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Abstract. Let X be a rearrangement-invariant Banach function space.

We calculate the K-functionals for the pairs (X, V 1X) and (X, SX(t−
1

n )),

where V 1X is the reduced Sobolev space built upon X and SX(t−
1

n ) is
a particular instance of the space SX(w), determined, for a measurable
nonnegative function (weight) w by the norm

‖f‖SX (w) = ‖(f
∗∗ − f

∗)w‖X ,

where X is the representation space of X. Using this result, we char-
acterize the rearrangement-invariant hull of a generalized Besov space
built upon a pair of r.i. spaces.

1. Introduction and main results

In this paper we establish sharp estimates of rearrangements of functions
in terms of moduli of continuity. Such estimates have been studied by many
authors including classics. The modern approach to such estimates comes
from the effort to solve a problem posed by Ul’yanov [23]. Various estimates,
mostly in the setting of Lebesgue spaces, were obtained for example by
Ul’yanov [23], Kolyada [11], Kolyada and Lerner [14], Storozhenko [22] and
others. The subject was studied by classics such as Hardy and Littlewood
and plenty of results found its way to modern monographs such as [3]. An
excellent survey can be found in [13]. Some results in this direction can be
also found in [15].
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Our approach is different. First, we study the problem in the far more
general setting of rearrangement-invariant spaces, and second, we apply the
methods of interpolation. To this end we introduce new function spaces
and characterize their K-functionals. We thereby obtain new results which
yield sharp embeddings of spaces of Besov type into spaces of Lorentz type.
We also recover and improve some known results by completely different
methods.

Let Ω be a domain (open and connected set) in R
n and let M(Ω) be

the set of all extended complex–valued measurable functions on Ω. By
M+(Ω) we denote the set of all non-negative functions from M(Ω). For
f ∈ M(Ω) and t ∈ (0,∞), we define the distribution function of f by
f∗(t) = |{x ∈ Ω; |f(x)| > t}|, where, as usual, | · | denotes the n-dimensional
Lebesgue measure. The non-increasing rearrangement of f is defined by

f∗(t) = inf {s > 0; f∗(s) ≤ t} , t ∈ [0,∞).

Also, we define the maximal non-increasing rearrangement of f by

f∗∗(t) =
1

t

∫ t

0
f∗(s) ds, t ∈ (0,∞).

Recently, a lot of attention has been paid to the study of function spaces
whose norms are defined in terms of the functional f ∗∗ − f∗. It has been
shown to be useful in various parts of analysis including the interpolation
theory (see [3] for classical results and, for instance, [6] for some history and
references). Needless to say that it vanishes on constant functions and the
operation f → f∗∗ − f∗ is not subadditive. Therefore, quantities involving
f∗∗ − f∗ do not necessarily have norm properties, which makes the study
of the corresponding function spaces difficult. On the other hand, struc-
tures involving f∗∗−f∗ appear quite regularly as natural function classes in
various situations. To name just few, let us mention the problem of charac-
terization of the optimal partner norms in Sobolev-type embeddings ([10],
[17], [1]), the duality problem for classical Lorentz spaces of type Γ ([21]) or
boundedness of maximal Calderón–Zygmund singular integral operators on
classical Lorentz spaces ([4]).

In [6], the following function spaces were introduced (particular cases had
been treated in earlier works, cf. e.g. [17] or [1]). Let 0 < p < ∞ and let w
be a weight on (0,∞), that is, a measurable non-negative function. Then,
the space Sp(w) is the collection of all measurable functions on (0,∞) such
that ‖f‖Sp(w) <∞, where

‖f‖Sp(w) :=

(∫ ∞

0
(f∗∗(t)− f∗(t))pw(t) dt

) 1
p

.

Basic properties of the spaces Sp(w) including linearity were investigated
in [6]. Their relations to other function spaces were further studied in [7].

Our aim is to introduce a more general version of these function spaces,
based on a concept of a rearrangement-invariant space.
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A space X of functions in M(Ω), equipped with the norm ‖ · ‖X , is said
to be a rearrangement-invariant Banach function space (shortly r.i. space)
if the following five axioms hold:

(P1) 0 ≤ g ≤ f a.e. implies ‖g‖X ≤ ‖f‖X ;
(P2) 0 ≤ fn ↗ f a.e. implies ‖fn‖X ↗ ‖f‖X ;
(P3) ‖χE‖X <∞ for every E ⊂ Ω of finite measure;
(P4) a constant C exists such that

∫

Ω |f(x)| dµ(x) ≤ C‖f‖X for
every f ∈ X;

(P5) ‖f‖X = ‖g‖X whenever f∗ = g∗.

Given an r.i. space X on Ω, the set

X ′ =

{

f ∈M(Ω) :

∫

Ω
|f(x)g(x)| dx <∞ for every g ∈ X

}

,

equipped with the norm

‖f‖X′ = sup
‖g‖X≤1

∫

Ω
|f(x)g(x)| dx,

is called the associate space of X. It turns out that X ′ is again an r.i. space
and that X ′′ = X. Furthermore, the Hölder inequality

∫

Ω
|f(x)g(x)| dx ≤ ‖f‖X‖g‖X′

holds for every f and g in M(Ω). It will be useful to note that

(1.1) ‖f‖X = sup
‖g‖X′≤1

∫

Ω
|f(x)g(x)| dx.

For every r.i. space X on Ω, there exists a unique r.i. space X over (0,∞)
with respect to the one-dimensional Lebesgue measure, satisfying

‖f‖X = ‖f∗‖X

for every f ∈ X (cf. [3, Chapter 2, Theorem 4.10]). This space, equipped
with the norm

‖f‖X = sup
‖g‖X′≤1

∫ ∞

0
f∗(t)g∗(t) dt,

is called the representation space of X.
Given a function f ∈M(Ω), t ∈ (0,∞) and an r.i. space X, we define the

modulus of continuity of f at t with respect to X by

ωX(f, t) := sup
|h|≤t

‖∆hf‖X ,

where

∆hf(x) := f(x+ h)− f(x)

is the first-order difference. When, in particular, X = Lp, 1 ≤ p ≤ ∞,
then we write ωp(f, t) instead of ωLp(f, t). We note that we use a simplified
notation compared e.g. to [3], since we use only the first-order differences.
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Consider a pair (X0, X1) of Banach spaces which are compatible in the
sense that they are continuously embedded into a common Hausdorff topo-
logical vector spaceH. TheirK-functional is defined for each f in the vector
sum X0 +X1 by

K(t, f ;X0, X1) = inf
f=g+h

(‖g‖X0 + t‖h‖X1) for t > 0.

Then K(t, f ;X0, X1) is, as a function of t, quasiconcave on (0,∞), that is, it
is non-decreasing in t, and the function t−1K(t, f ;X0, X1) is non-increasing
in t.

Let X be an rearrangement-invariant space on Ω and let w be a non-
negative measurable (weight) function on [0,∞). We define the function
space

SX(w) := {f : f∗(∞) = 0, ‖f‖SX(w) := ‖(f
∗∗ − f∗)w‖X <∞}.

Given a locally-integrable function u : Ω→ R having all the weak deriva-
tives of the first order, denote by Dju = ∂u

∂xj
, j = 1, . . . , n, and by ∇u the

gradient of u, that is, the n–vector
(

∂u
∂x1

, . . . , ∂u
∂xn

)

of all such derivatives of

u and by |∇u| the Euclidean length of this vector as an element of R
n. We

now define the Sobolev space

W 1X(Ω) := {u ∈ X : ‖u‖W 1X := ‖u‖X +
n
∑

j=1

‖Dju‖X <∞}.

We shall also work with the class

V 1X(Ω) := {u ∈ X : ‖u‖V 1X :=
n
∑

j=1

‖Dju‖X <∞}.

We note that ‖ · ‖W 1X is a norm while ‖ · ‖V 1X is only a seminorm.
Let the Hardy averaging operator, P , be defined at a locally integrable

function h on (0,∞) and for t ∈ (0,∞) by

(Ph)(t) :=
1

t

∫ t

0
h(s)ds.

Its dual, Q, is defined at a locally integrable function h on (0,∞) and for
t ∈ (0,∞) by

(Qh)(t) :=

∫ ∞

t

h(s)

s
ds.

The dilation operator Es, is defined for s ∈ [0,∞) and at g ∈M+(0,∞),
t ∈ (0,∞), by

(Esf)(t) :=

{

f
(

t
s

)

0 < t < s

0 s < t <∞.

It is known that, for any s ∈ (0,∞), Es is bounded on any r.i. space ([3,
Proposition 5.11, p. 148]. Using the norm of Es on X, denoted by hX(s),
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we define the lower and upper Boyd indices of X as

iX := lim
s→0+

log 1
s

log hX(s)
, and IX := lim

s→∞

log 1
s

log hX(s)
,

respectively. They satisfy

1 ≤ i(X) ≤ I(X) ≤ ∞.

Let us recall [3, Chapter 3, Theorem 5.15] that, given an r.i. space X, then
the operator P is bounded on X if and only if iX > 1, while the operator Q
is bounded on X if and only if IX <∞.

Our basic idea can be outlined as follows. By the inequality of Kolyada
([12, Lemma 5.1]), see also [13, Lemma 3.1]), we have

(1.2) t−
1
n (f∗∗(t)− f∗(t)) . |∇f |∗∗(t)

for every weakly-differentiable function f on Ω and every t ∈ (0,∞).
Here, and throughout the paper, we write by A . B when there is a pos-

itive constant C independent of all essential quantities taking part in A and
B and such that A ≤ CB. We will write A ≈ B when both A . B and
B . A.

Now, given an r.i. space X and wrapping the norm of its representation
space ‖ · ‖X around both sides of (1.2), we get

(1.3)
∥

∥

∥
t−

1
n (f∗∗(t)− f∗(t))

∥

∥

∥

X
. ‖|∇f |∗∗(t)‖X .

First we have to get rid of the double star at the right hand side. It is
well-known ([3, Chapter 3, Theorem 5.15] that

‖g∗∗‖X . ‖g
∗‖X

with the constant independent of g and t ∈ (0,∞), if and only if iX > 1.
Therefore, assuming iX > 1, we obtain from (1.3)

(1.4)
∥

∥

∥
t−

1
n (f∗∗(t)− f∗(t))

∥

∥

∥

X
. ‖|∇f |∗(t)‖X ≈ ‖∇f‖X .

By the definition of the spaces SX(w) and V 1X, this can be interpreted as
the embedding

V 1X ↪→ SX(t−
1
n ).

Complementing this with the trivial inclusion

X ↪→ X,

and using the definition of the K-functional, we obtain

(1.5) K
(

f, t;X,SX(t−
1
n )
)

. K
(

f, t;X,V 1X
)

.

So, in order to carry out our analysis any further we need a reasonable char-

acterization of the K-functionals of the pairs (X,V 1X) and (X,SX(t−
1
n )).

This problem is solved in our first two theorems.
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Theorem 1.1. Let X be an r.i.-space. Then

K(f, t,X,W 1X) ≈ min(1, t)‖f‖X + ωX(f, t)

for all f ∈ X +W 1X and t > 0. Similarly,

K(f, t,X, V 1X) ≈ ωX(f, t)

holds for all f ∈ X + V 1X and t > 0.

Theorem 1.2. Let X be an r.i. space satisfying 1 < iX ≤ IX <∞. Then

K(f, t,X, SX(t−
1
n )) ≈(1.6)

≈‖(f∗(s)− f∗(t))χ(0,tn)(s)‖X + t‖s−
1
n (f∗∗(s)− f∗(s))χ(tn,∞)(s)‖X

≈‖(f∗∗(s)− f∗(s))χ(0,tn)(s)‖X + t‖s−
1
n (f∗∗(s)− f∗(s))χ(tn,∞)(s)‖X

for all f ∈ X + SX(t−
1
n ) and t > 0.

From the K-functional inequality (1.5) and from Theorems 1.1 and 1.2,
we get the following result.

Theorem 1.3. Let X be an r.i. space satisfying 1 < iX ≤ IX <∞. Then

(1.7) ‖(f∗∗ − f∗)χ(0,tn)‖X + t

∥

∥

∥

∥

(f∗∗(s)− f∗(s))χ(tn,∞)(s)

s
1
n

∥

∥

∥

∥

X

. ωX(f, t)

for all measurable f and t > 0.

In particular, when X = Lp, we have

Corollary 1.4. Let 1 < p <∞. Then, for t ∈ (0,∞),

(1.8)

∫ tn

0
(f∗∗(s)− f∗(s))p ds . ωpp(f, t)

and

(1.9)

∫ ∞

tn

(

f∗∗(s)− f∗(s)

s
1
n

)p

ds .
ω
p
p(f, t)

tp
.

The inequalities (1.8) and (1.9) are well known (modulo the equivalence
mentioned below in (2.8)). They were first proved by Kolyada [11, Theo-
rem 1 and Corollary 6] (see also [14, Theorem 2.7] and [13, Lemma 3.6 and
Theorem 3.7]), improving an earlier result of Ul’yanov [23], which states
that

f∗∗(t)− f∗(t) .
ωp(f, t

1
n )

t
1
p

, t ∈ (0,∞).

Our results recover these inequalities using different methods.
One of our principal goals is to prove the sharpness of (1.7). An analogous

assertion for the case when X = Lp was obtained by Caetano, Gogatishvili
and Opic ([5, Proposition 3.5 (ii)]).

We denote by κn = π
n
2

Γ(1+n
2
) the measure of the unit sphere in R

n.
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Theorem 1.5. Let X be an r.i. space satisfying 1 < iX ≤ IX < ∞. Let f

be a measurable function and set, for x ∈ Ω, F (x) := f ∗∗(κn|x|
n). Then

ωX(F, t) .
∥

∥(f∗∗ − f∗)χ(0,tn)
∥

∥

X
+ t

∥

∥

∥

∥

(f∗∗(s)− f∗(s))

s
1
n

χ(tn,∞)(s)

∥

∥

∥

∥

X

for all t > 0.

The fact that this theorem implies the sharpness of Theorem 1.3 is clearly
visible from the following corollary.

Corollary 1.6. Let X be an r.i. space satisfying 1 < iX ≤ IX <∞. Let f

be a measurable function and set, for x ∈ Ω, F (x) := f ∗∗(κn|x|
n). Then

(1.10) ωX(F, t) .
∥

∥(F ∗∗ − F ∗)χ(0,tn)
∥

∥

X
+t

∥

∥

∥

∥

(F ∗∗(s)− F ∗(s))

s
1
n

χ(tn,∞)(s)

∥

∥

∥

∥

X

for all t > 0.

One of the most interesting consequences of the sharpness result in The-
orem 1.5 is the characterization of the r.i. hull of a generalized Besov space.

Definition 1.7. Given two r.i. spaces, X and Y , we define the generalized

Besov space, B(X,Y ), by

B(X,Y ) = {f measurable : ωX(f, t) ∈ Y } ,

endowed with the norm

‖f‖B(X,Y ) := ‖f‖X + ‖ωX(f, t)‖Y .

Theorem 1.8. Let X and Y be two r.i. spaces, X satisfying 1 < iX ≤ IX <

∞. Let us define the class Z of measurable functions defined on Ω having

finite ‖f‖Z , where

‖f‖Z : = ‖f‖X +
∥

∥

∥

∥

∥(f∗∗ − f∗)χ(0,tn)
∥

∥

X
(1.11)

+t
∥

∥

∥s−
1
n (f∗∗(s)− f∗(s))χ(tn,∞)(s)

∥

∥

∥

X

∥

∥

∥

Y
.

Then, Z is the r.i. hull of the Besov space B(X,Y ) in the following sense:

whenever V is an r.i. space on Ω, then

B(X,Y ) ↪→ V

if and only if

Z ↪→ V.

Remark 1.9. The class Z defined in the preceding theorem is not neces-
sarily linear. Conditions of linearity of such classes can be found in [6].

When X is an r.i. space over Ω we can define the so-called fundamental

function, ϕX , of X, by

ϕX(t) := ‖χ(0,t)‖X , t ∈ (0,∞).
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It follows from the properties of an r.i. space that ϕX is well defined. The
fundamental function satisfies (see [3])

(1.12) ϕX(t)ϕX′(t) = t, t ∈ (0,∞).

Our next result is a general estimate of a rearrangement in terms of mod-
ulus of continuity and the fundamental function.

Theorem 1.10. Let X be an r.i. space satisfying 1 < iX ≤ IX <∞. Then

(1.13) f∗∗(t)− f∗(t) .
ωX(f, t

1
n )

ϕX(t)

for all measurable f and t > 0. Moreover,

(1.14) f∗∗(t) .

∫ ∞

t

ωX(f, s
1
n )

ϕX(s)

ds

s

for all measurable f and t > 0.

Again, for X = Lp, this is a classical result; (1.13) is the above-mentioned
result of Ul’yanov, and for (1.14) see e.g. [3, Chapter 5, Theorem 4.19]. In
general, it was proved by Gol’dman and Kerman [9], by entirely different
methods using best approximation and the Jackson inequality.

Definition 1.11. Given an r.i. space X, we define the generalized Lorentz

Gamma space, ΓX , by

ΓX =
{

f : Ω→ R measurable : f∗∗ ∈ X
}

,

endowed with the norm
‖f‖ΓX

:= ‖f∗∗‖X .

Applying an r.i. norm to the pointwise inequality (1.14), we immediately
obtain the following result.

Corollary 1.12. Let X and Y be two r.i. spaces and assume that 1 < iX ≤
IX <∞. Then,

(1.15) ‖f∗∗‖Y .

∥

∥

∥

∥

∥

∫ ∞

t

ωX(f, s
1
n )

ϕX(s)

ds

s

∥

∥

∥

∥

∥

Y

for every f : Ω→ R measurable.

We note that (1.15) can be interpreted as an embedding of a Besov space
into a generalized Lorentz Gamma space. We can further simplify the result-
ing expression for example when we know that the operator Q is bounded
and thus can be peeled off.

Example 1.13. Let X and Y be two r.i. spaces and assume that 1 < iX ≤
IX < ∞ and IY < ∞. Let V be another r.i. space such that Q : V → Y .
Then we have

(1.16) ‖f∗∗‖Y .

∥

∥

∥

∥

∥

ωX(f, t
1
n )

ϕX(t)

∥

∥

∥

∥

∥

V

.
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Conditions under which the above simplification works for various spe-
cial cases (for example, weighted Lebesgue spaces), have been extensively
studied by many authors, let us name for example Gol’dman [8], Gol’dman–
Kerman [9] or Kolyada [11]. It is not our aim to present such results in this
paper. We leave this to further research.

Finally, for two Banach spaces X,Y and an r.i. space V, we define the
interpolation space

(X,Y )KV :=
{

f measurable, ‖f‖(X,Y )K
V
:= ‖K(t, f ;X,Y )‖V <∞

}

.

With this notation, we can formulate the result of Theorem 1.8 in the
following way.

Theorem 1.14. Let X and Y be two r.i. spaces and assume that 1 <

iX ≤ IX < ∞. Then, the rearrangement-invariant hull of the Besov space

B(X,Y ) is the interpolation space
(

X,SX(t−
1
n )
)K

Y
.

2. Proofs

We will make use of the identities ([3, Chapter 5, (7.29), page 384])

(2.1) f∗∗(t) =

∫ ∞

t

f∗∗(s)− f∗(s)

s
ds

and ([3, Chapter 5, (7.11), page 379])

(2.2) f∗∗(t)− f∗∗(s) =

∫ s

t

f∗∗(s)− f∗(s)

s
ds, t ∈ (0,∞).

We start with a collection of auxiliary results of independent interest,
pointing out the connection between several expressions used in the liter-
ature in order to measure mean oscillation of functions in rearrangement-
invariant environment. In particular, we shall consider the quantities f ∗∗(t)−
f∗(t), studied e.g. in [3] or [1], f ∗

(

t
2

)

−f∗(t), introduced in [16], or f ∗∗
(

t
2

)

−
f∗∗(t), see e.g. [18], [19] or [20].

Proposition 2.1. (i) For every f measurable and every t > 0,

f∗
(

t

2

)

− f∗(t) ≤ 2 (f∗∗(t)− f∗(t)) ,(2.3)

f∗∗(t)− f∗(t) ≤
1

t

∫ t

0

(

f∗
(s

2

)

− f∗(s)
)

ds,(2.4)

f∗∗(t)− f∗(t) ≤ 2 (f∗∗(t)− f∗∗(2t)) ,(2.5)

f∗∗(t)− f∗(t) ≤ 2

∫ 2t

t

f∗∗(s)− f∗(s)

s
ds,(2.6)

f∗∗(t)− f∗∗(2t) =
1

t

∫ t

0
(f∗(s)− f∗(2s)) ds.(2.7)
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(ii) Let further X be an r.i. space whose Boyd indices satisfy 1 < iX ≤
IX <∞. Then, for every f measurable and every t > 0,

(2.8) ‖(f∗(s)− f∗(t))χ(0,t)(s)‖X ≈ ‖(f
∗∗(s)− f∗(s))χ(0,t)(s)‖X .

Proof. (i) Both (2.3) and (2.4) are due to Bastero, Milman and Ruiz ([1]).
Next,

f∗∗(t)− f∗∗(2t) =
1

t

∫ t

0
f∗(s) ds−

1

2t

∫ 2t

0
f∗(s) ds

=
1

2t

∫ t

0
f∗(s) ds−

1

2t

∫ 2t

t

f∗(s) ds

≥
1

2
(f∗∗(t)− f∗(t)) , t ∈ (0,∞),

proving (2.5). To prove (2.6), given t ∈ (0,∞), we apply (2.2) to s = 2t.
This yields

f∗∗(t)− f∗∗(2t) =

∫ 2t

t

f∗∗(y)− f∗(y)

y
dy, t ∈ (0,∞),

and thus (2.6) now follows from (2.5). Again, (2.7) follows from the simple
calculation

f∗∗(t)− f∗∗(2t) =
1

t

∫ t

0
f∗(s) ds−

1

2t

∫ t

0
f∗(2s) ds

=
1

t

∫ t

0
(f∗(s)− f∗(2s)) ds, t ∈ (0,∞).

(ii) First note that, for t ∈ (0,∞) and s ∈ (0, t),

f∗∗(s)− f∗(s) ≤ f∗∗(s)− f∗(t) =
1

s

∫ s

0
(f∗(y)− f∗(t)) dy,

whence, by the boundedness of P on X,
∥

∥(f∗∗(s)− f∗(s))χ(0,t)(s)
∥

∥

X
≤
∥

∥P
(

(f∗(s)− f∗(t))χ(0,t)(s)
)∥

∥

X

.
∥

∥(f∗(s)− f∗(t))χ(0,t)(s)
∥

∥

X
.

Conversely, again with t ∈ (0,∞) and s ∈ (0, t), using (2.2) we have

f∗(s)− f∗(t) ≤ f∗∗(s)− f∗(t)

= f∗∗(s)− f∗∗(t) + f∗∗(t)− f∗(t)

=

∫ t

s

f∗∗(y)− f∗(y)

y
dy + f∗∗(t)− f∗(t)

= Q
(

(f∗∗(s)− f∗(s))χ(0,t)(s)
)

+ f∗∗(t)− f∗(t),
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whence, by the boundedness ofQ onX, the monotonicity of s (f ∗∗(s)− f∗(s))
and by the boundedness of the dilation operator on X, we finally get
∥

∥(f∗(s)− f∗(t))χ(0,t)(s)
∥

∥

X

≤
∥

∥Q
(

(f∗∗(s)− f∗(s))χ(0,t)(s)
)∥

∥

X
+ (f∗∗(t)− f∗(t))ϕX(t)

.
∥

∥(f∗∗(s)− f∗(s))χ(0,t)(s)
∥

∥

X
+ (f∗∗(t)− f∗(t))

∥

∥χ(t,2t)
∥

∥

X

≤
∥

∥(f∗∗(s)− f∗(s))χ(0,t)(s)
∥

∥

X
+

1

t

∥

∥s (f∗∗(s)− f∗(s))χ(t,2t)(s)
∥

∥

X

.
∥

∥(f∗∗(s)− f∗(s))χ(0,2t)(s)
∥

∥

X

.
∥

∥(f∗∗(s)− f∗(s))χ(0,t)(s)
∥

∥

X
,

finishing the proof. ¤

We note that for X = Lp, an analogous result to (ii) was obtained in [5,
Proposition 4.5].

Proof of Theorem 1.1. We follow the idea of Bennett and Sharpley, who
proved a similar result in the case X = Lp, see [3, section 5, Theorem 4.12].

Step 1 We first prove that there exists a positive constant c such that

min(1, t)‖f‖X + ωX(f, t) ≤ cK(f, t,X,W 1X)

holds. To this end, let f be decomposed as f = b + g, with b ∈ X and
g ∈W 1X. Then

min(1, t)‖f‖X ≤ ‖b‖X + t‖g‖X ≤ ‖b‖X + t‖g‖W 1X .

Since this inequality holds for all such decompositions, it is also true for the
infimum, that is the K-functional on the right-hand side. Thus, it will be
enough to establish

ωX(f, t) . K(f, t,X,W 1X).

When f is decomposed as above, then for |h| ≤ t

‖∆hf‖X ≤ ‖∆hb‖X + ‖∆hg‖X ≤ 2‖b‖X + ‖∆hg‖X .

By [3, Chapter 5, (4.16), p. 336], we get

(2.9) ‖∆hg‖X ≤ t‖g‖V 1X .

Combining the last two estimates, we arrive at

‖∆hf‖X ≤ 2 inf
f=b+g

(‖b‖X + t‖g‖W 1X) = 2K(f, t,X,W 1X),

which completes Step 1.
Step 2 Now we prove the existence of a positive constant C such that

K(f, t,X,W 1X) . (min(1, t)‖f‖X + ωX(f, t)).

Since K(f, t,X,W 1X) ≤ ‖f‖X , we only need to consider the case 0 < t < 1.
We define functions b and g by

b(x) = −

∫

U

f(x+ tu)− f(x)du,
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where U = [0, 1]n is the n-dimensional unit cube and

g(x) = f(x)− b(x) =

∫

U

f(x+ tu)du.

It is easy to see that

(2.10) ‖b‖X ≤ ωX(f, t).

On the other hand we have

‖g‖W 1X = ‖g‖X +
n
∑

j=1

‖Djg‖X ,

where ‖g‖X ≤ ‖f‖X and

(2.11) t‖Djg‖X ≤ cωX(f, t),

using here an analogue of [3, Chapter 5, (4.40), p. 341] for r.i. spaces, which
can be proved almost verbatim. Combining the estimates, we arrive at

K(f, t,X,W 1X) ≤ ‖b‖X + t‖g‖W 1X ≤ t‖f‖X + cωX(f, t),

which completes the proof of the first part of the assertion.
The second part follows from (2.9), (2.10) and (2.11). ¤

Proof of Theorem 1.2. Fix f ∈ X + SX(t−
1
n ) and t > 0.

Step 1 Let E be a set satisfying

{x ∈ Ω : |f(x)| > t} ⊂ E ⊂ {x ∈ Ω : |f(x)| ≥ t},

then we decompose f = b+ g, where

b(x) = (|f(x)| − f∗(t)) sgn(f(x))χE(x), x ∈ Ω.

This gives

K(f, t
1
n , X, SX(t−

1
n )) ≤ ‖b‖X + t

1
n ‖g‖

SX(t−
1
n )

= ‖(f∗(s)− f∗(t))χ(0,t)(s)‖X + t
1
n ‖s−

1
n (g∗∗(s)− g∗(s))χ(t,∞)(s)‖X .

We calculate the second term of the last line. By construction we have

g∗(s) = min(f∗(t), f∗(s)), s ∈ (0,∞),

therefore,

g∗∗(s) = f∗(t)χ(0,t)(s) +
1

s

(

tf∗(t) +

∫ s

t

f∗(y)dy

)

χ(t,∞)(s).

Hence, we can estimate

g∗∗(s)− g∗(s) =

(

t

s
f∗(t) +

1

s

∫ s

t

f∗(y)dy − f∗(s)

)

χ(t,∞)(s)

≤

(

1

s

∫ s

0
f∗(y)dy − f∗(s)

)

χ(t,∞)(s)

= (f∗∗(s)− f∗(s))χ(t,∞)(s),

which proves one inequality in the desired assertion.
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Step 2 Suppose f = b+ g be any decomposition, then we want to show
that the middle term in (1.6) is smaller than or equal to

‖b‖X + t
1
n ‖g‖

SX(t−
1
n )
.

We start with the term

‖(f∗(s)− f∗(t))χ(0,t)(s)‖X .

Observe that

f∗(t) ≤ b∗(
t

2
) + g∗(

t

2
)

and

f∗(t) ≥ g∗(2t)− b∗(t).

Therefore, using the boundedness of P on X, we have

‖(f∗(s)− f∗(t))χ(0,t)(s)‖X(2.12)

≤ ‖(b∗
(s

2

)

+ g∗
(s

2

)

− g∗ (2t) + b∗ (t)χ(0,t)(s)‖X

≤ ‖b∗
(s

2

)

χ(0,t)(s)‖X + ‖b∗(t)χ(0,t)(s)‖X

+ ‖
(

g∗
(s

2

)

− g∗(2t)
)

χ(0,t)(s)‖X

≤ ‖b∗∗
(s

2

)

χ(0,t)(s)‖X + ‖b‖X + ‖
(

g∗
(s

2

)

− g∗(2t)
)

χ(0,t)(s)‖X

. ‖P (b∗)(s)χ(0,t)(s)‖X + ‖b‖X + ‖
(

g∗
(s

2

)

− g∗(2t)
)

χ(0,t)(s)‖X

. ‖b‖X + ‖
(

g∗
(s

2

)

− g∗(2t)
)

χ(0,t)(s)‖X .

We calculate the second term of the right-hand side pointwise. Let m ∈ N

be the smallest number, such that 2ms ≥ 2t, then we write

g∗
(s

2

)

− g∗(2t) ≤
m
∑

k=0

(

g∗
(

2k−1s
)

− g∗
(

2ks
))

,

then by (2.3) and (2.6) we can estimate further

g∗
(s

2

)

− g∗(2t) .
m
∑

k=0

g∗∗
(

2ks
)

− g∗
(

2ks
)

.

m
∑

k=0

∫ 2k+1s

2ks

g∗∗(τ)− g∗(τ)

τ
dτ

≈

∫ 2m+1s

s

g∗∗(τ)− g∗(τ)

τ
dτ.
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Putting this pointwise inequality into the norm, we arrive at

‖g∗
(s

2

)

− g∗(2t)χ(0,t)(s)‖X .

∥

∥

∥

∥

∥

∫ 2m+1s

s

g∗∗(τ)− g∗(τ)

τ
dτχ(0,t)(s)

∥

∥

∥

∥

∥

X

.

∥

∥

∥

∥

∫ 8t

s

g∗∗(τ)− g∗(τ)

τ
dτ

∥

∥

∥

∥

X

. t
1
n

∥

∥

∥

∥

∫ ∞

s

τ−
1
n
g∗∗(τ)− g∗(τ)

τ
dτ

∥

∥

∥

∥

X

. t
1
n ‖τ−

1
n (g∗∗(τ)− g∗(τ))‖X ,

where we used the boundedness of the operator Q on the last line. Looking
at (2.12) we see that we are done with the first term of the right-hand side
in (1.6). It remains to treat the second one, that is

t
1
n ‖s−

1
n (f∗∗(s)− f∗(s))χ(t,∞)(s)‖X .

Let f be decomposed as above, then we have

f∗∗(s)− f∗(s) ≤ b∗∗(s) + g∗∗(s)− g∗(2s) + b∗(s)

and get for the norm

t
1
n ‖s−

1
n (f∗∗(s)− f∗(s))χ(t,∞)(s)‖X

≤ ‖b∗∗‖X + ‖b∗‖X + t
1
n ‖s−

1
n (g∗∗(s)− g∗(2s))χ(t,∞)(s)‖X

≤ 2‖b‖X + t
1
n ‖s−

1
n (g∗∗(s)− g∗(s))χ(t,∞)(s)‖X

+ t
1
n ‖s−

1
n (g∗(s)− g∗(2s))χ(t,∞)(s)‖X .

If we use (2.3) for the last term on the right-hand side, we finally arrive at

t
1
n ‖s−

1
n (f∗∗(s)− f∗(s))χ(t,∞)(s)‖X ≤

≤ c
(

‖b‖X + ct
1
n ‖τ−

1
n (g∗∗(τ)− g∗(τ))‖X

)

,

which completes the proof of the first equivalence.
The second one follows from Proposition 2.1. ¤

Proof of Theorem 1.5. Let h ∈ R
n. Then,

‖∆hF‖X = ‖F (x+ h)− F (x)‖X

≤ ‖ (F (x+ h)− F (x))χ{0<|x|≤2h}(x)‖X

+ ‖ (F (x+ h)− F (x))χ{|x|>2h}(x)‖X

=: I + J,
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say. Next, we have

I ≤ ‖ (F (x+ h)− F (3h))χ{0<|x|≤2h}(x)‖X

+ ‖ (F (3h)− F (x))χ{0<|x|≤2h}(x)‖X

≤ 2‖ (F (y)− F (3h))χ{0<|x|≤3h}(x)‖X

= 2‖ (f∗∗(s)− f∗∗(3nκn|h|
n))χ(0,3nκn|h|n)(s)‖X

≤ 2‖ (f∗∗(s)− f∗(3nκn|h|
n))χ(0,3nκn|h|n)(s)‖X

. ‖ (f∗(s)− f∗(3nκn|h|
n))χ(0,3nκn|h|n)(s)‖X

. ‖ (f∗∗(s)− f∗(s))χ(0,3nκn|h|n)(s)‖X .

Here, the last but one inequality is the boundedness of P on X (recall that
iX > 1) and the last one is (2.8).

Similarly,

J = ‖ (g(κn|x+ h|n)− g(κn|x|
n)χ{|x|>2h}(x)‖X

=

∥

∥

∥

∥

∥

(

∫ κn max{|x|n,|x+h|n}

κn min{|x|n,|x+h|n}
|g′(u)| du

)

χ{|x|>2h}(x)

∥

∥

∥

∥

∥

X

≤ κn

∥

∥

∥

∥

∥

∥

∥






||x+ h|n − |x|n| ess sup

κn

(

|x|
2

)n
≤u≤κn

(

3|x|
2

)n
|g′(u)| du






χ{|x|>2h}(x)

∥

∥

∥

∥

∥

∥

∥

X

.

∥

∥

∥

∥

∥

∥

∥






|x|n−1|h| ess sup

κn

(

|x|
2

)n
≤u≤κn

(

3|x|
2

)n
|g′(u)| du






χ{|x|>2h}(x)

∥

∥

∥

∥

∥

∥

∥

X

. |h|

∥

∥

∥

∥

∥

∥



s1−
1
n ess sup
( 1

2)
n
s≤u≤( 3

2)
n
s

|g′(u)| du



χ(2nκn|h|n,∞)(s)

∥

∥

∥

∥

∥

∥

X

.

Since

(f∗∗)′(u) = −
1

u2

∫ u

0
(f∗(y)− f∗(u)) dy,

we get

II . |h|

∥

∥

∥

∥

∥

(

s1−
1
n s−2

∫ ( 3
2)

n
s

0

(

f∗(y)− f∗
((

3

2

)n

s

))

dy

)

χ(2nκn|h|n,∞)(s)

∥

∥

∥

∥

∥

X

. |h|
∥

∥

∥
s−

1
n (f∗∗(s)− f∗(s))χ(3nκn|h|n,∞)(s)

∥

∥

∥

X
.
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Altogether, we have

ωX(F, t) = sup
|h|≤t

‖∆hF‖X

. sup
|h|≤t

‖ (f∗∗(s)− f∗(s))χ(0,3nκn|h|n)(s)‖X

+ sup
|h|≤t

|h|
∥

∥

∥s−
1
n (f∗∗(s)− f∗(s))χ(3nκn|h|n,∞)(s)

∥

∥

∥

X

= K + L,

say. Now, the expression behind the supremum in K is obviously increasing
in |h|. We have to estimate L. So,

L ≤ sup
|h|≤t

|h|
∥

∥

∥s−
1
n (f∗∗(s)− f∗(s))χ(3nκn|h|n,3nκntn)(s)

∥

∥

∥

X

+ sup
|h|≤t

|h|
∥

∥

∥s−
1
n (f∗∗(s)− f∗(s))χ(3nκntn,∞)(s)

∥

∥

∥

X

= L1 + L2,

say. Obviously,

L2 = t
∥

∥

∥
s−

1
n (f∗∗(s)− f∗(s))χ(3nκntn,∞)(s)

∥

∥

∥

X
,

while

L1 . sup
|h|≤t

|h|(3nκn|h|
n)−

1
n

∥

∥(f∗∗(s)− f∗(s))χ(0,3nκntn)(s)
∥

∥

X

. K.

Summarizing all the estimates obtained, we finally get

ωX(F, t) . ‖ (f∗∗(s)− f∗(s))χ(0,3nκntn)(s)‖X

+ t
∥

∥

∥s−
1
n (f∗∗(s)− f∗(s))χ(3nκntn,∞)(s)

∥

∥

∥

X
.

Using the boundedness of the dilation operator on X, we get the assertion.
¤

Proof of Corollary 1.6. Using the monotonicity of t(f ∗∗(t)− f∗(t), we have

F ∗∗(t)− F ∗(t) =
1

t

∫ t

0
(f∗∗(s)− f∗(s)) ds

≥
1

t

∫ t

t
2

ds

s

t

2

(

f∗∗
(

t

2

)

− f∗
(

t

2

))

≈

(

f∗∗
(

t

2

)

− f∗
(

t

2

))

.

We thus have
f∗∗(t)− f∗(t) . (F ∗∗(2t)− F ∗(2t)) ,

and therefore he assertion follows from Theorem 1.5 combined with the
boundedness of the dilation operator on X. ¤
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Proof of Theorem 1.8. First assume that B(X,Y ) ↪→ V . Let ‖f‖Z < ∞.
We define the function F as in Theorem 1.5. We then get, thanks to the
boundedness of P on X,

‖F‖V . ‖F‖B(X,Y ) = ‖F‖X + ‖ωX(F, t)‖Y . ‖f‖Z .

Observing that

‖F‖V = ‖F ∗‖V = ‖f∗∗‖V ≥ ‖f
∗‖V ,

we get Z ↪→ V as desired.
Conversely, assume that Z ↪→ V . Then, by Theorem 1.3, we have, for

any measurable f ,

‖f‖V . ‖f‖Z . ‖f‖X + ‖ωX(f, t)‖Y ≤ ‖f‖B(X,Y ),

that is, B(X,Y ) ↪→ V , finishing the proof. ¤

Proof of Theorem 1.10. By the Hölder inequality, (1.12), (2.8) and (1.7),
applied to t in place of tn, we obtain

f∗∗(t)− f∗(t) =
1

t

∫ t

0
(f∗(s)− f∗(t)) ds(2.13)

≤
∥

∥χ(0,t)(s) (f
∗(s)− f∗(t))

∥

∥

X

ϕX′(t)

t

.
∥

∥χ(0,t)(s) (f
∗∗(s)− f∗(s))

∥

∥

X

1

ϕX(t)

.
ωX(f, t

1
n )

ϕX(t)
, t ∈ (0,∞).

This shows (1.13). Using (2.1) and (2.13), we get

f∗∗(t) =

∫ ∞

t

f∗∗(s)− f∗(s)

s
ds .

∫ ∞

t

ωX(f, s
1
n )

ϕX(s)

ds

s
, t ∈ (0,∞),

proving (1.14). ¤
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