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Abstract. Let 1 < p ≤ q < ∞. Inspired by some results concerning charac-
terization of weighted Hardy type inequalities, where the equivalence of four
scales of integral conditions was proved, we use related ideas to find some new
equivalent scales of integral conditions related to the Stieltjes transform. By
applying our result to weighted inequalities for the Stieltjes transform we ob-
tain four new scales of conditions for characterization of this inequality. We
also derive a new characterization for the solvability of a Riccati type equation
and show via our new results that this characterization can be done in infinite
many ways via our four scales of equivalent conditions.

1. Introduction

The Stieltjes transform Sλ, λ > 0, is defined for a measurable function h by

(1.1) Sλh(x) =

∞∫
0

h(y) dy

(x+ y)λ
, x > 0.

We will consider the weighted Stieltjes inequality

(1.2)

 ∞∫
0

(
Sλh(x)

)q
u(x) dx

 1
q

≤ C

 ∞∫
0

(h(x))p v(x) dx

 1
p

,

with λ > 0, for measurable functions h ≥ 0, weights u and v and for parameters
p, q satisfying 1 < p ≤ q <∞.

Inequality (1.2) is usually characterized by splitting it into two Hardy type
inequalities and, thus, we get two different conditions. Using a ”gluing lemma”
(see [2, Lemma 2.2]) we can equivalently express these two conditions in one
single condition. More precisely, the following proposition was proved:
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Proposition 1.1. [2, Proposition 4.6] Let λ ≥ 0, 1 ≤ p ≤ q ≤ ∞, and suppose
that u(x) and v(x) are non-negative extended real-valued functions defined on
(0,∞). Then there exists a constant C independent of h such that the inequality
(1.2) holds if and only if

(1.3) K := sup
x>0

(Sλq(u)(x))
1
q

(
Sλp′(v

1−p′)(x)
) 1

p′
xλ <∞.

Moreover, the smallest constant C in (1.2) satisfies C ≈ K.
Here and in the sequel p′ = p

p−1
.

In [3] the equivalence of four scales of integral conditions was proved. These
conditions characterize the weighted Hardy inequality and contain the usual
Muckenhoupt–Bradley and Persson–Stepanov conditions as special cases. The
proof was carried out by first proving a related equivalence theorem of inde-
pendent interest (see Theorem 2.1 below). Inspired by this result we will find
some new equivalent scales of integral conditions related to the Stieltjes trans-
form. These conditions can be used to characterize the corresponding weighted
inequalities for the Stieltjes transform. We will first prove an equivalence theo-
rem which is of independent interest (see Theorem 2.2) and after that we apply
it to get four different scales of conditions for characterization of the mentioned
weighted inequalities for the Stieltjes transform (see Theorem 3.1).

Finally, we derive a new characterization for the solvability of an one-dimensio-
nal nonlinear second order Riccati type equation (see Theorem 4.1) and show via
our new results that this characterization can be done in infinite many ways via
our four scales of equivalent conditions (see Theorem 4.3). Our characterizations
are necessary and sufficient. To prove the sufficient part which is not difficult,
we are using a simple iteration method analogously to that used in [5], but our
proof of the necessity part is completely different. It is based on the Equivalence
theorem (Theorem 2.2), and we are not using weighted norm inequalities.

Let as mention that the close relation between some boundary value problems
and the corresponding integral inequalities is well known and investigated by
many authors (see e.g [1], [9], [10], [8, Section 14], [11], [5], [4]).

2. The new equivalence theorem

We start by formulating the crucial Equivalence theorem from [3]:

Theorem 2.1. [3, Theorem 2.1] For −∞ ≤ a < b ≤ ∞, α, β and s positive
numbers and f , g measurable functions positive a.e. in (a, b), denote

(2.1) F (x) :=

∫ b

x

f(t)dt, G(x) :=

∫ x

a

g(t)dt
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and

(2.2)

B1(x;α, β) := Fα(x)Gβ(x);

B2(x;α, β, s) :=
(∫ b

x
f(t)G

β−s
α (t)dt

)α

Gs(x);

B3(x;α, β, s) :=
(∫ x

a
g(t)F

α−s
β (t)dt

)β

F s(x);

B4(x;α, β, s) :=
(∫ x

a
f(t)G

β+s
α (t)dt

)α

G−s(x);

B5(x;α, β, s) :=
(∫ b

x
g(t)F

α+s
β (t)dt

)β

F−s(x).

The numbers B1 := sup
a<x<b

B1(x;α, β) and Bi(s) = sup
a<x<b

Bi(x;α, β, s) (i = 2, 3, 4, 5)

are mutually equivalent. The constants in the equivalence relations can depend
on α, β and s.

Our main result in this section is the following equivalence theorem:

Theorem 2.2. Let α, β, λ and s be positive numbers and let φ and ψ be mea-
surable functions which are positive a.e. in (0,∞). Moreover, let

(2.3)

A(x;α, β, λ) :=
(
S λ

α
φ(x)

)α (
Sλ

β
ψ(x)

)β

xλ;

A1(x;α, β, λ, s) :=
(
S λ

α
φ(x)

)s
(
S λs

βα

((
S λ

α
φ(t)

)α−s
β
ψ(t)

)
(x)

)β

x
λs
α ;

A2(x;α, β, λ, s) :=
(
S λ

α
φ(x)

)−s
(
S λs

βα

((
S λ

α
φ(t)

)α+s
β
ψ(t)t

λs
αβ

)
(x)

)β

;

A3(x;α, β, λ, s) :=
(
Sλ

β
ψ(x)

)s
(
S λs

βα

((
Sλ

β
ψ(t)

)β−s
α
φ(t)

)
(x)

)α

x
λs
β ;

A4(x;α, β, λ, s) :=
(
Sλ

β
ψ(x)

)−s
(
S λs

βα

((
Sλ

β
ψ(t)

)β+s
α
φ(t)t

λs
β

)
(x)

)α

.

The numbers

A(α, β, λ) = sup
x>0

A(x, α, β, λ)

and

Ai(α, β, λ, s) = sup
x>0

Ai(x;α, β, λ, s), (i = 1, 2, 3, 4)

are mutually equivalent. More precisely

(2.4) ciAi(α, β, λ, s) ≤ A(α, β, λ) ≤ diAi(α, β, λ, s), i = 1, 2, 3, 4.

The positive constants ci and di in the equivalence relations (2.4) can depend on
α, β, λ and s.
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Proof. We will show that

A(α, β, λ) ≈ Ai(α, β, λ, s)

for i = 1, 2, 3, 4. In the proof, which is rather technical, we use - among other
tools - the fact that the functions S λ

α
φ(x) and Sλ

β
ψ(x) are decreasing and the

functions x
λ
αS λ

α
φ(x) and x

λ
βSλ

β
ψ(x) are increasing, and that

S λ
α
φ(x) ≈ x−

λ
α

∫ x

0

φ(t)dt+

∫ ∞

x

t−
λ
αφ(t)dt

=
λ

α
x−

λ
α

∫ x

0

t
λ
α
−1

∫ ∞

t

y−
λ
αφ(y)dydt

=
λ

α

∫ ∞

x

t−
λ
α
−1

∫ t

0

φ(y)dydt

and

Sλ
β
ψ(x) ≈ x−

λ
β

∫ x

0

ψ(t)dt+

∫ ∞

x

t−
λ
βψ(t)dt

=
λ

β
x−

λ
β

∫ x

0

t
λ
β
−1

∫ ∞

t

y−
λ
βψ(y)dydt

=
λ

β

∫ ∞

x

t−
λ
β
−1

∫ t

0

ψ(y)dydt.

The equality in the above formulas follows by using simple calculations and
the Fubini theorem; we show only one of them:

x−
λ
α

∫ x

0

φ(t)dt+

∫ ∞

x

t−
λ
αφ(t)dt =

= x−
λ
α

∫ x

0

t−
λ
α t

λ
αφ(t)dt+ x−

λ
αx

λ
α

∫ ∞

x

t−
λ
αφ(t)dt

=
λ

α
x−

λ
α

∫ x

0

t−
λ
α

∫ t

0

y
λ
α
−1dyφ(t)dt+

λ

α
x−

λ
α

∫ x

0

y
λ
α
−1dy

∫ ∞

x

t−
λ
αφ(t)dt

=
λ

α
x−

λ
α

∫ x

0

y
λ
α
−1

∫ x

y

t−
λ
αφ(t)dtdy +

λ

α
x−

λ
α

∫ x

0

y
λ
α
−1dy

∫ ∞

x

t−
λ
αφ(t)dt

=
λ

α
x−

λ
α

∫ x

0

y
λ
α
−1

(∫ x

y

t−
λ
αφ(t)dt+

∫ ∞

x

t−
λ
αφ(t)dt

)
dy

=
λ

α
x−

λ
α

∫ x

0

y
λ
α
−1

∫ ∞

y

t−
λ
αφ(t)dtdy.

Step 1. A(α, β, λ) ≈ A1(α, β, λ, s).
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First we note that (using the equivalence relations (a + b)p ≈ ap + bp for
p, a, b > 0 and sup(A(x) +B(x)) ≈ supA(x) + supB(x))

A(α, β, λ) ≈ sup
x>0

xλ
(
S λ

α
φ(x)

)α
(
x−

λ
β

∫ x

0

ψ(t)dt+

∫ ∞

x

t−
λ
βψ(t)dt

)β

(2.5)

≈ sup
x>0

(
S λ

α
φ(x)

)α
(∫ x

0

ψ(t)dt

)β

+ sup
x>0

xλ
(
S λ

α
φ(x)

)α
(∫ ∞

x

t−
λ
βψ(t)dt

)β

:= I1 + I2.

Now we use the equivalence relation

B1(α, β) ≈ B3(α, β, s)

from Theorem 2.1. Putting S λ
α
φ(x) for F (x) and t

λ
βψ(t) for g(t) we get that

(2.6) I1 ≈ sup
x>0

(
S λ

α
φ(x)

)s
(∫ x

0

(
S λ

α
φ(t)

)α−s
β
ψ(t)dt

)β

.

Then we use the equivalence relation

B1(β, α) ≈ B2(β, α, s)

from Theorem 2.1. Putting x
λ
αS λ

α
φ(x) for G(x) and x−

λ
βψ(x) for f(x), we have

that

(2.7) I2 ≈ sup
x>0

x
λs
α

(
S λ

α
φ(x)

)s
(∫ ∞

x

t
λs
αβ

(
S λ

α
φ(t)

)α−s
β
ψ(t)dt

)β

.

Therefore, from (2.5), (2.6) and (2.7), we get that

A(α, β, λ) ≈ sup
x>0

(
S λ

α
φ(x)

)s
(∫ x

0

(
S λ

α
φ(t)

)α−s
β
ψ(t)dt

)β

+ sup
x>0

x
λs
α

(
S λ

α
φ(x)

)s
(∫ ∞

x

t
λs
αβ

(
S λ

α
φ(t)

)α−s
β
ψ(t)dt

)β

≈ sup
x>0

x
λs
α

(
S λ

α
φ(x)

)s
(
x−

λs
α

∫ x

0

(
S λ

α
φ(t)

)α−s
β
ψ(t)dt

+

∫ ∞

x

t
λs
αβ

(
S λ

α
φ(t)

)α−s
β
ψ(t)dt

)β

≈ sup
x>0

x
λs
α

(
S λ

α
φ(x)

)s
(
S λs

βα

((
S λ

α
φ(t)

)α−s
β
ψ(t)

))β

≈ A1(α, β, λ, s).

Step 2. A(α, β, λ) ≈ A2(α, β, λ, s).
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The procedure is similar to that in Step 1.
We use the equivalence relation

B1(α, β) ≈ B5(α, β, s)

from Theorem 2.1. Putting S λ
α
φ(x) for F (x) we find that

(2.8) I1 ≈ sup
x>0

(
S λ

α
φ(x)

)−s
(∫ ∞

x

(
S λ

α
φ(t)

)α+s
β
ψ(t)dt

)β

.

Next we use the equivalence relation

B1(β, α) ≈ B4(β, α, s)

from Theorem 2.1. Putting x
λ
αS λ

α
φ(x) for G(x) and x−

λ
βψ(x) for f(x), we obtain

that

(2.9) I2 ≈ sup
x>0

x−
λs
α

(
S λ

α
φ(x)

)−s
(∫ x

0

t
λs
αβ

(
S λ

α
φ(t)

)α+s
β
ψ(t)dt

)β

.

Therefore, from (2.5), (2.8) and (2.9), we conclude that

A(α, β, λ) ≈ sup
x>0

(
S λ

α
φ(x)

)−s
(∫ ∞

x

(
S λ

α
φ(t)

)α+s
β
ψ(t)dt

)β

+ sup
x>0

x−
λs
α

(
S λ

α
φ(x)

)−s
(∫ x

0

t
λs
αβ

(
S λ

α
φ(t)

)α+s
β
ψ(t)dt

)β

≈ sup
x>0

(
S λ

α
φ(x)

)−s
(∫ ∞

x

(
S λ

α
φ(t)

)α+s
β
ψ(t)dt

+ x−
λs
αβ

∫ x

0

t
λs
αβ

(
S λ

α
φ(t)

)α+s
β
ψ(t)dt

)β

≈ sup
x>0

(
S λ

α
φ(x)

)−s
(
S λs

βα

(
x

λs
αβ

(
S λ

α
φ(t)

)α+s
β
ψ(t)

))β

≈ A2(α, β, λ, s).

The equivalences A(α, β, λ) ≈ A3(α, β, λ, s) and A(α, β, λ) ≈ A4(α, β, λ, s) can
be proved similarly as those in Step 1 and Step 2, if we use the fact that the
expression A(α, β, λ) is symmetric with respect to φ and ψ. Hence we omit the
details. �

Corollary 2.3. Let λ and p be positive numbers and let φ be a measurable func-
tion positive a.e. in (0,∞). Then

1 ≈ sup
x>0

(Sλφ(x))−p Sλp

(
(Sλφ(t))p−1 φ(t)tλ(p−1)

)
(x)(2.10)

≈ sup
x>0

xλp (Sλφ(x))p Sλp

(
(Sλφ(t))−p−1 φ(t)tλp

)
(x).
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Proof. Using the equivalence relations

A2(1, 1, λ, 1) ≈ A2(1, 1, λ, p) ≈ A1(1, 1, λ, p)

and putting (Sλφ(x))−2 xλφ(x) for ψ(x) we get that

1 = A2(1, 1, λ, 1)

≈ A2(1, 1, λ, p) = sup
x>0

(Sλφ(x))−p (
Sλp (Sλφ(t))p−1 φ(t)tλ(p−1)

)
(x)

≈ A1(1, 1, λ, p) = sup
x>0

xλp (Sλφ(x))p (
Sλp (Sλφ(t))−p−1 φ(t)tλp

)
(x),

and the proof is complete. �

3. Some new scales of conditions characterizing the weighted
Stieltjes inequality

Our main result in this section reads:

Theorem 3.1. Let 0 < λ, s < ∞, 1 < p ≤ q < ∞, and for the weight functions
u and v define
(3.1)

K1(x, s) :=
(
Sλp′(v

1−p′)(x)
)s

(
Sλsqp′

((
Sλp′(v

1−p′)(t)
) q(1−p′s)

p′ u(t)

)
(x)

) 1
q

xλsp′ ;

K2(x, s) :=
(
Sλp′(v

1−p′)(x)
)−s

(
Sλsqp′

((
Sλp′(v

1−p′)(t)
) q(1−p′s)

p′ u(t)tλsp′q

)
(x)

) 1
q

;

K3(x, s) := (Sλq(u)(x))
s

(
Sλsqp′

(
(Sλq(u(t))

p′(1−qs)
q (v1−p′)(t)

)
(x)

) 1
p′

xλsq;

K4(x, s) := (Sλq(u)(x))
−s

(
Sλsqp′

(
(Sλq(u(t))

p′(1+qs)
q (v1−p′)(t)tλsp′q

)
(x)

) 1
p′

,

and
Ki(s) := sup

x>0
Ki(x, s), i = 1, 2, 3, 4.

Then the Stieltjes inequality (1.2) holds for all measurable functions f ≥ 0 if and
only if any of the quantities Ki(s) i = 1, 2, 3, 4, is finite for some s, 0 < s <∞.
Moreover, for the best constant C in (1.2) we have C ≈ Ki(s), i = 1, 2, 3, 4. The
constants in the equivalence relations can depend on s.

Proof. In (2.3) we put α = 1
q
, β = 1

p′
, φ(x) = u(x) and ψ(x) = v1−p′(x). Then

the assertion follows from the fact that

K = A(
1

q
,

1

p′
, λ) and Ki(s) = Ai(

1

q
,

1

p′
, λ, s), i = 1, 2, 3, 4,

are all equivalent, with A and Ai (i = 1, 2, 3, 4) defined in (2.3), see Theorem 2.2.
Moreover, by Proposition 1.1 the finiteness of K is necessary and sufficient for
the inequality (1.2) to hold. Finally, since for the least constant C in (1.2), we
have C ≈ K it is clear that C ≈ Ki(s) and the proof is complete. �
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4. Some scales of conditions characterizing the solvability of an
one-dimensional nonlinear second order Riccati type equation

In this section we consider the solvability problem for the following one-di-
mensional nonlinear second order Riccati type differential equation on the half
line (0,∞):

(4.1) u′′(x) + a(x)uq(x) = −v(x),

where q > 1, a and v are arbitrary nonnegative functions, and with boundary
conditions

(4.2) u(0) = u′(∞) = 0.

We are looking for conditions on the function v for which the equation (4.1)
accompanied by the boundary conditions (4.2) has a positive weak solution.

By a positive weak solution of the equation (4.1) we understand a nonnegative
measurable function u satisfying a.e. on (0,∞) the equivalent integral equation

(4.3) u(x)−
∫ x

0

ta(t)uq(t)dt− x

∫ ∞

x

a(t)uq(t)dt =

∫ x

0

tv(t)dt+ x

∫ ∞

x

v(t))dt,

which follows from (4.1) by integration.
We define

V (x) :=

∫ x

0

tv(t)dt+ x

∫ ∞

x

v(t)dt.

Our crucial result in this section reads:

Theorem 4.1. Let 1 < q <∞. Let a and v be nonnegative measurable functions
on (0,∞). (i) If

(4.4)

∫ x

0

ta(t)V q(t)dt+ x

∫ ∞

x

a(t)V q(t)dt ≤ q−1

(
q

q − 1

)1−q

V (x)

for a.e. x ∈ (0,∞), then the equation (4.1) with boundary conditions (4.2) has a
nonnegative weak solution u, such that

V (x) ≤ u(x) ≤ q

q − 1
V (x), a.e. on (0,∞).

(ii) If the equation (4.1) with boundary conditions (4.2) has a nonnegative weak
solution, then there is a positive constant c > 0 such that

(4.5)

∫ x

0

ta(t)V q(t)dt+ x

∫ ∞

x

a(t)V q(t)dt ≤ cV (x) a.e. on (0,∞).
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Proof. (i) Let us denote

Hag(x) :=

∫ x

0

ta(t)gq(t)dt+ x

∫ ∞

x

a(t)gq(t)dt.

Using simple iterations we find that

un+1 := Haun + V, n = 1, 2, . . . ,

starting from u1 = V . It follows by induction that if (4.4) holds, then

un ≤ un+1 and V ≤ un ≤ CnV,

where C1 = 1 and Cn+1 = q−1
(

q
q−1

)1−q

Cn + 1. Since x0 = q
q−1

is the only

root of the equation x = q−1
(

q
q−1

)1−q

xq + 1 and C1 = 1, it is easy to see that

limn→∞Cn = q
q−1

and, hence, that exists a solution u(x) = limn→∞ un(x) and

such that

V (x) ≤ u(x) ≤ q

q − 1
V (x).

(ii) Let us assume that the equation (4.1) with boundary condition (4.2) has a
nonnegative weak solution. Then

V (x) ≤ u(x)(4.6)

and

Hau(x) ≤ u(x).(4.7)

It is easy to see that

V (x) ≈ xS1(tv(t))(x)(4.8)

and

Hau(x) ≈ xS1(ta(t)u
q(t))(x).(4.9)

Therefore,

u(x) ≈ xS1(ta(t)u
q(t))(x) + xS1(tv(t))(x) = xS1(ta(t)u

q(t) + tv(t))(x).

Let us denote φ(t) := ta(t)ur(t) + tv(t) and ψ(t) := ta(t). Then we can rewrite
the condition (4.7) to the following form:

(4.10) sup
x>0

(S1(φ)(x))−1 S1 ((S1(φ))q ψ) (x) ≤ C.

By Theorem 2.2 we have the following equivalence relation:

A1(q − 1, 1, q − 1, q − 1) ≈ A2(q − 1, 1, q − 1, 1),

which reads

sup
x>0

xq−1 (S1(φ)(x))q−1Sq−1(ψ)(x)
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≈ sup
x>0

(S1(φ)(x))−1 S1 (ψ(t) (S1(φ)(t))q) (x).

We obtain, due to (4.10), that

sup
x>0

xq−1 (S1(φ)(x))q−1 Sq−1(ψ)(x) ≤ C.

Moreover, by using the estimate (4.6), we get that

(4.11) sup
x>0

(V (x))q−1 Sq−1(ta(t))(x) ≤ C.

Therefore, by using the equivalence (4.8), we get that (4.11) is equivalent with
the following condition:

(4.12) sup
x>0

xq−1 (S1(tv(t))(x))
q−1 Sq−1(ta(t))(x) ≤ C.

Now we use the equivalence relation

A(q − 1, q − 1, q − 1) ≈ A2(q − 1, 1, q − 1, 1),

from Theorem 2.2, and put φ(t) = tv(t) and ψ(t) = ta(t). Then, from (4.12) we
get that

sup
x>0

(S1(tv(t))(x))
−1 S1(t

1+qa(t) (S1(tv(t))(t))
q)(x) ≤ C.

Now, using again the equivalence (4.8), we obtain that

sup
x>0

(V (x))−1 xS1(t
1a(t) (V (t))q)(x) ≤ C,

which is equivalent to the condition (4.5) due of the equivalence (4.9). The proof
is complete. �

Remark 4.2. If we use some of the equivalent relations

A(q − 1, q − 1, q − 1) ≈ Ai(q − 1, 1, q − 1, s), i = 1, 2, 3, 4, s > 0,

from Theorem 2.2, by same way we can obtain other different but equivalent
characterizations of the solvability for the equation (4.1). By Theorem 4.1 we
can show that it is also connected to the Stieltjes inequality with weights.

With the information in Remark 4.2 in mind we now formulate the main result
of this section:

Theorem 4.3. Let 1 < q <∞. Let a and v be nonnegative measurable functions
on (0,∞). Then the following statements are equivalent:

(i) The equation

(4.13) u′′(x) + a(x)uq(x) = −εv(x),
with boundary condition (4.2) has a nonnegative weak solution u for some ε > 0.

(ii) There exist positive constants C1 and s , such that

Ss

(
ts−q+2a(t) (V (t))q−1−s) (x) ≤ C1 (V (x))−s

for a.e. x on (0,∞).
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(iii) There exist positive constants C2 and s, such that

xsSs

(
t−q+2a(t) (V (t))q−1+s) (x) ≤ C2 (V (x))s

for a.e. x on (0,∞).
(iv) There exist positive constants C3 and s , such that

Ss

(
tv(t) (S1(ya(y))(t))

q−1−s
q−1

)
(x) ≤ C3x

−s (S1(ya(y))(x))
− s

q−1

for a.e. x on (0,∞).
(v) There exist positive constants C4 and s, such that

Ss

(
t1+sv(t) (S1(ya(y))(t))

q−1+s
q−1

)
(x) ≤ C4 (S1(ya(y))(x))

s
q−1

for a.e. x on (0,∞).
(vi) There exists a positive constant C5, such that ∞∫

0

(
Sq′f(x)

)q′
xv(x) dx

 1
q′

≤ C5

 ∞∫
0

(f(x))q′ (xa(x))1−q′ dx

 1
q′

,

holds for every positive measurable function f on (0,∞).

Proof. The proof follows by just using Theorem 4.1 combined with our equiva-
lence Theorem 2.2 (see also Remark 4.2). �
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