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Abstract

We shall study a weak solution in the Sobolev space of the transmission
problem for the Laplace equation using the integral equation method.
First we use the indirect integral equation method. We look for a solution
in the form of the sum of the double layer potential corresponding to
the skip of traces on the interface and a single layer potential with an
unknown density. We get an integral equation on the boundary. We prove
that this equation has a form (I + M)ϕ = F where M is a contractive
operator. So, we can obtain a solution of this equation using the successive
approximation method. Moreover, we are able to estimate the norm of
the operator M and control how quickly this process converges. Then we
study the direct integral equation method. We obtain the same integral
equation like for the indirect integral equation method. So, we can again
calculate a solution using the successive approximation method.

Keywords: single layer potential; double layer potential ; transmis-
sion problem; Laplace equation; boundary integral equation; successive
approximation

1 Introduction

In this paper we shall study a weak solution of the transmission problem for the
Laplace equation

∆u+ = 0 in G+, ∆u− = 0 in G−,

u+ − u− = g, a+
∂u+

∂n
− a−

∂u−
∂n

= f on ∂G+

using the integral equation method. Here G+ ⊂ Rm, m > 2, is a bounded open
set with Lipschitz boundary, G− = Rm \ G+, a+ and a− are given positive
constants. (We do not suppose that G+ or G− is connected.)

∗The work was supported by the Academy of Sciences of the Czech Republic, Institutional
Research Plan No. AVOZ10190503.
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This problem was studied for a+ = a− = 1 and G+, G− connected in [4]. It
was shown that there is unique solution of this problem and u+ = Dg + Sf in
G+, u− = Dg + Sf in G−, where Dg is the double layer potential with density
g and Sf is the single layer potential with density f .

For arbitrary a+, a− and f ∈ L2(∂G+), g = 0 the transmission problem was
studied in [2]. It was shown that a solution of the problem has a form of a single
layer potential. [3] studies the transmission problem with arbitrary a+, a− and
f ∈ L2(∂G+), g ∈W 1,2(∂G+). A solution is looked for in the form of two single
layer potentials: u+ = Sϕ+, u− = Sϕ−. This attitude is good for the proof of
the existence of a solution but it does not tell us how to compute this solution.

We study a weak solution of the transmission problem with a+, a− arbitrary
and g ∈ H1/2(∂G+), f ∈ H−1/2(∂G+). If we put u+ = v+ + Dg, u− =
v− + Dg, we get the new problem ∆v+ = 0, ∆v− = 0, v+ − v− = 0 on ∂G+,
a+∂v+/∂n − a−∂v−/∂n = F . We look for a solution of this problem in the
form of a single layer potential Sϕ with an unknown density ϕ ∈ H−1/2(∂G+)
and reduce the original problem to the integral equation Tϕ = F . The same
reasoning one can do in more general setting (for G+, which has not Lipschitz
boundary, or in the case of the transmission problem for several media). From
these reasons we study the transmission problem for a system of nonoverlapping
open sets Gj and positive constants aj such that the complement of ∪Gj has
zero Lebesque measure and λ ≡ inf aj > 0, Λ ≡ sup aj < ∞. It is shown
that the problem is uniquely solvable and the solution has a form of a single
layer potential Sϕ. Again, we reduce the problem to the equation Tϕ = F
on the boundary. This equation is equivalent to the equation ϕ = [I − 2(λ +
Λ)−1T ]ϕ + 2(λ + Λ)−1F , where I is the identity operator. Is is shown that
‖I − 2(λ + Λ)−1T‖ ≤ (Λ − λ)/(Λ + λ) < 1 and the successive approximation
method converges: For a fixed ϕ0

ϕn = [I − 2(λ+ Λ)−1T ]ϕn + 2(λ+ Λ)−1F, ϕn → ϕ. (1)

Then it is studied the direct integral equation method for the original prob-
lem. We have u+ = Dg+S(∂u+/∂n−∂u−/∂n) in G+, u− = Dg+S(∂u+/∂n−
∂u−/∂n) in G−. It is shown that T (∂u+/∂n − ∂u−/∂n) = F , where T and F
are the same as in the indirect integral equation method. Therefore we can use
the successive approximation method (1).

2 Formulation of the problem

Let G = G+ ⊂ Rm, m > 2, be a bounded open set with Lipschitz boundary.
Denote G− = Rm\G+ where G+ is the closure of G+. Denote by n the outward
unit normal of G+. We shall study the transmission problem

∆u+ = 0 in G+, ∆u− = 0 in G−, (2)
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u+ − u− = g, a+
∂u+

∂n
− a−

∂u−
∂n

= f on ∂G. (3)

Here a+, a− are fixed positive constants and g ∈ H1/2(∂G+), f ∈ H−1/2(∂G+).
If Ω ⊂ Rm is an open set denote by W 1,2(Ω) the space of all functions u ∈

L2(Ω) such that ∂ju ∈ L2(Ω) in the sense of distributions for each j = 1, . . . ,m
equipped with the norm

‖u‖W 1,2(Ω) =

√√√√∫
Ω

[|u|2 + |∇u|2] dHm.

( Here Hk is the k-dimensional Hausdorff measure normalized so that Hk is the
Lebesgue measure in Rk.)

If Ω is a bounded open set with Lipschitz boundary denote by H1/2(∂Ω) the
space of traces of W 1,2(Ω) endowed with the norm

‖v‖H1/2(∂Ω) = inf{‖u‖W 1,2(Ω);u ∈W 1,2(Ω), v = u|∂Ω}

and by H−1/2(∂Ω) the dual space of H1/2(∂Ω). If h ∈ H−1/2(Ω) then the
Neumann problem for the Laplace equation

∆u = 0 in Ω,
∂u

∂n
= h on ∂Ω (4)

has a weak formulation: Find u ∈W 1,2(Ω) such that∫
Ω

∇u · ∇ϕ dHm = 〈h, ϕ〉 (5)

for all ϕ ∈W 1,2(Ω).
If Ω is an unbounded open set with compact Lipschitz boundary then we

can define weak solutions of the Neumann problem for the Laplace equation in
the same way. But the condition u ∈ W 1,2(Ω) is too restrictive for unbounded
open sets. There are too many boundary conditions for which the problem is
not solvable. So, we use a bit wider space of functions.

If Ω ⊂ Rm is a domain denote by L1,2(Ω) the space of all functions u ∈
L2

loc(Ω) such that ∂ju ∈ L2(Ω) in the sense of distributions for each j = 1, . . . ,m.
Fix a bounded open set U such that U ⊂ Ω. Then L1,2(Ω) is a Banach space
with the norm

‖u‖L1,2(Ω) =

√√√√∫
U

|u|2 dHm +
∫
Ω

|∇u|2 dHm

(see [10], § 1.5.3). Clearly, W 1,2(Ω) ⊂ L1,2(Ω). If Ω is a bounded domain with
Lipschitz boundary then W 1,2(Ω) = L1,2(Ω) and both norms are equivalent
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(see [10], §1.5.2 and [10], §1.5.3). If Ω is an unbounded domain with compact
Lipschitz boundary and u ∈ L1,2(Ω), then u ∈W 1,2(V ) for each bounded open
subset V of Ω. If Ω is an unbounded domain with compact Lipschitz boundary
and h ∈ H−1/2(∂Ω), we can define a weak solution of the Neumann problem
for the Laplace equation (4) such that we look for u ∈ L1,2(Ω) satisfying (5)
for all ϕ ∈ L1,2(Ω) (compare [11]). Now, we can look for u+ ∈ L1,2(G+),
u− ∈ L1,2(G−) solving the problem (2), (3). But the space L1,2(G−) is too
wide. The constant function u+ ≡ 1, u− ≡ 1 is a solution of (2), (3) with
the homogeneous boundary conditions f = g = 0. To get a uniquely solvable
problem we choose another space of functions, which is between W 1,2(Ω) and
L1,2(Ω).

If Ω is an open set denote by C∞0 (Ω) the space of all infinitely differentiable
functions in Ω with compact support. Denote by W̃ 1,2(Rm) the closure of
C∞0 (Rm) in L1,2(Rm). Then W 1,2(Rm) ⊂ W̃ 1,2(Rm) ⊂ L1,2(Rm) (compare
[14], Lemma 6.5). Moreover, the space L1,2(Rm) is the direct sum of W̃ 1,2(Rm)
and the space of constant functions (see [1], p. 155). If we put

‖u‖W̃ 1,2(Rm) = ‖∇u‖L2(Rm),

then this norm is in W̃ 1,2(Rm) equivalent with the norm induced from L1,2(Rm)
(see [10], §1.5.2 and [10], §1.5.3). According to [6], Lemma 2.2 we have W̃ 1,2(Rm) =
{u ∈ L2m/(m−2)(Rm);∇u ∈ L2(Rm;Rm)}. For an open set Ω denote by
W̃ 1,2(Ω) the space of restrictions of functions from W̃ 1,2(Rm) onto Ω. Denote

‖u‖W̃ 1,2(Ω) = inf{‖v‖W̃ 1,2(Ω); v = u on Ω}.

Then W̃ 1,2(Ω) is a Banach space. If u ∈ W̃ 1,2(Ω) then u ∈ W 1,2(V ) for every
bounded open subset V of Ω. If Ω is a bounded open set with Lipschitz boundary
then W̃ 1,2(Ω) = W 1,2(Ω) and both norms are equivalent. If Ω is an unbounded
domain with compact Lipschitz boundary then ‖∇u‖L2(Ω) is an equivalent norm
in W̃ 1,2(Ω).

We now give a weak formulation of the transmission problem for the Laplace
equation (2), (3). We must realize that −n is the unit outward normal of G−.

We say that u+ ∈ W̃ 1,2(G+), u− ∈ W̃ 1,2(D−) is a weak solution of the
transmission problem for the Laplace equation (2), (3) if u+ − u− = g on ∂G+

in the sense of traces and

a+

∫
G+

∇u+ · ∇v dHm + a−

∫
G−

∇u− · ∇v dHm = 〈f, v〉 ∀v ∈ W̃ 1,2(Rm).
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3 Representation by potentials

Denote by

hm(x) =
|x|2−m

(m− 2)Hm−1(∂B(0; 1))
the fundamental solution of the equation −∆u = 0 in Rm. If Ω ⊂ Rm is a
bounded open set with Lipschitz boundary, f ∈ H−1/2(∂Ω), g ∈ H1/2(∂Ω),
define

SΩf(x) =
∫

∂Ω

hm(x− y)f(y) dHm(y)

the single layer potential with density f and

DΩg(x) =
∫

∂G

g(y)
n(y) · (y − x)

Hm−1(∂B(0; 1))|x− y|m
dHm(y)

the double layer potential with density g. Then SΩf , DΩg are harmonic func-
tions in Rm\∂Ω. Moreover, SΩf,DΩg ∈W 1,2(Ω), SΩf,DΩg ∈W 1,2(B(0; r)\Ω)
for each r > 0 (see for example [7], Theorem 4.1 and [9], Theorem 2.4). Here
B(x; r) denotes the open ball with the center x and the radius r. Since SΩf(x) =
O(|x|2−m), DΩg(x) = O(|x|1−m), |∇SΩf(x)| = O(|x|1−m), |∇DΩg(x)| = O(|x|−m)
as |x| → ∞, we infer that SΩf,DΩg ∈ L1,2(Rm \ Ω). Denote by uΩ

+ the
trace of u ∈ L1,2(Ω) and by uΩ

− the trace of u ∈ L1,2(Rm \ Ω) on ∂Ω. Then
[SΩf ]Ω+ = [SΩf ]Ω− = SΩf . Denote

KΩg(x) = lim
ε↘0

∫
∂G\B(x;ε)

g(y)
n(y) · (y − x)

Hm−1(B(0; 1))|x− y|m
dHm(y)

for x ∈ ∂Ω. Then KΩg(x) makes sense for almost all x ∈ ∂Ω (see [5], Theo-
rem 2.2.13) and KΩ is a bounded linear operator on H1/2(∂Ω) (see [13], Theo-
rem 4.1). Moreover

[DΩg]+ =
1
2
g +KΩg, [DΩg]− = −1

2
g +KΩg on ∂Ω. (6)

(See for example [5], Theorem 2.2.13.) Denote by K∗
Ω the adjoint operator of

KΩ. Recall that

K∗
Ωg(y) = lim

ε↘0

∫
∂G\B(y;ε)

g(x)
n(y) · (y − x)

Hm−1(B(0; 1))|x− y|m
dHm(x).

Then K∗
Ω is a bounded linear operator on H−1/2(∂Ω) (see [13], Theorem 4.1).

If ϕ ∈ C∞0 (Rm) then

〈[nΩ · ∇SΩf ]+, ϕ〉 =
∫
Ω

∇SΩf · ∇ϕ dHm = 〈(1/2)f −K∗
Ωf, ϕ〉, (7)
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〈[nRm\Ω · ∇SΩf ]−, ϕ〉 =
∫

Rm\Ω

∇SΩf · ∇ϕ dHm = 〈(1/2)f +K∗
Ωf, ϕ〉 (8)

(compare [12], [5] or [4]). Since C∞0 (Rm) is a dense subspace of W̃ 1,2(Rm), the
relations (7), (8) hold for ϕ ∈ W̃ 1,2(Rm).

Let us come back to the transmission problem (2), (3). Put u+ = v+ +DGg,
u− = v− +DGg. Then u+, u− is a weak solution of the problem (2), (3) if and
only if v+, v− is a weak solution of the problem

∆v+ = 0 in G+, ∆v− = 0 in G−, (9)

v+ − v− = 0, a+
∂v+
∂n

− a−
∂v−
∂n

= F on ∂G+, (10)

where F = f−a+[DGg/∂n]++a−[DGg/∂n]−. (Remark that in fact [DGg/∂n]+ =
[DGg/∂n]−.) Since v+ = v− on ∂G, the function v = v+ on G+, v = v− on
G− must be in W̃ 1,2(Rm). We shall look for a solution of the problem (9),
(10) in the form of the single layer potential v = SΩϕ with an unknown density
ϕ ∈ H−1/2(∂Ω). Boundary behavior of a single layer potentials gives that SΩϕ
is a solution of the problem if

a+

(
1
2
ϕ−K∗

Gϕ

)
+ a−

(
1
2
ϕ+K∗

Gϕ

)
= F. (11)

4 More general problem

The same reasoning we can do in a more general situation - the transmission
problem is studied for several domains G1, . . . , Gk or a set G has not Lips-
chitz boundary. So, instead of the problem (10) we shall study a more general
problem.

Denote
E(Rm) = {∆u;u ∈ W̃ 1,2(Rm)}.

The space E(Rm) is the so called space of distributions with finite energy. Re-
mark that E(Rm) = (W̃ 1,2(Rm))′, the dual space of W̃ 1,2(Rm). There is a
characterization of the space E(Rm) using the Fourier transformation: If F is a
distribution and F̂ its Fourier transformation then F ∈ E(Rm) if and only if√∫

|F̂ (x)|2
|x|2

dHm <∞. (12)

Remark that the expression in (12) gives an equivalent norm on E(Rm) =
(W̃ 1,2(Rm))′. (See [1] ,[8].) If M is a closed subset of Rm denote by E(M)
the space of all distributions from E(Rm) supported in M . Then E(M) is a
closed subspace of E(Rm). If Ω is a bounded open set with Lipschitz boundary
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then E(Ω) = (W 1,2(Ω))′ (see [12], Remark 7.10) and E(∂Ω) = H−1/2(∂Ω) (see
[12], Remark 7.11).

We shall study the following generalization of the problem (9), (10):
Let Ω ⊂ Rm be an open set with Hm(Rm \ Ω) = 0. Let a function a be

constant on each component of Ω and

0 < λ = inf
x∈Ω

a(x) ≤ sup
x∈Ω

a(x) = Λ <∞. (13)

For a given F ∈ E(∂Ω) find v ∈ W̃ 1,2(Rm) such that∫
Ω

a∇v · ∇w dHm = 〈F,w〉 ∀w ∈ W̃ 1,2(Rm). (14)

Proposition 4.1. Let Ω ⊂ Rm be an open set with Hm(∂Ω) = 0, a function
a be constant on each component of Ω, a satisfy (13). If F ∈ E(∂Ω) then there
exists unique solution v ∈ W̃ 1,2(Rm) of the generalized transmission problem
(14).

Proof. Put
(v, w) =

∫
Ω

a∇v · ∇w dHm.

Since
λ‖v‖2

W̃ 1,2(Rm)
≤ (v, v) ≤ Λ‖v‖2

W̃ 1,2(Rm)
,

( , ) is an inner product which gives a norm equivalent to the norm in W̃ 1,2(Rm).
Riesz representation theorem gives that there exists unique u ∈ W̃ 1,2(Rm) such
that (14) holds for each w ∈ W̃ 1,2(Rm).

5 The indirect integral equation method

For ϕ ∈ C∞c (Rm) denote

V ϕ(x) =
∫

Rm

hm(x− y)ϕ(y) dHm(y)

the Newton potential (or the volume potential ) with density ϕ. The opera-
tor V : ϕ 7→ V ϕ can be extended as a bounded operator from E(Rm) onto
W̃ 1,2(Rm). Since C∞c (Rm) is a dense subset of E(Rm), this extension is unique.
Moreover, ϕ = V (−∆ϕ) and V is an isomorphism. (See [8].) If U is a bounded
domain with Lipschitz boundary and ϕ ∈ E(∂U) = H−1/2(∂U) then V ϕ = SUϕ,
the single layer potential with density ϕ. If ϕ ∈ E(Rm) and U is an open set,
then ∆V ϕ = 0 in U if and only if ϕ ∈ E(Rm \U), i.e. ϕ is supported on Rm \U .
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If ϕ,ψ ∈ E(Rm) = (W̃ 1,2(Rm)′ then V ψ ∈ W̃ 1,2(Rm) and

〈ϕ, V ψ〉 = (ϕ,ψ)E =
∫

Rm

ϕ̂(x)ψ̂(x)
|x|2

dHm(x) =
∫

Rm

∇V ϕ · ∇V ψ dHm. (15)

(See [1], [8] and [11], Lemma 5.1.) This gives

‖f‖E(Rm) = ‖V f‖W̃ 1,2(Rm) ∀f ∈ E(Rm), (16)

‖w‖W̃ 1,2(Rm) = ‖∆w‖E(Rm) ∀w ∈ W̃ 1,2(Rm). (17)

Let us come back to the generalized transmission problem. Let Ω ⊂ Rm be
an open set with Hm(∂Ω) = 0, a function a be constant on each component of
Ω, a satisfy (13). If F ∈ E(∂Ω) then there exists unique solution v ∈ W̃ 1,2(Rm)
of the generalized transmission problem (14). Since v = V (−∆v) and −∆v ∈
E(Rm), we can look for a solution v in the form V ψ with ψ ∈ E(Rm). Since
∆v = 0 in Ω, ψ(= −∆v) is supported on Rm \ Ω = ∂Ω. Thus ψ ∈ E(∂Ω),
because ∂Ω = Rm \ Ω.

Fix ψ ∈ E(∂Ω). Define a linear functional Tψ on W̃ 1,2(Rm) by

〈Tψ,w〉 =
∫

Rm

a∇w · ∇V ψ dHm, w ∈ W̃ 1,2(Rm). (18)

According to (13), (16), (17) and Hölder’s inequality

|〈Tψ,w〉| ≤ Λ‖∇w‖L2(Rm)‖∇V ψ‖L2(Rm) ≤ Λ‖w‖W̃ 1,2(Rm)‖ψ‖E(Rm).

This gives that Tψ ∈ (W̃ 1,2(Rm))′ = E(Rm) and ‖Tψ‖E(Rm) ≤ Λ‖ψ‖E(Rm). Fix
a component ω of Ω. Then there exists a constant aω such that a = aω on ω.
Since ∆V ψ = 0 in ω we have for w ∈ C∞c (ω)

〈Tψ,w〉 =
∫

Rm

a∇w · ∇V ψ dHm = aω

∫
ω

∇w · ∇V ψ dHm

= aω

∫
Rm

∇w · ∇V ψ dHm = 〈ψ,w〉 = 0.

Hence Tψ is supported in Rm \ ω. We infer that Tψ ∈ E(∂Ω). The operator T
is a bounded linear operator on E(∂Ω) with ‖T‖ ≤ Λ.

If F ∈ E(∂Ω), then v = V ψ is a weak solution of the generalized transmission
problem (14) if Tψ = F . In particular, in the case of the original problem (9),
(10) we have Tψ = (a+ + a−)ψ/2− (a+ − a−)K∗

Gψ (see (11)).
We would like to solve the equation Tψ = F using the successive approxi-

mation method. To this aim we shall rewrite this equation to the equation

ψ =
(
I − 2

λ+ Λ
T

)
ψ +

2
λ+ Λ

F,

where I is the identity operator.
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Theorem 5.1. Let Ω ⊂ Rm be an open set with Hm(∂Ω) = 0, a function a be
constant on each component of Ω, a satisfy (13). Then

‖I − 2(λ+ Λ)−1T‖ ≤ Λ− λ

Λ + λ
< 1. (19)

Fix F,ψ0 ∈ E(∂Ω). Put

ψn =
(
I − 2

λ+ Λ
T

)
ψn−1 +

2
λ+ Λ

F, n ∈ N.

Then there is ψ ∈ E(∂Ω) such that ψn → ψ as n→∞,

‖ψ − ψn‖ ≤
(

Λ− λ

Λ + λ

)n Λ‖ψ0‖+ ‖F‖
λ

. (20)

Tψ = F and the single layer potential V ψ is unique solution to the generalized
transmission problem (14).

Proof. Since λ ≤ a ≤ Λ we have λ − Λ ≤ λ + Λ − 2a ≤ Λ − λ and thus
|1− 2a/(λ+ Λ)| ≤ (Λ− λ)/(Λ + λ) in Ω. If ψ ∈ E(∂Ω) then (15) and Schwarz’s
inequality give

‖[I − 2(λ+ Λ)−1T ]ψ‖ = sup
‖w‖W̃1,2(Rm)≤1

〈[I − 2(λ+ Λ)−1T ]ψ,w〉

= sup
‖w‖W̃1,2(Rm)

∫
Rm

[∇w · ∇V ψ − 2(λ+ Λ)−1a∇w · ∇V ψ] dHm ≤

sup
‖∇w‖≤1

∫
Rm

Λ− λ

Λ + λ
|∇w||∇V ψ| dHm ≤ Λ− λ

Λ + λ
‖∇V ψ‖L2(Rm) =

Λ− λ

Λ + λ
‖ψ‖E(Rm).

Hence (19) holds.

‖ψ1 − ψ0‖ =
2

λ+ Λ
‖Tψ0 + F‖ ≤ 2

λ+ Λ
[Λ‖ψ0‖+ ‖F‖].

By the induction

‖ψn+1 − ψn‖ = ‖[I − 2(λ+ Λ)−1T ](ψn − ψn−1)‖

≤ Λ− λ

Λ + λ
‖(ψn − ψn−1)‖ ≤

(
Λ− λ

Λ + λ

)n 2
λ+ Λ

[Λ‖ψ0‖+ ‖F‖].

If k > n then

‖ψk − ψn‖ ≤ ‖ψk − ψk−1‖+ . . .+ ‖ψn+1 − ψn‖

≤
∞∑

j=n

(
Λ− λ

Λ + λ

)j 2
λ+ Λ

[Λ‖ψ0‖+ ‖F‖] =
(

Λ− λ

Λ + λ

)n Λ‖ψ0‖+ ‖F‖
λ

.

Thus ψk is a Cauchy sequence, ψk → ψ. Letting k →∞ we get (20) and

ψ =
(
I − 2

λ+ Λ
T

)
ψ +

2
λ+ Λ

F.
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6 Direct integral equation method

Let us come back to the original problem (2), (3). If u+, u− solve this problem
then

u+ = DGu+ + SG ∂u+

∂n
in G+, DGu+ + SG ∂u+

∂n
= 0 in G−, (21)

u− = −DGu− − SG ∂u−
∂n

in G−, DGu− + SG ∂u−
∂n

= 0 in G+. (22)

This gives

u+ = DG(u+ − u−) + SG

(
∂u+

∂n
− ∂u−

∂n

)
in G+,

u− = DG(u+ − u−) + SG

(
∂u+

∂n
− ∂u−

∂n

)
in G−.

(Compare [4].) According to (3)

u+ = DGg + SG

(
∂u+

∂n
− ∂u−

∂n

)
in G+, (23)

u− = DGg + SG

(
∂u+

∂n
− ∂u−

∂n

)
in G−. (24)

So, it is enough to derive ∂u+/∂n−∂u−/∂n. If a+ = a− = 1 we have a solution
of this problem (see [4]).

Using boundary properties of potentials (see (7), (8)), we obtain

∂u+

∂n
=
∂DGg

∂n
+

1
2

(
∂u+

∂n
− ∂u−

∂n

)
−K∗

Ω

(
∂u+

∂n
− ∂u−

∂n

)
,

∂u−
∂n

=
∂DGg

∂n
− 1

2

(
∂u+

∂n
− ∂u−

∂n

)
−K∗

Ω

(
∂u+

∂n
− ∂u−

∂n

)
.

According boundary conditions (3)

f = (a+−a−)
∂DGg

∂n
+
a+ + a−

2

(
∂u+

∂n
− ∂u−

∂n

)
− (a+−a−)K∗

Ω

(
∂u+

∂n
− ∂u−

∂n

)
.

Putting

F = f − (a+ − a−)
∂DGg

∂n
we have

T

(
∂u+

∂n
− ∂u−

∂n

)
= F, (25)

where Tψ = (a+ + a−)ψ/2− (a+ − a−)K∗
Gψ is the operator, which we studied

for the indirect integral equation method. Theorem 5.1 gives that we can use
the successive approximation method for solving the equation (25).
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