
Languages with Bounded Multiparty Communication Complexity ∗

Arkadev Chattopadhyay
McGill University, Montreal, Canada

achatt3@cs.mcgill.ca

Andreas Krebs
Universität Tübingen, Germany

mail@krebs-net.de

Michal Koucký
Mathematical Institute, Academy of Sciences, Czech Republic

koucky@math.cas.cz

Mario Szegedy
Rutgers University, New Jersey, USA
szegedy@cs.rutgers.edu

Pascal Tesson
Laval University, Québec, Canada

pascal.tesson@ift.ulaval.ca

Denis Thérien
McGill University, Montreal, Canada

denis@cs.mcgill.ca

∗Research supported in part by the NFS (M. Szegedy), NSERC (A. Chattopadhyay, P. Tesson, D. Thérien), FQRNT
(D. Thérien) and the Alexander von Humboldt Foundation (P. Tesson and D. Thérien). We are also grateful to Pavel Pudlák
for suggesting the use of the Hales-Jewett Theorem.

Preprint, Institute of Mathematics, AS CR, Prague. 2007-12-21 IN
ST
IT
U
TE

of
M
ATH

EMATICS

A
ca
d
em

y
o
f
Sc
ie
n
ce
s

C
ze
ch

R
ep
u
b
lic

Abstract

We study languages with bounded communication complexity in the multiparty “input on the fore-
head model” with worst-case partition. In the two-party case, languages with bounded complexity are
exactly those recognized by programs over commutative monoids [20]. This can be used to show that
these languages all lie in shallow ACC0.

In contrast, we use different coding techniques to show that there are languages of arbitrarily
large circuit complexity which can be recognized in constant communication by k players for k ≥ 3.
However, if a language has a neutral letter and bounded communication complexity in the k-party
game for some fixed k then the language is in fact regular and we give an algebraic characterization
of regular languages with this property. We also prove that a symmetric language has bounded k-party
complexity for some fixed k iff it has bounded two party complexity.

1 Introduction

The “input on the forehead” multiparty model of communication, introduced by Chandra, Furst and
Lipton [7], is a powerful tool in the study of branching programs [2, 6, 7] and shallow-depth Boolean
circuits (among many others [11, 14, 15]). However, it is still, in many regards, not well-understood
as both upper bounds [1, 12] and lower bounds [2, 7, 19] for the model appear very challenging. In
particular, good lower bounds on the k-party non-interactive communication complexity of an explicit
function f when k > log n have long been sought since they would yield size-lower bounds for ACC0

circuits computing f [9], and even more modest lower bounds Ω(log3 n) for particular functions like
Disjointness in three-party setting would imply separation of different proof systems [5].

We obtain significant insight in the multiparty model by focusing on functions that have bounded
k-party complexity for k ≥ 3 an arbitrary constant. For the two-party model, languages with bounded
communication complexity have many nice characterizations [20] implying, in particular, that any
language with bounded two-party complexity can be computed by very shallow ACC0 circuits. In
contrast, we show in Section 3 that there are languages with arbitrarily large uniform circuit complex-
ity whose three-party communication complexity is bounded by a constant even for the worst-case
partition of the input instances among the players. An analog result for non-uniform circuit com-
plexity can also be derived. These languages are constructed using specially crafted error-correcting
codes. Because of these results, we cannot expect to obtain characterizations of languages of bounded
multiparty complexity which are as nice as those for the two-player case.

There are several key features that make the multiparty communication model so powerful: first,
every input bit is seen by several players, second, every (k − 1)-tuple of input positions is seen by
at least one of the k players, and third, all players know the partitioning of the input, i.e., they know
which positions they actually see. Multiparty communication complexity upper bounds typically rely
heavily on all these properties. If we remove the first two properties then we obtain essentially the
multiparty “input in the hand” model which is computationally even weaker than two-party commu-
nication model. To understand how crucial the last property is, we consider two restricted classes of
languages/functions in which this advantage is in some sense taken away.

First, we consider in Section 4 languages with a neutral letter [4, 3], i.e. a letter which can be
inserted or deleted at will in an input word. We show that every language with a neutral letter and
bounded k-party communication complexity for some fixed k is regular. Furthermore, we give a
characterization of this class of regular languages in terms of algebraic properties of their minimal
automaton. Our results indicate that the presence of a neutral letter is thus a severe handicap in the

1

multiparty game and suggests that it might be easier to prove communication complexity lower bounds
under this assumption.

Finally, we prove in Section 5 that the class of symmetric functions that can be computed in constant
communication complexity by k-players for any fixed k ≥ 3 is exactly the class of symmetric functions
that can be computed by two players in constant communication.

Two of our main proofs rely on the same lower bound which is of independent interest: In Section 2
we show, using a Ramsey-theoretical argument reminiscent of [7], that k parties need to exchange
ω(1) bits of communication to verify that their k inputs in {0, 1}n represent a partition of [n].

2 Multiparty Communication Complexity

The multiparty model of communication complexity was first introduced by Chandra, Furst and
Lipton [7]. In this game, k players P1, . . . , Pk wish to collaborate to compute a function f : Σn →
{0, 1}. The n input letters are partitioned into k sets X1, . . . , Xk ⊆ [n] and each participant Pi knows
the values of all the inputs except the ones of Xi. This game is often referred to as the “input on
the forehead” model since it is convenient to picture that player i has the letters of Xi written on
his forehead, available to everyone but himself. Players exchange bits, according to an agreed upon
protocol, by writing them on a public blackboard. The protocol specifies whose turn it is to speak,
and what the player broadcasts is a function of the communication history and the input he has access
to. The protocol’s output is a function of what is on the blackboard after the protocol’s termination.
We denote by Dk(f) the k-party communication complexity of f , i.e. the minimum number of bits
exchanged in a protocol for f on the worst case input and for the worst-case partition of inputs. More
generally, we consider functions f : Σ∗ → {0, 1} and thus view Dk(f) as a function of input length.

The information available to individual players overlaps a lot since any input letter is known to
k − 1 of the k players. Thus, the power of the multiparty model increases with the number of players
involved as the fraction of inputs available to each player increases.

A subset S of ΣX1×...×Xk is a cylinder in the ith dimension if membership in S is independent of
the ith coordinate, i.e. if for all x1, x2, . . . , xk and any x′i we have (x1, . . . , xi, . . . , xk) ∈ S if and
only if (x1, . . . , x

′
i, . . . , xk) ∈ S. We say that S is a cylinder intersection if S =

⋂
1≤i≤k

Si where Si

is a cylinder in the ith dimension. A cylinder intersection is called f -monochromatic if the function f
evaluates to the same value on every input instance in the intersection. The following lemma underlies
all lower bound arguments for the multiparty model:

Lemma 1 (see [14]) Let f : ΣX1×...×Xk → {0, 1} be a function of k-inputs. Any deterministic k-
party communication protocol of cost c computing f partitions the input space into at most 2c f -
monochromatic cylinder intersections corresponding to the communication exchanged on a particular
input.

We say that a set of k elements of ΣX1×...×Xk forms a star if it is of the form:

(x′1, x2, . . . , xk), (x1, x
′
2, . . . , xk), . . . , (x1, x2, . . . , x

′
k)

where the xi are values for the input bits letters in Xi for each i with xi 6= x′i. In that case, we call
(x1, x2, . . . , xk) the center of this star. These notions lead to a useful characterization of cylinder
intersections.

Lemma 2 A set S ⊆ ΣX1×...×Xk is a cylinder intersection if and only if the center of any star con-
tained in S is itself an element of S.

2

A k-rectangular reduction r from L ⊆ {0, 1}n×k to K ⊆ {0, 1}l(n)×k is a k-tuple of functions
(r1, . . . , rk) with each ri : {0, 1}n → {0, 1}l(n) such that (x1, . . . , xk) ∈ L iff (r1(x1), . . . , rk(xk)) ∈
K. We call l the length of the reduction. The following simple observation shall be useful:

Observation 3 Let L ⊆ {0, 1}n×k and K ⊆ {0, 1}l(n)×k be languages such that there exists a
rectangular reduction from L to K of length l. Then, Dk(L)(n) ≤ Dk(K)(l(n)).

Lower bounds for the k-party communication complexity of the functions Partk and GIPk,p will
be particularly useful. Both functions take as input an n× k Boolean matrix A and we think of the ith

column of A as representing a subset xi of [n] = {1, . . . n}. We define Partk(A) = 1 iff each row
contains exactly one 1 (i.e. the xi form a partition of [n]) and GIPk,p = 1 iff the number of all-1 rows
of A (i.e. the size of the intersection of the xi) is divisible by p. It is clear that for the k-party game
the worst input partition for GIPk,p and Partk is the one where player Pi holds the bits of column i
on his forehead.

Lemma 4 ([2, 13]) Dk(GIPk,p) = Ω(n) for all constants k, p ≥ 2.

More precisely, the best known lower bounds for GIP are Ω(n/2k) [8, 19] and hold even for k
growing as a function of n but we only consider the case where k is constant.

We establish a lower bound on the k-party communication complexity of Partk by applying a
Ramsey-theoretical result known as the Hales-Jewett Theorem. The n-tuples v1, . . . , vt ∈ [t]n are
said to form a combinatorial line if the vj are distinct and for each 1 ≤ i ≤ n either all the vj agree
on position i (i.e. vj

i = vj′

i for all 1 ≤ j ≤ j′ ≤ t) or we have vj
i = j for all 1 ≤ j ≤ t.

Theorem 5 (Hales-Jewett [10]) For any integers c, t there exists an integer n such that if all vectors
in [t]n are colored with c colors then there is a monochromatic combinatorial line v1, . . . , vt (i.e. a
line whose elements all were assigned the same color).

We now prove:

Lemma 6 For all k, Dk(Partk) = ω(1).

Proof: Consider the input as a collection of k subsets of [n]. Every input (S1, . . . , Sk) ∈ P([n])k that
is accepted by a protocol for Partk is such that for every 1 ≤ j ≤ n, the element j lies in exactly one
of the Si. Using this observation, these inputs can be put in one-to-one correspondence with n-tuples
in [k]n. As an example for k = 3 and n = 4, we have Part3({4}, {1, 3}, {2}) = 1 and this input
corresponds to the n-tuple (2, 3, 2, 1).

Suppose that the k-party communication complexity of Partk is bounded, for some k, by a constant
c. To every input accepted by a protocol for Partk, (i.e. to every element in [k]n), we can assign one
of 2c colors corresponding to the communication history resulting from that particular input. If n
is large enough then by the Hales-Jewett Theorem this set contains a monochromatic combinatorial
line v1, . . . , vk. Let T ⊆ [n] be the (non-empty) set of positions on which the vj differ and for each
i ≤ k denote as Si the set of positions on which all the vj are i. By definition of the above one-
to-one correspondence, we have that T, S1, . . . , Sk form a partition of [n] and all the inputs (S1 ∪
T, S2, . . . Sk), (S1, S2 ∪ T, . . . Sk), . . . , (S1, S2, . . . Sk ∪ T) induce the same communication history.
Since these inputs form a star, Lemma 2 guarantees that its center (S1, S2, . . . Sk) also induces that
same communication and must thus belong to Partk. However S1 ∪ . . . ∪ Sk = [n]− T 6= [n] so we
obtain a contradiction.

3

Note that an n × k matrix A belongs to Partk iff none of its rows contains two 1 and the total
number of 1 entries in A is n. If k ≥ 3 then k players can check the first condition using k bits of
communication since any pair of input bits is accessible to at least one player. They are then left with
verifying that the sum of the input bits is n which can, surprisingly, be achieved with a communication
cost much less than the trivial O(log n) [7].

3 Functions with bounded multi-party complexity but high time/space complexity

In this section we exhibit languages of arbitrarily large computational complexity but with bounded
multiparty communication complexity. For a language L and an encoding C : {0, 1}∗ → {0, 1}∗, we
denote by C(L) the set {C(x); x ∈ L}. We prove that for a suitably chosen error-correcting code C,
any language L is such that its encoding C(L) has bounded multiparty communication complexity. We
will choose C such that the corresponding encoding and decoding function are efficiently computable
and hence the complexities of L and C(L) will be closely related.

As a warm-up we start with the unary encoding CU defined as follows: for x ∈ {0, 1}∗, CU(x) =
0x102n−x−1, where n is the length of x and x is interpreted as an integer between 0 and 2n−1. Hence,
CU encodes bit strings of length n into strings of length 2n having a single 1 in a one-to-one way.

Lemma 7 For any language L and integer k ≥ 3, Dk(CU(L)) ≤ 3.

Proof: Without loss of generality k = 3. On an input w that is split among the three parties, the
players need to verify two things: 1) whether w is a valid encoding of some string x, and 2) whether
the corresponding string x is in L. To verify the first property the players only need to check whether
at least one of them sees a 1 and whether none of them sees two or more 1s. They can communicate
their observations regarding this using six bits in total. Next, one of the players who sees the one,
determines the unique string x with CU(x) = w. He can do this solely based on the position of the
one since he knows how w is partitioned. This player can also determine whether x ∈ L and hence
w ∈ CU(L). He communicates his conclusion to the other parties by sending one more bit. Hence in
total players exchange at most seven bits.

The disadvantage of the unary encoding is its inefficiency: because codewords are exponentially
longer than the words they encode, we cannot provide efficient reductions between L and C(L). A
better encoding can be obtained by concatenating Reed-Solomon codes with the unary encoding. In
the 3-party scenario at least one of the parties has on its forehead at least a 1/3-fraction of the input.
Hence, if the chosen encoding has the property that from an arbitrary 1/3-fraction of the input the
whole word can be reconstructed (assuming the input is an encoding of some word, i.e., assuming that
the input is a codeword) the other two parties can reconstruct the whole input and verify whether the
parts on remaining foreheads are consistent with such an input. With the proper choice of parameters
Reed-Solomon codes have this property.

Let n be a large enough integer, m = dlog2 3ne and d = n/m. Any string x ∈ {0, 1}n can be
interpreted as a sequence of d elements from GF [2m]. Define px to be the degree d − 1 polynomial
over GF [2m] whose coefficients are given by x. Define the Reed-Solomon encoding by CRS(x) =
px(g0)px(g1) · · · px(g3d−1), where GF [2m] = {g0, g1, . . . ,m2m−1} = {0, 1}m. Furthermore, de-
fine the concatenation of the Reed-Solomon encoding with the unary encoding by CRS◦U(x) =
CU(px(g0)) · · ·CU(px(g3d−1)). Codewords thus consist of 3d blocks of 2m bits (corresponding to

4

the 3d symbols of the Reed-Solomon encoding) with each block containing exactly one 1. Thus,
CRS◦U encodes strings of length n into strings of length O(n2). Furthermore, CRS◦U can be encoded
and decoded in polynomial time and so the languages L and CRS◦U)(L) are polynomial-time equiva-
lent. Note that the decoding task at hand does not require us to perform error correction in the usual
sense: we simply want to identify if an input is a codeword (since we reject all words that are not
codewords) and we only care about decoding true codewords.

Lemma 8 For any language L and any k ≥ 3, Dk(CRS◦U(L)) ≤ 6

Proof: Without loss of generality k = 3. Let m = dlog2 3ne and d = n/m. To check if an input
is a codeword, the players can easily check that there are never two 1s in a single block of input bits.
They cannot, however, verify at constant cost that each of the 3d blocks contains at least one 1 since
this task is essentially the partition problem whose complexity we lower bounded in Lemma 6. We
proceed differently: an input w of length 3d · 2m can only be a codeword if at least one player (say
player 1) has on its forehead d ones and this player can be identified with three bits of communication.
These d ones determine d elements of GF [2m] hence players 2 and 3 can each privately reconstruct
from them the unique degree d − 1 polynomial p that coincides with these elements. Players 2 and
3 now know that if the input is a codeword then it must the one corresponding to p and player 2 can
check that the bits on players 1 and 3’s foreheads are consistent with that hypothesis while player 3
can similarly cross-check the input bits on player 2’s forehead. If this cross-checking procedure is
successful, player 2 can determine the unique x such that px = p, verify x ∈ L and send the result to
all parties. Altogether the parties need to communicate only six bits in order to decide if their input is
from CRS◦U(L).

As an immediate corollary to this lemma and the fact that the complexity of CRS◦U(L) is polyno-
mially related to the complexity of L we obtain:

Corollary 9 The class of languages with bounded multi-party communication complexity contains
languages with arbitrarily large time and space complexity.

In order to obtain also languages with essentially the largest possible circuit complexity we need
codes that map n bits into O(n) bits. We can obtain such codes by concatenating Reed-Solomon codes
with codes provided by the following lemma and the unary code CU .

Lemma 10 For any integer n ≥ 1, there exists a linear map C8 : {0, 1}n → GF [8]39n such that
every w ∈ C8({0, 1}n) is uniquely determined by any one-third of its coordinates.

By concatenating CRS with C8 and CU we obtain the code CRS◦8◦U with polynomial time encoding
and decoding that maps n bit strings into O(n) bit strings.

Corollary 11 For any k ≥ 3, the class of languages with bounded k-party communication complexity
contains languages with 2Ω(n) circuit complexity.

4 Languages with a neutral letter

A language L ∈ Σ∗ is said to have a neutral letter e if for all u, v ∈ Σ∗ we have uv ∈ L iff uev ∈ L.
Thus, adding or deleting e anywhere in a word w does not affect membership in L. If a language has
a neutral letter then membership in L cannot depend, as in Lemma 7, on having specific value on a

5

specific input position and, at least intuitively, this seems to take away a lot of the power inherent to the
multiparty communication model. The neutral letter hypothesis was helpful in obtaining length lower
bounds on bounded-width branching programs [4] and was central to the Crane-Beach Conjecture [3].
In this section, we give a precise characterization of languages with a neutral letter that have bounded
k-party complexity for some fixed k. We first show that all such languages must be regular and then
characterize them in terms of algebraic properties of their minimal automaton.

4.1 Proving Regularity

Let C ≥ 0 be an integer and let G be a family of functions over Σ∗ with finite range R. We say that
inputs with weight at most C determine the functions of G if every function g : Σ≤C → R has at most
one extension to Σ∗ in G. Now, let Ck,c be the family of functions with a neutral letter and k-party
communication complexity at most c. We show:

Lemma 12 There is a constant C = C(k, c) such that functions of Ck,c are determined by inputs of
weight at most C.

We obtain this lemma as a corollary to

Lemma 13 For any C > 0 if the functions of Ck,c are not determined by inputs of size C then Partk
can be solved by k parties with 2c + 2 communication for sets of size C ′ for some C ′ ≥ C .

Lemma 13 implies Lemma 12, since if there were no bound C(k, c) as stated in Lemma 12, then
Partk would have k-party communication complexity at most 2c + 2 for arbitrary set size, resulting
in a contradiction with Lemma 6.

Proof:(Lemma 13) For any word w ∈ Σ∗, we shall denote by we the word obtained from w by deleting
all occurrences of e in w. The ith letter of w will be denoted by wi. Also, for k words w1, . . . , wk,
each of length `, let w = w1♦ . . .♦wk denote the word obtained by interleaving the k words in the
following way : |w| = `k and for all 1 ≤ i ≤ `k, wi = wm

j if i = (m−1)k+j with 0 < j < k+1. Let
us assume that f and g are in Ck,c, such that they are not identical, but the minimal string v ∈ {Σ−e}∗
such that f(v) 6= g(v) has length at least C. We consider the following k-party communication
problem: each player gets |v| bits on their forehead and let us denote the input on player i’s forehead
by yi. Note that from our comments following Lemma 6, the function Partk requires unbounded
k-wise complexity even if the input sets are known to be pairwise disjoint. Consider a family of k sets
I1, . . . , Ik ⊆ {1, . . . , |v|} = [|v|], such that Ii ∩ Ij = ∅ for all i 6= j. For each such choice of k sets,
we assign foreheads of the players in the following way: yj

i = vj if j ∈ Ii, otherwise yj
i = e. We

define the function h(y1, . . . , yk) = 1 iff the corresponding family of k subsets partitions [|v|], i.e.,
∪k

i=1Ii = [|v|]. Notice that h is exactly the partition problem for a basis set of size |v| ≥ C. The
reduction (I1, . . . , Ik) → (y1, . . . , yk) is a rectangular reduction. We claim that h(y1, . . . , yk) = 1 iff
f(y1♦ . . .♦yk) 6= g(y1♦ . . .♦yk).

To see this we use the minimality property of v: on words of length less than |v| f and g agree. For
y = y1♦ . . .♦yk we have |ye| = |v| only if ∪k

i=1Ii = [|v|] and in that case ye = v and f(y) 6= g(y).
Otherwise, we have |ye| < |v| and therefore f(y) = g(y).

The function f(v) 6= g(v) can be computed with 2c+2 bits of communication by running the c bit
protocol on f and g separately. For Partk we also need to verify using two extra bits of communica-
tion that no row contains two ones.

6

Let f : Σ∗ → R be a function in Ck,c: For a word w ∈ Σ∗, we define the function fw : Σ∗ → R
by fw(z) = f(wz). All the fw are also in Ck,c and so the functions {fw} are determined by inputs of
length at most C. It follows that the equivalence relation on Σ∗ defined by u ∼ v iff f(uz) = f(vz)
for all z ∈ Σ∗ has at most (|Σ| + 1)C equivalence classes. It is well-known that if ∼ has finite index
then f is regular and we obtain

Theorem 14 If f is a function with a neutral letter such that Dk(f) = O(1) for some fixed k, then f
is regular.

4.2 Regular languages with bounded complexity

A monoid M is a set with a binary associative operation (i.e. a semigroup) and a distinguished
identity element 1M . A language L ⊆ Σ∗ is recognized by a finite monoid M if there is a morphism
φ from the free monoid Σ∗ to M and a set F ⊆ M such that L = φ−1(F). A restatement of Kleene’s
Theorem asserts that L is regular iff it is recognized by some finite monoid. If L is regular, the syntactic
monoid of L (denoted M(L)) is the transformation monoid of L’s minimal automaton [16] and is the
smallest monoid recognizing L.

The word problem for M is the function eval which maps a string w = w1 . . . wn ∈ M∗ to the
product eval(w1 . . . wn) = w1 · w2 · · · · · wn. We define the k-party communication complexity
of M , denoted Dk(M) as the communication complexity of its word problem. Two of the authors
gave a complete classification result for the two-party communication complexity of finite monoids
[21] and this led to a similar classification for the two-party complexity of regular languages. The
communication complexity of monoids was first studied in [18] from which we use the following
lemma.

Lemma 15 Let L be a regular language with a neutral letter and let M = M(L) be its syntactic
monoid. Then for any k ≥ 2 we have Dk(L) = Θ(Dk(M)).

A finite group is nilpotent if it is the direct product of p-groups and a monoid lies in the class
Gnil if all its subgroups are nilpotent. The class DO consists of monoids satisfying the identity
(xy)ω(yx)ω(xy)ω = (xy)ω.

Lemma 16 If M is a finite monoid outside of DO then Dk(M) = ω(1) for all k.

This lemma is proved in the appendix by showing that if M lies outside DO then for any k there
exists a rectangular reduction of linear length from either GIPk,p (for a suitably chosen p) or Partk
to the word problem of M .

Theorem 17 ([18]) Let G be a group. If G is in Gnil then there exists a constant k ≥ 2 such that
Dk(G) = O(1). Otherwise Dk(G) = Ω(n) for all k.

In this case also, the lower bound is obtained through a rectangular reduction from GIPk,p to
the word problem of any non-nilpotent finite group. The upper bound, on the other hand, stems
from a combinatorial description of languages recognized by nilpotent groups. We say that a word
u = a1 . . . at with ai ∈ Σ is a subword of the word w if w can be factorized as w0a1w1 . . . wt−1atwt

and we denote by
(
w
u

)
the number of such factorizations. We say that a language L counts subwords

of length k modulo m if membership of w in L depends on the values modulo m of
(

w
u1

)
, . . . ,

(
w
ut

)
for

7

some ui with |ui| ≤ k. One can show that the syntactic monoid of a regular language L is a nilpotent
group iff there exist k, m ≥ 2 such that L counts subwords of length k modulo m [23].

For a ∈ Σ and L,K ⊆ Σ∗, we say that the concatenation LaK is perfectly unambiguous if
L ⊆ (Σ − {a})∗ or K ⊆ (Σ − {a})∗. If LaK is perfectly unambiguous then any w ∈ LaK can
be uniquely factorized as wLawK with wL ∈ L and wK ∈ K since the a can only be the first or
last occurrence of a in w. We now denote as VΣ the smallest class of regular languages over Σ that
contains both the subword-counting languages and the languages Σ∗

0 for each Σ0 ⊆ Σ and which is
closed under Boolean operations and perfectly unambiguous concatenations. The following lemma
can be inferred from more general results of [21].

Lemma 18 A language L ⊆ Σ∗ is recognized by a monoid in DO ∩Gnil iff it is in VΣ.

We can now give a characterization of monoids that have bounded multiparty communication com-
plexity for some suitably large constant k.

Theorem 19 Let L ⊆ Σ∗ be a regular language with a neutral letter and syntactic monoid M . If
M lies in DO ∩ Gnil then there exists a constant k such that Dk(L) = O(1). Otherwise, we have
Dk(L) = ω(1) for all k.

Proof: To obtain the upper bound, it suffices to show, by Lemma 18, that every language in VΣ has
bounded k-party complexity for some k and we argue from the definition of VΣ.

First, any language Σ∗
0 has bounded two-party communication complexity since the players only

need to check that the input letters they have access to indeed belong to Σ0. Furthermore, if K counts
subwords of length k modulo m, then Dk+1(K) = O(1) because every k-tuple of input letters is
available to at least one player in the (k + 1)-party game and the value of

(
w
u

)
modulo m can thus be

computed with communication k · dlog me if |u| ≤ k. Obviously, Boolean combinations of languages
with bounded k-party complexity also have bounded k-party complexity and it remains to show that if
L and K have bounded k-party complexity and L ⊆ (Σ−{a})∗ then LaK has bounded (k +1)-party
complexity. The players proceed as follows: each party broadcasts the identity of the player which, in
their opinion, holds on the forehead the first occurrence of a in the input string. This requires k ·dlog ke
bits of communication and the player holding that first occurrence will be the only dissenting voice
since that letter can be seen by all other parties. Since k + 1 ≥ 3, the k remaining players now know
the position of the first a and they can simulate the k-party protocols for L and K on the prefix and
suffix at constant cost.

For the lower bound, if M is not in DO then Dk(M) = ω(1) for all k by Lemma 16. If M
contains a non-nilpotent group G then Dk(G) = Ω(n) for all k by Theorem 17 and we clearly have
Dk(M) ≥ Dk(G). So for all k, we have Dk(M) = ω(1) and, by Lemma 15, Dk(L) = ω(1).

Combining this result with Theorem 14 we get

Theorem 20 If L is a language with a neutral letter and bounded k-party communication complexity
for some fixed k then L is regular and M(L) ∈ DO ∩Gnil.

It is worth noting that the class DO ∩ Gnil is decidable. Moreover, the corresponding regular
languages also have a logical characterization in terms of two-variable formulas [22] and one can
easily see from the definition of VΣ that these languages all lie in ACC0.

8

5 Symmetric Functions

For w ∈ Σ∗, let us denote as |w|a the number of occurrences of a in w. A function f : Σ∗ → {0, 1}
is symmetric if the value of f depends only on the values |w|a for a ∈ Σ. Intuitively k ≥ 3 parties
trying to compute a symmetric function can hardly take advantage of the fact that any (k− 1)-tuple of
input positions is seen by at least one player. In this section, we formalize this idea by showing that
any symmetric function with bounded k-party communication complexity for some fixed k in fact has
bounded two-party complexity.

For the sake of simplicity we will first deal with functions whose input variables are boolean.
The weight of an input x is |x|1 which we will simply denote by |x|. To any symmetric function
f : {0, 1}n → {0, 1} we can naturally associate the function f : {0, . . . , n} → {0, 1} such that
f(x) = f(|x|) for every x ∈ {0, 1}n. A symmetric boolean function f on n variables will be called
(t, r, p)−periodic if f(a) = f(a + p) for t ≤ a ≤ n− r.

Theorem 21 If f : {0, 1}n → {0, 1} is symmetric and has bounded k-party communication complex-
ity then in fact f has bounded two-party complexity.

In the appendix, we show how to extend this theorem to symmetric functions with non-Boolean
domains. The result in the Boolean case is established through the following.

Lemma 22 For any constants k, c with k ≥ 2 there is an integer Nk = N(k, c) such that every
symmetric boolean function f that has a k-party simultaneous protocol of complexity c for the input
partition in which players X1, . . . , Xk−1 each get Nk bits and player Xk gets the remaining n− (k−
1)Nk bits is (tf , rf , ρf)-periodic for some tf , rf ≤ (k − 1)Nk and some ρf ≤ Nk.

Theorem 21 then follows by observing that a (t, r, ρ)-periodic function has 2-party simultaneous
communication complexity roughly 2 · dlog(t + r + ρ)e. We only discuss a rough outline of the proof
of Lemma 22 which is given in full detail in the appendix. We argue by induction on the number of
players k: the base case k = 2 is a result of [20]. For the induction step, we use an idea similar to [17]
and proceed by “player elimination”. More precisely, we use Ramsey theory to show that if f has a
k + 1-party protocol of bounded cost c then there exists a sufficiently large set of inputs P for the
foreheads of the first k players (i.e. for the information viewed by player Pk+1) on which player Pk+1

always sends the same communication. This renders the (k + 1)st player irrelevant if the input lies in
P and this allows us to show that a symmetric function closely related to f can now be computed at
communication cost c but using only k-parties.

9

References

[1] A. Ambainis. Upper bounds on multiparty communication complexity of shifts. In Proc. 13th Symp. on
Theoretical Aspects of Comp. Sci., pages 631–642, 1996.

[2] L. Babai, N. Nisan, and M. Szegedy. Multiparty protocols, pseudorandom generators for logspace, and
time-space trade-offs. J. Comput. Syst. Sci., 45(2):204–232, 1992.

[3] D. A. M. Barrington, N. Immerman, C. Lautemann, N. Schweikardt, and D. Thérien. The Crane Beach
conjecture. In Proc. 16th Symp. on Logic in Comp. Sci. (LICS-01), pages 187–196, 2001.

[4] D. A. M. Barrington and H. Straubing. Superlinear lower bounds for bounded-width branching programs.
J. Comput. Syst. Sci., 50(3):374–381, 1995.

[5] P. Beame, T. Pitassi, and N. Segerlind. Lower bounds for lovász-schrijver systems and beyond follow
from multiparty communication complexity. In Proc. 32nd Int. Conf. on Automata, Languages and Pro-
gramming (ICALP’05), pages 1176–1188, 2005.

[6] P. Beame and E. Vee. Time-space tradeoffs multiparty communication complexity and nearest neighbor
problems. In 34th Symp. on Theory of Computing (STOC’02), pages 688–697, 2002.

[7] A. K. Chandra, M. L. Furst, and R. J. Lipton. Multi-party protocols. In Proc. 15th ACM Symp. on Theory
of Computing (STOC’83), pages 94–99, 1983.

[8] F. Chung and P. Tetali. Communication complexity and quasi-randomness. SIAM J. Discrete Math.,
6(1):110–123, 1993.

[9] M. Goldmann and J. Håstad. Monotone circuits for connectivity have depth (log)2-(1). SIAM J. Comput.,
27(5):1283–1294, 1998.

[10] R. L. Graham, B. L. Rotschild, and J. H. Spencer. Ramsey Theorey. Series in Discrete Mathematics. Wiley
Interscience, 1980.

[11] V. Grolmusz. Separating the communication complexities of MOD m and MOD p circuits. In Proc. 33rd
IEEE FOCS, pages 278–287, 1992.

[12] V. Grolmusz. The BNS lower bound for multi-party protocols in nearly optimal. Information and Com-
putation, 112(1):51–54, 1994.

[13] V. Grolmusz. A weight-size trade-off for circuits and MOD m gates. In Proc. 26th ACM STOC, pages
68–74, 1994.

[14] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press, 1997.
[15] N. Nisan. The communication complexity of treshold gates. In Combinatorics, Paul Erdös is Eighty,

Vol. 1, pages 301–315, 1993.
[16] J.-E. Pin. Syntactic semigroups. In Handbook of language theory, volume 1, chapter 10, pages 679–746.

Springer Verlag, 1997.
[17] P. Pudlák. An application of Hindman’s theorem to a problem on communication complexity. Combina-

torics, Probability and Computing, 12(5–6):661–670, 2003.
[18] J.-F. Raymond, P. Tesson, and D. Thérien. An algebraic approach to communication complexity. Lecture

Notes in Computer Science (ICALP’98), 1443:29–40, 1998.
[19] R. Raz. The BNS-Chung criterion for multi-party communication complexity. Computational Complexity,

9(2):113–122, 2000.
[20] M. Szegedy. Functions with bounded symmetric communication complexity, programs over commutative

monoids, and ACC. J. Comput. Syst. Sci., 47(3):405–423, 1993.
[21] P. Tesson and D. Thérien. Complete classifications for the communication complexity of regular lan-

guages. Theory of Computing Systems, 38(2):135–159, 2005.
[22] P. Tesson and D. Thérien. Restricted two-variable sentences, circuits and communication complexity. In

Proc. 32nd Int. Conf. on Automata, Languages and Programming (ICALP’05), pages 526–538, 2005.
[23] D. Thérien. Subword counting and nilpotent groups. In Combinatorics on Words: Progress and Perspec-

tives, pages 195–208. Academic Press, 1983.

10

Appendix

We give here proofs of lemmas that were omitted in the extended abstract.

Proof of Lemma 10

Lemma 10 For any integer n ≥ 1, there exists a linear map C8 : {0, 1}n → GF [8]39n such that
every w ∈ C8({0, 1}n) is uniquely determined by any one-third of its coordinates.

Proof:
To prove the existence of our code we only need to prove the following claim.

Claim For c ≥ 37, with high probability a random matrix over GF [8] of dimension n × cn has the
property that each submatrix of dimension n× cn/3 has rank n.

For any n′ < n, n′ vectors over GF [8] of length cn/3 span less than 8n different vectors. Thus the
probability that a new random vector of length cn/3 falls into the space spanned by these vectors is
at most 8n−cn/3. Hence, the probability that a random matrix over GF [8] of dimension n by cn/3 is
of rank less than n is at most n · 8n−cn/3. (We pick the vectors step by step and at each step we fail
to pick a linearly independent vector with probability at most 8n−cn/3.) Thus the expected number of
singular n by cn/3 submatrices of a random matrix of dimension n by cn is at most n·8n−cn/3 ·

(
cn

cn/3

)
.

Since
(

cn
cn/3

)
≤ 2H(1/3)cn, if c ≥ 37 then 3 − c + H(1/3)c < 0 and the expected number of singular

submatrices is 2−εn for some ε > 0. The claim follows.

By concatenating CRS with C8 and CU we obtain the code CRS◦8◦U with polynomial time encoding
and decoding that maps n bit strings into O(n) bit strings. (Note C8 can be constructed by brute
force in polynomial time as it is used only for strings of logarithmic length. Further speed-up can
be achieved using CRS◦RS◦8◦U codes where one would need to construct C8 only for strings of log-
log length. Using Fast Fourier Transform, CRS◦RS◦8◦U can be encoded and decoded in time close to
linear.)

Proof of Lemma 16

We want to establish

Lemma 16 If M is a finite monoid outside of DO then Dk(M) = ω(1) for all k.

Recall from Section 4 that DO is the class of finite monoids satisfying (xy)ω(yx)ω(xy)ω = (xy)ω

for some ω ≥ 1. The following lemma (see e.g. [21]) gives a more useful characterization of DO. An
element e ∈ M is idempotent if e = e2.

Lemma 23 If the finite monoid M is not in DO then either

1. There exist idempotents a, b ∈ M and an integer p ≥ 2 such that (aba)p = a but (aba)t 6= a if
1 ≤ t ≤ p− 1;

2. There exist elements a, b ∈ M × M such that ab is idempotent but for all x, y ∈ M × M we
have xa2y 6= ab and xb2y 6= ab.

11

We can now proceed to establish Lemma 16.

Proof: (Lemma 16)
Suppose first that there are idempotents a, b ∈ M such that (aba)p = a but (aba)t 6= a if 1 ≤ t ≤

p− 1. We claim that for any k there is a linear-length rectangular reduction from GIPk,p to the word
problem of M . The reduction maps an n × k instance A of GIPk,p to a string of (k + 2)n elements
of M with each block of k + 2 elements corresponding to a column of A. The first and last elements
of each block are always a and the (i + 1)th element of the block is a b if the ith bit of the column is
0 and the identity 1M otherwise. Since b is idempotent, the output of each such block thus multiplies
out to aba if some bit in the column is 0 and to a otherwise. Hence, the value of the whole product is a
iff the number of all 1 columns is 0 modulo p. Since Dk(GIPk,p) = Ω(n), we have DK(M) = Ω(n)
because the length of the reduction is linear.

Suppose that there are elements a, b ∈ M ×M such that ab is idempotent but for all s, t ∈ M ×M
we have sa2t 6= ab and sb2t 6= ab. Then we claim that Partk reduces to the word problem of M×M .
Again, our reduction produces n blocks of k + 2 elements of M ×M . The first element of each block
is always an a and the last one is always ab, while the (i+1)th element is b if the ith bit of the column
is 1 and the identity 1M×M otherwise. Thus, if a column of A contains r 1’s, the product of monoid
elements in the corresponding block is abrab. The product of the n blocks is thus (ab)2n = ab if each
column contains exactly one 1. If some column of A contains two or more 1’s, then the corresponding
block evaluates to a(b2)br−2ab and so the product of the n blocks can be written as xb2y and cannot be
ab. Similarly, if a column is all 0, the corresponding block evaluates to aab and the n blocks multiply
out to some xa2y 6= ab. Since Dk(Partk) = ω(1), we get Dk(M × M) = ω(1). Furthermore
Dk(M ×M) is at most 2 ·Dk(M) so we also get Dk(M) = ω(1).

Proof of Lemma 22

We now prove:

Lemma 22 For any constants k, c with k ≥ 2 there exists an integer Nk = N(k, c) such that every
symmetric boolean function f that has a k-party simultaneous protocol of complexity c for the input
partition in which players X1, . . . , Xk−1 each get Nk bits and player Xk gets the remaining n− (k−
1)Nk bits is (tf , rf , ρf)-periodic for some tf , rf ≤ (k − 1)Nk and some ρf ≤ Nk.

Since we are only considering protocols with bounded communication cost, we can assume without
loss of generality that the protocols are simultaneous, i.e. that each player sends a constant length
message to a referee, who computes the answer solely based on the messages received. Furthermore
since the function to be computed is symmetric, we can do the following normalization: for any
partition of input bits to k-players, where the number of bits given to player i is ni, consider any
assignment of input bits where player i’s forehead gets assignment xi. We can assume without loss of
generality that the message sent by player i is a function of |x1|, . . . , |xi−1|, |xi+1|, . . . , |xk| since the
players can simulate, at no additional cost, the original protocol on the normalized input (x′1, . . . , x

′
n)

where x′i = 1|xi|0ni−|xi|.
Our proof of Lemma 22 will rely crucially on the following Ramsey-theoretical lemma.

Lemma 24 ([10]) For any integers r, k,m1, . . . ,mk > 0, there is an integer R = R(r, k,m1, . . . ,mk)
such that for each r-coloring of [R]k, there exist x0

1, . . . , x
0
k, d < R such that all points of the set

P = {(x1, . . . , xk) : xi = x0
i + li.d, 0 ≤ li < mi} have the same color.

12

We are now ready to prove lemma 22.

Proof: (Lemma 22)
Let Π be a simultaneous k + 1-player protocol of cost c that computes f under a partition of the

following form. Players P1, . . . , Pk each have Nk+1 = R(2c, k,m1, . . . ,mk) − 1 bits written on
the forehead, where R is the number obtained from Lemma 24 with each mi = Nk for i < k and
mk = k · Nk!. Player Pk+1 gets the remaining n − kNk+1 bits. Because f is symmetric, we can
view the player’s task as evaluating a function from {0, . . . , Nk+1}k ×{0, . . . , n− kNk+1} → {0, 1}
and, as we noted earlier, the message sent by player Pk+1 is a function of k integers in the range
{0, . . . , Nk+1}. In the remainder of the proof we use xi to denote the weight of the input string on
player i’s forehead.

We color an element (t1, . . . , tk) ∈ [R]k with the message sent by player Pk+1 in the protocol Π
when the input on player Pi’s forehead has weight ti−1. Because the protocol has cost c, this is indeed
a 2c coloring of [R]k and so by Lemma 24 there is a setP of points in {0, . . . , Nk+1}k, such that player
Pk+1 sends the same message for every point inP = {(x1, . . . , xk) : xi = x0

i +li.d, 0 ≤ li < mi}.
On inputs where the components held by the first k parties form a point of P , player Pk+1 is useless

and the remaining k players are effectively computing a symmetric function in the sufficiently large
set P . More precisely, for each possible input x to player Pk+1, define a function fx : {0, . . . , (k −
1)(Nk) + k(Nk!)} → {0, 1}, where fx(u) = f(x +

∑k
i=1 x0

i + u · d).
We build a simultaneous k-party protocol Πx of cost c for the symmetric function fx for a partition

in which players P1, . . . , Pk−1 get Nk bits each and the remaining k(Nk!) bits are held by Pk: let the
input to P1, . . . , Pk be respectively y1, . . . , yk. By definition we have

fx(y1, . . . , yk) = f(x0
1 + y1 · d, . . . , x0

k + yk · d, x)

and the players will therefore simulate the protocol Π on input (x0
1+y1·d, . . . , x0

k+yk ·d, x) to compute
fx: Player Pi, who sees the (k − 1)-tuple (y1, . . . , yi−1, yi+1, . . . , yk), sends to the referee the same
message that he would have sent using protocol Π on seeing the k-tuple (x0

1 + y1 ·d, . . . , x0
i−1 + yi−1 ·

d, x0
i+1 + yi+1 · d, . . . , x0

k + yk · d, x). This is possible because x0
i , x and d are constants known

beforehand. The referee can complete the simulation because the message sent by player Xk+1 is
the same for all of these inputs. Thus Πx correctly computes fx with cost at most c. Applying our
inductive hypothesis, we get that for each x ≤ n−kNk+1 there exist constants tx, rx ≤ (k−1)Nk and
ρx ≤ Nk such that fx is (tx, rx, ρx)-periodic i.e. fx(u) = fx(u + ρx) for all tx ≤ u ≤ k(Nk!)− rx.

Let tf = (
∑k

i=1 x0
i)+(k−1)·Nk ·d, let rf = kNk+1−tf and let ρf = d·Nk!. Consider any w such

that tf ≤ w ≤ n− rf and let u = w − tf . Then, 0 ≤ u ≤ n− kNk+1. Using results obtained above,
f(w) = fu((k − 1)Nk) = fu((k − 1)Nk + jρu) for every j such that jρu < k(Nk!) − (k − 1)Nk.
Hence, f(w) = fu((k − 1)Nk + Nk!) = f(w + d.(Nk!) = f(w + ρf). One can easily verify that
tf , rf ≤ kNk+1 and ρf ≤ Nk+1. This completes the induction.

Theorem 21 now follows as well as:

Corollary 25 If f : Σn → {0, 1} is symmetric and has bounded k-party communication complexity
then in fact f has bounded two-party complexity.

Proof: Let Σ = {a1, . . . , at}. For any Σ0 ⊆ Σ and any word w in (Σ − Σ0)∗, we denote as fΣ0
w

the symmetric function over alphabet Σ0 defined by fΣ0
w (x) = f(wx). We now argue by induction

on t the cardinality of Σ. Our base case is Theorem 21. If t ≥ 3 then let Σ0 = {a1, a2} Since f
has bounded k-party complexity then so does fΣ0

w for any w. Applying our result for binary alphabets

13

we get that for any w we get that f1,2
w is (t, r, ρ)-periodic for t = r = (k − 1)Nk and ρ = Nk!. In

particular this means that the function fΣ−Σ0
x is determined by the numbers |x|a1 and |x|a2 up to the

thresholds t, r and modulo ρ. This can be computed at constant cost by two players and since fΣ−Σ0
x is

a symmetric with bounded k-party communication complexity over an alphabet of cardinality smaller
than t it can be evaluated at constant bounded two-party cost by our induction hypothesis.

14

