projection onto a hyperplane,
I − P is a projection onto a 1-dimensional space. Then there exist some
vectors v, w ∈ R

n s.t. x − Px = 〈x, v〉w for all x ∈ R
n. The equality

P 2 = P is equivalent to 〈v, w〉 = 1. We can assume that ‖w‖ = 1, replacing
w by ‖w‖−1w and v by ‖w‖v. Set e1 = (1, 0, . . . , 0) ∈ R

n. Let O ∈ O(n)
s.t. Oe1 = w. Let Q = O∗PO and q = p ◦ O. Since p = p ◦ P , we
have q ◦ Q = q. Write O∗v = (a1, . . . , an). The equalities 1 = 〈v, w〉 =
〈O∗v, O∗w〉 = 〈(a1, . . . , an), e1〉 = a1 show that a1 = 1. It follows that Qx =
x− 〈Ox, v〉O∗w = x− 〈x,O∗v〉e1. Hence for every x = (x1, . . . , xn) ∈ R

n, we
have 〈(x1, x2, . . . , xn), (1, a2, . . . , an)〉 = x1 + a2x2 + · · ·anxn and so

Qx = (x1, x2, . . . , xn) − 〈(x1, x2, . . . , xn), (1, a2, . . . , an)〉(1, 0, . . . , 0)

= (−
n∑

j=2

ajxj , x2, . . . , xn).

Then ∂1Q = 0, that is, the polynomial function Q = Q(x) does not depend
on the variable x1. Hence

Q(x1, x2, . . . , xn) ≡ Q(0, x2, . . . , xn). (4)

Now (I − P )∗ = ( 〈 · , v〉w )∗ = 〈 · , w〉v and hence Z = ker (I − P ∗) = w⊥.
Then for every x = (xj)

n
j=1 ∈ R

n we have

PO∗Zx = O∗Pw⊥Ox = O∗(I − PR·w)Ox =
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O∗(Ox− 〈Ox,w〉w) = x− 〈x,O∗w〉O∗w

= x− 〈x, e1〉e1 = (x1, x2, . . . , xn) − (x1, 0, . . . , 0) = (0, x2, . . . , xn).

Then, using (4) also, we obtain q(PO∗Zx) = q(0, x2, . . . , xn) = q(x), namely
q◦PO∗Z = q. Hence p◦OPO∗ZO

∗ = p. But PO∗Z = O∗PZO, and so, p◦PZ = p.

Lemma 5 Let π̃, q̃, r̃ be polynomials with deg r̃ < deg q̃(< deg π̃?) and q̃
homogeneous of degree k. Write q̃ =

∑k
j=0 PjX

j
n with Pj ∈ R[X ′] homoge-

neogous of degree k − j. Suppose there is an index j ∈ {1, . . . , k − 1} s.t.

Pj 6≡ 0. Suppose also that π̃ ∈ R[X ′]. Then eπ̃+q̃+r̃ 6∈ L1.

Lemma 6 Let π, q, r ∈ R[X] s.t. deg r < deg q(< degπ?) and q is homo-

geneous. Let Y ⊂ R
n be a linear subspace s.t. π = π ◦ PY . Suppose that

sup{d(z, Y ) : z ∈ supp q ‖z‖ = 1, q(z) ≥ 0} = 1. Then eπ+q+r 6∈ L1.

Remind that we have obtained in [1] the following theorem.

Theorem 7 Let p ∈ R[X1, . . . , Xn] be arbitrary. Set f(t) = ep(t) for t ∈ R
n.

The following statements are equivalent:

(a) The function f = ep is Lebesgue integrable on R
n.

(b) The polynomial −p is positive definite in R[X1, . . . , Xn].

The idea is to be used firstly can be described by the following elementary
example.
Example: n = 1, m = 1

In this case, the equations of moments are:∫
ex0+x1t+x2t2dt=g0,

∫
tex0+x1t+x2t2dt=g1,

∫
t2ex0+x1t+x2t2dt=g2

⇒ x1g0 + 2x2g1 = 0, g0 + x1g1 + 2x2g2 = 0

⇒ x1 = x1(g), x2 = x2(g) by solving the system of equations f1(x1, x2) = 0,
f2(x1, x2) = 0 from above

(while x0 can be obtained from
∫

R
ex0+x1t+x2t2dt = g0)

Proof: Leibniz-Newton formula
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∫ ∞

−∞
d
dt

(ex0+x1t+x2t2)dt = ex0+x1t+x2t2 |t=+∞
t=−∞ = 0

⇒
∫ ∞

−∞
(x1 + 2x2t)e

x0+x1t+x2t2dt = 0, that is,

x1g0 + 2x2g1 = x1

∫
ex0+x1t+x2t2dt+ 2x2

∫
tex0+x1t+x2t2dt = 0

and we similarly use
∫ ∞

−∞
d
dt

(tex0+x1t+x2t2)dt = 0

2.1 Notions of multivariable moments problems

Fix n, m ∈ N

Problem:

Characterize those sets g = (gi)i∈Z
n
+

, |i|≤2m of real numbers gi that admit

nonnegative representing measures on R
n with respect to the powers ti (|i| ≤

2m), that is,

∫
Rn

tidµ(t) = gi (i ∈ Z
n
+, |i| ≤ 2m)

where we used the multiindex notation,
i = (i1, . . . , in) |i| = i1 + · · ·+ in
t = (t1, . . . , tn) ti = ti11 · · · tinn

µ : Bor(Rn) → [0,∞) measure
s.t. ti ∈ L1(Rn, m) ∀ i with |i| ≤ 2m

We call µ a representing measure for g
We call

∫
tidµ(t) the moments of µ

If µ = f dt with f ∈ L1(Rn, dt), we call f a representing density for g
Example 1 n = 1, m = arbitrary, g = (gi)

2m
i=0

Theorem (Hamburger, Markov, Chebyshev,...) A set g = (g0, g1, . . . , g2m)
is a sequence of moments of some nontrivial representing density f ≥ 0, that
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is, ∫ ∞

−∞

tif(t)dt = gi (i = 0, . . . , 2m),

if and only the Hankel matrix

Hg := [gi+j]i, j≤m

is positive definite, namely
∑m

i,j=0 gi+jλiλj > 0 for all (λ0, . . . , λm) 6= 0, or
equivalently,

g0 > 0, g0g2 − g2
1 > 0, . . . , detHg > 0 .

Proof

– Riesz-Haviland’s theorem: g is a set of moments ⇔ the functional L :
X i 7→ gi satisfies Lp ≥ 0 for all polynomials p ≥ 0 (Lp =

∫
pdµ)

– On the real line, p ≥ 0 ⇔ p =
∑
q2 = sum of squares of polynomials

q =
∑

i λiX
i

– L(q2) = L(
∑

i,j λiλjX
i+j) =

∑
i,j λiλjgi+j

In this case (real line), various numerical algorithms can provide approx-
imate solutions µ = f dt

Example 2 m = 1, n = arbitrary, g = (gi)|i|≤2

Since any polynomial of degree 2 in several variables is a sum of squares, we
obtain the (also, well known):

Theorem A set g = (gi1,...,in)i1+···+in≤2 has representing measures µ ≥ 0 on
R

n ⇔ ∑
i,j∈Z

n
+;|i|,|j|≤m

gi+jλiλj ≥ 0

for all (λi)|i|≤m.

In this case (moments of order 2), there exist elementary ways of finding
solutions µ.
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In the general case, for arbitrary n and m (≥ 2), no such characterizations
or analytic solutions are known (there are positive polynomials that are not
sums of squares).

We remind from [] the following basic result.
Theorem Let g = (gi)∈Z

n
+

,|i|≤2m be a set of powers moments of a measure

µ = fdt + ν ≥ 0, with f ∈ L1(Rn, dt) \ {0} and ν singular with respect to
dt. Namely, ∫

Rn

tidµ(t) = gi (|i| ≤ 2m).

Then there exist xi ∈ R (|i| ≤ 2m), uniquely determined by g, such that the
polynomial

p(t) :=
∑

|j|≤2m

xjt
j

satisfies p(t) ≤ −c‖t‖2 + c′ and

∫
Rn

ti exp (
∑

|j|≤2m

xjt
j)dt = gi (|i| ≤ 2m).

2.2 On the maximum entropy principle

Let
V : (Ω,A, P ) → (T,m)

be a random variable with values in T and absolutely continuous repartition

P ◦ V −1 = µ = fm,

where (Ω,A, P ) is a probability field and T is a measurable space.

If T = finite and m := the normalized cardinal measure:

Theorem (Shannon) The average of the minimum amount of information
necessary to determine the position of V in T equals the entropy H(f) of V ,

H(f) := −

∫
Ω

log2 f(V (ω)) dP (ω) = −
∑
t∈T

f(t) log2 f(t).
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In general, the degree of randomness of V is measured by

H(V ) := −

∫
Ω

ln f ◦ V dP (= −

∫
T

f ln f dm).

Suppose the repartition f of V is unknown but we can find the average
values gi of some quantities ui depending on V .

The available data on V are thus given by the knowledge of the numbers

gi :=

∫
Ω

ui(V (ω)) dP (ω) =

∫
T

ui(t)f(t) dm(t) (5)

The problem is now to choose the most reliable f , by using all this, and only
this information.

Solution: f = f∗, maximizing H( · ) subject to eqs. (5)
Formula: f∗(t) = exp

∑
i xiui(t)

Other motivations for H :

– Let T = R and m = dt;
Boltzmann’s integral formula for the physical entropy,

H(f) = −

∫
R

f(t) ln f(t)dt.

– Theorem (Van Campenhout; Cover) Let T = [a, b] be endowed with
m = dt. Let V be a random variable with uniform distribution on T . Let
V1, V2, . . . be independent copies of V .

Then the conditional probability of V given the observation

k−1
k∑

p=1

ui(Vp) = gi ( p = 1, 2, . . .)

converges to f∗ as k → ∞.
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Suppose we look for a joint repartition

fm := P ◦ (V1, . . . , Vn)
−1

of n random variables V1, . . . , Vn with values in R by knowing only the average
values

gi =

∫
Ω

V i1
1 · · ·V in

n dP =

∫
Rn

ti11 · · · tinn f(t)dt

for all multiindices i = (i1, . . . , in) with |i| ≤ 2m.
Then let T := R

n, m = dt, ui(t) = ti and maximize

H(f) := −

∫
f ln fdm

among all absolutely continuous measures µ = fm ≥ 0 having the prescribed
moments ∫

tif(t)dt = gi (|i| ≤ 2m)

Conclusion: f∗(t) = exp p(t), p(t) =
∑

|i|≤2m xit
i

Problem: computation of the coefficients xi

3 Method of the stationary phase

M = Mn,m := {i ∈ Z
n
+ : |i| ≤ m, i 6= 0}

M = Mn,m := cardM

τ : R
n → R

M , τ(t) := (ti)i∈M

Lemma There is a map

a : {i ∈ Z
n
+ : |i| ≤ 2m} → {α ∈ Z

M
+ : |α| ≤ 2}

s.t.
ti ≡ τ(t)a(i) ∀i

Instead of the variables t1, . . . , tn, we introduce new variables T1, . . . , TM ,
s.t.
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the monomials ti of order |i| ≤ 2m
can be expressed as

monomials T α with α = a(i) of order |α| ≤ 2,
by

ti = T α|T=τ(t)

Example n = 1, m = 2 τ(t) = (t, t2)

M = {1, 2}, M = 2; R
n = {t}t∈R, R

M = {(T1, T2)}T1,T2∈R

The variables T1, T2 are: ”T1 = t”, ”T2 = t2”
(dependent, T2 = T 2

1 , when restricted to the image of τ :

t0 = 1 = (t, t2)(0,0)

t1 = T1 = (t, t2)(1,0)

t2 = T 2
1 = (t, t2)(2,0)

t3 = T1T2 = (t, t2)(1,1)=a(3); here t3 = τ(t)a(3))
t4 = T 2

2 = (t, t2)(0,2)

The equations of moments
∫

Rn t
iep(t)dt = gi become

∫
RM

T αeP (T )dµ(T ) = gi

where:
P (T ) =polynomial of degree 2 s.t. P |T=τ(t) = p(t);

µ is a singular measure of integration along the n-dimensional submanifold
{τ(t)}t of R

M ;

write
∫
T αeP (T )dµ(T ) = 〈µ, T αeP (T )〉 = gi

ψ(T ) := e−‖T‖2

T = (T1, . . . , TM) ∈ R
M independent variables

ψk(T ) := ckψ(kT ) = cke
−k2‖T‖2

ck constant s.t.
∫

RM ψk(T )dT = 1 ∀ k ≥ 1

ψk → δ
in D′(RM), as k → ∞

µ ∗ ψk → µ ∗ δ = µ

14



〈µ ∗ ψk, T
αeP (T )〉 → 〈µ, T αeP (T )〉 = gi. (6)

〈µ ∗ ψk, T
αeP (T )〉 =

∫
Rn

∫
RM

ψk(T − τ(λ))T αeP (T )dT dλ (7)

=

∫
RM

T αdµ̃(T ),

µ̃ = [ ck

∫
Rn

e−k2‖T−τ(λ)‖2+P (T )dλ ]dT

µ̃ is a continuous integral of gaussian densities

(6), (7) ⇒ for large k, we get a small perturbation of the moments equations

∫
RM

T αdµ̃(T ) ≈ gi

for which ”the coefficients of p in ep are computable”
For every fixed λ ∈ R

n and j ∈ M (⊂ Z
n
+), by Stokes’ formula on large

spheres, we have:

∫
RM

d

dTj
(cke

−k2‖T−τ(λ)‖2

· eP (T ))dT = 0 ⇒

−2

∫
RM

k2cke
−k2‖T−τ(λ)‖2

(Tj − λj)eP (T )dT

+

∫
RM

ψk(T − τ(λ))
d

dTj
(eP (T ))dT = 0

(ψk(T ) = cke
−k2‖T‖2

). After integration over R
n:

2nd term = 〈µ ∗ψk,
d

dTj
(eP (T ))〉 → 〈µ, d

dTj
(eP (T ))〉 = a linear combination of

the coefficients xi, with coefficients depending on known data g

1st term = rational expression in terms of integrals of the form

∫
u(y)eikf(y)dy

where y = either T or t, and f is complex-valued
(for ex. f(y) = i‖y − τ(λ)‖2)
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Theorem (Hörmander,... ) Let f = f(y) be a complex valued C∞ function
in a neighborhood of 0 in R

m s.t.
Im f ≥ 0, f(0) = 0, f ′(0) = 0, det f ′′(0) 6= 0.

Then there is a compact neighborhoodK = Kf of 0 s.t. for every u ∈ C∞
0 (K)

and p ≥ 1 we have

|

∫
ueikfdy − Rk · (L0u+

1

k
L1u+

1

k2
L2u+ · · ·+

1

kp−1
)|

≤ Cp
1

kp+ m
2

(8)

where Rk = (det(kf ′′(0))/2πi)−1/2

and each Lj is a differential operator of order 2j acting on u at 0, given by

Lju =
∑

ν−µ=j

∑
2ν≥3µ

i−j2−ν〈f ′′(0)D,D〉ν(gµu)(0)/µ!ν!

where D = (1
i

∂
∂y1
, . . . , ∂

∂ym
) and

g(y) = f(y) − f(0) − 〈f ′′(0)y, y〉/2.

Moreover, the coefficients of Lj are rational homogeneous functions of
degree −j in f ′′(0), . . . , f (2j+2)(0) with denominator (det f ′′(0))3j. In every
term the total number of derivatives of u and f ′′ is at most 2j.

Also, each constant Cp = Cp(f, u) is bounded ”when f, f ′, u are con-
trolled”.
Example of use of (8): p = 2, m = N , y = T ,

f(y) = i‖y − τ(λ)‖2; for simplicity, λ := 0
u(y) = yαeP (y) with α 6= 0;

we multiply the equation

∫
ueikfdy = Rk(L0u+

1

k
L1u+O(

1

k2
))

= Rk(u(0) +
1

k
(∆u)(0) +O(

1

k2
)) = Rk(

1

k
∆u(0) +O(

1

k2
))

by k, then divide the result by
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∫
eifdy = Rk · (1 +O(

1

k
))

and obtain that

k
∫
ueikfdy∫
eikfdy

=
∆u(0) +O( 1

k
)

1 +O( 1
k2 )

= ∆u(0) +O(
1

k
),

that provides

k

∫
e−k‖T−τ(λ)‖2

T αeP (T )dT = (∆u) ·

∫
ψk(T − τ(λ))eP (T )dT

+O(1/k) → (∆u) × known data

Integration with resp. to λ gives, since u = T αeP (T ), a 1st term = quadratic
function of x, with coefficients depending on g

etc
Conclusions:
– larger p are necessary to deal with higher order moments m = 3, 4, . . .;
– also, f is not always quadratic; may be given by the implicit function

theorem;
– this method can be used, in principle, for arbitrary data n, m etc;
– the usefullness of the results for concrete moments problems would only

occur by means of explicitely computing the functions fi(X) in the main
Theorem; this seems to be a routine, but difficult task, to be completed in
future papers.
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