
Flat sets, `p-generating and fixing c0 in
nonseparable setting

M. Fabian∗, A. González†, and V. Zizler‡
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Abstract

In terms of a weak∗ Kadec-Klee asymptotic smoothness, we de-
fine p-flat (asymptotically p-flat) sets in Banach spaces and use these
concepts in characterizing WCG (Asplund) spaces that are c0(ω1)-
generated or `p(ω1)-generated where p ∈ (1,+∞). In particular, we
obtain that every subspace of c0(ω1) is c0(ω1)-generated and every
subspace of `p(ω1) is `p(ω1)-generated for every p ∈ (1,+∞). As a
byproduct of the technology of using PRI, we get an alternative proof
of Rosenthal’s theorem on fixing c0(ω1).

1 Introduction

In [11] it was proved that a separable Banach space (X, ‖ · ‖) is isomorphic
to a subspace of c0 if and only if its norm is C-Lipschitz weak∗-Kadec-Klee
(in short, C-LKK∗) for some C ∈ (0, 1]. The norm ‖ · ‖ on X is C-LKK∗ if
lim supn ‖x∗ + x∗n‖ ≥ ‖x∗‖ + C lim supn ‖x∗n‖ whenever x∗ ∈ X∗ and (x∗n) is
a weak∗-null sequence in X∗. The norm is called LKK∗ if it is C-LKK∗ for
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some C ∈ (0, 1]. Clearly, the supremum norm on c0 is 1-LKK∗. Recall that
a Banach space X has the Kadec-Klee property (KK, in short) if, for every
x ∈ X and every weak-null sequence (xn) in X such that ‖x + xn‖ → ‖x‖,
we have ‖xn‖ → 0. X has the weak∗-Kadec-Klee property (KK∗, in short) if
the dual norm has the property that, for every x∗ ∈ X∗ and every weak∗-null
sequence (x∗n) in X∗ such that ‖x∗+x∗n‖ → ‖x∗‖, we have ‖x∗n‖ → 0. Clearly,
LKK∗ implies KK∗.
In [15], the following moduli of smoothness were introduced. If (X, ‖ · ‖) is a
Banach space, x ∈ SX , Y is a linear subspace of X and τ > 0, put

ρ(τ, x, Y ) = sup{‖x+ y‖ − 1; y ∈ Y, ‖y‖ ≤ τ},

then
ρ(τ, x) = inf{ρ(τ, x, Y ); Y ⊂ X, dim (X/Y ) <∞},

and finally,
ρ(τ) = sup{ρ(τ, x); x ∈ SX}.

It turns out that the norm ‖·‖ on X is LKK∗ if and only if there exists τ0 > 0
such that ρ(τ0) = 0, and it is 1-LKK∗ if and only if ρ(1) = 0 (for details and
more on the subject see [11], where a non-separable theory is also developed).
The geometric description provided by the use of the modulus ρ is more clear
than the one given by the definition of the C-LKK∗-norm above, and can be
depicted as BX being asymptotically uniformly flat. Accordingly, a separable
Banach space is LKK∗, if and only if BX is asymptotically uniformly flat, if
and only if X isomorphic to a subspace of c0; here the latter equivalence is
the deep result from [11].
In this paper, we shall use some ideas from [11] to deal with the c0(ω1)-
generation and the `p(ω1)-generation of Banach spaces, where p ∈ (1,+∞),
and to deal with operators from c0(ω1) fixing copies of c0(ω1). We work in the
context of nonseparable weakly compactly generated (WCG) Banach spaces.
The restriction of the density to the first uncountable cardinal is done for the
sake of simplicity. It is plausible that our results hold with milder cardinality
restrictions.

In this paper, (X, ‖ · ‖) denotes a Banach space, BX (resp. SX) its closed
unit ball (resp., its unit sphere). If M is a bounded set in a Banach space
X, we denote by ‖ · ‖M the seminorm in X∗ defined by

‖x∗‖M = sup{|〈x, x∗〉|; x ∈M}, x∗ ∈ X∗. (1)
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The first infinite ordinal and the first uncountable ordinal are denoted by
ω0 and ω1, respectively. Sometimes, we identify the interval [0, ω1) with ω1.
Throughout the paper, we assume that ∞

∞ = 1 and that 1
0

= ∞. Other
concepts used in this paper and not defined here can be found, e.g., in [5].

The following concept evolves from the definition of C-LKK∗ property con-
sidered above. It will be used in characterizing WCG Asplund spaces that
are generated by c0(ω1) or by `p(ω1) for p ∈ (1,+∞) (see Theorem 5).

Definition 1 Let (X, ‖ · ‖) be a Banach space X, let M ⊂ X be a set, let
p ∈ (1,+∞], and put q = p

p−1
. We say that M is ‖ · ‖-asymptotically p-flat

if it is bounded and there exists C > 0 such that, for every f ∈ X∗ and every
weak∗-null sequence (fn) in X∗, we have

lim sup
n→∞

‖f + fn‖q ≥ ‖f‖q + C lim sup
n→∞

‖fn‖q
M . (2)

We say that M is asymptotically p-flat if there exists an equivalent norm
|‖ · |‖ on X such that M is |‖ · |‖-asymptotically p-flat.

Remark 2

1. Non-trivial weak∗-sull sequences needed in the above definition do exist.
Indeed, it is easy to check that 0 belongs to the weak∗ closure of the dual
sphere SX∗ . Thus, if X∗ is separable, or more generally if (BX∗ , w∗) is
a Corson (even angelic) compact space, then there exists a sequence

(fn)n∈N in SX∗ such that fn → 0 weak∗. For general Banach spaces
the existence of such a sequence is guaranteed by a deep Josefson-
Niessenzweig theorem [3, Chapter XII]. This remark ensures the right
of life for Definition 1.

2. A small effort yields that a bounded set M ⊂ X is asymptotically
p-flat for some p ∈ (1,+∞] if and only if there exists C > 0 such
that whenewer ε ∈ (0, C−q), f ∈ BX∗ , and (gn) is a sequence in SX∗

such that gn → f weak∗ and ‖f − gn‖M ≥ ε for all n ∈ N, then
‖f‖q ≤ 1− Cεq, where q = p

p−1
.

3. Let (X, ‖ · ‖) be a Banach space. Assume that, for some p ∈ (1,+∞],
BX is a ‖ · ‖-asymptotically p-flat set. Then, (X, ‖ · ‖) has the KK∗

property.
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4. It is easy to check that the unit ball in c0 is ‖ · ‖∞-asymptotically ∞-
flat, and that the unit ball in `p is ‖ · ‖p-asymptotically p-flat for all
p ∈ (1,+∞), with constant C = 1.

5. More generally, if the usual modulus of smoothness of (X, ‖ · ‖) is of
power type p ∈ (1, 2], then BX is ‖ · ‖-asymptotically p-flat. To prove
this, take such p and put q = p

p−1
. Then the modulus of rotundity

δ‖·‖(ε) := inf {1 − ‖x∗+y∗

2
‖; x∗, y∗ ∈ BX∗ , ‖x∗ − y∗‖ ≥ ε}, ε ∈ (0, 2],

of the dual norm ‖ · ‖ on X∗ is of power type q, which means that
there exists K > 0 such that δ‖·‖(ε) ≥ Kεq for all ε ∈ (0, 2]. This is
a consequence of the basic relationship between both moduli due to
Lindenstrauss (see, e.g., [5, Lemma 9.9]). We shall verify the condition
from Remark 2.2. So take ε, f and a sequence (gn) as there. For every
n ∈ N we have

K‖f − gn‖q ≤ 1− ‖f+gn

2
‖ ≤ 1− ‖f+gn

2
‖q.

Thus

‖f‖q ≤ lim sup
n→∞

‖f+gn

2
‖q ≤ lim inf

n→∞
(1−K‖f − gn‖q) ≤ 1−Kεq.

Now, Remark 2.2 says that BX is asymptotically p-flat.

6. If a subset M in a Banach space (X, ‖ · ‖) is ‖ · ‖-asymptotically p-flat
for some p ∈ (1,+∞], then M is also ‖ · ‖-asymptotically p ′-flat for
every p′ ∈ (1, p). This is a straightforward consequence of the fact that
‖ · ‖`q ≥ ‖ · ‖`q ′

whenever 1 ≤ q < q′.

7. Let M be a ‖·‖-compact set in X and (fn) a weak∗-null sequence in X∗.
Then, limn ‖fn‖M = 0. Hence, from the w∗-lower semicontinuity of the
dual norm, we get that any norm compact set in an arbitrary Banach
space is ‖ · ‖-asymptotically ∞-flat. The same proof gives that, more
generally, any limit set in any Banach space is asymptotically ∞-flat.
Recall that a set M in a Banach space X is limit if limn ‖fn‖M = 0
whenever (fn) is a weak∗-null sequence in X∗.

8. Lancien [14] proved that if K is a scattered compact of finite height
then the unit ball of C(K) is an asymptotically ∞-flat set in C(K),
by constructing an equivalent norm. Therefore, for instance, the space
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JL0 of Johnson and Lindenstrauss is an example of a space the unit
ball of which is asymptotically ∞-flat, though it does not contain any
isometric copy of c0(ω1). This space is not weakly Lindelöf determined
(see, e.g., [5, Theorem 12.58]).

9. Godefroy, Kalton, and Lancien in [11, Theorem 4.4] proved that the
unit ball of a WCG space X of density character ≤ ω1 is an asymp-
totically ∞-flat set if and only if X is isomorphic to a subspace of
c0(ω1).

We say that a Banach space X is generated by a set M ⊂ X if M is linearly
dense in it. X is said to be generated by a Banach space Y if there exists a
bounded linear operator from Y into X such that T (Y ) is dense in X.

In [6] and [7], we studied questions on generating Banach spaces by, typically,
Hilbert or superreflexive spaces via the usual moduli of uniform smoothness.
Here we continue in this direction by using, in the Asplund setting, weak∗

uniform Kadec-Klee norms instead. This allows to get a characterization also
for p > 2, where the former approach cannot work as the usual moduli of
smoothness are at most of power type 2.
Below, we strengthen the definition of asymptotically p-flat set to what we
call an innerly asymptotically p-flat set. That allows us to go beyond the
framework of Asplund spaces required in Theorem 5. We shall see below
(Lemma 12) that, under mild assumptions on the space in question, every
innerly asymptotically p-flat set is an Asplund set. This fact will then allow
us to prove Theorem 7. To be precise, we introduce at this stage the following
concept.

Definition 3 Let (X, ‖ · ‖) be a Banach space X, let M ⊂ X be a non-
empty set, let p ∈ (1,+∞], and put q = p

p−1
. We say that M is innerly

asymptotically p-flat if it is bounded and there exists C > 0 such that,

lim sup
n→∞

‖f + fn‖q
M ≥ ‖f‖q

M + C lim sup
n→∞

‖fn‖q
M . (3)

for every f ∈ X∗ and for every sequence (fn) in X∗ such that limn→∞〈x, fn〉 =
0 for every x ∈M .

Remark 4
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1. Notice that, in the above definition, C ∈ (0, 1]. Also, being innerly
asymptotically p-flat does not depend on a concrete equivalent norm
on X. For M := BX , the properties of being innerly asymptotically
p-flat and ‖ · ‖-asymptotically p-flat coincide.

2. As in Remark 2.6, if a set is innerly asymptotically p-flat for some
p ∈ (1,+∞], then it is also innerly asymptotically p ′-flat for every
p ′ ∈ (1, p).

3. Again, any norm-compact, more generally, any limit set in X is ∞-flat.

4. The concept of inner asymptotic p-flatness does not inherit to subsets:
Fix p ∈ (1,+∞] and put X = c0 if p = 1 and X = `p otherwise.
It is easy to check that BX is innerly asymptotically p-flat as well
as ‖ · ‖-asymptotically p-flat. Put N = {e1, e2, . . .} where the ei

′s
are the canonical unit vectors in X; thus N ⊂ BX . We then have
‖f1 + fn‖N = 1 = ‖f1‖N = ‖fn‖N for all n = 2, 3, . . . Thus (3) is
violated no matter how small C > 0 is. But notice that N is still
‖ · ‖-asymptotically p-flat.

5. It is not difficult to check that the inner asymptotic p-flatness implies
the asymptotic p-flatness. To show this consider a p-flat set M ⊂ X.
Put

|‖f |‖q = ‖f‖q + ‖f‖q
M , f ∈ X∗. (4)

The triangle inequality for the `q-norm yields that |‖ · |‖ is a norm on
X∗. Clearly, this norm is equivalent and dual. Take any f ∈ X∗ and
any weak∗-null sequence (fn) in X∗. Choose a subsequence (fni

) of (fn)
such that limi→∞ ‖fni

‖M = lim supn→∞ ‖fn‖M , and that both limits
limi→∞ ‖f + fni

‖ and limi→∞ ‖f + fni
‖M exist. Then

lim sup
n→∞

|‖f + fn|‖q ≥ lim
i→∞

|‖f + fni
|‖q

= lim
i→∞

‖f + fni
‖q + lim

i→∞
‖f + fni

‖q
M

≥ ‖f‖q + (‖f‖q
M + C lim

i→∞
‖fni

‖q
M) = |‖f |‖q + C lim

i→∞
‖fni

‖q
M

= |‖f |‖q + C lim sup
n→∞

‖fn‖q
M .

Hence M is |‖ · |‖-asymptotically p-flat.

As a byproduct of the technology of using PRI, we get an alternative proof
of Rosenthal’s theorem on fixing c0(ω1).
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2 The results

Theorem 5 Let X be an Asplund space of density ω1 and let p ∈ (1,+∞)
be given. Then the following assertions are equivalent.
(i) X is WCG and is generated by an asymptotically p-flat subset, resp. by
an asymptotically ∞-flat subset.
(ii) X is generated by `p(ω1), resp. by c0(ω1).

Corollary 6 For p ∈ (1,+∞), every subspace of `p(ω1) is generated by
`p(ω1).
Every subspace of c0(ω1) is generated by c0(ω1).

Note that the fact that subspaces of c0(Γ) are WCG goes back to [13].

Theorem 7 Let X be a general Banach space of density ω1 and let p ∈
(1,+∞) be given. Then the following assertions are equivalent.
(i) X is WCG and is generated by an innerly asymptotically p-flat subset,
resp. by an innerly asymptotically ∞-flat subset.
(ii) X is generated by `p(ω1), resp. by c0(ω1).

Remark 8

1. As a consequence of Theorems 5 and 7, we get that, if a WCG Asplund
Banach space X is generated by an asymptotically p-flat set, then it
is generated by a (ususally different) innerly asymptotically p-flat set;
see also Remark 4.4.

2. Concerning the first statement in Corollary 6, we note that it is not true
that “every subspace of an `p(ω1)-generated space is `p(ω1)-generated”.
This is indicated by a Rosenthal’s counterexample. He has a non-
WCG subspace R of an L1(µ) with “big” probability µ. Here L1(µ) is
L2(µ)-generated, i.e. `2(Γ)-generated. Yet R is `p(Γ)-generated for no
p ∈ (1,+∞) since it is not WCG.

3. Given any p ∈ (1,+∞), then every subspace of an `p(Γ)-generated
space is a subspace of a Hilbert generated space. Indeed, this is ob-
vious if p ≤ 2 since then `p(Γ) is `2(Γ)-generated. If p > 2, find a
linear bounded operator T : `p(Γ) → X, with dense range. Then T ∗

continuously injects (BX∗ , w∗) into a multiple of (the uniform Eber-
lein compact space ) (B`q , w), and hence (BX∗ , w∗) itself is a uniform
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Eberlein compact space. Thus C((BX∗ , w∗)) is Hilbert generated and
hence every subspace of X is a subspace of the Hilbert generated space
C((BX∗ , w∗)).

The last result goes back to Rosenthal [16, Remark 1 after Theorem 3.4], [12,
Chaper 7].

Theorem 9 Asume that a Banach space X of density ω1 admits a linear
bounded operator T : c0(Γ) → X with dense range. Then there exists an
uncountable subset Γ0 ⊂ Γ such that T restricted to c0(Γ0) is an isomorphism.

Putting together Theorems 7 and 9, we immediately get

Corollary 10 If a WCG Banach space of density ω1 is generated by an
innerly asymptotically ∞-flat set, then it contains an isomorphic copy of
c0(ω1).

3 Proofs

Proof of Theorem 5
(i)⇒(ii). Let ‖ · ‖ be an equivalent norm on X and let M ⊂ X be a lineraly
dense and ‖ · ‖-asymptotically p-flat set. Put q = p

p−1
. A simple gymnastics

with M yields a new set — call it again M — which is symmetric, convex,
closed, still ‖ · ‖-asymptotically p-flat, and such that M ⊂ B(X,‖·‖). Since X
is WCG, putting M1 = M, M2 = M3 = · · · = B(X,‖·‖), and ε = 1

n
, n ∈ N,

in [8, Proposition 15], we get a PRI (Pα; ω0 ≤ α ≤ ω1) on (X, ‖ · ‖) such
that (P ∗

α; ω0 ≤ α ≤ ω1) is a PRI on the dual space (X, ‖ · ‖)∗, and moreover
Pα(M) ⊂ M for every α ∈ (ω0, ω1); recall that Pω0 ≡ 0. Let C > 0 witness
that M is ‖ · ‖-asymptotically p-flat, see Definition 1. Nothing will happen
if we take C ∈ (0, 1).

Claim 1. For every 0 6= f ∈ X∗ and every ε > 0 there is γf,ε ∈ (ω0, ω1) such
that

‖f + g‖q ≥ (1− ε)‖f‖q + C‖g‖q
M whenever g ∈ KerP ∗

γf,ε
.

Proof. Fix any 0 6= f ∈ X∗ and any ε > 0. Assume that the claim does not
hold. Find then g1 ∈ KerP ∗

ω0
(= X) so that ‖f+g1‖q < (1−ε)‖f‖q+C‖g1‖q

M .
Properties of the P ∗

α’s guarantee that there is α1 ∈ (ω0, ω1) such that g1 ∈
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P ∗
α1
X∗. Find then g2 ∈ KerP ∗

α1
so that ‖f + g2‖q < (1 − ε)‖f‖q + C‖g2‖q

M .
Find α2 ∈ (α1, ω1) so that g2 ∈ P ∗

α2
X∗. ... Find gn+1 ∈ KerP ∗

αn
so that

‖f + gn+1‖q < (1 − ε)‖f‖q + C‖gn+1‖q
M . Find then αn+1 ∈ (αn, ω1) so that

gn+1 ∈ P ∗
αn+1

X∗. ... Thus we get an infinite sequence g1, g2, . . . ∈ X∗ and an
increasing sequence α1 < α2 < · · · < ω1. If supn∈N ‖gn‖ = +∞, then

1 = lim sup
n→∞

‖f + gn‖q

‖gn‖q
≤ lim sup

n→∞

(1− ε)‖f‖q + C‖gn‖q
M

‖gn‖q
≤ C < 1,

a contradiction. Therefore, the sequence (gn) is bounded. It is actually
weak∗-null. Indeed, put λ = limn→∞ αn; we still have λ < ω1. Fix any
x ∈ X. Then for every n ∈ N we get

|〈x, gn+1〉| = |〈Pλx, gn+1〉| = |〈Pλx− Pαnx, gn+1〉| ≤ ‖Pλx− Pαnx‖ · sup
n∈N

‖gn‖,

ane hence 〈x, gn〉 → 0 as n→∞. Therefore, by (2), we have

lim sup
n→∞

‖f + gn‖q ≥ ‖f‖q + C lim sup
n→∞

‖gn‖q
M(

> (1− ε)‖f‖q + C lim sup
n→∞

‖gn‖q
M ≥ lim sup

n→∞
‖f + gn‖q

)
,

a contradiction.

Claim 2. For every α ∈ [ω0, ω1) there exists βα ∈ (α, ω1) such that

‖f + g‖q ≥ ‖f‖q + C‖g‖q
M whenever f ∈ P ∗

αX
∗ and g ∈ KerP ∗

βα
.

Proof. Fix any α ∈ [ω0, ω1). Let S be a countable dense subset in the

(separable) subspace P ∗
αX

∗. Using Claim 1, put then βα = sup{γf,1/n; f ∈
S, n ∈ N}. It is easy to check that this ordinal works.

Claim 3. There exists an increasing long sequence (δα)0≤α≤ω1 in [0, ω1], with
δ0 = ω0 and δω1 = ω1, and such that for every α ∈ [0, ω1) we have

‖f + g‖q ≥ ‖f‖q + C‖g‖q
M whenever f ∈ P ∗

δα
X∗ and g ∈ KerP ∗

δα+1
. (5)

Proof. Fix any α ∈ (0, ω1), and assume that we have already constructed
oridnals δβ’s for all β ∈ [0, α). If α has a predecessor, say α− 1, then, using
Claim 2, put δα = βδα−1 . If α is a limit ordinal, put simply δα = limβ↑α δβ.
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Claim 4. There exists a linear, bounded, injective and weak∗-to-weak contin-
uous operator from X∗ into `q(N× [0, ω1)).

Proof. For each α ∈ [0, ω1) find a countable dense set {vα
1 , v

α
2 , . . . } in

1
2
(Pδα+1 − Pδα)(M) (⊂M). Define T : X∗ → RN×[0,ω1) by

Tf(i, α) = 2−if(vα
i ), (i, α) ∈ N× [0, ω1), f ∈ X∗.

Clearly, T is linear and weak∗ to pointwise continuous. T is injective because
(Pδα ; α ∈ [0, ω1]) is clearly a PRI on X. We shall show that the range of T is
a subset of the Banach space `q(N× [0, ω1)) and that T is actually a bounded
linear operator from X∗ to the latter space. Denote by Y the linear span of
the set

⋃
0≤α<ω1

(P ∗
δα+1

− P ∗
δα

)X∗. Take any f ∈ Y . Then we can write f in
the form f = f1 + f2 + · · · + fk where fj ∈ (P ∗

δαj+1
− P ∗

δαj
)X∗, j = 1, . . . , k,

and α1 < α2 < · · · < αk. Observing that δα1 < δα2 < · · · < δαk
, we use (5)

repeatedly, and thus we get

‖Tf‖q
`q

=
∞∑
i=1

∑
α∈[0,ω1)

2−iq|f(vα
i )|q =

∞∑
i=1

2−iq

k∑
j=1

|fj(v
αj

i )|q

≤
∞∑
i=1

2−iq ·
k∑

j=1

‖fj‖q
M ≤

k∑
j=1

‖fj‖q
M ≤ 1

C

(
‖f1‖q + C

k∑
j=2

‖fj‖q
M

)

≤ 1

C

(
‖f1 + f2‖q + C

k∑
j=3

‖fj‖q
M

)
≤ · · ·

≤ 1

C
‖f1 + f2 + · · ·+ fk‖q =

1

C
‖f‖q.

Therefore T (Y ) ⊂ `q(N× [0, ω1)).
Now, it follows easily from the properties of P ∗

α’s that Y is norm-dense in X∗.
Take any x∗ ∈ X∗. Find a sequence (fn) in Y such that limn→∞ ‖fn − x∗‖ =
0. Then limn,m→∞ ‖Tfn − Tfm‖`q ≤ limn,m→∞ ‖fn − fm‖ = 0. Hence the
sequence (Tfn) converges in the `q-norm to some h ∈ `q(N × [0, ω1)). Then
for every (i, α) ∈ N× [0, ω1) we have

h(i, α) = lim
n→∞

Tfn(i, α) = lim
n→∞

2−ifn(vα
i ) = 2−ix∗(vα

i ) = Tx∗(i, α).

Therefore Tx∗ = h. We proved that T (X∗) ⊂ `q(N× [0, ω1)). Further,

‖Tx∗‖q
`q

= ‖h‖q
`q

= lim
n→∞

‖Tfn‖q
`q
≤ lim

n→∞
1
C
‖fn‖q = 1

C
‖x∗‖.
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Moreover, the mapping T is obviously weak∗-to-pointwise continuous. Hence
the Banach-Dieudonné theorem guarantees that T is weak∗-to-weak contin-
uous. Claim 5 is thus proved.

Finally, from the above, we can conlude that the adjoint operator T ∗ goes
from `p(N × [0, ω1)) into X. And since, T is injective, T ∗(`p(N × [0, ω1)) is
dense in X and (ii) is proved.

(ii)⇒(i) This will follow immediately from the implication (ii)⇒(i) in Theo-
rem 7 and from Remark 4.5.

Proof of Corollary 6. Let p ∈ (1,+∞]. Let (X, ‖ · ‖) be a subspace of
`p(ω1). Let Q : `q(ω1) → X∗ be the canonical quotient mapping. The unit
ball B`p(ω1) is a ‖ · ‖p-asymptotically p-flat set (with constant C := 1). We
shall prove that BX is a ‖ · ‖-asymptotically p-flat set in X. So take x∗ ∈ X∗

and a weak∗-null sequence (x∗n) in X∗. Select first a subsequence (x∗nk
) of

(x∗n) such that ‖x∗nk
‖ → lim supn→∞ ‖x∗n‖ as k →∞. Let (l∗k) be a sequence

in `q(ω1) such that Ql∗k = x∗ + x∗nk
and ‖l∗k‖ = ‖x∗ + x∗nk

‖ for all k ∈ N. The
countability of the supports allows us to select a further subsequence (l∗nkj

) of

(l∗nk
) that is w∗-convergent to some l∗ ∈ `q(ω1). Obviously, Ql∗ = x∗. Then,

lim sup
n→∞

‖x∗ + x∗n‖q ≥ lim sup
j→∞

‖x∗ + x∗nkj
‖q

= lim sup
j→∞

‖l∗kj
‖q = lim sup

j→∞
‖l∗ + (l∗kj

− l∗)‖q ≥ ‖l∗‖q + lim sup
j→∞

‖l∗kj
− l∗‖q

≥ ‖x∗‖q + lim sup
j→∞

‖x∗nkj
‖q = ‖x∗‖+ lim sup

n→∞
‖x∗n‖q.

We obtained that BX is ‖ · ‖-asymptotically p-flat. It is enough now to apply
Theorem 5.

Remark 11 A compact space K is said to be angelic if for every subset
A ⊂ K every point in the closure of A is the limit of a sequence contained
in A, see, e.g. [9]. In particular, every Eberlein compact space, or more
generally, every Corson compact space is angelic. The proof of Corollary 6
shows that, if p ∈ (1,+∞] and X is a subspace of a Banach space Z such
that BZ is asymptotically p-flat and (BZ∗ , w∗) is angelic, then BX is also
asymptotically p-flat. This time the angelicity of (BZ∗ , w∗) allows us to select
a w∗-convergent subsequence in the former construction. As a byproduct, we
get, from Theorem 5, that X is `p(ω1)-generated.
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A subset A of a Banach space X is called Asplund if it is bounded and the
pseudometric space (X∗, ‖ · ‖N) is separable for every countable set N ⊂ A
(see, e.g., [4, Definition 1.4.1]).

The following intermediate result will be used in the proof of Theorem 7.

Lemma 12 Let X be a Banach space such that (BX∗ , w∗) is angelic. Then,
for all p ∈ (1,+∞], every asymptotically p-flat set M ⊂ X is an Asplund
set.

Proof. Let N ⊂M be a countable set. Then, spanQ(N), the set of all linear
rational combinations of elements in N , is also countable. Let Y := span(N).
Let Q : X∗ → Y ∗ be the canonical quotient mapping. Given y ∈ spanQ(N),
find φ(y) := y∗ ∈ SY ∗ such that 〈y, y∗〉 = ‖y‖. The Separation Theorem
gives

ΓQ[φ(spanQ(N))]
w∗

= BY ∗ ,

where ΓQ[·] denotes the absolutely rational-convex hull. We shall prove that
the (countable) set ΓQ[φ(spanQ(N))] is ‖·‖N -dense in X∗. This will conclude
the proof.
To this end, choose any x∗ ∈ X∗. If x∗ ∈ Y ⊥, we can find, as ‖ · ‖-close
(in particular, as ‖ · ‖N -close) to x as we wish, an element which is not in
Y ⊥. Thus, we may assume, without loss of generality, that x∗ 6∈ Y ⊥ and
that, for the moment being, ‖Qx∗‖ = 1. Let y∗ := Qx∗ (∈ SY ∗). Since
Y is separable, we can find a sequence (y∗n) in ΓQ[φ(spanQ(N))] such that

y∗n
w∗
−→ y∗ as n → ∞. For each element z∗ ∈ ΓQ[φ(spanQ(N))], choose a

single element ψ(z∗) in BX∗ such that Q(ψ(z∗)) = z∗. Let x∗n := ψ(y∗n) for
all n ∈ N. The sequence (x∗n) has a w∗-cluster point x∗0 ∈ BX∗ , hence, by the
assumption, there exists a subsequence of (x∗n) (denoted again by (x∗n)) such

that x∗n
w∗
−→ x∗0. Then we have

lim sup
n→∞

‖x∗n‖q ≥ ‖x∗0‖q + C lim sup
n→∞

‖x∗0 − x∗n‖
q
M .

Obviously, Qx∗n = y∗n (
w∗
−→ y∗). Hence Qx∗0 = y∗, and so ‖x∗0‖ = 1. It

follows that lim supn ‖x∗n‖q = 1 and we get ‖x∗n − x∗0‖M → 0. In par-
ticular, ‖ψ(y∗n) − x∗0‖N → 0. This proves the assertion for an element
x∗ ∈ X∗ such that ‖Qx∗‖ = 1, since the sequence (x∗n) is in the count-
able set ψ(ΓQ[φ(spanQ(N))]). A homogeneity argument involving rational
multiples of arbitrary elements in X∗ concludes the proof.

12



Proof of Theorem 7
(i)⇒(ii). We shall follow almost word by word the proof of the implication
(i)⇒(ii) from Theorem 5, with the following changes. By Lemma 12, M is an
Asplund set. Then we can apply [8, Proposition 15] for M1 = M2 = · · · = M
and get a PRI (Pα; α ∈ [ω0, ω1]) on (X, ‖ · ‖) such that ‖P ∗

λf − P ∗
αf‖ → 0

as α ↑ λ whenever f ∈ X∗ and λ ∈ (ω0, ω1] is a limit ordinal. In the whole
argument, we replace the dual norm ‖ · ‖ on X∗ by the seminorm ‖ · ‖M .
In the proof of Claim 1, the weak∗ convergence should be replaced by the
pointwise convergence on the set M . The proofs of Claims 2 and 3 do not
need any change. In the proof of Claim 4, we shall profit from the fact that
the properties of P ∗

α’s guarantee that Y is dense in X∗ in the metric given
by ‖ · ‖M . And, as ‖ · ‖M ≤ ‖ · ‖, we get that the operator T is bounded. The
rest of the proof is the same as before.

(ii)⇒(i). Take p ∈ (1,+∞). Assume there exists a bounded linear operator
S : `p(ω1) → X, with dense range. Put q = p

p−1
and M = S(B`p(ω1)). Let

f ∈ X∗ and consider a sequence (fn) in X∗ such that limn→∞〈x, fn〉 = 0 for
every x ∈M . Then S∗fn → 0 weak∗ and hence

lim sup
n→∞

‖f+fn‖q
M = lim sup

n→∞
sup〈M, f+fn〉q = lim sup

n→∞
sup 〈B`p(ω1), S

∗f+S∗fn〉q

= lim sup
n→∞

‖S∗f+S∗fn‖q
`q
≥ ‖S∗f‖q

`q
+lim sup

n→∞
‖S∗fn‖q

`q
= ‖f‖q

M+lim sup
n→∞

‖fn‖q
M .

This shows that the set M is innerly asymptotically p-flat.

The case of inner asymptotical ∞-flatness can be dealt analogously.

Proof of Theorem 9 Let eγ, γ ∈ Γ, denote the canonical unit vectors in
c0(Γ). Put Γ1 = {γ ∈ Γ; Teγ 6= 0}. Clearly, Γ1 is uncountable. We observe
that the set {Teγ; γ ∈ Γ1} countably supports all of X∗. Then we can apply,
for instance, [8, Proposition 15], withM1 = M2 = · · · = 0 and εn = 1

n
, n ∈ N,

and get a PRI (Pα; α ∈ [ω0, ω1]) on (X, ‖ · ‖) such that Pα(Teγ) ∈ {0, T eγ}
for every α ∈ (ω0, ω1) and every γ ∈ Γ1. Put

A = {α ∈ [ω0, ω1); Pα(Teγ) = 0 and Pα+1(Teγ) = Teγ for some γ ∈ Γ1}.

For every α ∈ A then pick one γα ∈ Γ1 such that Pα(Teγα) = 0 and
Pα+1(Teγα) = Teγα . Let Γ2 = {γα; α ∈ A}. This set is uncountable, for
otherwise T (c0(Γ1)) would be separable. A simple ”countability” argument
yields another uncountable set Γ0 ⊂ Γ2 and ∆ > 0 such that ‖Teγ‖ > ∆ for
every γ ∈ Γ0.
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Take any 0 6= a ∈ c0(Γ0). Enumerate its support as {δ1, δ2, . . .} and find
a1, a2, . . . ∈ R such that ‖

∑n
i=1 aieδi

− a‖ → 0 as n → ∞. For every i ∈ N
find αi ∈ [ω0, ω1) such that Pαi+1(Teδi

) = Teγi
and Pαi

(Teδi
) = 0. Observe

that αi 6= αj whenever i, j ∈ N are distinct. Then the ”orthogonality” of
the projections Pαi+1 − Pαi

, i ∈ N, yields that for every fixed n, j ∈ N, with
n > j, we have∥∥∥ n∑

i=1

aiTeδi

∥∥∥ ≥ 1

2

∥∥∥(
Pαj+1 − Pαj

)
( n∑

i=1

aiTeδi

)∥∥∥ =
1

2
‖ajTeδj

‖
(
≥ 1

2
|aj|∆

)
.

Hence

‖Ta‖ = lim
n→∞

∥∥∥T( n∑
i=1

aieδi

)∥∥∥ = lim
n→∞

∥∥∥ n∑
i=1

aiTeδi

∥∥∥
≥ ∆

2
max {|aj|, j ∈ N} =

∆

2
max{|aγ|; γ ∈ Γ0} =

∆

2
‖a‖.

This proves that T is an isomorphism from c0(Γ0) into X.
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J. P. Moreno, Complementation and embeddings of c0(I) in
Banach spaces, Proc. London Math. Soc. 85 (2002), 742-768.

[2] R. Deville, G. Godefroy and V. Zizler, Smoothness and
Renormings in Banach Spaces, Pitman Monographs No. 64,
Longman, 1993.

[3] J. Diestel, Sequence and Series in Banach Spaces, Springer-
Verlag, New York, Berlin, Heidelberg, Tokyo 1984.

[4] M. Fabian, Differentiability of Convex Functions and
Topology-Weak Asplund Spaces, John Wiley and Sons, New
York, 1997.

[5] M. Fabian, P. Habala, P. Hájek, V. Montesinos, J. Pelant,
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