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Abstract. We study several classical duality results in the theory of ten-
sor products, due mostly to Grothendieck, providing new proofs as well as
new results. In particular, we show that the canonical mapping Y ∗ ⊗π X →
(L(X, Y ), τ)∗ is not always injective, answering a problem of Defant and Floret.
We use the machinery of vector measures to give new proofs of the dualitites
(X⊗ε Y )∗ = N (X, Y ∗), whenever Y ∗ has the RNP, and (a slight improvement

of) the result of Rosenthal (X ⊗ε Y )∗ ⊂ F(X, Y ∗), whenever `1 6↪→ Y .

1. Inroduction and preliminaries

The goal of the present note is to study several classical duality results in the theory
of tensor products, due mostly to Grothendieck, providing new proofs as well as
new results.
An important result in the topological theory of tensor products is the theorem of
Grothendieck that gives a description the linear topological dual of the space of
bounded linear operators L(X, Y ) equipped with the τ -topology of uniform conver-
gence on compact sets. According to this result the continuous linear functionals
on (L(X, Y ), τ) consist of all

φ(T ) =
∞∑

i=1

〈y∗i , Txi〉, xi ∈ X, y∗i ∈ Y ∗,
∞∑

i=1

‖xi‖‖y∗i ‖ < ∞ (1)

This formulation of Grothendieck’s theorem is taken from [LT77] (Prop. 1.e.3.). Its
advantage is that it uses only elementary functional analytic language. However, it
is more natural to rephrase this result using the language of tensor products: The
canonical mapping (which is described by the formula (1)) Y ∗⊗πX → (L(X, Y ), τ)∗

is surjective. This is the formulation to be found in [DF93] (Prop. 5.5). A natural
question posed e.g. by Defant and Floret [DF93], p.65, is whether the canonical
mapping above is also injective? In Theorem 2.5 we give a negative solution to
this problem. We proceed by giving a new proof of the classical duality result
(X⊗εY )∗ = N (X, Y ∗), whenever Y ∗ has the RNP. Our proof avoids the machinery
of integral operators, and uses instead the theory of vector measures (Bochner
integral). Using the same approach, we extend the recent result of Rosenthal which
claims that (X ⊗ε Y )∗ = I(X, Y ∗) ⊂ K(X, Y ∗) iff Y does not contain a copy of
`1. We show that in fact the integral operators are approximable. In the final part
we give a new proof of another celebrated result of Grothendieck which claims that
X∗ has a metric approximation property whenever it is a dual RNP space with the
approximation property (AP for short).
We begin by collecting some basic definitions and results whose proofs may be
found in [DU77], [DF93], [LT77], [Tal84] and the forthcoming monograph [F2]. Our
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notation is standard. By F(X, Y ) we denote the space of all finite rank operators
from L(X, Y ). By Fw∗(X∗, Y ) we denote the w∗ − w continuous operators from
F(X∗, Y ). We denote I(X,Y ) the space of all integral operators. We recall that a
couple 〈L(X, Y ∗), X⊗Y 〉 forms a duality pair defined as follows. For T ∈ L(X,Y ∗),
z =

∑n
i=1 xi ⊗ yi ∈ X ⊗ Y put

〈T, z〉 =
n∑

i=1

〈T (xi), yi〉. (2)

The pairing enables us to introduce the projective norm π on X ⊗ Y as follows.

π(z) = sup{〈T, z〉, ‖T‖ ≤ 1, T ∈ L(X,Y ∗)}. (3)

The projective tensor product X⊗πY is the completion of (X⊗Y, π). Every element
z ∈ X⊗π Y admits a representation z =

∑∞
i=1 xi⊗yi such that

∑∞
i=1 ‖xi‖‖yi‖ < ∞

(WLOG (‖xi‖) ∈ c0 and (‖yi‖) ∈ `1) and

π(z) = inf{
∞∑

i=1

‖xi‖‖yi‖ : z =
∞∑

i=1

xi ⊗ yi} (4)

Moreover, we have

Proposition 1.1. ([DF93], Chap. 3) Let X,Y be Banach spaces. Then the canon-
ical dual pairing gives the linear topological duality

(X ⊗π Y )∗ = L(X,Y ∗). (5)

Closely connected to the projective tensor product X∗ ⊗π Y is the notion of nu-
clear operator. An operator T : X → Y is called nuclear if there exists a pair
of sequences {x∗i }∞i=1 in X∗ and {yi}∞i=1 in Y such that

∑∞
i=1 ‖x∗i ‖‖yi‖ < ∞ and

Tx =
∑∞

i=1〈x∗i , x〉yi. The nuclear norm is defined by

N(T ) = inf{
∞∑

i=1

‖x∗i ‖‖yi‖ : Tx =
∞∑

i=1

〈x∗i , x〉yi}. (6)

The Banach space of nuclear operators is denoted by N (X,Y ). Let J :
∑∞

i=1 x∗i ⊗
yi →

∑∞
i=1 x∗i ⊗ yi be the formal identity mapping defined for all pairs of sequences

{x∗i , }∞i=1 ∈ X∗, {yi}∞i=1 ∈ Y such that
∑∞

i=1 ‖x∗i ‖‖yi‖ < ∞. The formal identity J
is a well-defined quotient mapping J : X∗ ⊗π Y → N (X, Y ). Let X, Y be Banach
spaces. Let τ be the locally convex topology on L(X,Y ) of uniform convergence
on compact sets in X, generated by seminorms ‖T‖K , K ⊂ X norm compact set.

Theorem 1.2. (Grothendieck)
Let X be a Banach space. The following conditions are equivalent:
1. X has the approximation property.
2. For every Banach space Y , Fτ

(X, Y ) = L(X, Y ).
3. For every Banach space Y , Fτ

(Y, X) = L(Y, X).
4. J : X∗ ⊗π X → N (X) is injective, or equivalently it is an isometry.
5. For every Banach space Y , J : Y ∗ ⊗π X → N (Y, X) is injective, or equivalently
it is an isometry.

The next theorem is almost certainly known to specialists. As we have not found
an explicit reference, we include its proof for the convenience of the reader.

Theorem 1.3. Let X be a Banach space. The following conditions are equivalent:
1. X∗ has AP.
2. J : X∗ ⊗π X∗∗ → N (X,X∗∗) is an isometry.
3. For every Banach space Y , J : X∗ ⊗π Y → N (X,Y ) is an isometry.
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Proof. (2) ⇒ (1) It is well-known ([Jar81], p.326) that the formal transposition
mapping t : E⊗π F → F ⊗π E, t(

∑∞
i=1 ei⊗fi) =

∑∞
i=1 fi⊗ei is an isometric linear

isomorphism. Next, we note that N (X, X∗∗) and N (X∗, X∗) are canonically iso-
metric, via the transposition of their elements z =

∑∞
i=1 x∗i⊗x∗∗i ↔ z′ =

∑∞
i=1 x∗∗i ⊗

x∗i . Indeed, N (X, X∗∗) is a quotient (via J) of X∗ ⊗π X∗∗, while N (X∗, X∗) is
a quotient (via J ′) of the isometric transpose t(X∗ ⊗π X∗∗) = X∗∗ ⊗π X∗. The
kernels are described as follows.

Ker(J) = {z =
∞∑

i=1

x∗i ⊗ x∗∗i :
∞∑

i=1

x∗i (x)x∗∗i = 0 for all x ∈ X}. (7)

Ker(J ′) = {z′ =
∞∑

i=1

x∗∗i ⊗ x∗i :
∞∑

i=1

x∗∗i (x∗)x∗i = 0 for all x∗ ∈ X∗}. (8)

Both of these conditions are indeed equivalent to the single condition z ∈ Ker(J) ⇔
t(z) ∈ Ker(J ′), which is to say

∑∞
i=1 x∗∗i (x∗)x∗i (x) = 0 for all x ∈ X, x∗ ∈ X∗.

Using the transposition we may transform (2) of Theorem 1.3 into the equivalent
statement that J ′ : X∗∗ ⊗π X∗ → N (X∗, X∗) is an isometry. By condition (4) of
Theorem 1.2 we conclude that X∗ has the AP. (3) ⇒ (2) is immediate. It remains
to show (1) ⇒ (3). Let 0 6= z =

∑∞
i=1 x∗i ⊗ yi ∈ X∗ ⊗π Y ; our goal is to show that

J(z) 6= 0. WLOG we may assume that
∑∞

i=1 ‖yi‖ < ∞ and limi→∞ ‖x∗i ‖ = 0. We
proceed by contradiction, assuming that J(z)(y) =

∑∞
i=1 x∗i (x)yi = 0 for all x ∈ X.

Given ε > 0, by condition (3) in Theorem 1.2 there is a

F =
n∑

k=1

u∗∗k ⊗ u∗k ∈ F(X∗), such that sup
i
‖F (x∗i )− x∗i ‖ < ε. (9)

We let z′ =
∑∞

i=1 F (x∗i )⊗yi ∈ X∗⊗π Y . Note the important fact that z′ ∈ X∗⊗Y
is actually a finite tensor. Indeed,

z′ =
∞∑

i=1

(
n∑

k=1

u∗∗k (x∗i )u
∗
k)⊗ yi =

n∑

k=1

u∗k ⊗ (
∞∑

i=1

u∗∗k (x∗i )yi). (10)

Next, J(z′) satisfies the following:

J(z′)(x) =
∞∑

i=1

〈F (x∗i ), x〉yi =
∞∑

i=1

〈x∗i , F ∗(x)〉yi = 0, for every x ∈ X. (11)

Hence J(z′) = 0, as an element of K(X, Y ), and since z′ is also a finite tensor we
conclude that z′ = 0 as an element of X∗ ⊗π Y . Hence we have an estimate

π(z) = π(z − z′) = π(
∞∑

i=1

x∗i ⊗ yi −
∞∑

i=1

F (x∗i )⊗ yi) ≤ ε

∞∑

i=1

‖yi‖. (12)

Since ε was arbitrarily small, we conclude that π(z) = 0 as desired. It is clear by
the Banach open mapping theorem that J is an isometry. ¤

2. Dual of (L(X, Y ), τ)

Denote by i : L(X, Y ) → L(X, Y ∗∗) the formal identity embedding. By Proposition
1.1 (and the transposition isometry Y ∗ ⊗π X = t(X ⊗π Y ∗)) we have

(Y ∗ ⊗π X)∗ = L(X, Y ∗∗) = L(Y ∗, X∗). (13)

We consider the w∗-topology on L(X, Y ∗∗), resp. L(Y ∗, X∗), originating from this
duality. Then we have the following.
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Lemma 2.1. The mapping

i : (L(X, Y ), τ) → (L(X, Y ∗∗), w∗) (14)

is continuous. In particular, the dual mapping

i∗ : Y ∗ ⊗π X → (L(X, Y ), τ)∗ (15)

is w − w∗ continuous (the topologies come from the duality pairs described above).

Proof. Every z ∈ Y ∗ ⊗π X admits a representation z =
∑∞

i=1 y∗i ⊗ xi, such that
(‖xi‖) ∈ c0 and (‖y∗i ‖) ∈ `1. Let K = conv{xi}∞i=1 be a compact and convex set
in X. Let U be a τ -open set in L(X, Y ) defined as U = {T : supx∈K ‖T (x)‖ <
1}. Clearly, T ∈ U implies |y∗(T (x))| < ‖y∗‖ for all y∗ ∈ Y ∗, x ∈ K. Thus
|〈T,

∑∞
i=1 y∗i ⊗ xi〉| ≤

∑∞
i=1 ‖y∗i ‖ < ∞ for all T ∈ U , which finishes the proof. The

second result follows by duality. ¤
Let us denote T : L(X, Y ) → L(Y ∗, X∗), T (T ) = T ∗ the conjugation operator. Of
course, T is an isometric embedding whose target space is a dual space, which is
canonically isometric with L(X,Y ∗∗).

Proposition 2.2. Let X, Y be Banach spaces. The canonical image L(X, Y ) ↪→
L(X, Y ∗∗), resp. T (L(X, Y )) ↪→ L(Y ∗, X∗), is w∗-dense if and only if i∗ is injec-
tive.

Proof. L(X, Y ) is w∗-dense in L(X, Y ∗∗) iff for every z ∈ Y ∗ ⊗π X such that
z ∈ L(X,Y )⊥ it holds that z = 0. Alternatively, i∗(z) = 0 implies z = 0 which is
clearly equivalent to the injectivity of i∗. The respective case follows by standard
transposition. ¤
The following is a more complete formulation of the Grothendieck duality result.

Theorem 2.3. (Grothendieck, [DF93], Prop. 5.5)
The mapping i∗ : Y ∗⊗π X → (L(X, Y ), τ)∗ from (15) is surjective. In other words,
the continuous linear functionals on (L(X, Y ), τ) consist of all

φ(T ) =
∞∑

i=1

〈y∗i , Txi〉, xi ∈ X, y∗i ∈ Y ∗,
∞∑

i=1

‖xi‖‖y∗i ‖ < ∞ (16)

In some cases, the mapping i∗ is injective. For example:

Theorem 2.4. ([DF93], p. 65) Let X, Y be Banach spaces. Suppose that either
X or Y ∗ has the AP, or that Y is reflexive. Then the mapping i∗ : Y ∗ ⊗π X →
(L(X,Y ), τ)∗ from (15) is injective. In particular, we may write (L(X,Y ), τ)∗ =
Y ∗ ⊗π X. The pairing is canonical,

〈z, T 〉 =
∞∑

i=1

〈y∗i , Txi〉, T ∈ L(X,Y ), z =
∞∑

i=1

y∗i ⊗ xi ∈ Y ∗ ⊗π X. (17)

Our first main result is contained in the next characterization.

Theorem 2.5. Let Y be a Banach space with the AP. Then the mapping i∗ :
Y ∗ ⊗π X → (L(X, Y ), τ)∗ from (15) is injective for every Banach space X if and
only if Y ∗ has the AP.

Proof. We first assume the injectivity of i∗ for every Banach space X. In fact, the
case X = Y ∗∗ is sufficient in order to prove the direct implication of our theorem.
Our goal is to establish that Y ∗ has the AP. By using Theorem 1.3, it suffices to
show that J : Y ∗ ⊗π X → N (Y, X) is an isometry. Recall that

Ker(i∗) = {z =
∞∑

i=1

y∗i ⊗ xi : 〈z, S〉 =
∞∑

i=1

〈y∗i , S(xi)〉 = 0, for all S ∈ L(X, Y )}

(18)
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As Y is assumed to have the AP, we have by condition (3) in Theorem 1.2 that
for every X, Fτ

(X,Y ) = L(X, Y ). Thus by the bipolar and Hahn-Banach theorem
(18) is equivalent to the next condition.

Ker(i∗) = {z =
∞∑

i=1

y∗i ⊗ xi : 〈z, S〉 =
∞∑

i=1

〈y∗i , S(xi)〉 = 0, for all S ∈ F(X, Y )}

(19)
Next, compare this condition with the condition describing the kernel of J :

Ker(J) = {z =
∞∑

i=1

y∗i ⊗ xi : 〈T, z〉 =
∞∑

i=1

〈T (y∗i ), xi〉 = 0, for all T ∈ Fw∗(Y ∗, X∗)}

(20)
We claim that (19) and (20) are equivalent conditions. Indeed, it suffices to
note that taking the adjoints S → S∗ makes an isometry from F(X, Y ) onto
Fw∗(Y ∗, X∗), and thus a reformulation of (19)

Ker(i∗) = {z =
∞∑

i=1

y∗i ⊗ xi : 〈z, S〉 =
∞∑

i=1

〈S∗(y∗i ), xi〉 = 0, for all S ∈ F(X, Y )}

(21)
is precisely (20). Since i∗ is assumed to be injective, so is J . It is clear by the
Banach open mapping theorem that J is an isometry. This proves that Y ∗ has
indeed the AP. The opposite implication follows from Theorem 2.4. ¤
There exist Banach spaces with the AP whose dual fails the AP. The construction of
such spaces relies of course on the fundamental result of Enflo [Enf73], and is shown
e.g. in [LT77] (Thm. 1.e.7.) (using the method of [J60] and [L71]). Alternatively,
one can use the space constructed in [FJ73].
Therefore we obtain a negative solution to the problem of Defant and Floret. Using
the information from the proof of Theorem 2.5, we get the next corollary.

Corollary 2.6. Let Y be a Banach space with the AP, whose dual Y ∗ fails the AP.
Then i∗ : Y ∗ ⊗π Y ∗∗ → (L(Y ∗∗, Y ), τ)∗ is not injective.

3. Duality of the injective tensor product X ⊗ε Y

In this section we are going to investigate the Banach space dual to the injective
tensor product space X ⊗ε Y . A fundamental result is the following.

Theorem 3.1. (Grothendieck) Let X, Y be Banach spaces. There is an isometry

(X ⊗ε Y )∗ = I(X, Y ∗). (22)

The notion of integral operators is rather abstract. We are going to investigate two
special cases of the above theorem, namely the case when Y is an Asplund space
(equivalently Y ∗ has the RNP) and the more general case when `1 6↪→ Y . Our
approach is to use the theory of vector integration (in the sense of Bochner, resp.
Pettis) to obtain new proofs and new results giving a more concrete description
of I(X, Y ∗). We refer to [DU77] and [Tal84] for definitions and background on
Bochner and Pettis integrals. The dual balls BX∗ , BY ∗ are assumed to be equipped
with the w∗-topology, unless specified otherwise. We will rely on the following
results.

Theorem 3.2. (Schwartz, [Bou83] Cor. 7.8.7)
Let X be an Asplund space (equivalently, X∗ be a RNP space). Then for every
w∗-Radon measure µ on BX∗ , Id : BX∗ → BX∗ is µ-Bochner integrable.
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The following result follows from [Tal84], Corollary 7-3-8.

Theorem 3.3. (Talagrand) Assume that `1 6↪→ X. Then for every w∗-Radon
measure µ on BX∗ , Id : BX∗ → BX∗ is Pettis integrable.

Corollary 3.4. Let Y be an Asplund space, resp. `1 6↪→ Y , and X be an arbitrary
Banach space. Let µ be a Radon measure on (BX∗ , w∗) × (BY ∗ , w

∗). Then I :
BX∗×BY ∗ → Y ∗, I(x∗, y∗) = y∗ is µ-Bochner integrable, resp. µ-Pettis integrable.

Proof. Let P : X∗ × Y ∗ → Y ∗ be the (w∗-continuous) projection. Denote by
η = Pµ the image measure. Since Id : BY ∗ → BY ∗ is η-Bochner integrable by
Theorem , there exist simple functions fn : Y ∗ → Y ∗ such that limn→∞

∫
B∗ ‖fn −

Id‖dη = 0. Let gn : BX∗ × BY ∗ → Y ∗ be simple functions gn = P ◦ fn. Clearly,
limn→∞

∫
B∗ ‖gn − I‖dµ = 0 so I is Bochner integrable.

Pettis case is similar. By the same argument with compositions, we see that I is
Dunford integrable. Now given any w∗-Borel set E ⊂ BX∗ ×BY ∗ , let η = P (µ ¹S)
be a Radon measure on BY ∗ . The Dunford integral satisfies

∫
Id dη ∈ Y ∗, and so∫

E
Idµ =

∫
Id dη ∈ Y ∗. Thus I is Pettis integrable. ¤

We also need a fact, to be found e.g. in [DU77] Lemma VI.3.

Lemma 3.5. Let (S, Σ, µ) be a finite positive measure space and f : S → X be
Bochner integrable. For each ε > 0 there are sequences {xn}∞n=1 in X and {En}∞n=1

in Σ (not necessarily disjoint), such that

∞∑
n=1

χEnxn converges to f absolutely µ− a.e. (23)

∫
‖f‖dµ− ε ≤

∞∑
n=1

‖xn‖µ(Ei) ≤
∫
‖f‖dµ + ε. (24)

The following simple but important results ([DU77] Theorem VIII.5) will be needed.

Lemma 3.6. There is a canonical isometric embedding

j : Fw∗(X∗, Y ) = X ⊗ε Y ↪→ C(BX∗ ×BY ∗) (25)

given by

j(S)(x∗, y∗) = 〈y∗, S(x∗)〉 (26)

Theorem 3.7. (Grothendieck)
Let j : X ⊗ε Y ↪→ C(BX∗ × BY ∗) be the isometric embedding from Lemma 3.6.
Then every φ ∈ (X ⊗ε Y )∗ has a representation as a positive w∗-Radon measure µ
on (BX∗ ×BY ∗ , w

∗ × w∗), so that for z ∈ X ⊗ε Y

〈φ, z〉 =
∫

BX∗×BY ∗

j(z)(x∗, y∗)dµ =
∫

BX∗×BY ∗

〈x∗ ⊗ y∗, z〉dµ. (27)

Moreover, ‖φ‖ = |µ|(BX∗ ×BY ∗).

We now proceed with a new proof of the following classical Grothendick duality
theorem.

Theorem 3.8. (Grothendieck) Let Y ∗ be an RNP space. Then there is an isometry

(X ⊗ε Y )∗ = N (X, Y ∗). (28)

More precisely, every φ ∈ (X ⊗ε Y )∗, ‖φ‖ < 1, is represented by a nuclear operator
T ∈ N (X, Y ∗), T =

∑∞
n=1 x∗n ⊗ y∗n,

∑∞
n=1 ‖x∗n‖‖y∗n‖ < 1 so that for every S ∈

Fw∗(X∗, Y ) = X ⊗ε Y we have



ON SOME DUALITY RELATIONS IN THE THEORY OF TENSOR PRODUCTS 7

〈T, S〉 =
∞∑

n=1

〈y∗n, S(x∗n)〉 (29)

Proof. By Theorem 3.7, every φ ∈ (X ⊗ε Y )∗, ‖φ‖ < 1 is represented by a positive
w∗-Radon measure µ on BX∗×BY ∗ , |µ| < 1. Our goal is to represent φ as a nuclear
operator T ∈ N (X, Y ∗). We are going to define T by using the commutative
diagram:

X
T−−−−→ Y ∗

yi1

xi3

C(BX∗ ×BY ∗)
i2−−−−→ L1(µ)

(30)

where the mappings are defined as follows:
i1(x)(x∗, y∗) = x∗(x). Clearly, ‖i1‖ = 1.
i2 is the formal identity mapping from C(BX∗×BY ∗) to L1(µ). Thus ‖i2‖ = |µ| < 1.
i3 : L1(µ) → Y ∗ is defined by the formula

i3(f) =
∫

BX∗×BY ∗

f(x∗, y∗)y∗dµ. (31)

The integrated function is a product of an integrable scalar function with the map-
ping (x∗, y∗) → y∗. Due to Corollary 3.4 the later is µ-Bochner integrable. Again,
we have ‖i3‖ < 1. Thus T = i3 ◦ i2 ◦ i1 is well-defined. Next we claim that the
linear operator i3 ◦ i2 : C(BX∗×BY ∗) → Y ∗ is nuclear. Using Lemma 3.5, for ε > 0
small enough, there are sequences {yn}∞n=1 in Y ∗ and {En}∞n=1 of w∗-Borel subsets
of BX∗ ×BY ∗ , so that

∫
‖y∗‖dµ− ε ≤

∞∑
n=1

‖y∗n‖µ(Ei) ≤
∫
‖y∗‖dµ + ε < 1. (32)

and moreover

i3 ◦ i2(f) =
∫

f(x∗, y∗)y∗dµ =
∫

f(x∗, y∗)
∞∑

n=1

χEny∗ndµ =
∞∑

n=1

(
∫

En

fdµ)y∗n. (33)

Note that ln(f) =
∫

En
fdµ ∈ C(BX∗ ×BY ∗)∗, ‖ln‖ = µ(En). By (32), we see that

i3 ◦ i2 =
∑∞

n=1 ln⊗ y∗n is a nuclear operator with N(i3 ◦ i2) < 1. Therefore, putting
x∗n = i∗1(ln), we get that T =

∑∞
n=1 x∗n ⊗ y∗n is a nuclear operator of norm less than

one. Equation (33) yields

T (x) =
∫

x(x∗, y∗)y∗dµ =
∫

x∗(x)y∗dµ =
∞∑

n=1

x∗n(x)y∗n. (34)

Given z =
∑k

i=1 ui ⊗ vi ∈ X ⊗ε Y , by (27) and (34)

〈φ, z〉 =
∫

BX∗×BY ∗

k∑

i=1

y∗(vi)x∗(ui)dµ =
k∑

i=1

〈
∫

BX∗×BY ∗

x∗(ui)y∗dµ, vi〉 = (35)

=
k∑

i=1

〈T (ui), vi〉 =
∞∑

n=1

k∑

i=1

x∗n(ui)y∗n(vi) =
∞∑

n=1

〈y∗n,

k∑

i=1

(ui ⊗ vi)(x∗n)〉 = 〈T, z〉, (36)

and (29) follows.
¤
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We proceed by giving a new proof to a slight improvement of Theorem 1 in Rosen-
thal [R].

Theorem 3.9. Let Y be a Banach space. The following conditions are equivalent.
1. `1 6↪→ Y
2. I(X, Y ∗) ⊂ F(X, Y ∗) for every Banach space X.

Proof. To prove 1. ⇒ 2. we follow the proof of Theorem 3.8 with no changes until
the diagram (30) has been obtained. Next we observe that for every f the integrand
in (31) is Pettis integrable by Corollary 3.4. By Theorem 4-1-6 and Proposition
1-3-2 in [Tal84] the Dunford operator associated with I is compact. Thus i3 ◦ i2 is
a compact operator, so every operator in I(X, Y ∗) is compact. By a result of K.
John in [Jo90] we conclude that I(X, Y ∗) ⊂ F(X, Y ∗) for every Banach space X.
The opposite implication. If `1 ↪→ Y , by Pelczynski’s theorem L1[0, 1] ↪→ Y ∗. Now
ι : C[0, 1] → L1[0, 1] is an integral operator which is noncompact (e.g. check images
of rn Rademachers). ¤

We remark that the duality assumption on Y ∗ cannot be removed. Indeed, ι :
C[0, 1] → L1[0, 1] → c0, where f → (

∫
frndt) is a factorization witnessing that ι is

an integral operator. But again it is not compact.

4. BAP in duals

In the last part of our note we give a new proof of another classical result of
Grothendieck. The proof simply combines two dualities for tensor products.

Theorem 4.1. (Grothendieck)
Let X be a dual Banach space with the RNP. Then X has the 1-BAP whenever X
has the AP.

Proof. Let Y be a Banach space, X = Y ∗ be its dual with the AP, and z ∈ X∗⊗πX.
By Proposition 1.1 we have (X∗ ⊗π X)∗ = L(X∗), so

π(z) = sup
‖T‖≤1,T∈L(X∗)

〈T, z〉 ≥ sup
‖T‖≤1,T∈L(X)

〈T ∗, z〉 (37)

On the other hand, by combining Theorem 3.8 and Theorem 1.2 we have K(Y )∗ =
X∗ ⊗π X, so:

π(z) = sup
‖T‖≤1,T∈K(Y )

〈z, T 〉 ≤ sup
‖T‖≤1,T∈K(X)

〈T ∗, z〉 = sup
‖T‖≤1,T∈F(X)

〈T ∗, z〉 (38)

The last equality follows from condition 5. of Theorem 1.2, since X has the AP.
Combining (37) with (38), we obtain that

π(z) = sup
‖T‖≤1,T∈L(X)

〈T ∗, z〉 = sup
‖T‖≤1,T∈F(X)

〈T ∗, z〉 (39)

Given z =
∑∞

i=1 x∗i ⊗ xi ∈ X∗ ⊗π X and T ∈ L(X), we have the equality

〈T ∗, z〉 =
∞∑

i=1

〈T ∗(x∗i ), xi〉 =
∞∑

i=1

〈x∗i , T (xi)〉. (40)

By Theorem 2.3, the mapping i∗ : X∗ ⊗π X → (L(X), τ)∗ is surjective. Thus
applying the Hahn-Banach theorem to the set {T ∈ F(X) : ‖T‖ ≤ 1} ⊂ (L(X), τ),
and using (39), we see that no operator T ∈ L(X), ‖T‖ < 1 can be separated by a
τ -continuous hyperplane. This is clearly a reformulation of the 1-BAP. ¤
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