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Abstract. We define a new gauge functional characterizing a given Orlicz class.
This functional is shown to make more computable a formula for the dual of a
K-method interpolation space.

1. Introduction

Suppose A is a Young function defined by the formula

A(t) :=

∫ t

0

a(s)ds, t ∈ R+ := (0,∞),

in which a(s) is an increasing function on R+, with a(0+) = 0 and lims→∞ a(s) = ∞.
Let (X,µ) be a σ-finite measure space and denote by M(X) the set of µ-measurable

functions on X. A function f ∈ M(X) is said to belong to the Orlicz class LA(X) if∫
X

A

(
|f(x)|

λf

)
dµ(x) < ∞,

for some λf > 0. The gauge norm, ρ
A
(f), of an f ∈ LA(X) is

(1.1) ρ
A
(f) := inf

{
λ > 0 :

∫
X

A

(
|f(x)|

λ

)
dµ(x) ≤ 1

}
.

See [5, p.97] for the interesting history of the functional (1.1) that justifies the
introduction of the term ”gauge norm”.

With the norms ρ
A

in mind, we speak of the Orlicz spaces LA(X). These are ex-
amples of rearrangement invariant (r.i) spaces, which are defined by norms ρ whose
characteristic property is that ρ(f) = ρ(g) whenever f, g ∈ M(X) are equimeasur-
able in the sense that f ∗ = g∗; here,

f ∗(t) := inf{λ > 0 : µ({x ∈ X : |f(x)| > λ}) ≤ t},
t ∈ Iµ := (0, µ(X)).

We are now ready to state our principal result, namely,
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Theorem 1.1. Let A(t) =
∫ t

0
a(s)ds, t ∈ R+, be a Young function with a(s) ab-

solutely continuous. Define

c(t) := t
d

dt

(
A(t)

t

)
= a(t)− A(t)

t
=

1

t

∫ t

0

sa′(s)ds

and set

C(t) :=

∫ t

0

c(s)ds, t ∈ R+.

Let (X,µ) be a σ-finite measure space and suppose the (increasing) function C sat-
isfies

(1.2)

∫
R+

C

(
k

1 + t

)
dt < ∞,

for some k > 0. Then,

(1.3)
1

2
ρ

ΓC
(f) ≤ ρ

A
(f) ≤ ρ

ΓC
(f), f ∈ M(X),

in which

ρ
ΓC

(f) := inf

{
λ > 0 :

∫
R+

C

(
t−1

∫ t

0

f ∗(s)ds

)
dt ≤ 1

}
.

Remarks 1.2
1. We observe that A(t) =

∫ t

0
a(s)ds and A(t) =

∫ t

0
A(s)

s
ds give rise to the same

Orlicz class, so there is no essential loss of generality in the assumption of Theo-
rem 1.1 that a(s) is absolutely continuous.

2. When µ(X) < ∞, we may take a(s), and hence c(s), equal to 0 on (0, 1). In
this case (1.2) is automatically true, so (1.3) holds with no essential restrictions.

The result of applying (1.3) to the representation of norms dual to the K-method
interpolation norms requires some background to even state, so we postpone it to
(the last) section 4.

In Section 2 we consider r.i. spaces with special emphasis on the Orlicz case.
Section 3 contains the proof of Theorem 1.1 along with a remark and an example.

2. Rearrangement invariant spaces

Let (X, µ) be a σ-finite measure space. Denote by M(X) the set of µ-measurable
real-valued functions on X and by M+(x) the nonnegative functions in M(X). A
Banach function norm is a functional ρ : M+(X) → R+ satisfying

(A1) ρ(f) = 0 if and only if f = 0 µ- a.e.,
(A2) ρ(cf) = cρ(f), c ≥ 0,
(A3) ρ(f + g) ≤= ρ(f) + ρ(g),
(A4) 0 ≤ fn ↑ f implies ρ(fn) ↑ ρ(f),
(A5) |E| < ∞ implies ρ(χE) < ∞,
(A6) |E| < ∞ implies

∫
E

fdµ ≤ cE(ρ)ρ(f), for some constant cE(ρ) depending on
E and ρ but not on f ∈ M+(X).
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Furthermore, as mentioned in the introduction, a Banach function norm is said to
be rearrangement invariant if ρ(f) = ρ(g) whenever f, g ∈ M+(X) are equimeasur-
able in the sense that f ∗ = g∗; the nonincreasing rearrangement, f ∗, of f ∈ M(X)
on R+ is defined as

f ∗(t) := inf{λ > 0 : µ({x ∈ X : |f(x)| > λ}) ≤ t},

t ∈ Iµ := (0, µ(X)).
It satisfies the property

|{t ∈ R+ : f ∗(t) > τ})| = µ({x ∈ X : |f(x)| > τ}), f ∈ M(X), τ ∈ Iµ.

Now, although the mapping f 7→ f ∗ is not subadditive, the mapping
f 7→ t−1

∫ t

0
f ∗(s)ds is, namely

(2.1) t−1

∫ t

0

(f + g)∗(s)ds ≤ t−1

∫ t

0

f ∗(s)ds + t−1

∫ t

0

g∗(s)ds,

for all f, g ∈ M(X), t ∈ R+. The Kothe dual of a Banach function norm ρ is another
such norm, ρ′, with

ρ′(g) := sup
ρ(f)≤1

∫
X

fgµ, f, g ∈ M+(X).

It is obeys the Principle of Duality; that is,

ρ′′ := (ρ′)′ = ρ.

The space Lρ(X) is the vector space

{f ∈ M(X) : ρ(|f |) < ∞},

together with the norm

‖f‖Lρ := ρ(|f |).
This Banach space is said to be an r.i. space provided ρ is an r.i. function norm.

The gauge norm, ρ
A
, defined in (1.2) in terms of the Young function A(t) =∫ t

0
a(s)ds, t ∈ R+, is an r.i. norm; indeed,

ρ
A
(f) = inf{λ > 0 :

∫
Iµ

A

(
f ∗(t)

λ

)
dt ≤ 1}, f ∈ M(X).

Its Kothe dual, ρ′
A
, satisfies

ρ
eA(g) ≤ ρ′

A
(g) ≤ 2ρ

eA(g), g ∈ M(X),

with

Ã(t) :=

∫ t

0

a−1(s)ds, t ∈ R+,

being called the Young function complementary to A.
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3. Proof of Theorem 1.1

We will require the following inequalities, which are analogues of ones for the
Hardy-Littlewood maximal function, Mf , in [6, pp.6-7 and p.27]. Namely, for all
τ > 0

(3.1)
1

τ

∫
{t∈Iµ:f∗(t)>τ}

f ∗(t)dt ≤ |{t ∈ Iµ : (Pf ∗)(t) > τ}| ≤ 2

τ

∫
{t∈Iµ:f∗(t)> τ

2
}
f ∗(t)dt.

Their proofs are even simpler than the ones for Mf . Thus, let t0 be the least t for
which (Pf ∗)(t) = τ . (The inequalities are trivial if there is no such t0). Then,

|{t ∈ Iµ : (Pf ∗)(t) > τ}| = t0 =
1

τ

∫ t0

0

f ∗(t)dt ≥ 1

τ

∫
{t∈Iµ:f∗(t)>τ}

f ∗(t)dt.

Again, defining

fτ (t) := min [f ∗(t),
τ

2
]

and

f τ (t) := f ∗(t)− fτ (t),

one has

|{t ∈ Iµ : (Pf ∗)(t) > τ}| ≤ |{t ∈ Iµ : (Pf τ )(t) >
τ

2
}|

≤ 2

τ

∫
Iµ

f τ (t)dt

≤ 2

τ

∫
{t∈Iµ:f∗(t)> τ

2
}
f τ (t)dt

≤ 2

τ

∫
{t∈Iµ:f∗(t)> τ

2
}
f ∗(t)dt.

Next, we observe that

A(t) = t

∫ t

0

c(s)
ds

s
.

Now, the first inequality in (3.1) ensures that for all λ > 0,∫
R+

∫
{t∈Iµ:f∗(t)>τ}

f ∗(t)dtc(τ)
dτ

τ
≤

∫
R+

|{t ∈ Iµ : (Pf ∗)(t) > τ}|c(τ)dτ ;
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that is, ∫
Iµ

A

(
f ∗(t)

λ

)
dt =

∫
Iµ

f ∗(t)

λ

∫ f∗(t)
λ

0

c(τ)
dτ

τ
dt

=

∫
R+

∫
{t∈Iµ:f∗(t)>τ}

f ∗(t)

λ
dtc(τ)

dτ

τ

≤
∫

R+

|{t ∈ Iµ :
(Pf ∗)(t)

λ
> τ}|c(τ)dτ

=

∫
Iµ

C

(
(Pf ∗)(t)

λ

)
dt.

Again, the second inequality in (3.1) yields∫
Iµ

C

(
(Pf ∗)(t)

λ

)
dt =

∫
R+

|{t ∈ Iµ :
(Pf ∗)(t)

λ
> τ}|c(τ)dτ

≤ 2

∫
R+

∫
{t∈Iµ:

f∗(t)
λ

> τ
2
}

f ∗(t)

λ
dtc(τ)

dτ

τ

=

∫
Iµ

2f ∗(t)

λ

∫ 2f∗(t)
λ

0

c(τ)
dτ

τ
dt

=

∫
Iµ

A

(
2f ∗(t)

λ

)
dt.

We conclude
1

2
ρ

ΓC
(f) ≤ ρ

A
(f ∗) ≤ ρ

ΓC
(f),

which completes the proof of Theorem 1.1, since ρ
A
(f) = ρ

A
(f ∗). �

Corollary 3.1. Let A(t) =
∫ t

0
a(s)ds, t ∈ R+, be a Young function, for which∫
R+

A

(
k

1 + t

)
dt < ∞,

for some constant k > 0, so, in particular,∫ t

0

a(s)
ds

s
< ∞, t ∈ R+.

Set

(3.2) A(t) := t

∫ t

0

a(s)
ds

s
, t ∈ R+.

Then, A(t) is a Young function such that

a(t) = A′(t)− A(t)

t
, t ∈ R+,
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whence, for any σ-finite measure space (X, µ),

1

2
ρ

Γ
A
(f) ≤ ρA(f) ≤ ρ

Γ
A
(f), f ∈ M(X).

Remark 3.2. The complementary Young function, Ã, of A satisfies

3

2

∫ t
3

0

b−1(s)ds ≤ Ã(t) ≤
∫ t

0

b−1(s)ds,

where

b(t) :=

∫ t

0

a(s)
ds

s
, t ∈ R+.

For, observe that

b(t) ≤ A′(t) =

∫ t

0

a(s)
ds

s
+ a(t)

≤ ln 2 + 1

ln 2

∫ 2t

0

a(s)
ds

s

≤ 3b(2t),

and so
1

2
b−1

(
t

3

)
≤ (A′)

−1
(t) ≤ b−1(t), t ∈ R+.

Example 3.3. Consider the Young function

A(t) =

∫ t

0

lnβ(1 + s)ds, 0 < β < 1, t ∈ R+.

Then,

c(t) =
β

t

∫ t

0

s

1 + s
lnβ−1(1 + s)ds ∼ β lnβ−1(1 + t), as t →∞,

from which we see that c(t) essentially decreases rather than increases. That is, C
is not convex.

4. An application to interpolation theory

Given Banach spaces X1 and X2 imbedded in a common Hausdorff topological
vector space, H, the K-method of interpolation provides a concrete way to construct
new Banach spaces X which lie between them, in the sense that, for any linear
operator T satisfying T : Xi → Xi, i = 1, 2, one has T : X → X.

The key element in the method is the Peetre K-functional defined at x ∈ X1 +X2

and t ∈ R+ by

K(t, x; X1, X2) := inf
x=x1+x2

[‖x1‖X1 + t‖x2‖X2 ] .
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For our purposes, each of the so-called interpolation spaces, X, will correspond to
an r.i. norm ρ on M+(R+), with ρ

(
1

1+t

)
< ∞; more specifically, the norm of X is

defined as

‖x‖X := ρ

(
K(t, x; X1, X2)

t

)
, x ∈ X1 + X2.

The following is a special case of a result proved in [3, Theorem 7.2] for X1 and
X2 r.i. spaces and ρ = ρ

A
an Orlicz norm. It elaborates, in a particular instance,

the deep duality theorem of Brudnyi and Krugljak [2].

Theorem 4.1. Let (X, µ) be a σ-finite measure space and suppose ρ1 and ρ2 are r.i.
norms on M+(X). Assume, further, that

Lρ′1
(X) ∩ Lρ′2

(X) is dense in Lρ′2
(X)

and

ρ′2(χEk
) ↓ 0 as Ek ↓ ∅, Ek ⊂ X.

Consider a Young function A(t) =
∫ t

0
a(s)ds, t ∈ R+, satisfying∫

R+

A

(
k

1 + t

)
dt < ∞,

for some constant k > 0. Then, the functional

ρ(f) := ρ
A

(
K(t, f ; Lρ1(X), Lρ2(X))

t

)
, f ∈ Lρ1(X) + Lρ2(X),

is an r.i. norm on M+(X) and the r.i. space, Lρ(X), to which it gives rise is an
interpolation space between Lρ1(X) and Lρ2(X).

Moreover, if, in addition, ∫
R+

Ã

(
k

1 + t

)
dt < ∞,

for some constant k > 0, and if A is the Young function defined in (3.2) and Ã is
its complementary function, one has

ρ′(g) ≈ ρ
eA

(
d

dt
K(t, g; Lρ′2

(X), Lρ′1
(X))

)
, g ∈ Lρ′2

(X) + Lρ′1
(X).

Now d
dt

K(t, x,X1, X2) can be computed only in the case when the K-functional
is known exactly. More often, the latter is only known to within constant multiples.
The motivation behind Theorem 1.1 is the following consequence of Theorem 4.1.
A version of this result involving further assumptions on the Young function A is
given in [3, Theorem 8.2 ].
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Theorem 4.2. Let X, ρ1, ρ2, A, ρ and A be as in Theorem 4.1, with a(t) absolutely
continuous. Define the the increasing function C by

C(t) :=

∫ t

0

c(s)ds,

in which

c(t) := Ã′(t)− Ã(t)

t
=

1

t

∫ t

0

sÃ′′(s)ds, t ∈ R+.

Then, provided ∫
R+

C

(
k

1 + t

)
dt < ∞,

for some constant k > 0, one has

ρ′(g) ≈ inf

{
λ > 0 :

∫
R+

C

(
K(t, g; Lρ′2

(X), Lρ′1
(X))

λt

)
dt ≤ 1

}
,

g ∈ Lρ′2
(X) + Lρ′1

(X). In particular, g ∈ Lρ′2
(X) + Lρ′1

(X) belongs, to Lρ′(X) if and
only if there exists a constant λg ∈ R+ such that∫

R+

C

(
K(t, g; Lρ1(X), Lρ2(X))

λgt

)
dt < ∞.

Remark 4.3. Theorem 4.2 is essential to the characterization of the optimal r.i.
imbedding space of an Orlicz-Sobolev space found in [4, Theorem 6.3].
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