An application of the stationary phase method to maximum entropy solutions of the multivariable moments problems

Călin-Grigore Ambrozie*

December 7, 2010

Abstract

We use Hörmander's results on the method of the stationary phase to elaborate a technique of obtaining systems of algebraic equations, that can help the computation of the parameters defining the maximum entropy representing density of a finite set of moments.

Keywords: maximum entropy, moments problem, positive representing density.

Mathematics Subject Classification: MSC 44A60, 49J99

1 Statement of the problem

Fix $n, m \geq 1$ and let \mathbb{R}^{n} be the n-dimensional Euclidian space, endowed with the Lebesgue measure $d t$, where $t=\left(t_{1}, \ldots, t_{n}\right)$ denotes the variable in \mathbb{R}^{n}.

Let $A=A_{n, m}=\left\{\alpha \in \mathbb{Z}_{+}^{n}:|\alpha| \leq 2 m\right\}$, where $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$ for any multiindex α. Given an arbitrary set $\gamma=\left(\gamma_{\alpha}\right)_{\alpha}$ of numbers $\gamma_{\alpha}(\alpha \in A)$, the truncated problem of moments under consideration here requires to establish if there are nonnegative, absolutely continuous measures $\mu=f d t \geq 0$ on \mathbb{R}^{n} such that

$$
\begin{equation*}
\int t^{\alpha} f(t) d t=\gamma_{\alpha} \quad(\alpha \in A) \tag{1}
\end{equation*}
$$

[^0]Thus we consider absolutely continuous representing measures $f d t$, with nonnegative density f from $L^{1}\left(\mathbb{R}^{n}\right)$ - the space of all classes of Lebesgue measurable functions that Lebesgue integrable on \mathbb{R}^{n}. Set $a:=\operatorname{card} A$.

In a previous work [] we characterized the existence of such representing densities by the solvability of the following system

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} t^{\alpha} \mathrm{e}^{\sum_{\beta \in A} x_{\beta} t^{\beta}} d t=\gamma_{\alpha} \quad(\alpha \in A) \tag{2}
\end{equation*}
$$

of a equations with a unknowns $x_{\alpha}(\alpha \in A)$. Therefore if our problem (1) has any absolutely continuous solution $\mu=f d t$, then it will necessarily have also a solution of the form from above. The concrete form of (2) then should allow to study the existence of (or approximate) the vector $x=\left(x_{\alpha}\right)_{\alpha \in A} \in \mathbb{R}^{a}$, see for instance [?], [3] and [].

For powers moment problems, it is known [], [] that if there exists an integrable representing density of the form $f_{*}=\exp \left(\sum_{\alpha \in A} x_{\alpha} u_{\alpha}\right)$ on the whole space \mathbb{R}^{n}, then knowing a large set of its moments, namely all γ_{α}, $\alpha \in A+A$, provides the values of $x_{\alpha}(\alpha \in A)$ by solving a compatible and determined linear system (??). Note the following example. Let $n=1$ and $\gamma_{0}, \gamma_{1}, \gamma_{2} \in \mathbb{R}$. Set $u_{\alpha}(t)=t^{\alpha}(\alpha=0,1,2)$. In this case one can use (2) to compute x_{α} by hand. Namely, assume that $f_{*}(t):=\exp \left(x_{0}+x_{1} t+x_{2} t^{2}\right), t \in$ \mathbb{R} is integrable and satisfies (2). Since $f_{*} \in L^{1}(\mathbb{R})$, then $x_{2}<0$. Hence by the Leibniz-Newton formula we have $\int f_{*}^{\prime} d t=0$ and $\int\left(t f_{*}(t)\right)^{\prime} d t=0$, where f^{\prime} denotes the derivative of f. It follows $x_{1} \gamma_{0}+2 x_{2} \gamma_{1}=0$ and $\gamma_{0}+x_{1} \gamma_{1}+2 x_{2} \gamma_{2}=$ 0 . Then $x_{1}=\gamma_{0} \gamma_{1} d^{-1}, x_{2}=-\gamma_{0}^{2} d^{-1}$ and $x_{0}=\ln \left(\gamma_{0} / \int \exp \left(x_{1} t+x_{2} t^{2}\right) d t\right)$, where $d:=\gamma_{0} \gamma_{2}-\gamma_{1}^{2}$. Hence $f_{*}(t)=C \exp \left[-(t-s)^{2} / d\right]$ is a multiple of the Gauss distribution of mean $s=\gamma_{1} / 2$ and dispersion d. Thus we get the wellknown fact that the maximum entropy probability density of given mean and dispersion is the normal one, see [11] for instance. Similar computations providing x in terms of the known data $\gamma_{\alpha}, \alpha \in A$ can be done also when $A=\left\{\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}_{+}^{n} \mid \alpha_{1}+\cdots+\alpha_{n} \leq 2\right\}$ (this moment problem has been solved in [8] by different methods).

Namely, f_{*} maximizes the Boltzmann's integral $-\int f \ln f d m$ amongst all the absolutely continuous measures $\mu=f m \geq 0$ satisfying the equalities (1).

To briefly recall the significance of the maximum entropy solution [7], [11], [12], let $V:(\Omega, \mathcal{A}, P) \mathbb{R}$ ightarrow (T, m) be a random variable with values in T and absolutely continuous repartition $P \circ V^{-1}=\mu=f m$, where (Ω, \mathcal{A}, P) is a probability field. Let T be finite with $m:=$ the normalized cardinal measure. The average of the minimum amount of information necessary
to determine the position of V in T proves then to be equal to Shannon's entropy

$$
H(f):=-\int_{\Omega} \log _{2} f(V(\omega)) d P(\omega) \quad\left(=-\sum_{t \in T} f(t) \log _{2} f(t)\right)
$$

see for instance [11]. In general, if T is endowed with some arbitrary nonnegative measure m, then the corresponding degree of randomness of V is measured by

$$
H(V):=-\int_{\Omega} \ln f \circ V d P \quad\left(=-\int_{T} f \ln f d m\right) .
$$

Suppose that the repartition f of V is unknown, but we can find the mean values of some quantities $u_{\alpha}, \alpha \in A$ depending on V. The available data on V are thus given by the knowledge of the numbers

$$
\gamma_{\alpha}:=\int_{\Omega} u_{\alpha}(V(\omega)) d P(\omega) \quad\left(=\int_{T} u_{\alpha}(t) f(t) d m(t)\right) \quad(\alpha \in A) .
$$

The problem is now to choose the most reliable f by using all this (and only this) information. The repartition f_{*} of the highest degree of randomness allowed by the conditions (1) is then the natural choice for f, see for instance [11], [12] for details. Note also in this sense the very interesting result from below.

Theorem $0[7]$ Let $n:=1$ and $T:=[a, b] \subset \mathbb{R}$. Let V be a random variable with uniform distribution on T. If V_{1}, V_{2}, \ldots are independent copies of V, then the conditional probability of V given the observation

$$
k^{-1} \sum_{i=1}^{k} u_{\alpha}\left(V_{i}\right)=\gamma_{\alpha} \quad(\alpha \in A, k=1,2, \ldots)
$$

converges to $f_{*, x}$ as $k \mathbb{R} i g h t a r r o w \infty$.
Therefore in certain moment-type problems it could be of interest to approximate $f_{*, x}$ (that is, $x \in \mathbb{R}^{a}$).

The main concern of the present paper is then to find a way of computing / approximating the vector $x=\left(x_{\alpha}\right)_{\alpha}$ in the equation (2) from above.

2 Main results

Let p be a polynomial of degree $2 m$ in n variables $t=\left(t_{1}, \ldots, t_{n}\right)$, with real coefficients x_{i},

$$
p(t)=\sum_{i \in \mathbb{Z}_{+}^{n},|i| \leq 2 m} x_{i} t^{i},
$$

s.t. $p(t) \leq-c\|t\|^{2}+c^{\prime}$ for all $t \in \mathbb{R}^{n}$, where $c, c^{\prime}>0$.

Set $x=\left(x_{i}\right)_{i} \in \mathbb{R}^{N}$, where $N:=\operatorname{card}\{i:|i| \leq 2 m\}$.
Let $g_{i}=g_{i}(x)$ be defined by

$$
g_{i}=\int_{\mathbb{R}^{n}} t^{i} e^{p(t)} d t \quad(|i| \leq 2 m)
$$

and set $g=\left(g_{i}\right)_{i} \in \mathbb{R}^{N}$. Thus $g=g(x)$.
Our problem is then to find a suitable way (analytic, numerical etc) of expressing x in terms of $g ; x=x(g)=$?

Our Main theorem is the following.
Theorem There exist $N-1$ nontrivial polynomial functions f_{k} of $N-1$ variables, the coefficients of which depend on g, s.t. the sets $\tilde{x}:=\left(x_{i}\right)_{i \neq 0}$ satisfy

$$
f_{1}(\tilde{x})=0, \ldots, f_{N-1}(\tilde{x})=0
$$

Lemma 1 Let $C \subset \mathbb{R}^{n}$ be a closed convex cone and $L, M \subset \mathbb{R}^{n}$ be linear subspaces with $L \subset M$ and $\operatorname{dim} M / L=1$ s.t. $L+C \cap M \neq M$. Let f be a linear functional on L s.t. $f x>0$ for every nonzero $x \in C \cap L$. Then there exists a linear extension F of f to M s.t. $F x>0$ for every nonzero $x \in C \cap M$.

Proof. We can suppose that $C \cap M \not \subset L$ (in particular, $C \cap M \neq \emptyset$). Fix also a unit vector $u \in M$, orthogonal to L. By a compactness argument, there is a constant $a>0$ s.t.

$$
\begin{equation*}
d(x, C) \geq a\|x\| \quad(x \in L, f x \leq 0) \tag{3}
\end{equation*}
$$

for otherwise we can find a sequence of unit vectors $x_{k} \in L$ with $f x_{k} \leq 0$ s.t. $d\left(x_{k}, C\right) \rightarrow 0$ as $k \rightarrow \infty$, and hence, a subsequence convergent to a unit vector $x \in C \cap L$ with $f x \leq 0$, contrary to the hypotheses.

Let $\mathcal{C}:=\operatorname{ri}(C \cap M)$. We prove that $\mathcal{C} \cap L=\emptyset$. Suppose there exists a vector $v \in \mathcal{C}$ with $v \in L$. Let $c_{1} \in(C \cap M) \backslash L$. Then the inner product $\left\langle c_{1}, u\right\rangle \neq 0$. Since v is in the relative interior \mathcal{C} of the set $C \cap M$ and $c_{1} \in$ $C \cap M$, by [Theorem II.6.4, [?]] we can find an $\epsilon>0$ s.t. $c_{2}:=-\epsilon c_{1}+(1+\epsilon) v$ is in $C \cap M$. Since $v \in L$ and $u \perp L$, we have $\left\langle c_{2}, u\right\rangle=-\epsilon\left\langle c_{1}, u\right\rangle$. The number $\left\langle c_{2}, u\right\rangle$ is then $\neq 0$ and has opposite sign to $\left\langle c_{1}, u\right\rangle$. Write $c_{i}=\left\langle c_{i}, u\right\rangle u+h_{i}$ where $h_{i} \in L$ for $i=1,2$. Then $\left\langle c_{i}, u\right\rangle u \in(C \cap M)+L$. It follows, due to the signs of the coefficients, that both $u,-u \in C \cap M+L$, and so $\mathbb{R} \cdot u \in C \cap M+L$, whence $M=\mathbb{R} \cdot u+L \subset C \cap M+L$, that is contrary to the hypotheses $L+C \cap M \neq M$.

Since $\mathcal{C} \cap L=\emptyset$, one of the half-spaces associated to the hyperplane L in M must contain \mathcal{C} entirely, for if \mathcal{C} contained points x and y in the two opposing half-spaces, some point of the line segment between x and y would be in L, that is impossible. The corresponding closed half-space of M must then contain the closure

$$
\overline{\mathcal{C}}=\overline{\operatorname{ri}(C \cap M)}=\overline{C \cap M}=C \cap M .
$$

Then there is a unit vector $x_{0} \in M$, namely one of the vectors u or $-u$ orthogonal to L in M, s.t. $\left\langle c, x_{0}\right\rangle \geq 0$ for all $c \in C \cap M$. Extend f by taking $F x_{0}>\|f\| a^{-1}$. Then for any $c \in C \cap M$, the orthogonal decomposition

$$
c=\lambda x_{0}+h \quad(\lambda \in \mathbb{R}, h \in L)
$$

gives $0 \leq\left\langle c, x_{0}\right\rangle=\lambda\left\|x_{0}\right\|^{2}+0=\lambda$. To prove that $F c \geq 0$ with strict inequality if $c \neq 0$, consider two cases.

If $f h \geq 0$, we obtain $F c=\lambda F x_{0}+f h \geq 0$, and $F c \neq 0$ unless both $\lambda, f h=0$ which means $c=h \in C \cap L$ and $f h=0$ that implies $c=0$ by our hypotheses.

If $f h<0$, by (3) we have

$$
|f h| \leq\|f\|\|h\| \leq\|f\| a^{-1} d(h, C) \leq\|f\| a^{-1}\|h-c\| \leq\|f\| a^{-1} \lambda
$$

whence $F c=\lambda F x_{0}+f h \geq\left(F x_{0}-\|f\| a^{-1}\right) \lambda \geq 0$, with strict inequality because $F c=0$ only when $\lambda=0$ in which case $c=h \in C \cap L \mathbb{R}$ ightarrow $f h \geq$ 0 that is impossible when $f h<0$.

For any multiindex $i=\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{Z}_{+}^{n}$ we write as usual $i!=i_{1}!\cdots i_{n}!$, $|i|=i_{1}+\cdots+i_{n}$ and $x^{i}=x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}$ for a variable $x=\left(x_{1}, \ldots, x_{n}\right)$. Also, $i \leq j$ means $i_{1} \leq j_{1}, \ldots, i_{n} \leq j_{n}$. Let $\operatorname{deg} p$ denote the degree of a polynomial p. Let p_{h} denote the homogeneous part of maximal degree of p.

Let $G L(n)$, resp. $O(n)$ denote as usual the group of all invertible, resp. orthogonal linear maps on \mathbb{R}^{n}.

Remind that a positive definite form in n variables is a polynomial $p=$ $\sum_{i n j=1}^{n} a_{i j} X_{i} X_{j}$ s.t. the $n \times n$ matrix $\left[a_{i j}\right]_{i . j=1}^{n}$ is positive definite, namely $\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}>0$ for every vector $\left(x_{i}\right)_{i=1}^{n} \neq 0$ in \mathbb{R}^{n} or, equivalently, s.t. $p(x) \geq c\|x\|^{2}$ for some constant $c=c_{p}>0\left(\Leftrightarrow \lim _{\|x\| \rightarrow \infty} p(x)=+\infty\right.$, too $)$.

Definition We call an arbitrary polynomial $p \in \mathbb{R}[X]$ positive definite if there exist constants $c>0$ and R s.t.

$$
p(x) \geq c\|x\|^{2}
$$

for all $x \in \mathbb{R}^{n}$ with $\|x\| \geq R$, or, equivalently, if there exist $c>0$, c^{\prime} s.t.

$$
p(x)+c^{\prime} \geq c\|x\|^{2} \quad \forall x \in \mathbb{R}^{n}
$$

condition that easily proves also to be equivalent to

$$
\lim _{\|x\| \rightarrow \infty} p(x)=+\infty
$$

Let $P=P_{n}=\left\{p \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]: p\right.$ is positive definite $\}$.
Remark 2 (a) If $p=\sum_{i, j=1}^{n} a_{i j} X_{i} X_{j}+\sum_{i=1}^{n} b_{i} X_{i}+c$, then $p \in P_{n} \Leftrightarrow$ the form $\sum_{i, j=1}^{n} a_{i j} X_{i} X_{j}$ is positive definite.
(b) P_{n} is a convex cone, stable under multiplication.
(c) If $p \in P_{n}$, then for every $T \in G L(n), x_{0} \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$ the polynomial $p\left(T X+x_{0}\right)+c$ also is in P_{n}.
(d) If $X=\left(X^{1}, \ldots, X^{k}\right)$ is a partition of the set $X=\left(X_{1}, \ldots, X_{n}\right)$ of variables and $p_{j} \in \mathbb{R}\left[X^{j}\right] \subset \mathbb{R}[X]$ is a positive definite form in $\mathbb{R}\left[X^{j}\right]$ for each $j=\overline{1, k}$ then $p_{1}+\cdots+p_{k} \in P_{n}$.
(e) P_{n} is the minimal set containing all polynomials $p_{1}+\cdots+p_{k}$ with $1 \leq k \leq n$ from (e) and stable under the operations from (b) and (c).
(f) If $p \in P$, then $\operatorname{deg} p$ must be even ≥ 2.
(g) For p homegeneous, $p \in P \Leftrightarrow \inf _{\|x\|=1} p(x)>0 \Leftrightarrow p(x) \geq c\|x\|^{\operatorname{deg} p} \forall x$ for some $c>0$.
(h) If the homogeneous part p_{h} of p is in P, then $p \in P$, but the converse is not true: for example, the polynomial $p=X_{1}^{4}+X_{2}^{2} \in \mathbb{R}\left[X_{1}, X_{2}\right]$ is in P_{2} while $p_{h}=X_{1}^{4} \notin P_{2}$.

We remind from [?] the following lemma.
Lemma 3 For any $p \in \mathbb{R}[X]$ there exists a unique minimal linear subspace $Y \subset \mathbb{R}^{n}$ s.t. $p=p \circ P_{Y}$.

Let supp p denote the unique minimal linear subspace provided by Lemma 3. We call supp p the support of the polynomial p.

Lemma 4 Let $P: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be linear s.t. $P^{2}=P$ and $\operatorname{dim} \operatorname{im} P=n-1$. If $p \in \mathbb{R}[X]$ s.t. $p=p \circ P$, then $p=p \circ P_{\operatorname{ker}_{\left(I-P^{*}\right)}}$.

Proof. Let $Z=\operatorname{ker}\left(I-P^{*}\right)$. Since P is a projection onto a hyperplane, $I-P$ is a projection onto a 1 -dimensional space. Then there exist some vectors $v, w \in \mathbb{R}^{n}$ s.t. $x-P x=\langle x, v\rangle w$ for all $x \in \mathbb{R}^{n}$. The equality $P^{2}=P$ is equivalent to $\langle v, w\rangle=1$. We can assume that $\|w\|=1$, replacing w by $\|w\|^{-1} w$ and v by $\|w\| v$. Set $e_{1}=(1,0, \ldots, 0) \in \mathbb{R}^{n}$. Let $O \in O(n)$ s.t. $O e_{1}=w$. Let $Q=O^{*} P O$ and $q=p \circ O$. Since $p=p \circ P$, we have $q \circ Q=q$. Write $O^{*} v=\left(a_{1}, \ldots, a_{n}\right)$. The equalities $1=\langle v, w\rangle=$ $\left\langle O^{*} v, O^{*} w\right\rangle=\left\langle\left(a_{1}, \ldots, a_{n}\right), e_{1}\right\rangle=a_{1}$ show that $a_{1}=1$. It follows that $Q x=$ $x-\langle O x, v\rangle O^{*} w=x-\left\langle x, O^{*} v\right\rangle e_{1}$. Hence for every $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, we have $\left\langle\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(1, a_{2}, \ldots, a_{n}\right)\right\rangle=x_{1}+a_{2} x_{2}+\cdots a_{n} x_{n}$ and so

$$
\begin{aligned}
Q x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) & -\left\langle\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(1, a_{2}, \ldots, a_{n}\right)\right\rangle(1,0, \ldots, 0) \\
& =\left(-\sum_{j=2}^{n} a_{j} x_{j}, x_{2}, \ldots, x_{n}\right) .
\end{aligned}
$$

Then $\partial_{1} Q=0$, that is, the polynomial function $Q=Q(x)$ does not depend on the variable x_{1}. Hence

$$
\begin{equation*}
Q\left(x_{1}, x_{2}, \ldots, x_{n}\right) \equiv Q\left(0, x_{2}, \ldots, x_{n}\right) \tag{4}
\end{equation*}
$$

Now $(I-P)^{*}=(\langle\cdot, v\rangle w)^{*}=\langle\cdot, w\rangle v$ and hence $Z=\operatorname{ker}\left(I-P^{*}\right)=w^{\perp}$. Then for every $x=\left(x_{j}\right)_{j=1}^{n} \in \mathbb{R}^{n}$ we have

$$
P_{O^{*} Z} x=O^{*} P_{w^{\perp}} O x=O^{*}\left(I-P_{\mathbb{R} \cdot w}\right) O x=
$$

$$
\begin{gathered}
O^{*}(O x-\langle O x, w\rangle w)=x-\left\langle x, O^{*} w\right\rangle O^{*} w \\
=x-\left\langle x, e_{1}\right\rangle e_{1}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)-\left(x_{1}, 0, \ldots, 0\right)=\left(0, x_{2}, \ldots, x_{n}\right) .
\end{gathered}
$$

Then, using (4) also, we obtain $q\left(P_{O^{*} Z} x\right)=q\left(0, x_{2}, \ldots, x_{n}\right)=q(x)$, namely $q \circ P_{O^{*} Z}=q$. Hence $p \circ O P_{O^{*} Z} O^{*}=p$. But $P_{O^{*} Z}=O^{*} P_{Z} O$, and so, $p \circ P_{Z}=p$.

Lemma 5 Let $\tilde{\pi}, \tilde{q}, \tilde{r}$ be polynomials with $\operatorname{deg} \tilde{r}<\operatorname{deg} \tilde{q}(<\operatorname{deg} \tilde{\pi} ?)$ and \tilde{q} homogeneous of degree k. Write $\tilde{q}=\sum_{j=0}^{k} P_{j} X_{n}^{j}$ with $P_{j} \in \mathbb{R}\left[X^{\prime}\right]$ homogeneogous of degree $k-j$. Suppose there is an index $j \in\{1, \ldots, k-1\}$ s.t. $P_{j} \not \equiv 0$. Suppose also that $\tilde{\pi} \in \mathbb{R}\left[X^{\prime}\right]$. Then $e^{\tilde{\pi}+\tilde{q}+\tilde{r}} \notin L^{1}$.

Lemma 6 Let $\pi, q, r \in \mathbb{R}[X]$ s.t. $\operatorname{deg} r<\operatorname{deg} q(<\operatorname{deg} \pi$?) and q is homogeneous. Let $Y \subset \mathbb{R}^{n}$ be a linear subspace s.t. $\pi=\pi \circ P_{Y}$. Suppose that $\sup \{d(z, Y): z \in \operatorname{supp} q\|z\|=1, q(z) \geq 0\}=1$. Then $e^{\pi+q+r} \notin L^{1}$.

Remind that we have obtained in [1] the following theorem.
Theorem 7 Let $p \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ be arbitrary. Set $f(t)=e^{p(t)}$ for $t \in \mathbb{R}^{n}$. The following statements are equivalent:
(a) The function $f=e^{p}$ is Lebesgue integrable on \mathbb{R}^{n}.
(b) The polynomial $-p$ is positive definite in $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$.

The idea is to be used firstly can be described by the following elementary example.
Example: $n=1, m=1$
In this case, the equations of moments are:
$\int e^{x_{0}+x_{1} t+x_{2} t^{2}} d t=g_{0}, \int t e^{x_{0}+x_{1} t+x_{2} t^{2}} d t=g_{1}, \int t^{2} e^{x_{0}+x_{1} t+x_{2} t^{2}} d t=g_{2}$
$\Rightarrow x_{1} g_{0}+2 x_{2} g_{1}=0, g_{0}+x_{1} g_{1}+2 x_{2} g_{2}=0$
$\Rightarrow x_{1}=x_{1}(g), x_{2}=x_{2}(g)$ by solving the system of equations $f_{1}\left(x_{1}, x_{2}\right)=0$, $f_{2}\left(x_{1}, x_{2}\right)=0$ from above
(while x_{0} can be obtained from $\int_{\mathbb{R}} e^{x_{0}+x_{1} t+x_{2} t^{2}} d t=g_{0}$)

Proof: Leibniz-Newton formula

$$
\begin{gathered}
\int_{-\infty}^{\infty} \frac{d}{d t}\left(e^{x_{0}+x_{1} t+x_{2} t^{2}}\right) d t=\left.e^{x_{0}+x_{1} t+x_{2} t^{2}}\right|_{t=-\infty} ^{t=+\infty}=0 \\
\Rightarrow \int_{-\infty}^{\infty}\left(x_{1}+2 x_{2} t\right) e^{x_{0}+x_{1} t+x_{2} t^{2}} d t=0, \text { that is, } \\
x_{1} g_{0}+2 x_{2} g_{1}=x_{1} \int e^{x_{0}+x_{1} t+x_{2} t^{2}} d t+2 x_{2} \int t e^{x_{0}+x_{1} t+x_{2} t^{2}} d t=0
\end{gathered}
$$

and we similarly use $\int_{-\infty}^{\infty} \frac{d}{d t}\left(t e^{x_{0}+x_{1} t+x_{2} t^{2}}\right) d t=0$

2.1 Notions of multivariable moments problems

Fix $n, m \in \mathbb{N}$

Problem:

Characterize those sets $g=\left(g_{i}\right)_{i \in \mathbb{Z}_{+}^{n},|i| \leq 2 m}$ of real numbers g_{i} that admit nonnegative representing measures on \mathbb{R}^{n} with respect to the powers $t^{i}(|i| \leq$ $2 m$), that is,

$$
\int_{\mathbb{R}^{n}} t^{i} d \mu(t)=g_{i} \quad\left(i \in \mathbb{Z}_{+}^{n},|i| \leq 2 m\right)
$$

where we used the multiindex notation,
$i=\left(i_{1}, \ldots, i_{n}\right) \quad|i|=i_{1}+\cdots+i_{n}$
$t=\left(t_{1}, \ldots, t_{n}\right) \quad t^{i}=t_{1}^{i_{1}} \cdots t_{n}^{i_{n}}$
$\mu: \operatorname{Bor}\left(\mathbb{R}^{n}\right) \rightarrow[0, \infty)$ measure
s.t. $t^{i} \in L^{1}\left(\mathbb{R}^{n}, m\right) \forall i$ with $|i| \leq 2 m$

We call μ a representing measure for g
We call $\int t^{i} d \mu(t)$ the moments of μ
If $\mu=f d t$ with $f \in L^{1}\left(\mathbb{R}^{n}, d t\right)$, we call f a representing density for g
Example $1 \quad n=1, m=$ arbitrary, $g=\left(g_{i}\right)_{i=0}^{2 m}$
Theorem (Hamburger, Markov, Chebyshev,...) A set $g=\left(g_{0}, g_{1}, \ldots, g_{2 m}\right)$ is a sequence of moments of some nontrivial representing density $f \geq 0$, that
is,

$$
\int_{-\infty}^{\infty} t^{i} f(t) d t=g_{i} \quad(i=0, \ldots, 2 m)
$$

if and only the Hankel matrix

$$
H_{g}:=\left[g_{i+j}\right]_{i, j \leq m}
$$

is positive definite, namely $\sum_{i, j=0}^{m} g_{i+j} \lambda_{i} \lambda_{j}>0$ for all $\left(\lambda_{0}, \ldots, \lambda_{m}\right) \neq 0$, or equivalently,

$$
g_{0}>0, g_{0} g_{2}-g_{1}^{2}>0, \ldots, \operatorname{det} H_{g}>0
$$

Proof

- Riesz-Haviland's theorem: g is a set of moments \Leftrightarrow the functional L : $X^{i} \mapsto g_{i}$ satisfies $L p \geq 0$ for all polynomials $p \geq 0\left(L p=\int p d \mu\right)$
- On the real line, $p \geq 0 \Leftrightarrow p=\sum q^{2}=$ sum of squares of polynomials $q=\sum_{i} \lambda_{i} X^{i}$
$-L\left(q^{2}\right)=L\left(\sum_{i, j} \lambda_{i} \lambda_{j} X^{i+j}\right)=\sum_{i, j} \lambda_{i} \lambda_{j} g_{i+j}$

In this case (real line), various numerical algorithms can provide approximate solutions $\mu=f d t$

Example $2 \quad m=1, n=$ arbitrary, $g=\left(g_{i}\right)_{|i| \leq 2}$
Since any polynomial of degree 2 in several variables is a sum of squares, we obtain the (also, well known):

Theorem A set $g=\left(g_{i_{1}, \ldots, i_{n}}\right)_{i_{1}+\cdots+i_{n} \leq 2}$ has representing measures $\mu \geq 0$ on $\mathbb{R}^{n} \Leftrightarrow$

$$
\sum_{i, j \in \mathbb{Z}_{+}^{n} ;|i|,|j| \leq m} g_{i+j} \lambda_{i} \lambda_{j} \geq 0
$$

for all $\left(\lambda_{i}\right)_{|i| \leq m}$.
In this case (moments of order 2), there exist elementary ways of finding solutions μ.

In the general case, for arbitrary n and $m(\geq 2)$, no such characterizations or analytic solutions are known (there are positive polynomials that are not sums of squares).

We remind from [] the following basic result.
Theorem Let $g=\left(g_{i}\right)_{\in \mathbb{Z}_{+}^{n},|i| \leq 2 m}$ be a set of powers moments of a measure $\mu=f d t+\nu \geq 0$, with $f \in L^{1}\left(\mathbb{R}^{n}, d t\right) \backslash\{0\}$ and ν singular with respect to $d t$. Namely,

$$
\int_{\mathbb{R}^{n}} t^{i} d \mu(t)=g_{i}(|i| \leq 2 m)
$$

Then there exist $x_{i} \in \mathbb{R}(|i| \leq 2 m)$, uniquely determined by g, such that the polynomial

$$
p(t):=\sum_{|j| \leq 2 m} x_{j} t^{j}
$$

satisfies $p(t) \leq-c\|t\|^{2}+c^{\prime}$ and

$$
\int_{\mathbb{R}^{n}} t^{i} \exp \left(\sum_{|j| \leq 2 m} x_{j} t^{j}\right) d t=g_{i} \quad(|i| \leq 2 m)
$$

2.2 On the maximum entropy principle

Let

$$
V:(\Omega, \mathcal{A}, P) \rightarrow(T, m)
$$

be a random variable with values in T and absolutely continuous repartition

$$
P \circ V^{-1}=\mu=f m
$$

where (Ω, \mathcal{A}, P) is a probability field and T is a measurable space.
If $T=$ finite and $m:=$ the normalized cardinal measure:
Theorem (Shannon) The average of the minimum amount of information necessary to determine the position of V in T equals the entropy $H(f)$ of V,

$$
H(f):=-\int_{\Omega} \log _{2} f(V(\omega)) d P(\omega)=-\sum_{t \in T} f(t) \log _{2} f(t)
$$

In general, the degree of randomness of V is measured by

$$
H(V):=-\int_{\Omega} \ln f \circ V d P \quad\left(=-\int_{T} f \ln f d m\right) .
$$

Suppose the repartition f of V is unknown but we can find the average values g_{i} of some quantities u_{i} depending on V.

The available data on V are thus given by the knowledge of the numbers

$$
\begin{equation*}
g_{i}:=\int_{\Omega} u_{i}(V(\omega)) d P(\omega)=\int_{T} u_{i}(t) f(t) d m(t) \tag{5}
\end{equation*}
$$

The problem is now to choose the most reliable f, by using all this, and only this information.

Solution: $f=f_{*}$, maximizing $H(\cdot)$ subject to eqs. (5)
Formula: $f_{*}(t)=\exp \sum_{i} x_{i} u_{i}(t)$
Other motivations for H :

- Let $T=\mathbb{R}$ and $m=d t$;

Boltzmann's integral formula for the physical entropy,

$$
H(f)=-\int_{\mathbb{R}} f(t) \ln f(t) d t .
$$

- Theorem (Van Campenhout; Cover) Let $T=[a, b]$ be endowed with $m=d t$. Let V be a random variable with uniform distribution on T. Let V_{1}, V_{2}, \ldots be independent copies of V.

Then the conditional probability of V given the observation

$$
k^{-1} \sum_{p=1}^{k} u_{i}\left(V_{p}\right)=g_{i} \quad(p=1,2, \ldots)
$$

converges to f_{*} as $k \rightarrow \infty$.

Suppose we look for a joint repartition

$$
f m:=P \circ\left(V_{1}, \ldots, V_{n}\right)^{-1}
$$

of n random variables V_{1}, \ldots, V_{n} with values in \mathbb{R} by knowing only the average values

$$
g_{i}=\int_{\Omega} V_{1}^{i_{1}} \cdots V_{n}^{i_{n}} d P=\int_{\mathbb{R}^{n}} t_{1}^{i_{1}} \cdots t_{n}^{i_{n}} f(t) d t
$$

for all multiindices $i=\left(i_{1}, \ldots, i_{n}\right)$ with $|i| \leq 2 m$.
Then let $T:=\mathbb{R}^{n}, m=d t, u_{i}(t)=t^{i}$ and maximize

$$
H(f):=-\int f \ln f d m
$$

among all absolutely continuous measures $\mu=f m \geq 0$ having the prescribed moments

$$
\int t^{i} f(t) d t=g_{i} \quad(|i| \leq 2 m)
$$

Conclusion: $f_{*}(t)=\exp p(t), p(t)=\sum_{|i| \leq 2 m} x_{i} t^{i}$
Problem: computation of the coefficients x_{i}

3 Method of the stationary phase

$$
\begin{gathered}
\mathcal{M}=\mathcal{M}_{n, m}:=\left\{i \in \mathbb{Z}_{+}^{n}:|i| \leq m, i \neq 0\right\} \\
M=M_{n, m}:=\operatorname{card} \mathcal{M} \\
\tau: \mathbb{R}^{n} \rightarrow \mathbb{R}^{M}, \quad \tau(t):=\left(t^{i}\right)_{i \in \mathcal{M}}
\end{gathered}
$$

Lemma There is a map

$$
a:\left\{i \in \mathbb{Z}_{+}^{n}:|i| \leq 2 m\right\} \rightarrow\left\{\alpha \in \mathbb{Z}_{+}^{M}:|\alpha| \leq 2\right\}
$$

s.t.

$$
t^{i} \equiv \tau(t)^{a(i)} \forall i
$$

Instead of the variables t_{1}, \ldots, t_{n}, we introduce new variables T_{1}, \ldots, T_{M}, s.t.
the monomials t^{i} of order $|i| \leq 2 m$
can be expressed as
monomials T^{α} with $\alpha=a(i)$ of order $|\alpha| \leq 2$,
by

$$
t^{i}=\left.T^{\alpha}\right|_{T=\tau(t)}
$$

Example $n=1, m=2 \quad \tau(t)=\left(t, t^{2}\right)$
$\mathcal{M}=\{1,2\}, M=2 ; \quad \mathbb{R}^{n}=\{t\}_{t \in \mathbb{R}}, \mathbb{R}^{M}=\left\{\left(T_{1}, T_{2}\right)\right\}_{T_{1}, T_{2} \in \mathbb{R}}$
The variables T_{1}, T_{2} are: " $T_{1}=t$ ", " $T_{2}=t^{2}$ "
(dependent, $T_{2}=T_{1}^{2}$, when restricted to the image of τ :

$$
\begin{aligned}
& t^{0}=1=\left(t, t^{2}\right)^{(0,0)} \\
& t^{1}=T_{1}=\left(t, t^{2}\right)^{(1,0)} \\
& t^{2}=T_{1}^{2}=\left(t, t^{2}\right)^{(2,0)} \\
& \left.t^{3}=T_{1} T_{2}=\left(t, t^{2}\right)^{(1,1)=a(3)} ; \text { here } t^{3}=\tau(t)^{a(3)}\right) \\
& t^{4}=T_{2}^{2}=\left(t, t^{2}\right)^{(0,2)}
\end{aligned}
$$

The equations of moments $\int_{\mathbb{R}^{n}} t^{i} e^{p(t)} d t=g_{i}$ become

$$
\int_{\mathbb{R}^{M}} T^{\alpha} e^{P(T)} d \mu(T)=g_{i}
$$

where:
$P(T)=$ polynomial of degree 2 s.t. $\left.P\right|_{T=\tau(t)}=p(t) ;$
μ is a singular measure of integration along the n-dimensional submanifold $\{\tau(t)\}_{t}$ of \mathbb{R}^{M};
write $\int T^{\alpha} e^{P(T)} d \mu(T)=\left\langle\mu, T^{\alpha} e^{P(T)}\right\rangle=g_{i}$
$\psi(T):=e^{-\|T\|^{2}}$
$T=\left(T_{1}, \ldots, T_{M}\right) \in \mathbb{R}^{M}$ independent variables
$\psi_{k}(T):=c_{k} \psi(k T)=c_{k} e^{-k^{2}\|T\|^{2}}$
c_{k} constant s.t. $\int_{\mathbb{R}^{M}} \psi_{k}(T) d T=1 \forall k \geq 1$
$\psi_{k} \rightarrow \delta$
in $\mathcal{D}^{\prime}\left(\mathbb{R}^{M}\right)$, as $k \rightarrow \infty$
$\mu * \psi_{k} \rightarrow \mu * \delta=\mu$

$$
\begin{gather*}
\left\langle\mu * \psi_{k}, T^{\alpha} e^{P(T)}\right\rangle \rightarrow\left\langle\mu, T^{\alpha} e^{P(T)}\right\rangle=g_{i} \tag{6}\\
\left\langle\mu * \psi_{k}, T^{\alpha} e^{P(T)}\right\rangle=\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{M}} \psi_{k}(T-\tau(\lambda)) T^{\alpha} e^{P(T)} d T d \lambda \tag{7}\\
=\int_{\mathbb{R}^{M}} T^{\alpha} d \tilde{\mu}(T) \\
\tilde{\mu}=\left[c_{k} \int_{\mathbb{R}^{n}} e^{-k^{2}\|T-\tau(\lambda)\|^{2}+P(T)} d \lambda\right] d T
\end{gather*}
$$

$\tilde{\mu}$ is a continuous integral of gaussian densities
(6), (7) \Rightarrow for large k, we get a small perturbation of the moments equations

$$
\int_{\mathbb{R}^{M}} T^{\alpha} d \tilde{\mu}(T) \approx g_{i}
$$

for which "the coefficients of p in e^{p} are computable"
For every fixed $\lambda \in \mathbb{R}^{n}$ and $j \in \mathcal{M}\left(\subset \mathbb{Z}_{+}^{n}\right)$, by Stokes' formula on large spheres, we have:

$$
\begin{aligned}
& \int_{\mathbb{R}^{M}} \frac{d}{d T_{j}}\left(c_{k} e^{-k^{2}\|T-\tau(\lambda)\|^{2}} \cdot e^{P(T)}\right) d T=0 \Rightarrow \\
& -2 \int_{\mathbb{R}^{M}} k^{2} c_{k} e^{-k^{2}\|T-\tau(\lambda)\|^{2}}\left(T_{j}-\lambda^{j}\right) e^{P(T)} d T \\
& \quad+\int_{\mathbb{R}^{M}} \psi_{k}(T-\tau(\lambda)) \frac{d}{d T_{j}}\left(e^{P(T)}\right) d T=0
\end{aligned}
$$

$\left(\psi_{k}(T)=c_{k} e^{-k^{2}\|T\|^{2}}\right)$. After integration over $\mathbb{R}^{n}:$
2nd term $=\left\langle\mu * \psi_{k}, \frac{d}{d T_{j}}\left(e^{P(T)}\right)\right\rangle \rightarrow\left\langle\mu, \frac{d}{d T_{j}}\left(e^{P(T)}\right)\right\rangle=$ a linear combination of the coefficients x_{i}, with coefficients depending on known data g

1st term $=$ rational expression in terms of integrals of the form

$$
\int u(y) e^{i k f(y)} d y
$$

where $y=$ either T or t, and f is complex-valued (for ex. $f(y)=i\|y-\tau(\lambda)\|^{2}$)

Theorem (Hörmander, ...) Let $f=f(y)$ be a complex valued C^{∞} function in a neighborhood of 0 in \mathbb{R}^{m} s.t.

$$
\operatorname{Im} f \geq 0, f(0)=0, f^{\prime}(0)=0, \operatorname{det} f^{\prime \prime}(0) \neq 0
$$

Then there is a compact neighborhood $K=K_{f}$ of 0 s.t. for every $u \in C_{0}^{\infty}(K)$ and $p \geq 1$ we have

$$
\begin{gather*}
\left|\int u e^{i k f} d y-R_{k} \cdot\left(L_{0} u+\frac{1}{k} L_{1} u+\frac{1}{k^{2}} L_{2} u+\cdots+\frac{1}{k^{p-1}}\right)\right| \\
\leq C_{p} \frac{1}{k^{p+\frac{m}{2}}} \tag{8}
\end{gather*}
$$

where $R_{k}=\left(\operatorname{det}\left(k f^{\prime \prime}(0)\right) / 2 \pi i\right)^{-1 / 2}$
and each L_{j} is a differential operator of order $2 j$ acting on u at 0 , given by

$$
L_{j} u=\sum_{\nu-\mu=j} \sum_{2 \nu \geq 3 \mu} i^{-j} 2^{-\nu}\left\langle f^{\prime \prime}(0) D, D\right\rangle^{\nu}\left(g^{\mu} u\right)(0) / \mu!\nu!
$$

where $D=\left(\frac{1}{i} \frac{\partial}{\partial y_{1}}, \ldots, \frac{\partial}{\partial y_{m}}\right)$ and

$$
g(y)=f(y)-f(0)-\left\langle f^{\prime \prime}(0) y, y\right\rangle / 2
$$

Moreover, the coefficients of L_{j} are rational homogeneous functions of degree $-j$ in $f^{\prime \prime}(0), \ldots, f^{(2 j+2)}(0)$ with denominator $\left(\operatorname{det} f^{\prime \prime}(0)\right)^{3 j}$. In every term the total number of derivatives of u and $f^{\prime \prime}$ is at most $2 j$.

Also, each constant $C_{p}=C_{p}(f, u)$ is bounded "when f, f^{\prime}, u are controlled".
Example of use of (8): $p=2, m=N, y=T$,

$$
\begin{aligned}
& f(y)=i\|y-\tau(\lambda)\|^{2} ; \text { for simplicity, } \lambda:=0 \\
& u(y)=y^{\alpha} e^{P(y)} \text { with } \alpha \neq 0 ;
\end{aligned}
$$

we multiply the equation

$$
\begin{gathered}
\int u e^{i k f} d y=R_{k}\left(L_{0} u+\frac{1}{k} L_{1} u+O\left(\frac{1}{k^{2}}\right)\right) \\
=R_{k}\left(u(0)+\frac{1}{k}(\Delta u)(0)+O\left(\frac{1}{k^{2}}\right)\right)=R_{k}\left(\frac{1}{k} \Delta u(0)+O\left(\frac{1}{k^{2}}\right)\right)
\end{gathered}
$$

by k, then divide the result by

$$
\int e^{i f} d y=R_{k} \cdot\left(1+O\left(\frac{1}{k}\right)\right)
$$

and obtain that

$$
\frac{k \int u e^{i k f} d y}{\int e^{i k f} d y}=\frac{\Delta u(0)+O\left(\frac{1}{k}\right)}{1+O\left(\frac{1}{k^{2}}\right)}=\Delta u(0)+O\left(\frac{1}{k}\right),
$$

that provides

$$
\begin{gathered}
k \int e^{-k\|T-\tau(\lambda)\|^{2}} T^{\alpha} e^{P(T)} d T=(\Delta u) \cdot \int \psi_{k}(T-\tau(\lambda)) e^{P(T)} d T \\
+O(1 / k) \rightarrow(\Delta u) \times \text { known data }
\end{gathered}
$$

Integration with resp. to λ gives, since $u=T^{\alpha} e^{P(T)}$, a 1 st term $=$ quadratic function of x, with coefficients depending on g
etc
Conclusions:

- larger p are necessary to deal with higher order moments $m=3,4, \ldots$;
- also, f is not always quadratic; may be given by the implicit function theorem;
- this method can be used, in principle, for arbitrary data n, m etc;
- the usefullness of the results for concrete moments problems would only occur by means of explicitely computing the functions $f_{i}(X)$ in the main Theorem; this seems to be a routine, but difficult task, to be completed in future papers.

References

[1] C. Ambrozie, Infinite dimensional Fenchel duality and truncated moment problems in several real variables, to appear.
[2] C. Ambrozie, Representing densities of the multi-sequences of moments, Hokkaido Math. J., ...
[3] C.-G. Ambrozie, A note on moment problems, Proc. Operator Theory Conf. 17(2000), 21-27, Theta Found., Timisoara.
[4] N.I. Akhiezer, The classical moment problem, Hafner Publ. Co., New York, 1965.
[5] A. Atzmon, A moment problem for positive measures in the unit disc, Pacific J. Math. 59(1975), 317-325.
[6] M. Bakonyi; L. Rodman; I.M. Spitkovsky; H.J. Woerdeman, Positive extensions of matrix functions of two variables with support in an infinite band, C.R. Acad. Sci., Paris, Sér. I 323:8(1996), 859-863.
[7] J.M. Van Campenhout; T.M. Cover, Maximum entropy and conditional probability, IEEE Trans. Inf. Theory IT-27(1981), 483-489.
[8] R.E. Curto; L.A. Fialkow, Solution of the truncated complex moment problem for flat data, Memoirs of the A.M.S. 1996.
[9] C. Foiaş; A.E. Frazho, A commutant lifting approach to interpolation problems, Operator Theory: Advances and Applications, Birkhäuser, 1990.
[10] J.-P. Gabardo, Trigonometric moment problems for arbitrary finite subsets of \mathbb{Z}^{n}, Trans. Am. Math. Soc. 350:11(1998), 4473-4498.
[11] S. Guiaşu, Information theory with applications, Mc-Graw Hill, London, 1977.
[12] E.T. Jaynes, On the rationale of maximum entropy methods, Proc. IEEE 70(1982), 939-952.
[13] G. Polya; G. Szegö, Problems and theorems in Analysis, II, SpringerVerlag, Berlin, 1971.
[14] W. Rudin, The extension problem for positive-definite functions, Illinois J. Math. 7(1963), 532-539.
[15] F.-H. Vasilescu, Moment problems for multi-sequences of operators, J. Math. Anal. Appl. 219:2(1998), 246-259.

Institute of Mathematics AV CR
Zitna 25, 11567 Prague 1
Czech Republic
ambrozie@math.cas.cz

[^0]: *Supported by grants IAA100190903 of GA AV, 201/09/0473 GA CR

