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Abstract. This article deals with three-forms on six-dimensional manifolds, the
first dimension where the classification of 3-forms is not trivial. It includes three
classes of multisymplectic three-forms. We study the class which is closely related to
almost complex structures.

Introduction

There is a growing interest in the study of three-forms among geometers and
physisits in the recent years. There are various geometrical structures connected
with different types of three-forms on manifolds.
The connections with totally skew-symmetric torsion, which is a three-form, play

an important role in the research of Thomas Friedrich (a series of articles, see for
example [F]).
Nigel Hitchin and his school also shows an interest in three-forms ([H], [W]).

There are three orbits of the action of the group GL(6, R) on the multisymplectic
(full-rank) three-forms on a six-dimensional vector space. There is either a tangent,
complex, or product structure connected with a three-form on a six-dimensional
vector space The kind of structure depends on which of the three orbits the form
belongs to. We speak about the forms of product type, of complex type or of tangent
type acordingly). The notion of a three-form of the given type on the manifold can
be defined in the obvious way. We study closely the three-forms of the complex
type and we construct the associated complex structure in a different (and we
think simpler) way than N. Hitchin in [H]. Further we investigate the interplay
between the integrability of the complex structure associated with a given three-
form of complex type and the existence of the linear symmetric connection, which
preserves the form. The result is stated in the Theorem 13, which can be regarded
as ‘The Darboux theorem for the three-forms of complex type’.

Theorem. Let ω be a real three-form of complex type on a six-dimensional differ-
entiable manifold M . Let J be the almost complex structure on M such that for
any vector fields X1, X2, X3 ∈ X(M)

ω(JX1, X2, X3) = ω(X1, JX2, X3) = ω(X1, X2, JX3).
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Then there exists a symmetric connection ∇̃ on M such that ∇̃ω = 0 if and only if
the following conditions are satisfied

(i) dω = 0,
(ii) the almost complex structure J is integrable.

The orbits of the three-forms on six dimensional spaces

Let V be a real vector space. Recall that a k-form ω (k ≥ 2) are said to be
multisymplectic if the homomorphism

ι : V → Λk−1V ∗, v 7→ ιvω = ω(v, . . . )

is injective. There is a natural action of the general linear group G(V ) on ΛkV ∗,
and also on Λk

msV
∗, the subset of the multisymplectic forms. Two multisymplectic

forms are called equivalent if they belong to the same orbit of the action. For any
form ω ∈ ΛkV ∗ we define a subset

∆(ω) = {v ∈ V ; (ιvω) ∧ (ιvω) = 0}.

If dimV = 6 and k = 3 the subset Λ3msV
∗ consists of three orbits. Let e1, . . . , e6

be a basis of V and α1, . . . , α6 the corresponding dual basis. Representatives of the
three orbits can be expressed in the form

(1) ω1 = α1 ∧ α2 ∧ α3 + α4 ∧ α5 ∧ α6,
(2) ω2 = α1 ∧ α2 ∧ α3 + α1 ∧ α4 ∧ α5 + α2 ∧ α4 ∧ α6 − α3 ∧ α5 ∧ α6,
(3) ω3 = α1 ∧ α4 ∧ α5 + α2 ∧ α4 ∧ α6 + α3 ∧ α5 ∧ α6.

We speak speak about multisymplectic forms of product type (first form), or of
complex type (the second one), or of tangent type (the third one) accordning to
which orbit they belong to. There is the following characterisation of the orbits:

(1) ω is of product type if and only if ∆(ω) = V a ∪ V b, where V a and V b are
three-dimensional subspaces satisfying V a ∩ V b = {0}.

(2) ω is of complex type if and only if ∆(ω) = {0}.
(3) ω is of tangent type if and only if ∆(ω) is a three-dimensional subspace.

The forms ω1 and ω2 have equivalent complexifications. From this point of view
the forms of tangent type are exceptional. See [V]. for further details
A multisymplectic k-form on a manifold M is a section of ΛkT ∗M such that its

restriction to the tangent space TxM is multisymplectic for any x ∈ M , and is of
type i in x ∈ M , i = 1, 2, 3, if the restriction to TxM is of type i. A multisymplectic
form on M can change its type as can be seen from the example:

σ = dx1 ∧ dx2 ∧ dx3 + dx1 ∧ dx4 ∧ dx5 + dx2 ∧ dx4 ∧ dx6+

sin(x3 + x4)dx3 ∧ dx5 ∧ dx6 + sin(x3 + x4)dx4 ∧ dx5 ∧ dx6,

a three-form on R6. Then σ is of type 3 on the submanifold given by the equation
x3 + x4 = kπ, k ∈ N. If x3 + x4 ∈ (kπ, (k + 1)π), k even, then σ is of type 1
and if x3 + x4 ∈ (kπ, (k + 1)π), k odd, then σ is of type 2. We point out that σ
is closed and invariant under the action of the group (2πZ)6 and we can factor σ
to get a form changing the type on R6/(2πZ)6, which is the six-dimensional torus,
that is σ is closed on a compact manifold. The goal of this paper is to study the
forms of complex type. We denote ω = ω2.
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Three-forms of complex type on vector spaces

In this chapter , in Proposition 7, we associate a three-form of complex type on
a six-dimensional vector space V with the complex structure on the vector space
(thereby justifying the name). In Proposition 8 we associate the couple (a three-
form and the corresponding complex structure) with the unique complex three-form
on the complexification V C.
We need some considerations about a decomposion of the three-forms on the

complex vector spaces with aditional complex structure first.
Let J be an automorphism of a six-dimensional real vector space V satisfying

J2 = −I. Further let V C = V ⊕ iV be the complexification of V . There is the
standard decomposition V C = V 1,0 ⊕ V 0,1. Consider a non-zero form γ of type
(3, 0) on V C and set

γ0 = Re γ, γ1 = Im γ.

For any v1 ∈ V , v1+iJv1 ∈ V 0,1, and consequently γ(i(v1+iJv1), v2, v3) = 0 for any
v2, v3 ∈ V . This implies γ0(i(v1+ iJv1), v2, v3) = 0 and γ1(i(v1+ iJv1), v2, v3) = 0.
Thus

0 = γ0(i(v1 + iJv1), v2, v3) = γ0(iv1, v2, v3)− γ0(Jv1, v2, v3).

Similarly we can proceed with γ1 and we get

γ0(iv1, v2, v3) = γ0(Jv1, v2, v3), γ1(iv1, v2, v3) = γ1(Jv1, v2, v3),

for any v1, v2, v3 ∈ V . Moreover

γ0(w1, w2, w3) = Re(−γ(i2w1, w2, w3)) = Re(−iγ(iw1, w2, w3))

= Im(γ(iw1, w2, w3)) = γ1(iw1, w2, w3),

for any w1, w2, w3 ∈ V C and that is γ1(w1, w2, w3) = −γ0(iw1, w2, w3). Finally,

γ0(Jv1, v2, v3) = γ0(iv1, v2, v3) = Re(γ(iv1, v2, v3)) = Re(iγ(v1, v2, v3))

= Re(γ(v1, iv2, v3)) = Re(γ(v1, Jv2, v3)) = γ0(v1, Jv2, v3).

In a similar manner

γ0(Jv1, v2, v3) = γ0(v1, Jv2, v3) = γ0(v1, v2, Jv3),

γ1(Jv1, v2, v3) = γ1(v1, Jv2, v3) = γ1(v1, v2, Jv3),

that is both forms γ0 and γ1 are pure with respect to the complex structure J .
We recall that a three-form ω on a vector space V is called pure with respect to

an automorphism A of V , iff

ω(AX1, X2, X3) = ω(X1, AX2, X3) = ω(X1, X2, AX3), ∀X1, X2, X3 ∈ V.
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1. Lemma. The real three-forms γ0|V and γ1|V (on V ) are multisymplectic.

Proof. Let us assume that v1 ∈ V is a vector such that for any vectors v2, v3 ∈
V (γ0|V )(v1, v2, v3) = 0 or equivalently γ0(v1, v2, v3) = 0. There are uniquely
determined vectors w1, w2, w3 ∈ V 1,0 such that

v1 = w1 + w̄1, v2 = w2 + w̄2, v3 = w3 + w̄3.

Then

0 = γ0(v1, v2, v3) = Re(γ(w1 + w̄1, w2 + w̄2, w3 + w̄3))

= Re(γ(w1, w2, w3)) = γ0(w1, w2, w3),

for a fixed w1, and arbitrary w2, w3 ∈ V 1,0. Because iw2 ∈ V 1,0,

γ0(iw1, w2, w3) = γ0(w1, iw2, w3) = 0.

Moreover γ1(w, w′, w′′) = −γ0(iw, w′, w′′) for any w, w′, w′′ ∈ V C, and we get

γ1(w1, w2, w3) = −γ0(iw1, w2, w3) = 0,

for arbitrary w2, w3 ∈ V 1,0. Thus

γ(w1, w2, w3) = γ0(w1, w2, w3) + iγ1(w1, w2, w3) = 0,

for arbitrary w2, w3 ∈ V 1,0.

Because γ is a non-zero complex three-form on the complex three-dimensional
vector space V 1,0, we find that w1 = 0, and consequently v1 = 0. This proves that
the real three-form γ0|V is multisymplectic. Similarly the real three-form γ1|V is
also multisymplectic.

2. Lemma. The forms γ0|V and γ1|V satisfy ∆(γ0|V ) = {0} and ∆(γ1|V ) = {0}.

Proof. The complex three-form γ is decomposable, and therefore γ ∧ γ = 0. This
implies that for any w ∈ V C (ιwγ) ∧ (ιwγ) = 0. Similarly for any w ∈ V C (ιwγ̄) ∧
(ιwγ̄) = 0. Obviously γ0 = (1/2)(γ+ γ̄). Let v ∈ V be such that (ιvγ0)∧(ιvγ0) = 0.
Then

0 = (ιvγ0) ∧ (ιvγ0) =
1

4
(ιvγ + ιv γ̄) ∧ (ιvγ + ιv γ̄) =

1

2
(ιvγ) ∧ (ιv γ̄).

But ιvγ is a form of type (2, 0) and ιv γ̄ a form of type (0, 2). Consequently the last
wedge product vanishes if and only if either ιvγ = 0 or ιv γ̄ = 0. By virtue of the
preceding lemma this implies that v = 0.

Lemma 2 shows that the both forms γ0|V and γ1|V are of complex type. As
a final result of this type we get the following:
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3. Corollary. Let γ be a three-form on V C of the type (3, 0). Then the real
three-forms (Re γ)|V and (Im γ)|V on V are multisymplectic and of complex type.

Let ω be a three-form on V such that ∆(ω) = {0}. This means that for any
v ∈ V , v 6= 0 there is (ιvω) ∧ (ιvω) 6= 0. This implies that rank ιvω ≥ 4. On the
other hand obviously rank ιvω ≤ 4. Consequently, for any v 6= 0 rank ιvω = 4.
Thus the kernel K(ιvω) of the 2-form ιvω has dimension 2. Moreover v ∈ K(ιvω).
Now we fix a non-zero 6-form on θ on V . For any v ∈ V there exists a unique
vector Q(v) ∈ V such that

(ιvω) ∧ ω = ιQ(v)θ.

The mapping Q : V → V is obviously a homomorphism. If v 6= 0 then (ιvω)∧ω 6= 0,
and Q is an automorphism. It is also obvious that if v 6= 0, then the vectors v and
Q(v) are linearly independent (by applying ιv to the last equality). We evaluate
ιQ(v) on the last equality and we get

(ιQ(v)ιvω) ∧ ω + (ιvω) ∧ (ιQ(v)ω) = 0,
−(ιvιQ(v)ω) ∧ ω + (ιvω) ∧ (ιQ(v)ω) = 0,

−ιv[(ιQ(v)ω) ∧ ω] + 2(ιvω) ∧ (ιQ(v)ω) = 0.
Now, apply ιv to the last equality:

(ιvω) ∧ (ιvιQ(v)ω) = 0.

If the 1-form ιvιQ(v)ω were not the zero one then there would exist a 1-form σ such
that ιvω = σ ∧ ιvιQ(v)ω, and we would get

(ιvω) ∧ (ιvω) = σ ∧ ιvιQ(v)ω ∧ σ ∧ ιvιQ(v)ω = 0,

which is a contradiction. Thus we have proved the following lemma.

4. Lemma. For any v ∈ V there is ιQ(v)ιvω = 0, i. e. Q(v) ∈ K(ιvω).

This lemma shows that if v 6= 0, then K(ιvω) = [v, Q(v)]. Applying ιQ(v) to the
equality (ιvω)∧ω = ιQ(v)θ and using the last lemma we obtain easily the following
result.

5. Lemma. For any v ∈ V there is (ιvω) ∧ (ιQ(v)ω) = 0.
Lemma 4 shows that v ∈ K(ιQ(v)ω). Because v and Q(v) are linearly indepen-

dent, we can see that

K(ιQ(v)ω) = [v, Q(v)] = K(ιvω).

If v 6= 0, then Q2(v) ∈ K(ιQ(v)ω), and consequently there are a(v), b(v) ∈ R such
that

Q2(v) = a(v)v + b(v)Q(v).

For any v ∈ V
(ιQ(v)ω) ∧ ω = ιQ2(v)θ.

Let us assume that v 6= 0. Then
(ιQ(v)ω) ∧ ω = a(v)ιvθ + b(v)ιQ(v)θ,

and applying ιv we obtain b(v)ιvιQ(v)θ = 0, which shows that b(v) = 0 for any

v 6= 0. Consequently, Q2(v) = a(v)v for any v 6= 0.
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6. Lemma. Let A : V → V be an automorphism, and a : V \{0} → R a function
such that

A(v) = a(v)v for any v 6= 0.
Then the function a is constant.

Proof. The condition on A means that every vector v of V is an eigenvector of A
with the eigenvalue a(v). But the eigenvalues of two different vectors have to be
the same otherwise their sum would not be an eigenvector.

Applying Lemma 6 on Q2 we get Q2 = aI. If a > 0, then V = V + ⊕ V −, and

Qv =
√

av for v ∈ V +, Qv = −
√

av for v ∈ V −.

At least one of the subspaces V + and V − is non-trivial. Let us assume for example
that V + 6= {0}. Then there is v ∈ V +, v 6= 0, and Qv =

√
av, which is a contra-

diction because the vectors v and Qv are linearly independent. This proves that
a < 0. We can now see that the automorphisms

J+ =
1√−a

Q and J− = − 1√−a
Q satisfy J2+ = −I and J2

−
= −I,

i. e. they define complex structures on V and J− = −J+. Setting

θ+ =
√
−aθ, θ− = −

√
−aθ,

we get
(ιvω) ∧ ω = ιJ+vθ+, (ιvω) ∧ ω = ιJ

−
vθ−.

In the sequel we shall denote J = J+. The same results which are valid for J+
hold also for J−.

7. Proposition. There exists a unique (up to the the sign) complex structure J
on V such that the form ω satisfies the relation

ω(Jv1, v2, v3) = ω(v1, Jv2, v3) = ω(v1, v2, Jv3) for any v1, v2, v3 ∈ V.

Proof. We shall prove first that the complex structure J defined above satisfies the
relation. By virtue of Lemma 4 for any v, v′ ∈ V ω(v, Jv, v′) = 0. Therefore we get

0 = ω(v1 + v2, J(v1 + v2), v3) = ω(v1, Jv2, v3) + ω(v2, Jv1, v3)

= −ω(Jv1, v2, v3) + ω(v1, Jv2, v3),

which gives
ω(Jv1, v2, v3) = ω(v1, Jv2, v3).

Obviously, the opposite complex structure −J satisfies the same relation. We prove
that there is no other complex structure with the same property. Let J̃ be a complex
structure on V satisfying the above relation. We set A = J̃J−1. Then we get

ω(v1, Av2, Av3) = ω(v1, J̃Jv2, J̃Jv3) =ω(v1, Jv2, J̃
2Jv3) = −ω(v1, Jv2, Jv3)

=− ω(v1, v2, J
2v3) = ω(v1, v2, v3).
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Any automorphism A satisfying this identity is ±I. Really, the identity means that
A is an automorphism of the 2-form ιvω. Consequently, A preserves the kernel
K(ιvω) = [v, Jv]. On the other hand it is obvious that any subspace of the form
[v, Jv] is the kernel of ιvω. Considering V as a complex vector space with the
complex structure J , we can say that every 1-dimensional complex subspace is the
kernel of the 2-form ιvω for some v ∈ V , v 6= 0, and consequently is invariant under
the automorphism A. Similarly as in Lemma 6 we conclude, that A = λI, λ ∈ C.
If we write λ = λ0 + iλ1, then A = λ0I + λ1J and

ω(v1, v2, v3) = ω(v1, Av2, Av3)

=ω(v1, λ0v2 + λ1Jv2, λ0v3 + λ1Jv3)

=λ20ω(v1, v2, v3) + λ0λ1ω(v1, v2, Jv3) + λ0λ1ω(v1, Jv2, v3) + λ21ω(v1, Jv2, Jv3),

(λ20 − λ21 − 1)ω(v1, v2, v3) + 2λ0λ1ω(v1, v2, J

We shall use this last equation together with one obtained by writing Jv3 instead
of v3. In this way we get the system

(λ20 − λ21 − 1)ω(v1, v2, v3) + 2λ0λ1ω(v1, v2, Jv3) = 0,

−2λ0λ1ω(v1, v2, v3) + (λ20 − λ21 − 1)ω(v1, v2, Jv3) = 0.

Because it has a non-trivial solution

∣

∣

∣

∣

λ20 − λ21 − 1 2λ0λ1
−2λ0λ1 λ20 − λ21 − 1

∣

∣

∣

∣

= 0.

It is easy to verify that the solution of the last equation is λ0 = ±1 and λ1 = 0.
This finishes the proof.

We shall now consider the vector space V together with a complex structure
J , and a three-form ω on V which is pure with respect to this complex structure.
Firstly we define a real three-form γ0 on V C. We set

γ0(v1, v2, v3) = ω(v1, v2, v3),
γ0(iv1, v2, v3) = ω(Jv1, v2, v3),
γ0(iv1, iv2, v3) = ω(Jv1, Jv2, v3),
γ0(iv1, iv2, iv3) = ω(Jv1, Jv2, Jv3),

for v1, v2, v3 ∈ V . Then γ0 extends uniquely to a real three-form on V C. We can
easily verify that

γ0(iw1, w2, w3) = γ0(w1, iw2, w3) = γ0(w1, w2, iw3)

for any w1, w2, w3 ∈ V C. Further, we set

γ1(w1, w2, w3) = −γ0(iw1, w2, w3) for w1, w2, w3 ∈ V C.

It is obvious that γ1 is a real three-form satisfying

γ1(iw1, w2, w3) = γ1(w1, iw2, w3) = γ1(w1, w2, iw3),
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for any w1, w2, w3 ∈ V C. Now we define

γ(w1, w2, w3) = γ0(w1, w2, w3) + iγ1(w1, w2, w3) for w1, w2, w3 ∈ V C.

It is obvious that γ is skew-symmetric and 3-linear over R and has complex values.
Moreover

γ(iw1, w2, w3) = γ0(iw1, w2, w3) + iγ1(iw1, w2, w3)

= −γ1(w1, w2, w3)− iγ0(i
2w1, w2, w3) = −γ1(w1, w2, w3) + iγ0(w1, w2, w3) =

= i[γ0(w1, w2, w3) + iγ1(w1, w2, w3)] = iγ(w1, w2, w3),

which proves that γ is a complex three-form on V C. Now we prove that γ is a form
of type (3, 0). Obviously, it suffices to prove that for v1+iJv1 ∈ V 0,1 and v2, v3 ∈ V ,
γ(v1 + iJv1, v2, v3) = 0. Indeed,

γ(v1 + iJv1, v2, v3) = γ(v1, v2, v3) + iγ(Jv1, v2, v3)

=γ0(v1, v2, v3) + iγ1(v1, v2, v3) + iγ0(Jv1, v2, v3)− γ1(Jv1, v2, v3)

=γ0(v1, v2, v3)− iγ0(iv1, v2, v3) + iγ0(Jv1, v2, v3) + γ0(iJv1, v2, v3)].

Now γ0(iJv1, v2, v3)] = ω(J2v1, v2, v3) = −ω(v1, v2, v3) = −γ0(v1, v2, v3) and the
real part of the last expression is zero, further γ0(Jv1, v2, v3) = ω(Jv1, v2, v3) =
γ0(iv1, v2, v3) and the complex part of the expression is zero as well. Now we easily
obtain the following proposition.

8. Proposition. Let ω be a real three-form on V satisfying ∆(ω) = {0}, and let
J be a complex structure on V (one of the two) such that

ω(Jv1, v2, v3) = ω(v1, Jv2, v3) = ω(v1, v2, Jv3).

Then there exists on V C a unique complex three-form γ of type (3, 0) such that

ω = (Re γ)|V.

Remark. The complex structure J on V can be introduced also by means of the
Hitchin’s invariant λ, as in [H]. Forms of complex type form an open subset U
in Λ3V ∗. Hitchin has shown that this manifold also carries an almost complex
structure which is integrable. Hitchin uses the following method to introduce an
almost complex structure on U . One regards U ⊂ Λ3V ∗ as a symplectic manifold
(let θ be a fixed element in Λ6V ∗; one defines the symplectic form Θ on Λ3V ∗

by the equation ω1 ∧ ω2 = Θ(ω1, ω2)θ). Then the derivative of the Hamiltonian

vector field corresponding to the function
√

−λ(ω) on U gives an integrable almost
complex structure on U .
There is another way of introducing the (Hitchin’s) almost complex structure

on U . Given a three-form ω ∈ U we choose the complex structure Jω on V (one
of the two), whose existence is guaranteed by the Proposition 7. Then we define
endomorphisms AJω

and DJω
of ΛkV ∗ by

(AJω
Ω)(v1, . . . , vk) = Ω(Jωv1, . . . , Jωvk),

(DJω
Ω)(v1, . . . , vk) =

k
∑

i=1

Ω(v1, . . . , vi−1, Jωvi, vi+1, . . . , vk).

Then AJω
is an automorphism of ΛV ∗ and DJω

is a derivation of ΛV ∗. If k = 3
then the automorphism − 12 (AJω

+DJω
) of Λ3V ∗ (= TωU) gives a complex structure

on U and coincides with the Hitchin one.
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Three-forms of complex type on manifolds

We use facts from the previous section to obtain some global results on three-
forms on six-dimensional manifolds. We shall denote by X , Y , Z the real vector
fields on a (real) manifold M and by V , W the complex vector fields on M . X(M)
stands for the set of all (real) vector fields on M , X

C(M) means all the complex
vector fields on M .
A three-form ω onM is called the form of complex type if for every x ∈ M there

is ∆(ωx) = {0}. Let ω be a form of complex type on M and let U ⊂ M be an open
orientable submanifold. Then there exists an everywhere nonzero differentiable 6-
form on U . In each TxM , x ∈ U construct J− and J+ as in Proposition 7. The
construction is evidently smooth on U . Thus we obtained the following lemma.

9. Lemma. Let ω be a form of complex type onM and let U ⊂ M be an orientable
open submanifold. Then there exist two differentiable almost complex structures
J+ and J− on U such that

(i) J+ + J− = 0,
(ii) ω(J+X1, X2, X3) = ω(X1, J+X2, X3) = ω(X1, X2, J+X3),
(iii) ω(J−X1, X2, X3) = ω(X1, J−X2, X3) = ω(X1, X2, J−X3),

for any vector fields X1, X2, X3.

At each point x ∈ M consider a 1-dimensional subspace of the space T 11x(M)
of tensors of type (1, 1) at x generated by the tensors J+x and J−x. The above
considerations show that it is a 1-dimensional subbundle J ⊂ T 11 (M).
10. Lemma. The 1-dimensional vector bundles J and Λ6T ∗(M) are isomorphic.

Proof. Let us choose a Riemannian metric g0 on TM . If x ∈ M and v, v′ ∈ TxM
we define a riemannian metric g by the formula

g(v, v′) = g0(v, v′) + g0(J+v, J+v′) = g0(v, v′) + g0(J−v, J−v′).

It is obvious that for any v, v′ ∈ TxM we have

g(J+v, J+v′) = g(v, v′), g(J−v, J−v′) = g(v, v′).

We now define

σ+(v, v′) = g(J+v, v′), σ−(v, v′) = g(J−v, v′).

It is easy to verify that σ+ and σ− are nonzero 2-forms on TxM satisfying σ++σ− =
0.
We define an isomorphism h : J → Λ6T ∗M . Let x ∈ M and let A ∈ Jx. We

can write

A = aJ+, A = −aJ−.

Then we set

hA = aσ+ ∧ σ+ ∧ σ+ = −aσ− ∧ σ− ∧ σ−.
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11. Corollary. There exist two almost complex structures J+ and J− on M such
that

(i) J+ + J− = 0,
(ii) ω(J+X1, X2, X3) = ω(X1, J+X2, X3) = ω(X1, X2, J+X3),
(iii) ω(J−X1, X2, X3) = ω(X1, J−X2, X3) = ω(X1, X2, J−X3),

for any vector fields X1, X2, X3 if and only if the manifold M is orientable.

Hence the assertions in the rest of the article can be simplified correspondingly
if M is an orientable manifold.

12. Lemma. Let J be an almost complex structure onM such that for any vector
fields X1, X2, X3 ∈ X(M),

ω(JX1, X2, X3) = ω(X1, JX2, X3) = ω(X1, X2, JX3).

If ∇ is a linear connection on M such that ∇ω = 0, then also ∇J = 0.

Proof. Let Y ∈ X(M), and let us consider the covariant derivative ∇Y . We get

0 = (∇Y ω)(JX1, X2, X3) = Y (ω(JX1, X2, X3)− ω((∇Y J)X1, X2, X3)

−ω(J∇Y X1, X2, X2)− ω(JX1,∇Y X2, X3)− ω(JX1, X2,∇Y X3),

0 = (∇Y ω)(X1, JX2, X3) = Y (ω(JX1, X2, X3)− ω(∇Y X1, JX2, X3)

−ω(X1, (∇Y J)X2, X3)− ω(X1, J∇Y X2, X3)− ω(X1, JX2,∇Y X3).

Because the above expressions are equal we find easily that

ω((∇Y J)X1, X2, X3) = ω(X1, (∇Y J)X2, X3).

We denote A = ∇Y J . Extending in the obvious way the above equality, we get

ω(AX1, X2, X3) = ω(X1, AX2, X3) = ω(X1, X2, AX3).

Moreover J2 = −I, and applying ∇Y to this equality, we get

AJ + JA = 0.

We know that K(ιXω) = [X, JX ]. Furthermore

ω(X, AX, X ′) = ω(X, X, AX ′) = 0, ω(X, AJX, X ′) = ω(X, JX, AX ′) = 0,

which shows thatA preserves the distribution [X, JX ]. By the very same arguments
as in Proposition 7 we can see that A = λ0I + λ1J . Consequently

(λ0I + λ1J)J + J(λ0I + λ1J) = 0,

−2λ1I + 2λ0J = 0,

which implies λ0 = λ1 = 0. Thus ∇Y J = A = 0.

The statement of the previous lemma can to some extent be reversed, and we
get the following theorem.
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13. Theorem. Let ω be a real three-form on a six-dimensional differentiable
manifold M satisfying ∆(ωx) = {0} for any x ∈ M . Let J be an almost complex
structure on M such that for any vector fields X1, X2, X3 ∈ X(M)

ω(JX1, X2, X3) = ω(X1, JX2, X3) = ω(X1, X2, JX3).

Then there exists a symmetric connection ∇̃ on M such that ∇̃ω = 0 if and only if
the following conditions are satisfied

(i) dω = 0,
(ii) the almost complex structure J is integrable.

Proof. First, we prove that the integrability of the structure J and the fact that ω
is closed implies the existence of a symmetric connection with respect to which ω
is parallel.
For any connection ∇ on M we shall denote by the same symbol its complexifi-

cation. Namely, we set

∇X0+iX1(Y0 + iY1) = (∇X0Y0 −∇X1Y1) + i(∇X0Y1 +∇X1Y0).

Let us assume that there exists a symmetric connection
◦

∇ such that
◦

∇J = 0. We
shall consider a three-form γ of type (3, 0) such that (Re γ)|TM = ω. Our next
aim is to try to find a symmetric connection

∇V W =
◦

∇V W +Q(V, W ),

satisfying ∇V γ = 0. Obviously, the connection ∇ is symmetric if and only if
Q(V, W ) = Q(W, V ).

Moreover, ∇V γ = 0 suggests that ∇J = 0.

0 = (∇V J)W = ∇V (JW )−J∇V W =
◦

∇V (JW )+Q(V, JW )−J
◦

∇V W −JQ(V, W ),

which shows that we should require

Q(JV, W ) = Q(V, JW ) = JQ(V, W ).

Because
◦

∇J = 0, we can immediately see that for any V ∈ X
C(M) the covariant

derivative
◦

∇V γ is again a form of type (3, 0). Consequently there exists a uniquely
determined complex 1-form ρ such that

◦

∇V γ = ρ(V )γ.

Then

(∇V γ)(W1, W2, W3)

=V (γ(W1, W2, W3))− γ(∇V W1, W2, W3)− γ(W1,∇V W2, W3)− γ(W1, W2,∇V W3)

=V (γ(W1, W2, W3))− γ(
◦

∇V W1, W2, W3)− γ(W1,
◦

∇V W2, W3)− γ(W1, W2,
◦

∇V W3)

− γ(Q(V, W1), W2, W3)− γ(W1, Q(V, W2), W3)− γ(W1, W2, Q(V, W3))

=ρ(V )γ(W1, W2, W3)

− γ(Q(V, W1), W2, W3)− γ(W1, Q(V, W2), W3)− γ(W1, W2, Q(V, W3)).
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In other words ∇V γ = 0 if and only if

ρ(V )γ(W1, W2, W3)

= γ(Q(V, W1), W2, W3)+γ(W1, Q(V, W2), W3) + γ(W1, W2, Q(V, W3)).

Sublemma. If dγ = 0, then ρ is a form of type (1, 0).

Proof. Let V1 ∈ T 0,1(M). Because
◦

∇ is symmetric dγ = −A(
◦

∇γ), where A denotes
the alternation. We obtain

0 = −4!(dγ)(V1, V2, V3, V4) =
∑

π

sign(π)(
◦

∇Vπ1
γ)(Vπ2, Vπ3, Vπ4)

+
∑

τ

sign(τ)(
◦

∇V1γ)(Vτ2, Vτ3, Vτ4) = 3!(
◦

∇V1γ)(V2, V3, V4) = 3!ρ(V1)γ(V2, V3, V4).

The first sum is taken over all permutations π satisfying π1 > 1, and the second one
is taken over all permutations of the set {2, 3, 4}. The first sum obviously vanishes,
and ρ(V1) = 0. This finishes the proof.

We set now

Q(V, W ) =
1

8
[ρ(V )W − ρ(JV )JW + ρ(W )V − ρ(JW )JV ].

It is easy to see that Q(JV, W ) = Q(V, JW ) = JQ(V, W ). For V, W1, W2, W3 ∈
T 1,0(M) we can compute

8γ(Q(V, W1), W2, W3)

=γ(ρ(V )W1 − ρ(JV )JW1 + ρ(W1)V − ρ(JW1)JV, W2, W3)

=γ(2ρ(V )W1 + 2ρ(W1)V, W2, W3) = 2ρ(V )γ(W1, W2, W3) + 2ρ(W1)γ(V, W2, W3),

where we used for V ∈ T (1,0)(M) that ρ(JV ) = iρ(V ) and γ(JV, V ′, V ′′) =
iγ(V, V ′, V ′′), since γ is of type (3, 0) and ρ of type (1, 0).
Similarly we can compute γ(W1, Q(V, W2), W3) and γ(W1, W2, Q(V, W3)). With-

out a loss of generality we can assume that the vector fieldsW1, W2, W3 are linearly
independent (over C). Then we can find uniquely determined complex functions
f1, f2, f3 such that

V = f1W1 + f2W2 + f3W3.

Then we get

ρ(W1)γ(V, W2, W3) + ρ(W2)γ(W1, V, W3) + ρ(W3)γ(W1, W2, V )

=f1ρ(W1)γ(W1, W2, W3) + f2ρ(W2)γ(W1, W2, W3) + f3ρ(W3)γ(W1, W2, W3)

=ρ(f1W1 + f2W2 + f3W3)γ(W1, W2, W3) = ρ(V )γ(W1, W2, W3).

Finally we obtain

γ(Q(V, W1), W2, W3)+γ(W1, Q(V, W2), W3) + γ(W1, W2, Q(V, W3))

=ρ(V )γ(W1, W2, W3).
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which proves ∇V γ = 0.
Let us continue with the main stream of the proof. We shall now use the complex

connection ∇. For X, Y ∈ TM we shall denote ∇0XY = Re∇XY and ∇1XY =
Im∇XY . This means that we have ∇XY = ∇0XY + i∇1XY . For a real function f
on M we have

∇X(fY ) = ∇0X(fY ) + i∇1X(fX),

∇X(fY ) = (Xf)Y + f∇XY = [(Xf)Y + f∇0XY ] + if∇1XY,

which implies

∇0X(fY ) = (Xf)Y + f∇0XY, ∇1X(fY ) = f∇1XY.

This shows that ∇0 is a real connection while ∇1 is a real tensor field of type (1, 2).
We have also

0 = ∇XY −∇Y X − [X, Y ] = ∇0XY + i∇1XY −∇0Y X − i∇1Y X − [X, Y ] =

= [∇0XY −∇0Y X − [X, Y ]] + i[∇1XY −∇1Y X ],

which shows that

∇0XY −∇0Y X − [X, Y ] = 0, ∇1XY −∇1Y X = 0.

These equations show that the connection ∇0 is symmetric, and that the tensor ∇1
is also symmetric. Moreover, we have

∇X(JY ) = ∇0X(JY ) + i∇1X(JY ),

∇X(JY ) = J∇XY = J∇0XY + iJ∇1XY,

which gives
∇0XJ = 0, ∇1X(JY ) = J∇1XY.

For the real vectors X, Y1, Y2, Y3 ∈ TM we can compute

0 = (∇Xγ)(Y1, Y2, Y3) = X(γ(Y1, Y2, Y3))−

−γ(∇XY1, Y2, Y3)− γ(Y1,∇XY2, Y3)− γ(Y1, Y2,∇XY3) =

= X(γ(Y1, Y2, Y3))−

−γ(∇0XY1+i∇1XY1, Y2, Y3)−γ(Y1,∇0XY2+i∇1XY2, Y3)−γ(Y1, Y2,∇0XY3+i∇1XY3) =

= X(γ(Y1, Y2, Y3))− γ(∇0XY1, Y2, Y3)− γ(Y1,∇0XY2, Y3)− γ(Y1, Y2,∇0XY3)−

−i[γ(∇1XY1, Y2, Y3) + γ(Y1,∇1XY2, Y3) + γ(Y1, Y2,∇1XY3)] =

= [X(γ0(Y1, Y2, Y3))− γ0(∇0XY1, Y2, Y3)− γ0(Y1,∇0XY2, Y3)− γ0(Y1, Y2,∇0XY3)+

+γ1(∇1XY1, Y2, Y3) + γ1(Y1,∇1XY2, Y3) + γ1(Y1, Y2,∇1XY3)]+

+i[X(γ1(Y1, Y2, Y3))− γ1(∇0XY1, Y2, Y3)− γ1(Y1,∇0XY2, Y3)− γ1(Y1, Y2,∇0XY3)−
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−γ0(∇1XY1, Y2, Y3)− γ0(Y1,∇1XY2, Y3)− γ0(Y1, Y2,∇1XY3)].

This shows that the real part is zero. The complex part then gives in fact the same
identity, and thus it is zero as well. Using the relations between γ0 and γ1 we get

0 = X(γ0(Y1, Y2, Y3))− γ0(∇0XY1, Y2, Y3)− γ0(Y1,∇0XY2, Y3)− γ0(Y1, Y2,∇0XY3)−

−γ0(J∇1XY1, Y2, Y3)− γ0(Y1, J∇1XY2, Y3)− γ0(Y1, Y2, J∇1XY3) =

= X(γ0(Y1, Y2, Y3))− γ0(∇0XY1 + J∇1XY1, Y2, Y3)

−γ0(Y1,∇0XY2 + J∇1XY2, Y3)− γ0(Y1, Y2,∇0XY3 + J∇1XY3).

We define now

∇̃XY = ∇0XY + J∇1XY.

It is easy to verify that ∇̃ is a real connection. Moreover, the previous equation
shows that

∇̃γ0 = 0.

Furthermore, it is very easy to see that the connection ∇̃ is symmetric.
The inverse implication can also be proved easily.

Let us use the standard definition of integrability of a k-form ω on M , that is
every x ∈ M has a neighbourhood N such that ω has the constant expresion in
dxi, xi being suitable coordinate functions on N .

14. Corollary. Let ω be a real three-form on a six-dimensional differentiable
manifold M satisfying ∆(ωx) = {0} for any x ∈ M . Let J be an almost complex
structure on M such that for any vector fields X1, X2, X3 ∈ X(M)

ω(JX1, X2, X3) = ω(X1, JX2, X3) = ω(X1, X2, JX3).

Then ω is integrable if and only if there exists a symmetric connection ∇ preserving
ω, that is ∇ω = 0.

Proof. Let ∇ be a symmetric connection such that ∇ω = 0. Then according to the
previous proposition dω = 0 and J is integrable. Then we construct the complex
form γ on T CM of type (3, 0) such and Re γ|TxM = ω, for any x ∈ M (point by
point, according to Proposition 8). Moreover if ω is closed then so is γ. That is
γ = f · dz1 ∧ dz2 ∧ dz3, where z1, z2, and z3 are (complex) coordinate functions on
M , dz1, dz2, dz3 are a basis of Λ1,0M and f a function on M . Further

0 = dγ = ∂γ + ∂γ = ∂f · dz1 ∧ dz2 ∧ dz3 + ∂f · dz1 ∧ dz2 ∧ dz3.

Evidently ∂γ = 0, which means ∂f = 0 and f is holomorphic. Now we exploit
a standard trick. There exists a holomorphic function F (z1, z2, z3) such that ∂F

∂z1
=

f . We introduce new complex coordinates z̃1 = F (z1, z2, z3), z̃2 = z2, and z̃3 = z3.
Then γ = fdz1∧dz2∧dz3 = dz̃1∧dz̃2∧dz̃3. Now write z̃1 = x1+ix4, z̃2 = x2+ix5,
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and z̃3 = x3 + ix6 for real coordinate functions x1, x2, x3, x4, x5, and x6 on M.
There is

Re γ =Re(d(x1 + ix4) ∧ d(x2 + ix5) ∧ d(x3 + ix6))

=dx1 ∧ dx2 ∧ dx3 − dx1 ∧ dx5 ∧ dx6 + dx2 ∧ dx4 ∧ dx6 − dx3 ∧ dx4 ∧ dx5.

And ω = (Re γ)|TM is an integrable on M .
Conversely, if ω is integrable, then for any x ∈ M there is a basis dx1, . . . , dx6

of T ∗N in some neighbourhoud N ⊂ M of x such that ω has a constant expression
in all TxM , x ∈ N . Then the flat connection ∇ given by the coordinate system
x1, . . . , x6 is symmetric and ∇ω = 0 on N . We use the partition of the unity and
extend ∇ over the whole M .

We can reformulate Proposition 13 as ‘The Darboux theorem for complex type
forms’:

15. Corollary. Let ω be a real three-form on a six-dimensional differentiable
manifold M satisfying ∆(ωx) = {0} for any x ∈ M . Let J be an almost complex
structure on M such that for any vector fields X1, X2, X3 ∈ X(M)

ω(JX1, X2, X3) = ω(X1, JX2, X3) = ω(X1, X2, JX3).

Then ω is integrable if and only if the following conditions are satisfied

(i) dω = 0,
(ii) the almost complex structure J is integrable.

16. Observation. There is an interesting relation between structures given by
a form of complex type on six-dimensional vector spaces and G2-structures on 7-
dimensional ones (G2 being the exeptional Lie group, the group of automorphisms
of the algebra of Caley numbers and also the group of automorphism of the three-
form given below), i.e. structures given by a form of the type

α1 ∧ α2 ∧ α3 + α1 ∧ α4 ∧ α5 − α1 ∧ α6 ∧ α7 + α2 ∧ α4 ∧ α6 + α2 ∧ α5 ∧ α7+

+α3 ∧ α4 ∧ α7 − α3 ∧ α5 ∧ α6,

where α1, . . . , α7 are the basis of the vector space V . If we restrict a form of this
type to any six-dimensional subspace of V we get a form of complex type. Thus
any G2 structure on a 7-dimensional manifold gives a structure of complex type on
any six-dimensional submanifold. Thus we get a vast variety of examples.

G2 structures have been well studied and many examples of G2 structures are
known. See for example [J].
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