
Publications of the Institute of Thermomechanics
Educational Series

Numerical methods in computational mechanics

Edited by M. Okrouhĺık

The presented publication might be of interest to students, teachers and researchers
who are compelled to solve nonstandard tasks in solid and/or fluid mechanics requiring

large scale computation.

The publication was prepared within the project 1ET400760509 of the Information
Society and supported by the Academy of Sciences of the Czech Republic

Institute of Thermomechanics, Prague 2008

Last revision April 28, 2009

Contents

1 Introduction 7

2 Matrix algebra background 11
2.1 Preliminary notes . 11
2.2 Matrix algebra notation . 12
2.3 Matrix operands and operations . 13

3 Review of numerical methods in mechanics of solids 21
3.1 Introduction . 21
3.2 Solution of algebraic equations . 22

3.2.1 Direct methods . 23
3.2.1.1 Gauss elimination . 23
3.2.1.2 Gauss-Jordan elimination method 25
3.2.1.3 Cholesky decomposition 25

3.2.2 Iterative stationary methods . 27
3.2.3 Iterative nonstationary methods 28

3.2.3.1 Conjugate gradient (CG) method 28
3.2.3.2 Multigrid method . 30

3.2.4 Convergence criteria for iterative methods 30
3.2.5 Precision, or do we believe in our results? 31
3.2.6 Finite versus iterative solvers . 31

3.3 Generalized eigenvalue problem . 32
3.3.1 Transformation methods . 32

3.3.1.1 Jacobi method . 32
3.3.1.2 The Givens method . 33
3.3.1.3 Left-right transformation 34
3.3.1.4 QR transformation . 34
3.3.1.5 QL method . 34

3.3.2 Forward and inverse power methods 34
3.3.2.1 Forward iteration method 34
3.3.2.2 Inverse iteration method 35
3.3.2.3 The shifted inverse power method 35
3.3.2.4 The block power method 35
3.3.2.5 The block inverse power method 35
3.3.2.6 Subspace iteration method 35

3.3.3 Determinant search method . 35
3.3.4 Lanczos method . 36

3.4 Solution of ordinary differential equations 38

2

CONTENTS 3

3.4.1 Explicit time integration algorithms 39
3.4.2 Implicit time integration algorithms 40

3.5 Solution of nonlinear tasks . 47
3.5.1 Newton-like methods . 48
3.5.2 Quasi-Newton methods . 50
3.5.3 The method of the steepest descent 50
3.5.4 The conjugate gradient method 51
3.5.5 Tracing equilibrium paths methods 51

3.6 Conclusions . 51

4 Implementation remarks to equation solvers 55
4.1 Storage modes . 55

4.1.1 Symmetric matrix storage mode 57
4.1.2 Rectangular storage mode – symmetric banded matrices 57
4.1.3 Skyline storage mode . 59

4.2 Fill-in problem . 60
4.3 Disk storage modes – out-of-core solvers 60
4.4 Frontal method . 64
4.5 Solving Ax = b by inversion . 65
4.6 Jacobi iteration method . 67
4.7 Gauss-Seidel method . 68
4.8 Successive overrelaxation method (SOR) 69

5 How to dirty your hands 71
5.1 Gauss elimination method . 72
5.2 Gauss elimination by hand . 72
5.3 Programming Gauss elimination . 78
5.4 Error estimation for Ax = b . 87
5.5 Condition number computation . 91
5.6 Other ways to estimate the condition number 92
5.7 Another partial pivoting example . 94
5.8 Gauss elimination with a symmetric matrix 100
5.9 Gauss elimination with a symmetric, banded matrix 102
5.10 Gauss elimination with a matrix stored by means of skyline scheme . . . 107
5.11 Gauss elimination with a tri-diagonal matrix 108
5.12 Using Gauss elimination for the inverse matrix computation 110
5.13 Cholesky decomposition . 111
5.14 Iterative methods . 113

5.14.1 Simple (successive substitution) iteration method 114
5.14.2 Jacobi method . 119
5.14.3 Gauss-Seidel method . 124
5.14.4 Successive overrelaxation (SOR) method 127

5.15 Solution of large systems . 128
5.15.1 Disk band algorithm . 129
5.15.2 Block Gauss elimination . 137

5.16 Solution of overdetermined systems . 137
5.17 Solution with some of unknowns prescribed 138

CONTENTS 4

6 Implementation remarks to nonlinear tasks 146
6.1 Preliminaries, terminology and notation 146

6.1.1 Newton-Raphson method . 150
6.1.2 Modified Newton-Raphson method 156
6.1.3 Method of the steepest gradient 158
6.1.4 Conjugate gradient method . 163

7 Domain decomposition methods 165
7.1 List of abbreviations . 165
7.2 Introduction . 165
7.3 Problem to be solved . 167
7.4 Overlapping methods . 168

7.4.1 Division of a discretized domain into overlapping subdomains . . 169
7.4.2 Additive overlapping Schwarz method 170
7.4.3 Multiplicative overlapping Schwarz method 173

7.5 Nonoverlapping methods . 176
7.5.1 Interface and interior . 176
7.5.2 Schur complement system for interface nodes 176
7.5.3 Decomposition of the Schur complement problem 180
7.5.4 Primal and Dual methods . 183

7.5.4.1 Primal methods . 183
7.5.4.2 Dual methods . 186

7.5.5 BDDC and FETI-DP . 190
7.5.5.1 BDDC method . 192
7.5.5.2 FETI-DP method . 193
7.5.5.3 Coarse space and coarse problem 194

7.6 DD methods as preconditioners . 200
7.7 DD Appendix - Matlab programs . 201

7.7.1 Examples of the input data . 201
7.7.2 Script listings . 203

8 FETI Based Domain Decompositions 221
8.1 Introduction . 221
8.2 The FETI method . 222

8.2.1 FETI method principle . 222
8.2.2 FETI method basic mathematics 223

8.3 Numerical Experiments . 226
8.3.1 The Contact Problem of Two Cylinders 227
8.3.2 The Pin-in-Hole Contact Problem 228

9 Solution of nonlinear equilibrium equations – BFGS method 231
9.1 Line search . 232
9.2 BFGS method . 232
9.3 The BFGS method for a constrained system 235

9.3.1 A simple model problem . 236
9.3.2 The modified BFGS algorithm . 237
9.3.3 Example: Two cubes contact . 240

CONTENTS 5

10 The Frontal Solution Technique 242
10.1 Introduction to the solution of algebraic systems 242

10.1.1 Matrix forms of algebraic systems 243
10.1.2 Scalar forms of algebraic systems 246
10.1.3 Overdetermined and underdetermined linear systems 247
10.1.4 Condition number . 249
10.1.5 Solution of linear algebraic systems 252

10.2 The Frontal Solution Technique . 256
10.3 The basic, simplest version of frontal technique 256

10.3.1 The Prefront part of the program 258
10.3.2 The actual assemblage and elimination phase 263
10.3.3 Back-substitution phase . 266
10.3.4 Discussion of the frontal technique 268

10.4 Concluding remarks . 269

11 Sparse Storage Schemes 272
11.1 Storage Schemes for Dense Matrices . 272

11.1.1 Full Storage . 273
11.1.2 Triangular Storage . 273

11.2 Storage Schemes for Sparse Matrices . 274
11.2.1 Coordinate Storage . 274
11.2.2 Compressed Row Storage . 275
11.2.3 Compressed Column Storage . 275
11.2.4 Block Compressed Row Storage 275
11.2.5 Block Compressed Column Storage 276
11.2.6 Compressed Diagonal Storage . 276
11.2.7 Jagged Diagonal Storage . 276
11.2.8 Skyline Storage . 277

11.3 Storage Schemes for Iterative Methods 278
11.4 Storage Schemes for Direct Methods . 278

11.4.1 Fill-in analysis . 278
11.4.2 Linked Lists . 279
11.4.3 Cyclically Linked Lists . 279
11.4.4 Dynamically Allocated Blocks . 280

12 Object oriented approach to FEA 282
12.1 Basics of continuum mechanics . 282

12.1.1 Basic tensor definition . 282
12.1.2 Deformation problem definition 283
12.1.3 Virtual displacement, first variation 284
12.1.4 Principle of virtual work . 284

12.2 Finite element method formulation . 285
12.2.1 Transformation of term δU1 . 286
12.2.2 Transformation of term δU2 . 286
12.2.3 Transformation of term δU3 . 287
12.2.4 Transformation to a particular element 287
12.2.5 Components of matrix BL . 289
12.2.6 Components of matrix BN . 290

CONTENTS 6

12.2.7 Small deformations . 291
12.3 Numerics . 291

12.3.1 Numerical integration . 291
12.3.2 Iterative procedure . 292
12.3.3 Test example 1 - loaded beam . 293
12.3.4 Test example 2 - pressed beam . 294

12.4 Integration on reference element . 296
Appendix - Source code . 300

12.4.1 MATHLIB . 300
12.4.2 FELIB . 310

13 ALE approach to fluid-solid interaction 324
13.1 Introduction . 324
13.2 Transport equation . 324
13.3 Derivation of the ALE-method . 327

13.3.1 Mass conservation . 327
13.3.2 Conservation of momentum . 328

13.4 Geometry of the deformation . 329
13.5 Piola transform . 330
13.6 Application to the equations of conservation 332
13.7 Decomposition of fluid and structure . 334

13.7.1 Fluid problem . 334
13.7.2 Structural problem . 335
13.7.3 Global coupled problem . 336

13.8 Numerical solution . 337
13.9 Basic algorithm . 338

14 FE analysis in a nutshell 343
14.1 Introduction . 343
14.2 Rectangular band storage . 344
14.3 Solution of the system of equations . 345
14.4 Solution of the system of ordinary differential equations 348

14.4.1 The Newmark method . 349
14.4.2 The central difference method . 351

14.5 Assembling global mass and stiffness matrices 354

15 Recommended website reading 357

16 About authors 360
16.1 Mrs. Marta Čert́ıková . 360
16.2 Alexandr Damašek . 361
16.3 Jǐŕı Dobiáš . 362
16.4 Dušan Gabriel . 364
16.5 Miloslav Okrouhĺık . 366
16.6 Petr Pař́ık . 369
16.7 Svatopluk Pták . 370
16.8 Vı́tězslav Štembera . 372

Chapter 1

Introduction

This part was written and is maintained by M. Okrouhĺık. More details about the
author can be found in the Chapter 16.5.

The presented publication might be of interest to human problem solvers in con-
tinuum mechanics, who are not professional programmers by education, but by destiny
and/or by personal inquisitiveness are compelled to resolve nonstandard tasks stemming
from the field of solid and/or fluid mechanics requiring large sized computation.

It is dedicated to matrix algebra, in its broadest sense, which allows for the transpar-
ent formulations of principles of continuum mechanics as well as for effective notations
of algebraic operations with large data objects frequently appearing in solution of con-
tinuum mechanics problems by methods discretizing continuum in time and space.

The publication has been prepared by eight authors. Authors and the chapters the
contributed to are as follows.

• Marta Čert́ıková – Chapter 7,

• Alexandr Damašek – Chapter 13,

• Jǐŕı Dobiáš – Chapter 8,

• Dušan Gabriel – Chapter 9,

• Miloslav Okrouhĺık – Chapters 1, 2, 3, 4, 5, 6, 14 and 15,

• Petr Pař́ık – Chapter 11,

• Svatopluk Pták – Chapter 10,

• Vı́tězslav Štembera – Chapter 12.

Authors’ affiliations, fields of expertise, selected references and the contact addresses
can be found in the Chapter 16.

The publication is composed of contributions of two kinds.

• First, there are contributions dealing with fundamentals and the background of
numerical mathematics in computational mechanics, accompanied by templates
and programs, which are explaining the standard matrix operations (chapter 2)

7

CHAPTER 1. INTRODUCTION 8

and procedures needed for the solution of basic tasks as the solution of linear
algebraic systems, generalized eigenvalue problem, solution of nonlinear task and
the solution of ordinary differential equations, etc. (Chapters 3, 4, 5). We focus on
nonstandard storage schemes, chapter (11), allowing to tackle large scale tasks. By
a template we understand a general broad term description of the algorithm using
high level metastatements like invert the matrix, or check the convergence. The
programs accompanying the text are written in Basic, Pascal, Fortran, Matlab and
C#. The presented programs are rather short and trivial and are primarily intended
for reading. The e-book readers (or users?) are encouraged to fiddle with these
programs.

• Second, there are advanced contributions describing modern approaches to numer-
ical algorithmization with emphasis to novelty, programming efficiency and/or to
complicated mechanical tasks as the contact treatment.

The attention is devoted to

– domain decomposition methods, (Chapter 7),

– BDDC methods, and FETI-DP methods , (Chapter 8),

– the BFGS method applied to a new contact algorithm, (Chapter 9),

– frontal solution method, (Chapter 10),

– details of sparse storage modes, (Chapter 11),

– intricacies of object programming approach, (Chapter 12),

– programming the Arbitrary Lagrangian Eulerian approach to the solid-fluid
problem, (Chapter 13), etc.

Programming considerations for parallel treatment are observed. These contribu-
tions have their origin in papers that the contributing authors recently published
in scientific journals and/or presented at conferences.

There are dozens of programming libraries securing matrix algebra operations. They
are available in variety of programming languages.

BLAS library contains an extended set of basic linear algebra subprograms written
in Fortran 77 and is at

www.netlib.org/blas/blas2-paper.ps.

BLAST Basic linear algebra subprograms technical standards provides extensions to
Fortran 90. See

www.netlib.org/blas/blast-forum.

A collection of Fortran procedures for mathematical computation based on the proce-
dures from the book Computer Methods for Mathematical Computations, by George E.
Forsythe, Michael A. Malcolm, and Cleve B. Moler. Prentice-Hall, 1977. It can be
downloaded from

www.pdas.com/programs/fmm.f90.

And also MATLAB matrix machine

http://www.mathworks.com/products/matlab

www.netlib.org/blas/blas2-paper.ps.
www.netlib.org/blas/blast-forum
www.pdas.com/programs/fmm.f90
http://www.mathworks.com/products/matlab

CHAPTER 1. INTRODUCTION 9

should be mentioned here, together with a nice introductorily text by one of Matlab
founding fathers C. Moler available at

www.mathworks.com/moler.

In C programming language it is the GNU Scientific Library (or GSL) that provides the
software library for numerical calculations in applied mathematics and science. Details
can be found in

http://www.gnu.org/software/gsl/

Similar packages are available in C++, Java and other programming languages.

http://www.ee.ucl.ac.uk/~mflanaga/java/

Most of these are sophisticated products with a high level of programming primitives,
treating matrices as building blocks and not requiring to touch individual matrix ele-
ments.

So having all these at hand, readily available at internet, one might pose a question
why one should dirty his/her fine fingertips by handling matrix elements one by one.

Comparing the menial effort required to write a program for solving the system of
algebraic equations in Basic, Pascal or Fortran with that demanded in Matlab, where
a simple backslash operator suffices, one might come to a conclusion that to work with
element level languages is a futile activity that should be avoided at all the costs.

There are at least two important reasons why it is not so.

• First, to effectively use languages with high-level programming primitives, allowing
efficient processing of matrix algebra tasks, requires detailed knowledge of the
matrix algebra rules and the knowledge of the rules of a particular language and/or
package being used. So it is advisable to know what to choose and how to use it.

• Second, and even more important, is the size and the ’standardness’ of the problem
we are attempting to solve. This e-book is primarily written for non-standard
problem solvers. The ’standard’ and ’regular’ problems could be rather easily
tackled using a brute force approach using standard problem oriented packages
and freely available program libraries covering a wide range of numerical problems.
Non-standard problems and/or huge memory and time requirements necessitate -
among others - to be familiar with efficient data storage schemes which in turn
require that standard procedures providing matrix algebra operations have to be
completely rewritten from the scratch which in turn requires to be familiar with
matrix operations on an element level. So dirtying our hands with low, element
level programming is a necessity required until the progress in computer technology
provides for a new measure of what is a huge size problem and what is a non-
standard problem.

We would like to conclude these introductory remarks by giving our readers a few
seemingly trivial hints.

Programming the algorithm might help to clearly understand it and this respect the
choice of the programming language is almost immaterial. Nevertheless to write the
efficient and robust code and implement it into the existing software the choice of a
’suitable’ language is of the utmost significance.

The information available on the internet is only a necessary condition for the suc-
cessful path to the sought after result.

www.mathworks.com/moler
http://www.gnu.org/software/gsl/
http://www.ee.ucl.ac.uk/~mflanaga/java/

CHAPTER 1. INTRODUCTION 10

It have to be complemented by solid background knowledge of physics that stays
behind the task, mathematics and the rules of nature modelling with the emphasis on
the proper observation of model limits.

And last but not least, the engineering intuition and the programming craftsmanship
have to be fruitfully harvested.

Chapter 2

Matrix algebra background

This part was written and is maintained by M. Okrouhĺık. More details about the
author can be found in the Chapter 16.5.

2.1 Preliminary notes

Matrix algebra, together with tensor algebra, allows for the transparent formulations
of principles of continuum mechanics and for effective notations of algebraic operations
with large data objects frequently appearing in solution of continuum mechanics prob-
lems by discrete methods in time and space. For more details see [1], [2]. The funda-
mental operations are

• solution of linear algebraic equations, see the Paragraph 3.2, Chapter 4,

• matrix inversion, see the Paragraph 4.5,

• singular value decomposition, see

http://www.netlib.org/lapack/lug/lapack_lug.html.

• standard and generalized eigenvalue problem, see the Paragraph 3.3,

• solution of ordinary differential equations, see the Paragraph 3.4.

The solution of algebraic equations is a basic step needed for the efficient solution of
partial differential operations by difference methods as well as for the solution of static
as well as of dynamic tasks of structural analysis by finite element method.

Often, the inverse matrix computation is required. It should be emphasized, however,
that in most cases we try to avoid the explicit inverse computation since it destroys
otherwise advantageous matrix properties as its sparsity and/or bandedness.

Assessing the vibration of mechanical structures requires solving the generalized
eigenvalue problem allowing to find the eigenfrequencies and eigenmodes of structures.

The transient problems of mechanical structures, solved by discrete methods, lead
to the solutions of ordinary differential equations, requiring to employ the direct time
integration of ordinary differential equations and these methods often necessitate to
provide repeated solution of algebraic equations.

11

http://www.netlib.org/lapack/lug/lapack_lug.html

CHAPTER 2. MATRIX ALGEBRA BACKGROUND 12

2.2 Matrix algebra notation

The m×n matrix is defined as a set of algebraic or numeric items – matrix elements
– that are arranged into m rows and n columns. A matrix is an array of its elements. In
the text the matrices will be denoted by straight bold capital letters, say A, sometimes
emphasizing the matrix dimension as Am×n.

A =




a11 a12 a13 . . . a1j . . . a1n

a21 a22 a23 a2j a2n
...

...
...

ai1 ai2 ai3 . . . aij . . . a1n
...

...
...

am1 am2 am3 . . . amj . . . amn




m×n

Alternatively the notation with brackets, as [A], might be used. In classical textbooks
a typical matrix element is denoted aij, while the notation Aij can be found in those
devoted to programming. See [8]. The programming details depend on the language
employed – in Matlab, (www.mathworks.com), Basic [6] and Fortran [4] we write A(i,j).
In Pascal [5] we use A[i,j], the C language notation is A[i][j], etc. Notice that the
programming ’image’ of A, being printed by a straight bold font, is denoted by a smaller
thin Courier font – i.e. A – in this text.

If the matrix has the same number of rows as columns, i.e. (m = n), we say that it
is square and of the n-th order.

The column vector (a one column matrix) is

x =





x1

x2

x3
...

xn





n×1

= xn×1.

The row vector (a one row matrix), can be viewed as a transpose of a column vector, i.e.

xT = {x1 x2 x3 · · · xn}(1×n).

To save the printing space a column vector might be written as

x = {x1 x2 x3 · · · xn}T.

The diagonal and unit matrices

D =




d11

d22 0
. . .

0
dnn




, I =




1 0 0 · · · 0
0 1 0 0
0 0 1 0
...

. . .
...

0 0 0 · · · 1




.

www.mathworks.com

CHAPTER 2. MATRIX ALGEBRA BACKGROUND 13

The lower triangular matrix

L =




l11 0 0 · · · 0
l21 l22 0 · · · 0
l31 l32 l33 · · · 0
...

. . .
...

ln1 ln2 ln3 · · · lnn




.

The upper triangular matrix

U =




u11 u12 u13 · · · u1n

0 u22 u23 · · · u2n

0 0 u33 · · · u3n
...

. . .
...

0 0 0 · · · unn




For elements of a symmetric matrix we can write aij = aji for i = 1, 2, . . . n;
j = 1, 2, . . . n.

The Matlab, see http://www.mathworks.com, as a high-performance language with
high-order programming primitives suitable for technical computing, should be men-
tioned here. Throughout the text the Matlab will serve as a sort of matrix shorthand.
It will frequently be used for explanation of programming details. It works with matri-
ces as building blocks, circumventing thus the necessity to address individual elements.
Nevertheless, to fully employ its power and efficiency it is important to fully understand
the basic rules of matrix algebra and be familiar with ways how they are implemented.
So dirtying our hands with element level programming is sometimes necessary for edu-
cational purposes. A few following paragraphs might clarify the authors’ intentions.

2.3 Matrix operands and operations

Matrix determinant

The matrix determinant is defined for square matrices only. It can be viewed as an
operator uniquely assigning the scalar value to a matrix. We write d = detA = ‖A‖.
The algorithms for determinant evaluation are of little importance today. Classical
approaches are too time demanding, furthermore the determinant value could easily be
obtained as a side-product of Gauss elimination process – see

[3] and http://linear.ups.edu/index.html.

If the determinant value is equal to zero the matrix is classified as singular.

Nullity and rank of the matrix

The nullity of a matrix – nul(A) – is a scalar value characterizing the ’magnitude’ of
singularity, i.e. the number of linearly dependent rows or columns. The rank – rank(A)
– is a complementary quantity obtained from nul(A) = n − rank(A), where n is the
order or the ’dimension’ of the matrix. For a regular matrix its nullity is equal to zero
and its rank is equal to its order or dimension. In Matlab we use a built-in function
allowing to write r = rank(A)

http://www.mathworks.com
http://linear.ups.edu/index.html

CHAPTER 2. MATRIX ALGEBRA BACKGROUND 14

Trace of the matrix

The trace is defined for square matrices only. Its value is equal to the sum of its
diagonal elements, i.e. trace(A) =

∑n
i=1 aii. In Matlab we simply use the trace function.

Matrix equality Am×n ← Bm×n

The matrix equality is defined for matrices of the same type only. Based on equality
is defined the assignment, which in Matlab is naturally written as A = B and expresses
the following sequence of statements dealing with matrix elements

for i = 1:m

for j = 1:n

A(i,j) = B(i,j)

end

end

Matrix addition Cm×n ← Am×n + Bm×n

The matrix addition in Matlab is provided by C = A + B and expresses the following
sequence of statements dealing with matrix elements

for i = 1:m

for j = 1:n

C(i,j) = A(i,j) + B(i,j)

end

end

Similarly for the substraction.

Matrix transposition Am×n ← BT
n×m

By transposition the process of exchanging rows and columns is understood. In
Matlab we write A = B’ for real matrices, while the statement A = B.’ is required for
hermitian ones. On the element level it means

for i = 1:m

for j = 1:n

A(i,j) = B(j,i)

end

end

If the elements of a matrix A are matrices themselves (submatrices), then the trans-
pose of A requires not only the transposition of submatrices, but the transposition of
submatrices elements as well.

A =




B11 B12

B21 B22

B31 B32


 ; AT =




BT
11 BT

21 BT
31

BT
12 BT

22 BT
32




CHAPTER 2. MATRIX ALGEBRA BACKGROUND 15

For the transposition of a sum or a difference we can write

(A±B)T = AT±BT.

For the transposition of a matrix product we have (AB)T = BTAT. The double trans-
position does not change the matrix, i.e. (AT)T= A. A symmetric matrix is insensitive
to the transposition process.

The transposed row vector changes into the column one and vice versa.

Scalar matrix multiplication Am×n ← c Bm×n

means to multiply each element of the matrix by the same scalar value, i.e.

for i = 1:m

for j = 1:n

A(i,j) = c*B(i,j)

end

end

and in Matlab requires to write A = c*B. Similarly the division by a scalar is A = B/c.

Matrix multiplication Cm×p ← Am×n Bn×p

In Matlab it suffices to write C = A*B. Two matrices could only be multiplied if the
number of columns in A matrix is equal to the number of rows in matrix B. This
condition is often called conformability requirement.

The matrix multiplication is not a commutative process. For the transposition of a
matrix product we have (AB)T = BTAT.

The matrix multiplication at an element level requires to use three embedded do-
loops. By the outer loops we subsequently address all the elements, while the innermost
one provides the definitoric summation, i.e.

cij =
n∑

k=1

aik bkj
for i = 1, 2, · · · m;

j = 1, 2, · · · p,

which could be implemented as

for i = 1:m

for j = 1:p

sum = 0;

for k = 1:n, sum = sum + A(i,k)*B(k,j); end

C(i,j) = sum;

end

end

The matrix multiplication process is quite straightforward. Still it requires additional
concern about its efficient implementation. The order of row- and column-loops is to be
adjusted, according to the programming language being used. For example the Fortran
stores matrix arrays columnwise, while the Pascal, Java and C-like languages store them
in the row order. So the algorithm for matrix multiplication shown above is suitable for

CHAPTER 2. MATRIX ALGEBRA BACKGROUND 16

Matlab, Pascal and C-like languages. If we were programming it in Fortran, the i-loop
should be the inner one.

The matrix multiplication requires roughly n3, n being the matrix dimension, floating
point operations. For a long time there are attempts to make this process more effective.
The fastest known algorithm, devised in 1987, requires the number of operations propor-
tional to n2.38. More details can be found in http://www.siam.org/pdf/news/174.pdf.

Fortran 77 note

The FORTRAN 77 does not allow for dynamic array dimensioning. The arrays have
to be of fixed size when the main program (with proper subroutines) is being compiled.
To circumvent this deficiency a few auxiliary parameters have to be introduced. In our
academic case with matrix multiplication one might proceed as follows.

In DIMENSION statements for the matrix arrays, instead of actual values of variables
M, N, P which might not be known in advance, we use their maximum predictable values,
which might occur in the solved problem, and pass them to a proper subroutine. Assume
that the values of parameters defining the actual matrix sizes are M = 2, N = 5, P = 3

and that the maximum predictable values are MMAX = 20, NMAX = 50, PMAX = 30.

[
· · · · ·
· · · · ·

]



· · ·
· · ·
· · ·
· · ·
· · ·




=

[
· · ·
· · ·

]

(m × n)(n × p) = (m × p)

(2 × 5)(5 × 3) = (2 × 3)

The matrix multiplication programming segment can then be written as indicated in the
Program 1.

Program 1
Program MAIN

C DIMENSION A(MMAX, NMAX), B (NMAX, PMAX), C (MMAX, PMAX) C

DIMENSION A(20, 50), B(50, 30), C(20, 30)

INTEGER P, PMAX

C define matrices A,B and their maximum dimensions

MMAX = 20

NMAX = 50

PMAX = 30

C define dimensions for the actual task to be solved

M = 2 ! must be .LE. MMAX ! conformability requirements

N = 5 ! must be .LE. NMAX ! of matrix product

P = 3 ! must be .LE. PMAX ! have to be observed

CALL MAMU2 (C, A, B, M, N, P, MMAX, NMAX, PMAX)

C ...

The corresponding procedure for matrix multiplication is

SUBROUTINE MAMU2 (C, A, B, M, N, P, MMAX, NMAX, PMAX)

DIMENSION C(MMAX,P), A(MMAX,N), B(NMAX,P)

INTEGER P, PMAX

http://www.siam.org/pdf/news/174.pdf

CHAPTER 2. MATRIX ALGEBRA BACKGROUND 17

C C(M,P) = A(M,N) * B(N,P)

DO 10 I = 1,M

DO 10 J = 1,P

C(I,J) = 0.

DO 10 K = 1,N

C(I,J) = C(I,J) + A(I,K) * B(K,J)

10 CONTINUE

RETURN

END

¤ End of Program 1

¤ End of Fortran 77 note

Fortran 90 note

In FORTRAN 90 these restrictions are removed by the provision of dynamic array
structuring. The arrays can be passed to subroutines as arguments with their actual
run-time sizes. In FORTRAN 90 one could implement the matrix multiplication by a
segment code indicated in the Program 2.

Program 2
SUBROUTINE MAT_MUL(A,B,Y,L,M,N)

! multiply A(L,M) by B(M,N) giving Y(L,N)

IMPLICIT NONE

INTEGER:: I,J,K,L,M,N

REAL, DIMENSION(L,M):: A

REAL, DIMENSION(M,N):: B

REAL, DIMENSION(L,N):: Y

Y = 0.

DO K = 1,N

DO I = 1,M

DO J = 1,L

Y(J,K) = Y(J,K) + A(J,I) * B(I,K)

END DO

END DO

END DO

END SUBROUTINE MAT_MUL

¤ End of Program 2

There is a lot of publications devoted to FORTRAN 90. A nice introductory course
can found in [7].

¤ End of Fortran 90 note

Multiplication of a matrix by a column vector from the right
ym×1 ← Am×n xn×1

is carried out according to yi =
∑n

j=1 Aij xj for i = 1, 2, ...m. Of course the con-
formability conditions have to observed. On the element level we write

CHAPTER 2. MATRIX ALGEBRA BACKGROUND 18

for i = 1:m

sum = 0;

for j = 1:n, sum = sum + A(i,j)*x(j); end

y(i) = sum;

end

In Matlab the element-wise approach indicated above gives as an output the row vector,
regardless whether the input vector was of a row or a column character. Unless stated
otherwise the Matlab rules take primarily vectors as of row nature.

When using the usual Matlab high-level statement as in y = A*x, the input vector
have to be of column structure, while in y = A*x’ it has to be a row one. In agreement
with matrix algebra rules the output – in both cases – will be a column vector.

Other programming languages as Pascal or Fortran do not distinguish the row/column
character of vectors. For these languages the set of elements, addressed by a unique name,
is just an array, as it is in tensor analysis.

It should be emphasized that the use of the term ’vector’ in programming languages
is a little bit misleading, having nothing to do with vectors as we know them from physics
– entities defined by its magnitude and direction.

Multiplication of a matrix by a vector from the left
y1×n ← x1×m Am×n

The algorithm for this multiplication is given by yj =
∑m

i=1 xi Aij for j = 1, 2, ...n.
Provided that the conformability conditions are satisfied, and the vector x is of row

nature the Matlab high-level statement is y = x*A. On the output we get a row vector as
well. If, by chance we start by a row x vector, we have to write y = x’*A.

Dot product s ← (x,y) = x · y
A dot product is defined for vectors of the same length by s = (x,y) = xTy =

∑n
i=1 xi yi.

In Matlab, with both vectors of the column nature, we write s = x’*y. The alternative
statement s = dot(x,y) takes as inputs vectors regardless of their ’columnness’ or ’row-
ness’. On the element level we could write

s = 0; for i = 1:n, s = s + x(i)*y(i); end

Cross product c ← a × b

Strictly speaking the cross product does not belong into the menagerie of matrix alge-
bra. It is, however, an operator frequently used in continuum mechanics and in physics
generally and thus available as a high-level operator in Matlab. It can be obtained by c

= cross(a,b). The dimension of input vectors a and b must be just three.
Doing it by hand, the Sarrus’s scheme could be used for the cross product evaluation.

Assuming that in the Cartesian system of coordinates with unit vectors ~i, ~j, ~k the
vectors ~a,~b have components ax, ay, az and bx, by, bz respectively, then the resulting vector

BIBLIOGRAPHY 19

~c = ~a ×~b is given by

~c =

∣∣∣∣∣∣

~i ~j ~k
ax ay az

bx by bz

∣∣∣∣∣∣
=





ay bz − az by

az bx − ax bz

ax by − ay bx



 .

Still another way of expressing the i-th element of the cross product vector – this
time in index notation – is

ci =
3∑

j=1

3∑

k=1

ǫijk aj bk,

where ǫijk is Levi-Civita permutation symbol. Programming it this way would, however,
be rather inefficient

Dyadic product Am×n ← xm×1y1×n

The result of dyadic product of two vectors of the same length is a matrix. The
algorithm for its evaluation is as follows

for i = 1:m

for j = 1:n

A(i,j) = x(i)*y(j)

end

end

If both vectors are conceived as column ones, then one should write A = x*y’ in Matlab.
There is no built-in function for the diadic product evaluation in Matlab.

Matrix inversion B ← A−1

If the product of two square matrices is equal to the unity matrix AB = I, then the
matrix A is inverse of the B matrix and vice versa. We write B = A−1 or A = B−1.

The matrix can be inverted only if detA 6= 0, that is for a regular matrix. If the
matrix is singular, i.e. detA = 0, its inverse does not exist.

The inverse of the matrix product is

(AB)−1 = B−1 A−1.

Bibliography

[1] K.-J. Bathe. Finite element procedures. Prentice-Hall, New Jersey, 1996.

[2] G. Beer. Introduction to finite and boundary methods for engineers. John Wiley and
Sons, Baffins Lane, Chichester, 1991.

[3] R.A. Breezer. A first course in linear algebra. Waldron Edition, 2008.

[4] S.J. Chapman. Fortran95/2003 for scientists and engineers. McGraw Hill, Engelwood
Cliffs, 2007.

BIBLIOGRAPHY 20

[5] J.J. Gregor and A.H. Watt. Pascal for scientists and engineers. Pitman, London,
1983.

[6] J.G. Kemeny and T.E. Kurtz. Back to Basic. The history, corruption, and future of
the language. Adisson-Wesley, 1985.

[7] I.M. Smith. A Programming in Fortran 90. A first course for engineers and scientists.
John Wiley and Sons, Baffins Lane, Chichester, 1995.

[8] G. Strang. Linear Algebra and its Applications. Academic Press, New York, 1976.

Chapter 3

Review of numerical methods in
mechanics of solids

This part was written and is maintained by M. Okrouhĺık. More details about the
author can be found in the Chapter 16.5.

A review of numerical methods based on matrix algebra is presented, especially of
methods of solution of algebraic equations, generalized eigenvalue problems, solution of
differential equations describing transient phenomena, and methods for the solution of
nonlinear problems.

3.1 Introduction

Lot of problems in engineering practice are solved by means of commercial finite ele-
ment (FE) packages. From outside, these FE packages appear to be black boxes and
a chance to accustom them to user’s immediate needs is rather limited. That’s why
standard FE users are not usually involved in studying and subsequent algorithmization
and programming of modern computational methods.

Using modern finite element packages, however, requires making frequent choices
between various methods that are available within a package. The principles of some
of these methods are quite new and to understand them requires a detailed consulting
of voluminous theoretical manuals containing numerous references embedded in various
journals and modern textbooks which are not usually at hand.

The widespread availability of PC’s equipped by powerful software gives the designers
and stress analysts a powerful tool for the efficient use of ’classical’ engineering methods
allowing bigger and more complicated problems of engineering practice to be solved on
condition that the user is able to grasp pertinent numerical techniques, understand them
and be able to implement them in his/her computer territory using modern programming
tools as Matlab, Maple, Mathematica and last but not least the good old Fortran in its
new and powerful F90 version.

Different groups of users of numerical methods require ’black box’ software for solving
general problem classes without having to understand the details of theory and algorith-
mization. This kind of software is widely available in the form of mathematical libraries
such as LAPACK, LINPACK, NAG, and in various books dedicated to numerical recipes.

21

CHAPTER 3. REVIEW OF NUMERICAL METHODS IN MECHANICS OF SOLIDS22

See [32], [44], [23], [38]. Also the commercial finite element packages belong to this cat-
egory. The examples are numerous. ABACUS, ANSYS, COSMOS, etc. are only a
few examples from the beginning of the spectrum sorted alphabetically. Others could
be found in [51]. Such a software can be reliably used within the limits of its validity,
which are more or less precisely stated and declared in their manuals. Less reliable, how-
ever, are pieces of information contained in advertisement booklets distributed by their
vendors. In this respect it is difficult to suppress the temptation to present a common
wisdom concerning the usefulness of other people software, namely you do not know how
it works until you buy it.

Also we would like to stress out that we are living in a quickly changing world where
everything, including the terms large and small, is subjected to never ending scrutiny.
Quotations from a few textbooks speak for themselves

• Ralston, 1965 ... by a very large matrix we understand a matrix of the order of
100 or higher [39].

• Parlett, 1978 ... a 200 by 200 symmetric matrix with a random pattern of zero
elements is large [37].

• Papandrakakis, 1993 ... with moderately sized problems of a few tens of thousands
degrees of freedom [35].

In spite of all these facts the authors are deeply convinced, that the solid knowledge
of principles on which these methods are based, the ability of engineering assessment of
a wide spectrum of methods which are available, is of utmost importance in everyday
life of people engaged in engineering computations of complicated problems of technical
practice.

3.2 Solution of algebraic equations

Lot of problems in technical practice leads to the solution of sets of n linear algebraic
equations with n unknowns Ax = b.

In this paragraph only linear sets of algebraic equations will be treated without
explicitly stressing out the term linear at each occurrence.

Note
The solution of linear algebraic equation is important for steady state, linear tran-

sient and generally nonlinear problems as well, since all the mentioned tasks could be
formulated in such a way that at the bottom of each time step or an iteration loop the
set of linear equations is solved.

The coefficient matrix A, arising from a displacement formulation of finite element
(FE) method, has a meaning of the global stiffness matrix, the b vector represents
the external loading and the x vector contains the sought-after solution expressed in
generalized displacements. The matrix A is usually regular , symmetric, positive definite
and sparse.

All matrix properties mentioned above are very important for the solution of large-
scale problems and should be properly exploited in algorithmization, programming and
implementation of procedures providing matrix operations and handling.

CHAPTER 3. REVIEW OF NUMERICAL METHODS IN MECHANICS OF SOLIDS23

3.2.1 Direct methods

These methods are characterized by the fact that, ignoring the effects of round-off
errors, one can reach the exact answer after a finite number of algebraic operations.

3.2.1.1 Gauss elimination

The system of equations is usually solved by a variant of Gauss elimination. This
method was known long before Carl Friedrich Gauss (1777 - 1855). Its use for a set
of three equations with three unknowns was presented in a Chinese text titled Nine
Chapters on the Mathematical Art more than 2000 years ago. See [8].

The Gauss elimination method is based on subsequent elimination of unknowns. The
multiples of the first equation are being subtracted from all remaining equations in such
a way that the first unknown vanishes. By this we get a smaller set of (n− 1) equations
with (n − 1) unknowns. This way we continue until the last equation remains. The last
equation has only one unknown whose value can be easily determined. This is the end of
the first part of procedure, known by different names – forward substitution, reduction,
factorization or triangularization since the process leads to an upper triangular matrix.
What remains to do is a so called back-substitution process. We substitute the value
of the last unknown into the previous equation, which allows to calculate the value of
the last but one unknown. The same way we continue upward until all unknowns are
calculated. It is recommended to start the study of Gauss elimination by means of a
pencil and a piece of paper as shown in the Paragraph 5.2.

The previous story, expressed in an algorithmic pseudocode, is presented in Template
1. It is assumed that the initial values of matrix elements are rewritten, thus the initial
matrix is lost. No pivoting is assumed.

Template 1, Gauss elimination, standard matrix storage mode

a) forward substitution

for k = 1 : n-1

for i = k + 1 : n

for j = k + 1 : n

a(i,j) = a(i,j) - a(k,j) * a(i,k) / a(k,k); % matrix factorization

end

b(i) = b(i) - b(k) * a(i,k) / a(k,k); % reduction of right-hand side

end

end

b) backward substitution

for i = n : 1

sum = 0;

for j = i + 1 : n

sum = sum + a(i,j) * x(j);

end

x(i) = (b(i) - sum) / a(i,i);

end

To understand how the statements appearing in the Template 1 were conceived one

CHAPTER 3. REVIEW OF NUMERICAL METHODS IN MECHANICS OF SOLIDS24

could study their detailed derivation in the Paragraph 5.3.
When programming the Gauss elimination process it is recommended to split it into

two separate parts which could be called independently. The first part should deal
with the matrix triangularization1, while the second part is to be responsible for the
reduction of the right-hand side and the back substitution. This is advantageous when
solving the system for more right-hand sides with an unchanging coefficient matrix since
the operation count for the matrix triangularization is much greater than that of the
second part of the code.

It is obvious that the algorithm should be complemented by adding a check against the
division by a ’small’ or zero pivot a(k,k) which is not, however, the diagonal element
of the original matrix, since the element values are constantly being rewritten. The
appearance of a small or zero pivot at k-th step of elimination causes that the elimination
process cannot go on, it does not, however, mean that the matrix is necessarily singular.
In some cases this obstacle can be overcome by exchanging the order of remaining rows.
As a rule we are looking for such a row - whose element under the small or zero pivot - has
the largest absolute value. This process is called a partial pivoting and requires to find
a new pivot by newpivot = max

i=k,k+1,...,n
|aik|. The full pivoting means that a candidate for

the new pivot is chosen from all the remaining matrix elements, i.e. newpivot = max|aij|
for i = k, k + 1, . . . , n and j = k, k + 1, . . . , n. If none of pivoting succeeds, then we
have to conclude that the matrix is singular within the computer precision being used.
It should be reminded that

• partial pivoting spoils the banded structure of the matrix,

• full pivoting spoils the symmetry of the matrix,

• if the matrix is positive definite all the pivots are positive and no pivoting is needed.

For proofs see [41], [46].
The sparseness feature is very important since it allows to deal with matrices that

otherwise could not be handled and processed due to computer memory limitations. In
mechanical and civil engineering applications, the most common form of sparseness is
bandedness, i.e. aij = 0 if |i − j| > nband, where the identifier nband was introduced for
the halfband width (including diagonal). For programming details see the Paragraph
5.9.

The work of solving a set of algebraic equations by Gauss elimination can be measured
by the number of needed arithmetic operations. Considering one multiplication, or one
division, or one addition plus one subtraction as one operation then the effort needed for
the factorization of a matrix can be expressed by 1

3
(n3 − n) operations. The operations

count for the right-hand side reduction is 1
2
(n2 − n) while the back substitution requires

1
2
n(n + 1) operations. These counts apply to full matrices, they are, however, reduced

approximately by half if the matrix is symmetric. If the matrix is symmetric and banded
then the operations count for the matrix factorization is proportional to n(nband)2 op-
erations instead of n3 as in the case of factorization of a general type matrix. See [45],
[16].

Both symmetry and sparseness should be fruitfully exploited not only in programming
but also in storage considerations if efficient storage requirements are to be achieved.

1Terms factorization and reduction are used as well.

CHAPTER 3. REVIEW OF NUMERICAL METHODS IN MECHANICS OF SOLIDS25

There are many storage modes available, e.g. the rectangular storage mode for symmetric
banded matrices [44], [23] or the skyline storage mode (also called variable band or profile
mode) [4]. Special storage modes suitable for random sparse matrices are described in
[48], [11]. The subject is treated in more detail in the Chapter 11.

The Basic Linear Algebra Software (BLAS) subroutines for performing standard
matrix operations offer a plethora of storage schemes allowing for the efficient stor-
age of matrices of different type – general, symmetric, banded, symmetric banded, etc.
For more details see http://www.netlib.org/blas/blast-forum/blas-report.pdf,
www.netlib.org/blas/blast-forum.

The huge memory problems require a disk storage approach to be employed. One of
many possibilities is the use a so called band algorithm whose detailed description can
be found in [34]. The programming considerations are in [33]. See also the paragraph
5.15.1.

Also a so called hypermatrix algorithm is of interest. The method consists in sub-
dividing the coefficient matrix into smaller submatrices, sometimes called blocks. The
Gauss elimination process is then defined not for matrix entries, but for submatrices. So
the intermost loop could look like K∗

ij = Kij −KT
is K−1

ss Ksj. The method is not limited
to symmetric or band matrices. Since it is based on the sequence of matrix operations,
standard library routines could easily be employed for its implementation. For details
see [17].

The frontal method is a variant of Gauss elimination It was first publicly explained
by Irons [24]. Today, it bears his name and is closely related to finite element technology.
J.K. Reid [40] claims, however, that the method was used in computer programs already
in the early sixties. The frontal method is based on the observation that assembling
the (i, j)-th element of the e-th local stiffness matrix k

(e)
ij into the global stiffness matrix

Kij = Kij + k
(e)
ij need not be completed before the elimination step, i.e. Kij = Kij −

Kik Kkj /Kkk. The detailed explanation and the programming considerations concerning
the frontal method are in the Chapter 10.

3.2.1.2 Gauss-Jordan elimination method

This method for solving a set of algebraic equations seems to be very efficient since
the elimination of equations is conceived in such a way that the process leads not to a
triangular matrix but to a diagonal one. It should be noted that the method is expensive,
the operation count is approximately by 50 higher than that of Gauss elimination. See
[39]. Furthermore, if the coefficient matrix is banded, then – before it becomes diagonal
due to the elimination process – it is subjected to a massive fill-in process in the out-of-
band space. Naturally, it prevents to employ any efficient storage mode.

3.2.1.3 Cholesky decomposition

This method is based on the decomposition of the original matrix A into a product
of lower triangular and strictly upper triangular matrices, i.e. A → LU. The process
is simplified if the matrix is symmetric, then the decomposition becomes A → RT R,
where R matrix is upper triangular. So instead of Ax = b we solve RTRx = b.
Denoting Rx = y we get two equations RTy = b and Rx = y from which y and x
could be successively found. In the case of a positive definite matrix, no pivoting is

http://www.netlib.org/blas/blast-forum/blas-report.pdf
www.netlib.org/blas/blast-forum

CHAPTER 3. REVIEW OF NUMERICAL METHODS IN MECHANICS OF SOLIDS26

needed. The operation count is roughly the same as that for Gauss elimination. See
[39]. The implementation details are disclosed in the Paragraph 5.13.

Scalar versus parallel approaches - programming considerations

So far we have considered the matrix types and storage modes. In the last time
there is another important issue to be considered, namely a decision whether the pro-
gramming module is intended to be run on a scalar, parallel or vector machine. Until
recently the programming languages lacked the vocabulary and syntax for specifying
parallelism allowing a coordination of flows of instructions and data with hardware re-
sources. Presently, there are no generally valid hints available, the problem is highly
language and machine dependent. The Fortran 90, a successor of a long line of Fortran
dialects, seems to be an efficient tool for parallelizing the tasks which are computational
intensive in matrix processing. In Template 2 there are shown the differences in Fortran
77 and 90 syntax when applied to Gauss factorization of a matrix.

Template 2, Fortran 77 and 90 codes providing the factorization of a matrix

Fortran 77 Fortran 90

DO k = 1, n - 1 DO k = 1, n-1

DO i = k + 1, n FORALL (i = k + 1:n)

a(i,k) = a(i,k) / a(k,k) a(i,k) = a(i,k) / a(k,k)

END DO END FORALL

DO i = k + 1, n FORALL (i = k+1:n, j = k+1:n)

DO j = k + 1, n

a(i,j) = a(i,j) - a(i,k)*a(k,j) a(i,j) = a(i,j) - a(i,k)*a(k,j)

END DO

END DO END FORALL

END DO END DO

On the left-hand side of the Template 2 you can observe classical Fortran 77 syntax
which is scalar (sequential) in nature. A scalar instruction is such that completes before
the next one starts. If this code is submitted to Fortran F90 compiler, it remains exe-
cutable but the compiler does not recognize it as parallelizable. The code runs serially
with no parallel speed-up. On the right-hand side there is the same process expressed
in Fortran 90 style. Although FORALL structures serve the same purpose as DO loops,
they are actually parallel assignment statements, not loops, and can be run in parallel
using as many processors as available. See [49]. It should be made clear that FORALL
statement by itself is not enough to achieve the parallel execution. In order to ensure
any improvement in performance through the parallel execution, the FORALL structure
must operate on arrays that have been properly treated by the DISTRIBUTE directive.
This, however, is in hands of the numerical analyst who should be able to recognize the
data structure of the problem and assign a proper programming data structure to it. For
details see [25].

CHAPTER 3. REVIEW OF NUMERICAL METHODS IN MECHANICS OF SOLIDS27

Vector versus parallel approaches - programming considerations

Sometimes the vector computers are mistakenly considered as the opposites of parallel
computers. Actually the vectorization is a form of parallel processing allowing the array
elements to be processed by groups. The automatic vectorization of the code secured by
vector machine compilers could result in a substantial reduction in computational time.
Further reduction could be achieved by a fruitful usage of compiler directives and by a
’manual’ loop unrolling. See [13]. Presently, the level of automatic vectorization is sub-
stantially higher than the level of automatic parallelization. There is no rivalry between
parallel and vector approaches. The future probably belongs to multiprocessor machines
(each having hundreds of processors) with huge local memories and with fast and wide
communication channels between processors. Today, the impact of vectorization can be
observed even on personal computers. See [20].

3.2.2 Iterative stationary methods

These methods for the solution Ax = b of are based on the idea of solving an equiva-
lent system of equations Mx = (M−A)x+b. The equivalent system is solved iteratively
by successive substitutions using the following scheme M (k+1)x = (M − A) (k)x + b .
There are many ways how to choose the M matrix. The choice M = A converges im-
mediately and leads to direct methods. Another simple choice M = I leads to a method
sometimes called the method of successive substitution. See the Paragraph 5.14.1. If we
take M as a diagonal part of A then we have a so called Jacobi method. Taking M as a
triangular part of A gives a so called Gauss-Seidel method and taking M as a combina-
tion of two previous choices leads to the method of successive overrelaxation. Generally,
all these approaches could be expressed by (k)x = B (k−1)x+c where neither B (obtained
by a suitable process from A) nor c (obtained from b) depend on the iteration count k.
For more details and for discussions on convergence rates see [2], [46].

Jacobi method

The Jacobi method is a representative of one of the oldest iteration methods for the
solution of algebraic equations. It is known that its rate of convergence is quite slow,
compared to other methods, the method is, however, mentioned here due to its simple
structure which is transparently suitable for parallelizing. For convergence considerations
see [39], [45].

The method is based on examining each of the n equations, assuming that the re-
maining elements are fixed, i.e. xi = (bi−

∑
j 6=i

aij xj)/aii. It should be noted that a regular

matrix can always be rearranged in such a way that there it has no zero diagonal entries.
The iterative scheme is given by (k)xi = (bi −

∑
j 6=i

aij
(k−1)xj)/aii.

We stated that the parallelization is language dependent. Not only that, it also
strongly depends of the memory model of the computer being used. The large-scale,
massively parallel computers have up to thousands of processors, each having is own
memory. Smaller scalable machines have only a few processors and a shared memory.
The problem, that has not changed much in the last years, is that it takes far longer to
distribute data than it does to do the computation. For more details see the Paragraph
5.14.2.

CHAPTER 3. REVIEW OF NUMERICAL METHODS IN MECHANICS OF SOLIDS28

Gauss-Seidel method

The Gauss-Seidel method is similar to Jacobi method, it uses, however, the updated
values of unknowns as soon as they are available. G. Strang claims that the method was
apparently unknown to Gauss and not recommended by Seidel. [45]. The algorithm is
in [2]. The rate of convergence of the Gauss-Seidel method is better than that of Jacobi,
still it is relatively slow. It also strongly depends on the ordering of equations, and on
the ’closeness’ of an initial guess. See [2]. The Gauss-Seidel seems to be a fully sequential
method. A careful analysis have shown that a high degree of parallelism is available if
the method is applied to sparse matrices arising from the discretized partial differential
equations. See [1] and the Paragraph 5.14.3.

Successive overrelaxation method (SOR)

This method is derived from the Gauss-Seidel method by introducing a relaxation
parameter for increasing the rate of convergence. For the optimum choice of the relax-
ation parameter the method is faster than Gauss-Seidel by an order of magnitude. For
details see [2], [33].

3.2.3 Iterative nonstationary methods

These methods are characterized by the fact that the computations strongly depend
on information based on values at the current iteration step.

3.2.3.1 Conjugate gradient (CG) method

The CG method generates a sequence of conjugate (orthogonal) vectors which are
residuals of iterates. They are constructed in such a way that they minimize the quadratic
potential which is an equivalent to the solving the system of algebraic equations. The
idea is appealing to mechanical engineers who are deeply aware of the fact that the
nature acts so as to minimize energy, i.e. that the potential energy 1

2
xT Ax − xT b of

a structure assumes a minimum at a configuration defined by x, where the structure
is in equilibrium. By other words, the minimization of potential energy leads to equi-
librium Ax = b. The method is especially effective for symmetric, positive definite
matrices. The iterates are updated at each step along a direction (i)d at a distance (i)α
by (i)x = (i−1)x+ (i)α (i)d. The direction and the distance are computed to minimize the
residuals of (i)r = b − A (i)x. The direction vectors are mutually orthogonal and satisfy
the relation (i)dT A (j)d = 0 for i 6= j and (i)d = (i)r+(i−1)β (i−1)d, The vector of residuals
(i)r is updated by (i)r = (i−1)r−(i)α (i)q, where (i)q = A (i)d. The step length parameter is
determined by (i)α = (i)rT (i)r/((i)dT A (i)d) which minimizes the expression (i)rT A−1 (i)r.
The parameter (i)β = (i)rT (i)r/((i−1)rT (i−1)r) guaranties that (i)r and (i−1)r are orthogo-
nal. The method is often combined with a suitable preconditioning as described in the
text that follows. The excellent introduction to Conjugate gradient method, titled An in-
troduction to conjugate gradient method without agonizing pain can be downloaded from
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf. The
Preconditioned Conjugate Gradient Method for solving Ax = b is adapted from
netlib2.es.utk.edu in linalg/templates shown in Template 3.
Template 3, Preconditioned Conjugate Gradient Method

http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
 netlib2.es.utk.edu

CHAPTER 3. REVIEW OF NUMERICAL METHODS IN MECHANICS OF SOLIDS29

Compute (0)r = b − A (0)x for an initial guess (0)x.
Assume that a symmetric, positive definite preconditioner M is known.
for i = 1,2, ...

solve M (i−1)z = (i−1) r
(i−1)ρ = (i−1)rT (i−1)z
if i = 1 then

(1)d = (0)z
else
(i−1)β = (i−1)ρ / (i−2)ρ
(i)d = (i−1)z + (i−1)β (i−1)d

endif
(i)q = A (i)d
(i)α = (i−1)ρ / ((i)dT (i)q)
(i)x = (i−1)x + (i)α (i)d
(i)r = (i−1)r + (i)α (i)q
check convergence; continue if necessary

end

The method of conjugate gradients is a direct (finite) method rather than iterative,
it can however be stopped part way. In linear cases its operation count exceeds that of
direct solvers unless a good estimation of the solution as a starting guess is known. Its
strength lies in solutions of large sparse systems stemming from nonliner cases where we
proceed by iterations and where the result of a previous step is a good starting estimate
for the next one. Convergence rates of iterative methods are difficult to estimate. As in
the case of other methods they can be related to the condition number. See [46].

There are other representatives of nonstationary methods to be mentioned here. The
Minimum Residual (MINRES) and Symmetric LQ (LQMMLQ) methods are variants of
conjugate gradient method for symmetric indefinite matrices. Another approach is a so
called Generalized Minimal Residual (GMRES) method which combines the computation
of a sequence of orthogonal vectors with least square solve and update. This method
can be applied to general nonsymmetric matrices. [2], [42].

A few words about preconditioners

The convergence rate of iterative methods depends on spectral properties of the
coefficient matrix. One way to improve it, is to transform the initial system Ax = b into
another system, say M−1 Ax = M−1 b, where the matrix M is a so-called preconditioner.
The matrix M is chosen in such a way that the spectral properties of M−1 A are better
than those of A and, at the same time, the inverse of M is not expensive and does not
spoil the symmetry and positive definiteness of the original coefficient matrix. The Jacobi
preconditioner, the simplest of other known approaches, consists of diagonal elements of
the original coefficient matrix and is thus easy to implement and calculate. For more
details see [35]. An incomplete Cholesky elimination is another known precoditioner.
See [2], [42].

CHAPTER 3. REVIEW OF NUMERICAL METHODS IN MECHANICS OF SOLIDS30

3.2.3.2 Multigrid method

The trick is based on the idea of solving the problem on a fine and coarse grids si-
multaneously. Starting from a fine grid with an approximation, say (F)x, we can proceed
the following way, indicated in Template 4.

Template 4, The multigrid idea

Assume that a starting guess (F)x is known
while not satisfied do

(F)r = b − (F)A (F)x residual error
(C)r = C (F)x transfer to the coarse grid
(C)A (C)y = (C)x solve for (C)y on the coarse grid data
(F)y = F (C)y transfer to the fine grid
(F)xnew = (F)x + (F)y new approximation
(F)x = (F)xnew update the guess
are you satisfied? check convergence

end

The matrix C is a coarsening operator which combines values on a fine mesh and gives
those on a coarse one. Conversely, the refining operator F yields values on a fine grid from
those on a coarse one. See [29], [9]. The full text of the last book could be downloaded
from http://computation.llnl.gov/casc/people/henson/mgtut/welcome.html.

3.2.4 Convergence criteria for iterative methods

Denoting the iteration counter by it, the maximum permissible number of iterations
by itmax, the required tolerance by ep, the current residuum by r and the right-hand side
vector by b, the criteria of convergence could be implemented, as in Template 5, by a do

while or repeat until programming structures followingly.

Template 5, Convergence criteria

it = 0; itmax = ... ; ep = ... ;

One can use do while or repeat until programming structure
while ‖r‖/‖b‖ > ep or it < itmax do repeat

it = it + 1; it = it + 1;

iterate; iterate;

end until ‖r‖/‖b‖ < ep and it > itmax

Instead of the ratio of norms indicated above, which is a convergence measure ex-
pressed in ”forces” acting on the considered structure, we could also use the ratio of
”displacement” norms (|‖ xnew ‖ − ‖ xold ‖|)/ ‖ xold ‖. The value of ep must be reason-
ably small with respect to the level of values appearing in the problem and with respect
to the unit round-off error (machine epsilon) that is described in following paragraphs.

http://computation.llnl.gov/casc/people/henson/mgtut/welcome.html

CHAPTER 3. REVIEW OF NUMERICAL METHODS IN MECHANICS OF SOLIDS31

3.2.5 Precision, or do we believe in our results?

The smallest positive real number eps (real in the computer jargon) the computer
can distinguish from the unit, i.e. for which 1 + eps > 1 is known as the unit round-
off error or machine epsilon and is computer and language dependent. The value of
machine epsilon plays crucial role in the assessment of numerical accuracy of the compu-
tational process. It can be easily determined by a piece of code shown in the Template 6.

Template 6, Machine epsilon and how to get it

eps = 1; i = 0;

while eps + 1 > 1 do

i = i + 1;

eps = 0.5 * eps;

end

The final eps reveals the value of machine epsilon while the final i tells the number
of bits for the binary representation of a mantissa of the real number for a particular
computer since the division by two is equivalent to one binary shift to the right. See
[16].

It is known [41] that when solving Ax = b, the relative error of the solution is
bounded by the relative error of the coefficient matrix multiplied by the value of the
condition number, i.e. ‖ ∆x ‖ / ‖ x ‖≤ c(A) ‖ ∆A ‖ / ‖ A ‖, where c(A), the condition
number of the matrix, is defined by c(A) =‖ A−1 ‖ ‖ A ‖ or by a ratio of maximum and
minimum eigenvalues of the coefficient matrix, i.e. c(A) = λmax/λmin in case that the
coefficient matrix is positive definite. Assuming that the computer works with t decimal
digits, i.e. ‖ ∆A ‖ / ‖ A ‖= 10−t and that the solution is known with s decimal digits,
i.e. ‖ ∆x ‖ / ‖ x ‖= 10−s, we can easily derive the approximate formula for the number
of significant decimal digits of the solution in the form s ≥ t − log10 c(A)). By other
words we are losing log10 (c(A)) decimal digits due to round-off errors. The formula is
easy, the computation of the value of the condition number by definitions given above, is
expensive. There are many approaches leading to a cheaper evaluation of the condition
number. One of them is almost free of charge and can be explained easily. Let x is
a computer solution of Ax = b. It is obvious that x = A−1 b. For norms we have
‖ x ‖≤‖ A−1 ‖ ‖ b ‖ which gives a rough estimate of the condition number in the form
c(A) ≤‖ x ‖ ‖ A ‖ / ‖ b ‖. For more details see [41], [16].

It is the large value of the condition number which declares that the coefficient
matrix is ill-conditioned and signals the problems we will have solving the problem and
interpreting results. Generally, the result of the solution of a system of algebraic equation
with an ill-conditioned matrix is extremely sensitive to small changes of input coefficients.
On the other hand a small value of the determinant of the coefficient matrix does not
necessarily mean that the matrix is ’nearly’ singular. See [46].

3.2.6 Finite versus iterative solvers

The finite elimination methods gained their good reputation in the history of solid
mechanics computing by their robustness and stability without pivoting. They are bur-
dened by fill-in problems that cannot be avoided but only minimized by a suitable

CHAPTER 3. REVIEW OF NUMERICAL METHODS IN MECHANICS OF SOLIDS32

numbering of variables. Finite (direct) methods are the backbone of today’s standard
commercial finite element calculation.

The iterative methods do not suffer from fill-in, they can survive in almost the same
storage as original data but their performance depends on the numerical values of data
of the problem to be solved. Presently, the iterative methods are subjected to intensive
study with the intention to develop adaptive and robust procedures which could be
applied commercially.

The present state of affairs is summarized in the following table, which is adapted
from [35].

Finite vs. iterative methods Finite Iterative
Solution of algebraic equations exact approximate
Performance depends on non-zero structure numerical values
Additional right-hand side cheap repeat all
Irregular geometries no problem slows down
Storage for large problems fill-in problems only original data
Current usage commercial, standard use academic, special projects

3.3 Generalized eigenvalue problem

There are many engineering tasks which lead to standard Ax = λx or to a generalized
(K − λM)x = 0 eigenvalue problem. As examples the elastic stability or vibration
problems could be mentioned here. In latter case K is the stiffness matrix, M denotes
the mass matrix. These matrices are usually symmetric and positive definite. The
stiffness matrix is positive semidefinite if there are any rigid body modes present. The
stiffness matrix could lose its symmetry if hydrodynamic forces in journal bearings are
modelled. The mass matrix could lose its positive semidefiniteness if there is a missing
mass in a node of the structure. The eigenvalue problem could also become semidefinite
of indefinite also due to incorrectly applied underintegration process [4], [7].

3.3.1 Transformation methods

Transformation methods are based on a sequence of orthogonal transformations that
lead to a diagonal or tridiagonal matrix. The resulting diagonal matrix has the eigen-
values stored directly on the diagonal, from a tridiagonal matrix they can be easily
’extracted’.

3.3.1.1 Jacobi method

Jacobi method, based on subsequent rotations, is schematically described in Template
7. It is shown here for a standard eigenvalue problem (A−λ I)x = 0. The transformation
leads to so called diagonalization of the matrix defined by A = X Λ X−1, where Λ is a
diagonal matrix containing individual eigenvalues λi and X is a modal matrix containing
corresponding eigenvectors. They are stored columnwise in the same order as eigenvalues
in Λ.
Template 7, Jacobi method for a standard eigenvalue problem

CHAPTER 3. REVIEW OF NUMERICAL METHODS IN MECHANICS OF SOLIDS33

(0)A = A
Diagonalization of A
for k = 1,2, ...

(k)A = (k)TT (k−1)A (k)T
check convergence

end

Eigenvectors
(k)X = (1)T (2)T ... (k)T
Note
For k → ∞ the sequence leads to (k)A → Λ and (k)X → X

Notes

• Matrix Λ is diagonal, it contains all eigenvalues – generally, they are sorted neither
in ascending nor in descending order.

• Matrix X is a so-called modal matrix. It contains all eigenvectors – columnwise.
It is not symmetric. It is, however, orthogonal, if A matrix is symmetric.

The bandedness of matrix A cannot be exploited. There is a massive fill-in before
the coefficient matrix finally becomes diagonal. See [43]. At each iteration the Jacobi
method uses the transformation matrix T in the form shown in Template 8.
Template 8, The Jacobi transformation matrix for k-th iteration

The angle ϕ, obtained from the condition of zeroing the largest non-diagonal entry
and its indices p, q, are known
The non-zero entries for this rotation are as follows
for i = 1 to n

T(i,i) = 1

end

c = cos(ϕ); s = sin(ϕ)
T(p,p) = c; T(p,q) = s; T(q,p) = -s; T(q,q) = c;

The trigonometrical entries are in p-th and q-th columns and rows only, with ones
on the diagonal and zeros everywhere else. In each iteration the procedure is based on
such a choice of rotations that leads to zeroing the largest out of out-of-diagonal element.
For details see [43]. The generalized Jacobi method could be conceived in such a way
that the transformation of generalized eigenvalue problem into a standard form could be
avoided. See [4].

3.3.1.2 The Givens method

is another possible variant of rotation approaches. It uses the same rotation matrix T
as Jacobi. The rotation pairs p and q, needed for zeroing of element ajk, are picked up
sequentially, i.e. p = j + 1; q = k. In this case the transformation process leads to
a symmetric tridiagonal matrix that offers an easy way to eigenvalue extraction. The
procedure is carried out in a finite number of steps, unlike the Jacobi method which
requires an iteration process to convergence.

CHAPTER 3. REVIEW OF NUMERICAL METHODS IN MECHANICS OF SOLIDS34

3.3.1.3 Left-right transformation

is based on a sequence of similarity transformations leading to a diagonal matrix, i.e.
(0)A ← A; (k)A → (k)RT (k)R; (k+1)A ← (k)R (k)RT; k=1,2,.... The indicated decompo-
sition is due to Cholesky. The matrix R is upper triangular.

3.3.1.4 QR transformation

is based on the Gramm-Schmidt orthogonalization decomposition A → QR. The matrix
Q is orthogonal, the matrix R is upper triangular. With a starting guess (0)A ← A
the procedure is given by the sequence of similarity transformations (k)A → (k)Q (k)R;
(k+1)A ← (k)R (k)Q for k = 0, 1, 2, As before for k → ∞ the matrix (k)A approaches
the lower triangular matrix with eigenvalues on its diagonal.

3.3.1.5 QL method

is a fast efficient method for the solution of eigenvalue problems with tridiagonal matrices.
The method is similar to the QR method, however the lower triangular L is used instead
of R. It is proved that QL method has a smaller round-off error than that of QR
algorithm. See [38]. The routines based on QL method are usually available in standard
computer libraries.

The above mentioned methods are sometimes combined together. For example in
Nastran [27] the Givens method is used for making the matrix tridiagonal and QR
transformation for extraction of chosen modes.

3.3.2 Forward and inverse power methods

These methods are iterative. Their principles could best be explained on a standard
eigenvalue problem.

3.3.2.1 Forward iteration method

In this paragraph the upper left hand side index in brackets denotes the iteration
counter, while the the upper right hand side index (in brackets again) points to a par-
ticular column of the matrix. In forward iteration method we proceed from an initial
choice of (0)x by (k+1)x = A (k)x, for k → 1, 2, If the matrix A has distinct eigenval-
ues |λ1| < |λ2| < . . . < |λn| then it also has a full set of eigenvectors u(i), i = 1, 2...n.
The upper left-hand index is the iteration counter, the upper right-hand index points
to a particular eigenvector. These vectors could be considered as base vectors and each
vector (including the starting guess) could be expressed as their linear combination
(0)x =

∑n
i=1 ciu

(i). Assuming that cn 6= 0 we we could express the k-th iteration in the
form (k)x = λk

n

[∑n−1
i=1 ci(λi/λn)k u(i) + cnu

(n)
]
. Since λn is by assumption the largest

eigenvalue, then (λi/λn)k → 0 for k → ∞. The k-th iteration of vector (k)x thus
approaches the eigenvector u(n) belonging to λn, i.e. (k)x → cnλ

k
nu

(n). Finally, the
largest eigenvalue can be calculated by means of Rayleigh quotient. The method fails
if λi/λn = ±1, or if the initial guess does not contain the direction corresponding to
the eigenvector belonging to the largest eigenvalue, i.e. if cn = 0. The convergence to
the eigenvector is often very slow and depends on the ratio |λn−1|/|λn|. The next eigen-
vectors can be found from orthogonality conditions. One has to exclude from further

CHAPTER 3. REVIEW OF NUMERICAL METHODS IN MECHANICS OF SOLIDS35

considerations the directions corresponding to eigenvectors already found. To circumvent
the numerical overflow the working vectors are to be normalized after each iteration. For
details see [45].

3.3.2.2 Inverse iteration method

In inverse iteration method we are searching for the eigenvector belonging to largest
eigenvalue of A−1 matrix, which is, however, the smallest eigenvalue of matrix A. From
the standard eigenvalue problem we easily get A−1 u(i) = 1

λi
u(i) with B = A−1 and

κi = 1
λi

. Then we have Bu(i) = κi u
(i). The iteration process goes by (k+1)x = A−1 (k)x

for k = 0, 1, 2, The matrix A is not inverted, the set of algebraic equations A (k+1)x =
(k)x for (k+1)x is solved instead.

3.3.2.3 The shifted inverse power method

The shifted inverse power method for a given starting guess (k)x solves consecutively
the system of equations (A − σI) (k+1)x = (k)x with a shift σ suitably chosen close to
λ1. All the spectrum is shifted by the same amount σ and the convergence factor is
|λ1 − σ|/|λ2 − σ|. The better the choice of σ the more ill-conditioned is the coefficient
matrix (A − σI). Fortunately the error is mostly confined to ’length’ of the eigenvector
which is not dangerous since any multiple of an eigenvector is still an eigenvector.

3.3.2.4 The block power method

The block power method works with several vectors at once. An initial choice consists
of, say s, orthogonal vectors instead of one as before. For keeping them orthogonal
throughout the iteration process the Gramm-Schmidt orthogonalization process have to
applied repeatedly. As a result we get the s largest eigenvalues and their eigenvectors.

3.3.2.5 The block inverse power method

The block inverse power method is a similar method. It works with the A−1 instead
of A and yields the s smallest eigenpairs.

3.3.2.6 Subspace iteration method

Instead of solving the full n by n generalized eigenvalue problem this method aims
at finding the lowest s eigenvalues and corresponding eigenvectors of a reduced problem
with Kn×n Vn× s = Mn×n Vn× s Λs× s where the matrix V contains s orthogonal vectors
satisfying VT KV = Λ and VT MV = I. More details, including the programming
considerations and the Fortran code can be found in [4].

3.3.3 Determinant search method

The standard eigenvalue problem Ax = λx can be written as (A−λ I)x = 0 , which
is a system of homogeneous equations having a nontrivial solution only if det(A−λ I) =
0. Evaluating this determinant we get a so-called characteristic polynomial p(λ) =
cnλ

n + cn−1λ
n−1 + . . . + c1λ + c0 = 0, whose order is the same as the order of the

coefficient matrix. It is known that the roots of this polynomial are the eigenvalues we

CHAPTER 3. REVIEW OF NUMERICAL METHODS IN MECHANICS OF SOLIDS36

are looking for. A long time ago, in 1831, Évariste Galois established a general theorem
stating the impossibility of finite algebraic formulation of solutions for polynomials of
all degrees greater then 4. See [26]. In practice the eigenvalues are obtained not by
numeric root finders but utilizing the Gauss decomposition A → LU and the fact that
p(λ) = detA = Πn

i=1 λi. Details can be found in [4].

3.3.4 Lanczos method

The Lanczos method was introduced in 1950 [3]. The algorithm solves the standard
n by n eigenvalue problem Ax = λx using a recursion leading to a similar eigenvalue
problem Tq = λq with a tridiagonal matrix T. Vectors (i)q are columns of an orthonor-
mal matrix Q defined in such a way that QT Q = I and a similarity transformation
QT AQ = T holds.

The recurrence formula, generating the sequence of vectors (i)q, could be derived by
writing out the individual elements of equation AQ = QT in full and yields A (i)q =
βi−1

(i−1)q + αi
(i)q + βi

(i+1)q. The coefficients αi = (i)qT A (i)q are due to required
orthogonality conditions. Then, the coefficients αi and βi are diagonal and codiagonal
entries of the matrix T as indicated in Template 9.

CHAPTER 3. REVIEW OF NUMERICAL METHODS IN MECHANICS OF SOLIDS37

Template 9, Appearance of Lanczos matrix

T(1,1) = α1; T(1,2) = β2

for i = 1 to m - 1

T(i,i-1) = βi; T(i,i) = αi; T(i,i+1) = βi+1

end

T(m,m-1) = βm; T(m,m) = αm

The procedure was initially conceived for m = n and it was seen as a direct method.
The idea was that a tridiagonal eigenvalue problem is easier to solve than that with a
full matrix. The Lanczos algorithm for a standard problem Ax = λx could formulated
as indicated in Template 10.
Template 10, Lanczos method for a standard eigenvalue problem

Choose a normalized starting vector (1)q. Its norm is equal to one
Set β1 = 1; (0)q = 0; k = 0
while not satisfied do

k = k + 1
(k)α = (k)qT A (k)q
(k+1)r = A (k)q − (k)α (k)q − (k)β (k−1)q
(k+1)β = ‖(k+1)r‖
(k+1)q = (k+1)r / (k+1)β
are you satisfied?

end of while

If the algorithm were carried out without round-off errors, all the generated vectors
q would be orthonormal. In the finite precision arithmetics the orthogonality of vectors
is seriously degraded due to round-off errors, so the presented mathematical approach is
not sufficient for the practical implementation. More details for preserving orthogonality
can be found in [35], [46].

Now, the method is considered to be semi-direct. It means that only a part of the
matrix T and only a few q’s are computed. In typical large-scale applications the order
of the matrix A may be in tens of thousands while the order of T is of about twice the
number of required eigenvalues, usually 20 to 30.

For the vibration related generalized eigenvalue problem the Lanczos algorithm must
be modified. If the Kx = λMx is transformed to a standard form Ax = b by a
process indicated above, then the Lanczos algorithm would yield approximations of the
largest eigenvalues and eigenvectors which are uninteresting from the engineering point
of view. Using a suitable shift σ (which is close to the eigenvalues of interest) and solving
the inverted and shifted eigenvalue problem instead, we could proceed from the initial
formulation Kx = λMx to Kx = (λ − σ)Mx + σMx. After some easy manipulation
we get (K − σM)−1 Mx = κx with κ = 1/(λ − σ). Applying the Lanczos approach
we get Tq = κq. The eigenvalues of the original problem are λ = σ − 1/κ. We could
proceed the way outlined in Template 11.

CHAPTER 3. REVIEW OF NUMERICAL METHODS IN MECHANICS OF SOLIDS38

Template 11, Lanczos method for a generalized inverted problem with a shift

β1 = 0; (0)q = 0;
i = 0;

(0)r = ... a starting vector
σ = ... a starting shift
A = (K − σM)−1 of course, we do not solve it by inversion
(1)q = AM (0)r we use Gauss elimination instead
satisfied = false

while not satisfied do

i = i + 1

αi = (i)qT MAM (i)q
(i+1)r = AM (i)q − αi

(i)q − βi
(i−1)q

βi+1 = ((i)rT M (i)r)1/2

(i+1)q = (i+1)r/βi+1

are you satisfied?

end

Each of these methods has advantages for certain tasks and disadvantages for others.
The Jacobi or QR methods solve the complete system of equations. For very large
systems these methods prove to be inefficient and the Lanczos method is gaining the
growing acceptance as a basic tool for solving large eigenvalue problems especially when
only a few eigenvalues are needed.

3.4 Solution of ordinary differential equations

For an undamped system in the current configuration C at time t, we get the equations
of motion in the form resulting from the finite element semidiscretization Mq̈ = Fres

where M is the mass matrix, q̈ represents nodal acceleration vector, the residual vector
is Fres = Fext − Fint, Fext is vector of externally applied nodal forces.

The internal nodal forces corresponding to element stresses are Fint =
∑

e

∫
V

BT σ dV ,
where

∑
e represents assemble operations taken over all the elements, the strain-displacement

matrix is denoted B and σ = {σ11 σ22 σ33 σ12 σ23 σ31}T is a vector representation of stress
tensor. Finally, the variable V stands for the element volume at current configuration.

Details can be found in many finite element textbooks e.g. [3], [21], [12], [52].
The aim of computational procedures used for the solution of transient problems is

to satisfy the equation of motion, not continually, but at discrete time intervals only. It
is assumed that in the considered time span < 0, tmax > all the discretized quantities at
times 0, ∆t, 2∆t, 3∆t, . . ., t are known, while the quantities at times t + ∆t, . . . tmax

are to be found. The quantity ∆t, being the time step, need not necessarily be constant
throughout the integration process.

Time integration methods can be broadly characterized as explicit or implicit.

CHAPTER 3. REVIEW OF NUMERICAL METHODS IN MECHANICS OF SOLIDS39

3.4.1 Explicit time integration algorithms

Explicit formulations follow from the equations of motion written at time t. Corre-
sponding quantities are denoted with a left superscript as in M tq̈ = tFres.

The internal forces can alternatively be written as tFint = tD tq̇ + tK tq; M, tD and
tK are the mass, viscous damping and stiffness matrices, respectively and tq̈, tq̇ and
tq are nodal accelerations, velocities and displacements. In structural solid mechanics
problems the mass matrix M does not change with time.

A classical representative of the explicit time integration algorithm is the central
difference scheme.

If the transient problem is linear, then the stiffness and damping matrices are constant
as well. Substituting the central difference approximations for velocities and accelerations
tq̇ =

(
t+∆tq − t−∆tq

)
/(2∆t), tq̈ =

(
t+∆tq − 2 tq + t−∆tq

)
/∆t2, into the equations of

motion written at time t we get a system of algebraic equations from which we can
solve for displacements at time t + ∆t namely Meff t+∆tq = Feff where so called effective
quantities are

Meff = M/∆t2 + D/(2 ∆t),

Feff = tFext −
(
K − 2M/∆t2

)
tq −

(
M/∆t2 − D/(2∆t)

)
t−∆tq.

The last term in the expression for the effective force indicates that the process is not
self-starting.

The process is explicit only if the mass matrix is made diagonal by a suitable lumping
process. The damping matrix needs to be diagonal as well. The inversion of Meff is then
trivial and instead of a matrix equation we simply have the set of individual equations
for each degree of freedom and no matrix solver is needed.

A comprehensive survey of explicit time integration methods for dynamic analysis of
linear and nonlinear structures can be found in [15]. A thorough analysis of transient
algorithms together with a rich source of references was presented by Hughes in [6].

Stability analysis of explicit and implicit schemes has been studied for a long time.
Park [36] has investigated stability limits and stability regions for both linear and non-
linear systems. A comprehensive survey showing a variety of approaches is presented by
Hughes in [6]. See also [3].

The explicit methods are only conditionally stable; the stability limit is approximately
equal to the time for an elastic wave to transverse the smallest element. The critical
time step securing the stability of the central difference method for a linear undamped
system is (see [26]) ∆tcr = 2/ωmax, ωmax being the maximum eigenfrequency, related
to the maximum eigenvalue λmax of the generalized eigenvalue problem Kq = λMq
by ω2 = λ. Practical calculations show that the result is also applicable to nonlinear
cases, since each time step in nonlinear response can roughly be considered as a linear
increment of the whole solution.

Explicit time integration methods are employed mostly for the solution of nonlin-
ear problems, since the implementing of complex physical phenomena and constitutive
equations is then relatively easy. The stiffness matrix need not be assembled so that no
matrix solver is required, which saves computer storage and time. The main disadvan-
tage is the conditional stability which clearly manifests itself in linear problems, where
the solution quickly blows up if the time step is larger than the critical one. In nonlinear
problems results calculated with a ’wrong’ step could contain a significant error and may
not show immediate instability. See Program 3.

CHAPTER 3. REVIEW OF NUMERICAL METHODS IN MECHANICS OF SOLIDS40

Program 3
function [disn,veln,accn] = cedif(dis,diss,vel,acc,xm,xmt,xk,xc,p,h)

% central difference method

% dis,vel,acc displacements, velocities, accelerations

% at the beginning of time step ... at time t

% diss displacements at time t - h

% disn,veln,accn corresponding quantities at the end

% of time step ... at tine t + h

% xm mass matrix

% xmt effective mass matrix

% xk stiffness matrix

% xc damping matrix

% p loading vector at the end of time step

% h time step

% constants

a0 = 1/(h*h);

a1 = 1/(2*h);

a2 = 2*a0;

a3 = 1/a2;

% effective loading vector

r = p - (xk - a2*xm)*dis - (a0*xm - a1*xc)*diss;

% solve system of equations for displacements using lu decomposition of xmt

disn=xmt\r;

% new velocities and accelerations

accn = a0*(diss - 2*dis + disn);

veln = a1*(-diss + disn);

% end of cedif

¤ End of Program 3.

3.4.2 Implicit time integration algorithms

The implicit formulations stem from equations of motion written at time t + ∆t;
unknown quantities are implicitly embedded in the formulation and the system of alge-
braic equations must be solved to ’free’ them. In structural dynamic problems implicit
integration schemes give acceptable solutions with time steps usually one or two orders
of magnitude larger than the stability limit of explicit methods.

Perhaps the most frequently used implicit methods belong to the so called Newmark
family. The Newmark integration scheme is based upon an extension of the linear ac-
celeration method, in which it is assumed that the accelerations vary linearly within a
time step.

The Newmark method consists of the following equations [30]

M t+∆tq̈ + t+∆tD t+∆tq̇ + t+∆tK t+∆tq = t+∆tFext,

t+∆tq = tq+∆t tq̇+
1

2
∆t2

(
(1 − 2β) tq̈ + 2β t+∆tq̈

)
, t+∆tq̇ = tq̇+∆t

(
(1 − γ) tq̈ + γ t+∆tq̈

)
,

which are used for the determination of three unknowns t+∆tq, t+∆tq̇ and t+∆tq̈. The
parameters β and γ determine the stability and accuracy of the algorithm and were
initially proposed by Newmark as β = 1/4 and γ = 1/2 thus securing the unconditional

CHAPTER 3. REVIEW OF NUMERICAL METHODS IN MECHANICS OF SOLIDS41

stability of the method, which means that the solution, for any set of initial conditions,
does not grow without bounds regardless of the time step. Unconditional stability itself
does not secure accurate and physically sound results, however. See [6], [21], [47], [22].

With the values of β and γ mentioned above, the method is sometimes referred to as
the constant-average acceleration version of the Newmark method, and is widely used
for structural dynamic problems. In this case the method conserves energy.

For linear problems the mass, damping and stiffness matrices are constant and the
method leads to the repeated solution of the system of linear algebraic equations at each
time step giving the displacements at time t+∆t by solving the system Keff t+∆tq = Feff ,
where so called effective quantities are

Keff = K + a0 M + a1 D,

Feff = t+∆tFext + M
(
a0

tq + a2
tq̇ + a3

tq̈
)

+ D
(
a1

tq + a4
tq̇ + tq̈

)
,

where

a0 = 1/(β ∆t2), a1 = γ/(β ∆t), a2 = 1/(β ∆t), a3 = 1/(2β) − 1, a4 = γ/β − 1,

a5 =
1

2
∆t(γ/β − 2), a6 = ∆t(1 − γ), a7 = ∆t γ.

The last two parameters are used for calculating of the accelerations and velocities
at time t + ∆t

t+∆tq̈ = a0

(
t+∆tq − tq

)
− a2

tq̇ − a3
tq̈, t+∆tq̇ = tq̇ + a6

tq̈ + a7
t+∆tq̈.

The Matlab implementation of the Newmark algorithm is in the Program 4.

Program 4
function [disn,veln,accn] = newmd(beta,gama,dis,vel,acc,xm,xd,xk,p,h)

% Newmark integration method for [XM]{acc} + [XD]{vel} + [XK]{dis} = {p}

%

% beta, gama coefficients

% dis,vel,acc displacements, velocities, accelerations

% at the beginning of time step

% disn,veln,accn corresponding quantities at the end

% of time step

% xm,xd mass and damping matrices

% xk effective stiffness matrix (NOT the STIFFNESS matrix)

% p loading vector at the end of time step

% h time step

%

% constants

a1 = 1/(beta*h*h);

a2 = 1/(beta*h);

a3 = 1/(2*beta) - 1;

a4 = (1 - gama)*h;

a5 = gama*h;

a1d = gama/(beta*h);

a2d = gama/beta - 1;

a3d = 0.5*h*(gama/beta - 2);

% effective loading vector

r = p + xm*(a1*dis + a2*vel + a3*acc) + xd*(a1d*dis + a2d*vel + a3d*acc);

CHAPTER 3. REVIEW OF NUMERICAL METHODS IN MECHANICS OF SOLIDS42

% solve system of equations for displacements using lu decomposition of xk

disn = xk\r;

% new velocities and accelerations

accn = a1*(disn - dis) - a2*vel - a3*acc;

veln = vel + a4*acc + a5*accn;

% end of newmd

¤ End of Program 4.

The implementation shown in the Program 4 works well and might be useful for
many medium sized tasks. Notice that a rather inefficient the equation solving – using
the Matlab backslash operator – is provided at each integration step.

An efficient implementation of the Newmark methods for linear problems requires
that the direct methods (e.g. Gauss elimination) are used for the solution of the system
of algebraic equations. The effective stiffness matrix is positive definite, which allows
to proceed without a search for the maximum pivot. Furthermore the effective stiffness
matrix is constant and thus can be factorized only once, before the actual time marching,
and at each step only factorization of the right hand side and backward substitution is
carried out. This makes the Newmark method very efficient; the treatment of a problem
with a consistent mass matrix requires even less floating point operations than that using
the central difference method.

The Fortran implementation of the Newmark algorithm, taking the efficient storage
considerations into account, is in the Program 5.

Program 5
SUBROUTINE DNEWMD(BETA,GAMA,DIS,VEL,ACC,F,NF,CKR,CMR,CDR,NDIM,

1 NBAND,H,EPS,IER,DISS,VELS,ACCS,P,G,G1)

C

DOUBLE PRECISION BETA,GAMA,DIS,VEL,ACC,F,CKR,CMR,CDR,H,EPS,

/ DISS,VELS,ACCS,P,G,A1,A2,A3,A4,A5,AD1,AD2,AD3,G1

DIMENSION DIS(NF),VEL(NF),ACC(NF),F(NF),CKR(NDIM,NBAND),

1 CMR(NDIM,NBAND),DISS(NF),VELS(NF),ACCS(NF),

2 P(NF),G(NF),G1(NF),CDR(NDIM,NBAND)

C

C *** Newmark time integration ***

C

C The system of ordinary differential equations

C [M]{ACC}+[C]{VEL}+[K]{DIS}={P}

C with symmetric banded positive definite matrices,

C i.e. the mass, damping and the reduced effective stiffness matrices

C are efficiently stored in rectangular arrays CMR, CDR, CKR

C with dimensions NDIM*NBAND. Only the upper part of the matrix

C band (including diagonal) is stored in the memory.

C Double precision version

C Required subroutines:

C DMAVB ... Matrix vector multiplication for the rectangular storage mode

C DGRE ... Solution of linear algebraic equations for the rectangular storage mode

C

C Parameters

C BETA,GAMA.......... Newmark parameters

C DIS(NF) On input ... displacements at time T

C On output .. displacements at time T+H

CHAPTER 3. REVIEW OF NUMERICAL METHODS IN MECHANICS OF SOLIDS43

C VEL(NF) On input ... velocities at time T

C On output .. velocities at time T+H

C ACC(NF) On input ... accelerations at time T

C on output .. accelerations at time T+H

C F(NF) Loading at time (T+H)

C NF Number of unknowns

C CKR(NDIM,NBAND)Upper part of the band of the reduced effective

C stiffness matrix, i.e. the matrix

C [K]+A1*[M]+AD1*[C] after being processed by

C the DGRE subroutine with parameter KEY = 1)

C CMR(NDIM,NBAND)Upper part of the band of the mass matrix

C CDR(NDIM,NBAND)Upper part of the band of the damping matrix

C NDIMRow dimension of CKR, CMR, CDR matrices

C in the main program

C NBAND Half band size (including diagonal)

C H Integration step

C EPS Pivot tolerance for DGRE subroutine

C IER Error parameter (See DGRE)

C DISS(NF),VELS(NF),ACCS(NF) Displacements, velocities and

C accelerations from the previous step

C P(NF),G(NF),G1(NF). auxiliary arrays

C

C ***

C

C Constants

C

A1 = 1.D0/(BETA*H*H)

A2 = 1.D0/(BETA*H)

A3 = 1.D0/(BETA*2.D0)-1.D0

A4 = (1.D0-GAMA)*H

A5 = GAMA*H

AD1 = GAMA/(BETA*H)

AD2 = (GAMA/BETA)-1.D0

AD3 = (H/2.D0)*(GAMA/BETA-2.D0)

C

DO 10 I=1,NF

DISS(I) = DIS(I)

VELS(I) = VEL(I)

10 ACCS(I) = ACC(I)

C

C Vector of effective loading forces at time T + H

C

DO 40 I = 1,NF

G(I) = A1*DISS(I) + A2*VELS(I) + A3*ACCS(I)

40 G1(I) = AD1*DISS(I) + AD2*VELS(I) + AD3*ACCS(I)

CALL DMAVB(CMR,G,P,NF,NDIM,NBAND)

DO 50 I = 1,NF

50 G(I) = F(I) + P(I)

CALL DMAVB(CDR,G1,P,NF,NDIM,NBAND)

DO 57 I = 1,NF

G(I) = G(I) + P(I)

57 CONTINUE

C

C Displacements at time T + H

C

IER = 0

DET = 0.D0

CHAPTER 3. REVIEW OF NUMERICAL METHODS IN MECHANICS OF SOLIDS44

CALL DGRE(CKR,G,DIS,NF,NDIM,NBAND,DET,EPS,IER,2,kerpiv)

C

C Accelerations at time T + H

C

DO 60 I = 1,NF

60 ACC(I) = A1*(DIS(I) - DISS(I)) - A2*VELS(I) - A3*ACCS(I)

C

C Velocities at time T+H

C

DO 70 I = 1,NF

70 VEL(I) = VELS(I) + A4*ACCS(I) + A5*ACC(I)

C

RETURN

END

%

¤ End of Program 5.

The DGRE procedure needed for the DNEWMD subroutine is in the Program 6. The
subroutine DMAVBA is in the Program 7.

Program 6
SUBROUTINE DGRE(A,B,Q,N,NDIM,NBAND,DET,EPS,IER,KEY,KERPIV)

DIMENSION A(NDIM,NBAND),B(N),Q(N)

DOUBLE PRECISION SUM,A,B,Q,AKK,AKI,AIJ,AKJ,ANN,T,AL1,AL2,AII

1 ,DET,EPS

C

C *** Solution of R*Q=B ***

C *** by Gauss elimination for banded, ***

C *** symmetric, positive definite ***

C *** matrix ***

C *** DOUBLE PRECISION version ***

C It is assumed that the upper part

C of the band of R matrix is stored in

C a rectangular array A

C

C

C Parameters

C A On input - rectangular array containing

C the upper band of R matrix

C On output triangularized matrix

C B RHS vector

C Q result

C N Number of unknowns

C NDIM Row dimension of A array declared in main

C NBAND half-band size (including diagonal)

C DET Matrix determinant

C EPS Minimum acceptable pivot value

C KERPIV pointer to the pivot, where the error occurred

C IER error parameter

C = 0 ... O.K.

C =-1 ... absolute value of pivot

C smaller than EPS

C The matrix not positive definite

C The computation is stopped

C KEY key

C = 1 ... reduction (triangularization) of R

CHAPTER 3. REVIEW OF NUMERICAL METHODS IN MECHANICS OF SOLIDS45

C = 2 ... reduction of the RHS and

C the back substitution

NM1 = N-1

IER = 0

II = KEY

GO TO (1000,2000), II

C

C reduction (triangularization) part

C

1000 DET = 1.

IRED = 0

DO 9 K = 1,NM1

AKK = A(K,1)

KERPIV = K

IMAX = K + NBAND - 1

IF(IMAX .GT. N) IMAX=N

JMAX = IMAX

IF(AKK .GT. EPS) GO TO 5

IER = -1

RETURN

C DET = DET*AKK

5 CONTINUE

KP1 = K+1

DO 9 I = KP1,IMAX

AKI=A(K,I-K+1)

IF(ABS(AKI) .LT. EPS) GO TO 9

T=AKI/AKK

DO 8 J = I,JMAX

AIJ=A(I,J-I+1)

AKJ=A(K,J-K+1)

8 A(I,J-I+1) = AIJ - AKJ*T

9 CONTINUE

ANN = A(N,1)

DET = DET*ANN

C

C reduction is successfully finished

C

IRED = 1

RETURN

C

C RHS reduction

C

2000 DO 90 K = 1,NM1

KP1 =K + 1

AKK = A(K,1)

IMAX = K+NBAND-1

IF(IMAX .GT. N) IMAX=N

DO 90 I = KP1,IMAX

AKI=A(K,I-K+1)

T = AKI/AKK

90 B(I) = B(I) - T*B(K)

C

C Back substitution

C

Q(N) = B(N)/A(N,1)

AL1 = A(N-1,2)

AL2 = A(N-1,1)

CHAPTER 3. REVIEW OF NUMERICAL METHODS IN MECHANICS OF SOLIDS46

Q(N-1) = (B(N-1) - AL1*Q(N))/AL2

DO 10 IL = 3,N

I = N - IL + 1

AII = A(I,1)

SUM = 0.D0

J1 = I + 1

JMAX = MIN0(I+NBAND-1,N)

DO 20 J = J1,JMAX

AIJ = A(I,J-I+1)

20 SUM = SUM+AIJ*Q(J)

10 Q(I) = (B(I) - SUM)/AII

RETURN

END

¤ End of Program 6.

If γ ≥ 1
2

and β = 1
4
(1

2
+ γ)2 the method is still unconditionally stable but a positive

algorithmic damping is introduced into the process. With γ < 1
2

a negative damping
is introduced, which eventually leads to an unbounded response. With different values
of parameters β, γ, the Newmark scheme describes a whole series of time integration
methods, which are sometimes called the Newmark family.

For example if β = 1/12 and γ = 1
2
, it is a well known Fox-Goodwin formula, which

is implicit and conditionally stable, else if γ = 1
2

and β = 0, then the Newmark’s method
becomes a central difference method, which is conditionally stable and explicit (if mass
and damping matrices are diagonal).

The algorithmic damping introduced into the Newmark method, by setting the pa-
rameter γ > 1

2
and calculating the other parameter as β = 1

4
(1

2
+ γ)2, is frequently

used in practical computations, since it filters out the high-frequency components of
the mechanical system’s response. This damping is generally viewed as desirable, since
the high-frequency components are very often mere artifacts of finite element modelling,
they have no physical meaning and are consequences of the discrete nature of the finite
element model and its dispersive properties. See [22].

It is known that algorithmic damping adversely influences the lower modes in the
solution. To compensate for the negative influence of algorithmic damping on the lower
modes behaviour Hilber [18], [19] modified Newmark method with the intention of en-
suring adequate dissipation in the higher modes and at the same time guaranteeing that
the lower modes are not affected too strongly.

In a nonlinear case the displacements are not small, the strains are finite, constitutive
equations are nonlinear and the boundary conditions can change with time. This means
that the equation of motion written for an undamped structure at time t + ∆t is

M t+∆tq̈ + t+∆tFint = t+∆tFext,

where
t+∆tFint =

∫

t+∆tV

t+∆tBT t+∆tσ dt+∆tV

.
The strain-displacement matrix B and stresses σ depend on a current configuration

which is generally unknown.
The equations of motion should be satisfied at any moment. The so called vector

of residual forces, which can be expressed as a function of current displacements, is

CHAPTER 3. REVIEW OF NUMERICAL METHODS IN MECHANICS OF SOLIDS47

R(t+∆tq) = M t+∆tq̈ + t+∆tFint − t+∆tFext and should be identically equal to zero if
dynamic equilibrium is achieved.

If we employ Newmark relations for t+∆tq and t+∆tq̇, then t+∆tq̈ can be expressed and
substituted into the previous equation. Using Taylor series and neglecting the nonlinear
terms we have R(t+∆tq) = R(tq) + J(tq)∆q + . . . where the increment of displacements
is ∆q = t+∆tq− tq and J is the so called Jacobi matrix, which, in the case of Newmark’s
approach for kinematic quantities, can be expressed as Jij = ∂Ri/∂qj or J = a0 M +
a1

tD + tK.
Setting the right-hand side of Taylor expansion to the expected zero value, we get the

first estimate of the increment of displacements ∆q which can be obtained by solving
the system of equations J(tq) ∆q = R(tq).

The increments must be sequentially refined in an iterative manner, until the con-
vergence criteria are satisfied, i.e. the norms of the residual forces and those of the in-
crements must be substantially less than the norms of the external forces and of current
displacements respectively. Tolerance parameters are typically 10−2 to 10−3 or smaller.
See [3].

The suggested approach uses actually the Newton’s method for iteration within each
time step and is thus very expensive, since it requires the recalculation of the Jacobi
matrix in each iteration, which in turn requires reassembly of new tK and tD for the
current iteration. That’s why explicit methods are almost exclusively used here.

Today many implicit finite element codes use a combination of line search and quasi-
Newton methods. See [10], [14], [28].

Some recent developments in the field of time integration procedures, more efficient
elements, adaptive meshes and the exploitation of parallel computers appear in [5].

References on other algorithms used in structural analysis (Houbolt, collocation
methods, operator splitting methods and others) can be found in [22].

The stress wave problem methodologies, briefly described here, would be unthinkable
of a swift progress which is constantly being reported in so called finite element tech-
nology area. A bibliography of books and monographs on finite element technology was
recently presented by Noor in [31].

3.5 Solution of nonlinear tasks

Virtually everything in the nature is nonlinear. There are, however, no universally
available hints and approaches to the solution of nonlinear problems of continuum me-
chanics regardless of sources of nonlinearity. There are no direct solvers which would lead
to the sought-after result by a finite number of steps, all nonlinear solvers are iterative
and lead to the solution by linearization. On the other hand significant advances in the
development and implementation of nonlinear procedures have been reported in the last
decade. See [35].

In mechanics of solids the sources of nonlinearity stem from nonlinear constitutive
equations, from considering large displacements and large strains, from change of bound-
ary conditions during the solution as in contact impact problems, etc. [3], [53].

Generally, the task to be solved is to find an equilibrium state at the current config-
uration tC due to a prescribed loading tQ. We assume that the ”state” quantities at the
reference configuration 0C, i.e. generalized displacements 0u, generalized displacements

CHAPTER 3. REVIEW OF NUMERICAL METHODS IN MECHANICS OF SOLIDS48

an nodes 0q, strains 0ε, stresses 0σ and the initial loads 0Q are known. We are looking
for corresponding quantities at configuration tC, i.e. tu, tq, tε, tσ.

The external forces Q consisting of body, surface and applied forces at nodes and the
internal forces F =

∫
BT σ dV , where B is an operator relating the strains to generalized

displacements at nodes, have to be in equilibrium at any moment, i.e. 0Q = 0F and tQ =
tF. The internal forces at tC could be approximated by tF = 0F + ∆F while increments
of internal forces by ∆F = 0K∆q, with tangent stiffness matrix is 0K = K(0q) and the
increments of generalized displacements at nodes are ∆q = tq − 0q.

Putting it all together we could calculate the increments of displacements solving
the linear system of equations 0K∆q = Z, where Z = tQ − 0F is a so called residual
(sometimes out-of-balance) force. This gives the first estimation of ’new’ generalized
displacements at nodes tq = 0q + ∆q which, however, should be refined in a suitable
iteration process.

The iteration process should be stopped when the increments of displacements (in
a suitable norm) are small with respect to a norm of current displacements and, at the
same time, when the out-of-balance force is small with respect to the applied load. With
these two conditions satisfied we should not be far from equilibrium conditions.

Generally, the system of n nonlinear equations with n unknowns fi(xj) = 0 or f =
f(x) = 0 could be treated by many methods, the most known of them being so-called
Newton-like and quasi-Newton methods.

3.5.1 Newton-like methods

The classical representative of the former group is the Newton-Raphson (sometimes
called Newton only) method. It is based on the Taylor theorem applied to f(x) at x+∆x,
which yields f(x + ∆x) = f(x) + J∆x + higher other terms, where a generic term of
the Jacobi matrix J has the form Jij = ∂fi(xk)/∂xj. Neglecting the higher order terms
we could find such a ∆x, which satisfies the condition 0 = f(x) + J∆x. This leads
to a system of algebraic equations in the form J∆x = −f(x). Solving it for ∆x gives
the first estimation of the solution which, however, must be refined in an iterative process.

Notes to the Newton-Raphson method

• We are satisfied with the test of convergence if the system of equations is satisfied,
i.e. ‖f‖ is ”small” and if the last norm of increment ‖∆x‖ is small with respect
‖x‖. At the same time the number of iterations should not be excessive.

• Tolerances should not be to severe. Their reasonable setting could be tricky.

• The norms being used in calculations should be cheap.

• If the Jacobi matrix is positive definite then a quadratic convergence is guaranteed.

• The method is expensive and requires the Jacobi matrix calculation at each itera-
tion.

• In finite element calculations the Jacobi matrix is usually taken as a tangent stiff-
ness matrix evaluated at x.

CHAPTER 3. REVIEW OF NUMERICAL METHODS IN MECHANICS OF SOLIDS49

• The modified Newton-Raphson method is a variant of Newton Raphson method
in which the initial Jacobi matrix is used throughout the entire iteration process.
For the simplification of the computational process we pay by slower convergence
resulting in the higher number of iteration steps needed for convergence.

• The modified Newton-Raphson method exists in many variants. Sometimes the
Jacobi matrix is recalculated after several iteration steps, sometimes it is com-
bined with the division of the total loading into several steps which are applied
consecutively. See Template 12.

For proofs and details see [46], [3], [2], [35].
Template 12, Newton-Raphson process with incremental loading

Assume that from t = 0 to t = tmax there are kmax same loading steps. The maximum
loading force corresponding to to final configuration at time t is tmaxR = kmaxR.
Linear increase of the loading between consecutive steps is assumed.The force corre-
sponding to the k-th loading step is kR = kmaxR ∗ k/kmax.
Notation

0K tangent stiffness matrix at 0C
0F internal forces at 0C
0q generalized displacements in nodes at 0C
k as an upper left-hand index is the loading pointer
(i) as an upper right-hand index is the iteration counter
kK(i) the i-th iteration of K at the k-th loading step

for k = 1 to kmax incremental-loading loop
i = 0; iteration counter
if k = 1 then

kK(0) = 0K; kq0 = q(0); kF(0) = 0F = 0;
else

kK(0) = k−1K(ilast); kq(0) = k−1q(ilast);
end of if branch
kR = kmaxR ∗ k/kmax;
satisfied = false;

while not satisfied do

i = 1 + 1;

solve kK(i+1) ∆q(i) = kR − kF(i−1) for ∆q(i)

kq(i) = kq(i−1) + ∆q(i); update displacements
assemble kK(i) for new kq(i)

calculate new internal forces kF(i)

ilast = i

satisfied = (‖∆q(i)‖/‖kq(ilast)‖ < ε1 and ‖kR − kF(ilast)‖/‖kR‖ < ε2)
end of while loop

end of for loop

CHAPTER 3. REVIEW OF NUMERICAL METHODS IN MECHANICS OF SOLIDS50

3.5.2 Quasi-Newton methods

The idea behind these methods can be outlined as follows. The Taylor theorem
applied to equilibrium conditions at the k-th iteration gives (k+1)f = (k)f + (k)J ((k+1)x−
(k)x). Denoting increments ∆f = (k+1)f − (k)f and ∆x = (k+1)x − (k)x we have ∆f =
(k)J∆x. The following approach, allowing to calculate (k)J out of the previous iteration,
and not by recomputing all derivatives as before, is due to Broyden [10]. Actually, the
matrix J is not the Jacobi matrix but a matrix which is replacing it successfully. One
would not surely comply against the identity (k−1)J∆x = (k−1)J∆x. Combining the
last two equations and multiplying the result by ∆xT from the right we get (∆f −
(k−1)J∆x) ∆xT = ((k)J − (k−1)J) ∆x∆xT. Denoting by X the dyadic product ∆x∆xT

we get the relation for the k-th iteration of (k)J in the form (k)J = (k−1)J + ((∆f −
(k−1)J∆x) ∆xT)X−1 containing, however, the inversion of X matrix, which spoils the
whole process a little bit. At this point Broyden suggested a brilliant trick. He has
shown that one can always find another vector, say z, satisfying both orthogonality
conditions ∆xT z = zT ∆x and the equation (k−1)J∆z = (k)J∆z. It can be easily proved
that under these conditions the dyadic product ∆x∆xT can be ’replaced’ by the scalar
one, i.e. by ∆xT ∆x which miraculously simplifies the formula for the calculation of (k)J
out of (k−1)J. The Broyden formula then reads

(k)J = ((k−1)J + ((∆f − (k−1)J∆x) ∆xT)) / ∆xT ∆x

.
It is proved [46] that the convergence is faster than linear. As a starting guess, we

usually take (0)J = I, where I is the identity matrix. At each iteration the system of
algebraic equations is solved as in the case of Newton-Raphson method. This computa-
tionally expensive step could be circumvented if the iteration process would yield (k)J−1

instead of (k)J.
Denoting (k)H = (k)A−1 at the k-th iteration the improved Broyden formula

reads

(k+1)H = (k)H − ((k)H∆f − ∆x) ∆xT

∆xT (k)H∆f
(k)H

.
The process, explaining this, is derived in [50].
Today, variants of these approaches are standardly implemented in finite element

codes under a cryptic acronym BFGS which originated from initial letters of names of
respective gentlemen, i.e. Broyden, Fletcher, Goldfarb and Shanno. See [14], [35].

The methods mentioned so far are sometimes classified as implicit since they involve
the computation of system of algebraic equations with stiffness matrices.

There are other approaches to the solution of nonlinear problems, called explicit,
which generally do not require assembling of stiffness matrices and their handling. The
representatives of these methods are conjugate gradient method, the method of the
steepest descent, the dynamic overrelaxation methods and others.

3.5.3 The method of the steepest descent

This is another method which could be used if the derivatives appearing in the Jacobi
matrix are hard to be found. We could take J as an identity matrix or its multiple I/α.

CHAPTER 3. REVIEW OF NUMERICAL METHODS IN MECHANICS OF SOLIDS51

In this case the iteration we get 0 = (k)f +(I/α) ((k+1)x− (k)x) which makes the iteration
steps very simple, i.e. (k+1)x = (k)x − α (k)f . The name of the method stems from its
geometrical interpretation. The function f = f(x) can be viewed as a derivative of a
scalar function U = U(x) = U(xj), i.e. fi = ∂U/∂xj and also as a gradient of this
function. The gradient of a scalar function is a vector pointing in the direction of the
steepest slope. Moving on the ’surface’ U in the direction, where the surface is the
steepest, i.e. in the direction of a negative gradient of U , we aim at the minimum of
U , for which fi = 0 holds. It should be reminded that a new direction (k)f have to be
calculated at each iteration. There is a problem with the determination of parameter α
which tells us how far we should go in the direction of gradient at each iteration. Its exact
determination could be found from ∂U/∂α = 0, but in practice it is being determined
experimentally. See [46], [35].

In solid mechanics the scalar function U represents the potential energy of the system,
i.e. 1

2
xT Ax, the function f = f(x) corresponds to components of Ax − b and the

elements of Jacobi matrix Jij = ∂fi/∂xj = ∂2U/∂xi ∂xj are entries of A.

3.5.4 The conjugate gradient method

could be formulated similarly. The iteration process goes by the formula (k+1)x = (k)x +
α (k)f with direction (k)d = −(k)f + βk

(k−1)d. The direction is chosen in such a way
that it is orthogonal to all previous directions from the condition βk = (k)fT ((k)f −
(k−1)f)/((k−1)fT (k−1)f).

A nice introductory titled text An introduction to the conjugate gradient method
without agonizing pain is in

http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf.

3.5.5 Tracing equilibrium paths methods

There are cases in structural mechanics where load-displacement relations exhibit un-
stable branches as in snap-through and snap-back problems. The classical representative
of these method is a so-called arc-length method. See [35].

The choice a proper approach to the nonlinear solution of a particular task is not
easy, it is still a matter of judicious engineering judgment foresight and experience.

3.6 Conclusions

Computational methods in mechanics of solids are subjected to intensive research.
The methods based on classical matrix algebra are being reconsidered from the point
of view of new parallel hardware available. Scientists become programmers with the
intention to accelerate commercial codes to be able to solve the large-scale problems
of fundamental research and technical practice. New methods are quickly becoming
engineering standards even if they did not yet succeed to find their way into today’s
engineering textbooks. The authors believe that the fascinating subject computational
mechanics is to be studied intensively in order to be able to utilize the hardware tools
that are available now and to tackle the tasks that, until recently, seemed unsolvable.

http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf

BIBLIOGRAPHY 52

Bibliography

[1] L. Adams and H. Jordan. Is sor color-blind? SIAM, Journal of Sci. Stat. Comp.,
(7):490–506, 1986.

[2] R. Barrett et al. Templates for the Solution of Linear Systems. SIAM, Philadelphia,
1994.

[3] K.J. Bathe. Finite element procedures in engineering analysis. Prentice-Hall, En-
glewood Cliffs, N.J., 1982.

[4] K.J. Bathe and E. L. Wilson. Numerical Methods in Finite Element Analysis.
Prentice-Hall, Englewood Cliffs, N.J., 1976.

[5] T. Belytschko. On computational methods for crashworthiness. Computers and
Structures, (2):271–279, 1992.

[6] T. Belytschko and T.R.J. Hughes. Computational methods for transient analysis.
North Holland, Amsterdam, 1986.

[7] T. Belytschko and J. S-J. Ong. Hourglass control in linear and nonlinear problems.
Computer Methods in Applied Mechanics and Engineering, (43):251–276, 1984.

[8] C.B. Boyer. A history of Mathematics. John Wiley and Sons, New York,, 1969.

[9] A.L. Briggs. A Multigrid Tutorial. SIAM, Philadelphia, 1987.

[10] C.G. Broyden. A class of methods for solving nonlinear simultaneous equations.
Mathematical Computations, (19):577–593, 1965.

[11] T.S. Chow and J.S. Kowalik. Computing with sparse matrices. International Journal
for Numerical Methods in Engineering, 7:211–223, 1973.

[12] R.D. Cook. Concepts and applications of finite element method. John Wiley and
Sons, New York, 1991.

[13] Cray Research, Inc., Mendota Heights, MN, U.S.A., 2360 Pilot Knot Road. CF77,
Compiling System, 1991.

[14] J.E. Dennis and Moré J. Quasi-newton methods, motivation and theory. SIAM
Review, (19):46–89, 1977.

[15] M.A. Dokainish and K. Subbaraj. A survey of direct time integration methods in
computational structural dynamics - i. explicit methods. Computers and Structures,
(6):1371–1386, 1989.

[16] G. E. Forsythe, M. A. Malcolm, and C. B. Moler. Computer Methods for Mathe-
matical Computations. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1977.

[17] J. Herzbergen. Iteractionverfahren hoeheren ordnung zur einschliessung des inversen
einer matrix. ZAMM, 69:115–120, 1989.

BIBLIOGRAPHY 53

[18] H. M. Hilber and et al. Improved numerical dissipation for time integration algo-
rithms in structural dynamics. Earthquake Engineering and Structural Dynamics,
(5):283–292, 1977.

[19] H. M. Hilber and T.R.J. Hughes. Collocation, dissipation and ’overshoot’ for time
integration schemes in structural dynamics. Earthquake Engineering and Structural
Dynamics, (5):99–117, 1977.

[20] Y.P. Huang et al. Vectorization using a personal computer. Developments in Com-
putational Techniques for Structural Techniques Engineering, ed.: Topping, B.H.V.,
Edinburgh UK, CIVIL-COMP PRESS, pages 427–436, 1995.

[21] T.J.R. Hughes. The finite element method. Prentice-Hall, Englewood Cliffs, N.J.,
1987.

[22] T.J.R. Hughes and T. Belytschko. A precis development in computational methods
for transient analysis. Journal of Applied Mechanics, (50):1033–1041, 1983.

[23] IMLS, Inc.,, GNB Building, 7500 Bellair BVLD, Housto TX 77036. EISPACK,
1989.

[24] B. M. Irons. A frontal solution program for finite element analysis. International
Journal for Numerical Methods in Engineering, 2:5–32, 1970.

[25] C.H. Koelbel, D.B. Loveman, R.S. Schreiber, G.L. Steele, Jr., and M.E. Zosel. The
High Performance Fortran Handbook. The MIT Press, Cambridge, Mass., 1994.

[26] E.E. Kramer. The Nature and growth of Modern Mathematics. Hawthorn Books,
Inc., New York, 1970.

[27] The MacNeal Swendler Corporation, 815 Colorado Blvd, Los Angeles, CA 90041-
1777, U.S.A. MSC/Nastran, Numerical Methods, 1993.

[28] H. Matthies and G. Strang. The solution of nonlinear finite element equations.
International Journal for Numerical Methods in Engineering, (14):1613–1626, 1979.

[29] S.F. McCormick. Multigrids methods. SIAM, Philadelphia, 1987.

[30] N.M. Newmark. A method for computation of structural dynamics. Journal of the
Engineering Mechanics Division, ASCE, pages 67–94, 1959.

[31] A.K. Noor. Bibliography of books and monographs on finite element technology.
Applied Mechanics Review, (6):307–317, 1991.

[32] The Numerical Algoritms Group, Ltd., Wilkinson House, Jordan Hill Road, OX-
FORD, U.K., OX2 8DR. NAG Library Manual, 1992.

[33] M. Okrouhĺık, I. Huněk, and Loucký K. Personal Computers in Technical Practice.
Institute of Thermomechanics, 1990.

[34] Y. C. Pao. Algorithm for direct access gaussian solution of structural stiffness natrix
equation. International Journal for Numerical Methods in Engineering, (12):751–
764, 1978.

BIBLIOGRAPHY 54

[35] M. Papandrakakis. Solving Large-Scale Problems in Mechanics. John Wiley and
Sons Ltd, Baffins Lane, Chichester, 1993.

[36] K.C. Park. Practical aspects of numerical time integration. Computers and Struc-
tures, (7):343–353, 1977.

[37] B. N. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall, Inc., Englewood
Cliffs, N.J., 1978.

[38] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical Recipes.
The Art of Scientific Computing. Cambridge University Press, New York, 1986.

[39] A. Ralston. A First Course in Numerical Analysis. McGraw-Hill, Inc., New York,
1965.

[40] J.K. Reid. Algebraic aspects of finite-element solutions. Computer Physiscs Reports,
(6):385–413, 1987.

[41] J. R. Rice. Matrix Computations and Mathematical Software. McGraw-Hill, Inc.,
Auckland,, 1983.

[42] M. Rozložńık. Numerical Stability of the GMRES Method. PhD thesis, Institute of
Computer Science, Academy of Sciences of the Czech Republic, 1996.

[43] H.R. Schwarz, H. Rutishauser, and B. Stiefel. Numerical Analysis of Symmetrical
Matrices. Pretice-Hall, Englewood Cliffs, N.J., 1973.

[44] Society for Industrial and Applied Mathematics, Philadelphia. LINPACK User’s
Guide, 1990.

[45] G. Strang. Linear Algebra and its Applications. Academic Press, New York, 1976.

[46] G. Strang. Introduction to Applied Mathematics. Cambridge Press, Welleseley, MA,
U.S.A., 1986.

[47] K. Subbaraj and M.A. Dokainish. A survey of direct time integration methods in
computational structural dynamics - ii. implicit methods. Computers and Struc-
tures, (6):1387–1401, 1989.

[48] R.P. Tewarson. Sparse matrices. Academic Press, New York, 1973.

[49] B.H.V. Topping and A.I. Khan. Parallel Finite Element Computations. Saxe Coburg
Publications, Edinburgh, U.K.,, 1995.

[50] R.E. White. An introduction to the finite element method with applications to non-
linear problems. John Wiley and Sons, New York, 1987.

[51] Z.H. Zhong and J. Mackerle. Contact-impact problems: A review with bibliography.
Applied Mechanics Review, 47(2), 1994.

[52] O.C. Zienkiewicz. The finite element method in engineering science. McGraw-Hill,
London, 1971.

[53] J. A. Zukas. High Velocity Impact Dynamics. John Wiley and Sons, Inc., New York,
1990.

Chapter 4

Implementation remarks to equation
solvers

This part was written and is maintained by M. Okrouhĺık. More details about the
author can be found in the Chapter 16.5.

4.1 Storage modes

The symmetry of A matrix in FE analysis can be deduced from the fact that elemen-
tary matrices - out of which the global stiffness matrix is assembled - are also symmetric.
They are defined by an integral over the element volume k =

∫
V

BTEB dV . It is obvious
that such a matrix is symmetric for any B on condition that the E , i.e. that matrix of
elastic moduli, is symmetric. For discussions concerning the symmetry of stress tensors
in statics and dynamics see [20].

The positive definiteness of the matrix stems from energy minimizing principles un-
derlying the FE model. For any permissible generalized displacement x, the stiffness
matrix A constitutes a quadratic form Q = xTAx > 0, unless x = 0. It is easy to show
that Q is proportional to the deformation energy stored in the considered structure. If
the structure is not properly constrained then the A matrix is positive semidefinite.

All the matrix properties mentioned above are very important for the solution of
large-scale problems and should be properly exploited in algorithmization, programming
and implementation of procedures providing matrix operations and handling.

The sparseness feature is very important since it allows to deal with matrices that
otherwise could not be handled and processed due to computer memory limitations. In
mechanical and civil engineering applications, the most common form of sparseness is
bandedness, i.e. aij = 0 if |i − j| > nband, where the identifier nband was introduced
as a measure of the halfband width (including diagonal). How both symmetry and
bandedness could be systematically employed in the algorithmization is shown in the
Template 13.

55

CHAPTER 4. IMPLEMENTATION REMARKS TO EQUATION SOLVERS 56

Template 13, Gauss elimination – influence of symmetry and bandedness

three types of matrix storage mode

a ... general matrix, b ... symmetric, c ... symmetric, banded

nband ... halfband width (including diagonal)

for k = 1 to n-1

case (a,b,c)

a), b) imax = n

c) imax = min(k+nband-1, n)

end

for i = k+1 to imax

case (a,b,c)

a) jmax = n

t = a(i,k) / a(k,k)

jmin = k + 1

b) jmax = n

t = a(k,i) / a(k,k)

jmin = i

c) jmax = imax

t = a(k,i) / a(k,k)

jmin = i

end

for j = jmin to jmax

a(i,j) = a(i,j) - a(k,j) * t

end

b(i) = b(i) - b(k) * t

end

end

The template 13 shows the imprint of matrix type (general, symmetric, symmetric
banded) into a process needed for the matrix factorization. The effort required for solving
a system of algebraic equations by Gauss elimination can be measured by the number
of needed arithmetic operations. Considering one multiplication, or one division, or
one addition plus one subtraction as one operation then the the factorization of a full,
standardly stored matrix can be secured by 1

3
(n3 − n) operations. The operations count

for the right-hand side reduction is 1
2
(n2−n) while that for the back substitution is 1

2
n(n+

1) operations. The count for matrix factorization is, however, reduced approximately
by half if the matrix is symmetric. If the matrix is symmetric and banded then the
operations count for the matrix factorization is proportional to n(nband)2 operations
instead of n3 as in the case of factorization of a general type matrix. See [19]. Both
symmetry and sparseness should be fruitfully exploited not only in programming but also
in storage considerations if efficient storage requirements are to be achieved. There are
many storage modes available. Here we mention only a few. A more detail information
about the storage modes is in the Chapter 11.

CHAPTER 4. IMPLEMENTATION REMARKS TO EQUATION SOLVERS 57

4.1.1 Symmetric matrix storage mode

If the matrix is ’only’ symmetric we could store the elements of its upper triangular
part (including the diagonal) in a one-dimensional array columnwise, starting with ele-
ment a11. Of course, the accepted storage mode influences all the subsequent coding of
matrix operations. In this case a one-dimensional pointer, say l, corresponding to matrix
indices i,j in its upper triangular part can be easily calculated by l = i + (j*j - j) / 2.
It is obvious that the memory requirements nmem = n*(n + 1)/2 are roughly reduced by
a factor of two. A similar storage mode is used in IBM programming packages for
symmetric matrices. See [1].

4.1.2 Rectangular storage mode – symmetric banded matrices

Also called a compressed diagonal storage mode.

R =




⋆ ⋆ ⋆ ⋆ · · · · · ·
· ⋆ ⋆ ⋆ ⋆ · · · · ·
· · ⋆ ⋆ ⋆ ⋆ · · · ·
· · · ⋆ ⋆ ⋆ ⋆ · · ·
· · · · ⋆ ⋆ Rij ⋆ · ·
· · · · · ⋆ ⋆ ⋆ ⋆ ·
· · · · · · ⋆ ⋆ ⋆ ⋆
· · · · · · · ⋆ ⋆ ⋆
· · · · · · · · ⋆ ⋆
· · · · · · · · · ⋆




n×n

A =




⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆
⋆ ⋆ Akl ⋆
⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ·
⋆ ⋆ · ·
⋆ · · ·




n×nband

One of possible approaches to an efficient storage mode for symmetric banded matrices,
whose bandwidth is fairly constant, is graphically depicted above.

The indices of a general matrix element R(i,j) are related to its efficiently stored
partner A(k,l) by simple relations, i.e. by

k = i and l = j - i + 1.

If we have a relatively narrow bandwidth then the savings in terms of memory re-
quirements could be substantial, since nmem = n*nband. A similar storage mode is used in
LINPACK and EISPACK packages. See [17], [10].

One has to realize, that accepting a special storage mode influences all the program-
ming steps dealing with matrix algebra. As an example a procedure for the matrix-vector
multiplication taking into account the rectangular storage mode could be as follows. It is

CHAPTER 4. IMPLEMENTATION REMARKS TO EQUATION SOLVERS 58

written in an old-fashioned programming style, but the procedure works and the reliable
procedures should not be changed for formal reasons only.

Program 7
SUBROUTINE DMAVB(A,B,C,N,NDIM,NBAND)

DOUBLE PRECISION A,B,C,SUM1,SUM2

DIMENSION A(NDIM,NBAND),B(NDIM),C(NDIM)

C Multiply a matrix [A] by a vector {b} from the right.

C It is assumed that the square band symmetric matrix is

C efficiently stored in an rectangular array A(N,NBAND)

C

C A(N,NBAND) input matrix

C B(N) input vector

C C(N) output vector C=A*B

C NDIM row dimension of [A] matrix in main

C N other dimension of [A], dimensions of {B} and {C}

C NBAND half-band size (including diagonal)

C

DO 101 I = 1,N

SUM1 = 0.D0

SUM2 = 0.D0

IF(I .LT. NBAND) GO TO 100

IF(I .LT. (N-NBAND+2)) GO TO 200

C Region 3 - I = N-NBAND+2,N

DO 310 J = I,N

310 SUM1 = SUM1 + B(J)*A(I,J-I+1)

J1 = I-NBAND+1

J2 = I-1

DO 320 J = J1,J2

320 SUM2 = SUM2 + B(J)*A(J,I-J+1)

GO TO 10

C Region 1 - I = 1,NBAND-1

100 J2 = I + NBAND - 1

DO 110 J = I,J2

110 SUM1 = SUM1 + B(J)*A(I,J-I+1)

IF(I .EQ. 1) GO TO 10

J2 = I-1

DO 120 J = 1,J2

120 SUM2 = SUM2 + B(J)*A(J,I-J+1)

GO TO 10

C Region 2 - I = NBAND,N-NBAND-1

200 J2 = I + NBAND - 1

DO 210 J = I,J2

210 SUM1 = SUM1 + B(J)*A(I,J-I+1)

J1 = I - NBAND + 1

J2 = I - 1

DO 220 J = J1,J2

220 SUM2 = SUM2 + B(J)*A(J,I-J+1)

10 C(I) = SUM1 + SUM2

101 CONTINUE

RETURN

END

¤ End of Program 7.

CHAPTER 4. IMPLEMENTATION REMARKS TO EQUATION SOLVERS 59

4.1.3 Skyline storage mode

Also called a variable band or profile mode.

A =




a11 a12 0 a14 0 0 0 0
· a22 a23 0 0 0 0 0
· · a33 a34 0 a36 0 0
· · · a44 a45 a46 0 0
· · · · a55 a56 0 a58

· · · · · a66 a67 0
· · symm. · · · a77 a78

· · · · · · · a88




If the matrix bandwidth varies dramatically with respect the column index, then –
to a creative mind – the columns of nonzero elements could remind a skyline of a city
which gives the name to the following storage mode. We could have a situation which is
illustrated by a small matrix example above. In the computer memory there are stored
all zero and non-zero elements between the diagonal and the skyline. The elements are
stored in a one-dimensional array, say w, columnwise, starting from the diagonal and go-
ing upward. Each column is thus stored ’backward’ as seen in the following table. Since
the individual columns are of different lengths, for a unique one-to-one correspondence of
individual elements in both storage modes we need another piece of information related
to column lengths. It could be stored in another array, say m, containing the pointers
to positions of diagonal elements in array w.

diag.elem index k of w index i of A index j of A
* 1 1 1
* 2 2 2

3 1 2
* 4 3 3

5 2 3
* 6 4 4

7 3 4
8 2 4
9 1 4

* 10 5 5
11 4 5

* 12 6 6
13 5 6
14 4 6
15 3 6

* 16 7 7
17 6 7

* 18 8 8
19 7 7
20 6 8
21 5 8

The above table shows the correspondence of indices of vector and matrix represen-

CHAPTER 4. IMPLEMENTATION REMARKS TO EQUATION SOLVERS 60

tations. The asterisks point to diagonal elements and denote the positions of those ele-
ments in w array. The auxiliary array is m = {1 2 4 6 10 12 16 18 22}.
It should be mentioned that the last element of m array contains the value corresponding
to the number of ’under - skyline’ elements plus one. So the position of the j-th diagonal
element of original matrix in w could be found easily by k1 = m(j) and the ’height’ ih of
j-th column is ih = m(j+1) - m(j) and thus w(k1) = a(j,j).

So, for indices i,j of A matrix, the corresponding k index in w is k = m(j) + j - i.
The memory requirements are given by the number of elements between skyline and
diagonal plus a small space required for mentioned pointers. For more details see [5].

4.2 Fill-in problem

In many engineering applications the Gauss elimination process starts with a sym-
metric, banded matrix; that’s why we have discussed a few storage modes here. During
the elimination process, that leads to upper triangular matrix, the coefficient matrix is
subjected to a so-called fill-in process. It can be shown [7] that during the elimination
process most of zero entries in the coefficient matrix, appearing between the diagonal
and the bandwidth (or skyline) boundary, are being filled in (overwritten) by nonzero
values. There is, however, no fill-in outside the bandwidth or skyline boundary which
makes various storage schemes attractive. This also explains why any under-skyline zero
element must be kept in memory. It also resolves a general attitude of finite element
programmers to special storage modes, typical for sparse matrices which are not densely
populated and have no regular pattern of sparseness. There are many storage modes
suitable for these matrices [21], however, the computational overhead due to the ad-
ditional memory management required by the fill-in and fill-out processes during the
Gauss elimination is prohibitive. For treatment of randomly sparse matrices without
any particular pattern or numerical characteristics see [6].

4.3 Disk storage modes – out-of-core solvers

Today, a user of standard medium-performance workstations could handle his/her
matrices in memory sizes of the order of a few gigabytes per processor. But remember
that a standard double precision floating point number requires eight bytes to be stored.

These sizes, as impressive as they are compared to memory sizes we were used to a few
years ago, still does not cover the memory requirements of the most complicated problems
of engineering practice which are measured in millions of 16-decimal-digit unknowns.

Thus, the huge memory problems require a disk storage approach to be employed.
The idea is simple, the coefficient matrix is stored on a disk and only its part is being
processed in the internal memory at the moment. The efficient implementation is rather
difficult, since it is constrained by many factors. One has to take into account the
fact that the access and retrieval time of data in a disk storage is of several orders of
magnitude greater than that for data in the internal memory. From it follows that the
disk algorithm is to be conceived in such a way that the number of data transfers is
minimized. The effectiveness of a disk elimination algorithm also strongly depends on
the proper exploitation of sparseness of the coefficient matrix.

As an example a so-called disk band algorithm, graphically depicted the Paragraph
4.1.2 could be mentioned here. The upper-banded part of the coefficient matrix is stored

CHAPTER 4. IMPLEMENTATION REMARKS TO EQUATION SOLVERS 61

in a disk file columnwise. The algorithm is based on the fact that at each elimination
step only the under-pivot elements are influenced. At each elimination step the algo-
rithm requires to read one column from the disk and to write one row back on the disk
storage. The method is very inefficient due to the excessive number of data transfers.
For the same storage mode the idea could be substantially improved by treating the
larger chunks of data between disk transfers. The working space having the size nband by
nband could be increased to kk by nband, where kk >> nband and set generally as large as
possible. The detailed description of the algorithm is in [14], the programming consider-
ations and the Fortran program are in [13]. See the Program 8 and the Paragraph 5.15.1.

Program 8
SUBROUTINE DBANGZ(N,K,KK,A,DS,B,EPS,KEY,LKN,FNAM,IRECL,MAXR,NZ)

C

C THE CATALOG NAME OF THIS SUBROUTINE IS ’S.DBANGZ’

C

C***

C* *

C* SOLUTION OF A SYSTEM OF LINEAR ALGEBRAIC EQUATIONS *

C* WITH POSITIVE DEFINITE SYMMETRIC AND BANDED MATRIX *

C* BY DIRECT-ACCESS GAUSS ELIMINATION METHOD. *

C* (SUITABLE FOR LARGE SYSTEMS OF EQUATIONS IN FEA) *

C* *

C***

C

C * DOUBLE PRECISION VERSION *

C

C AUXILIARY ARRAY NZ(K) MUST BE DECLARED IN the CALLING PROGRAM

C

C BEFORE CALLING PROCEDURE THE FILE MUST EXIST ON THE DISC

C WITH DIRECT ACCESS, LINK NAME ’LKN’ AND WITH N RECORDS,

C WHICH CONTAINS BANDED MATRIX, EFFICIENTLY STORED

C IN RECTANGULAR FORM.

C --

C DESCRIPTION OF PARAMETERS:

C

C N.........NUMBER OF EQUATIONS=NUMBER OF RECORDS IN INPUT DISC

C FILE

C K.........HALF WIDTH OF BAND OF MATRIX (WITH DIAGONAL)

C KK........NUMBER OF ROWS OF SYSTEM’S MATRIX,

C WHICH MAY BE IN MEMORY AT THE SAME TIME

C K<=KK<=N

C A(KK,K)...WORKING MATRIX,IN WHICH ROWS OF SYSTEM’S MATRIX

C ARE HANDLED (IT MUST BE DECLARED IN MAIN)

C DS(N).....WORKING VECTOR

C ON INPUT: ARBITRARY

C ON OUTPUT: VECTOR OF SOLUTION

C B(N)......THE RIGHT SIDE VECTOR

C EPS.......IF ELEMENT OF MATRIX IS >= EPS,THEN

C IT IS TAKEN AS NON-ZERO *** DOUBLE PRECISION ***

C KEY.......SOLUTION KEY

C = 1 REDUCTION OF MATRIX

C = 2 REDUCTION OF THE RIGHT SIDE VECTOR

C AND BACK SUBSTITUTION

C LKN.......LINK NAME OF FILE,IN WHICH A MATRIX OF SYSTEM IS STORED

C FNAM......NAME OF DISC FILE (TYPE CHARACTER - IT MUST BE

C DECLARED IN MAIN, MAXIMUM IS 12 CHARACTERS)

CHAPTER 4. IMPLEMENTATION REMARKS TO EQUATION SOLVERS 62

C IRECL.....RECORD LENGHT (IN BYTES)

C MAXR......MAXIMUM NUMBER OF RECORDS

C NZ(K).....WORKING VECTOR

C ---

C

CHARACTER*(12,V) FNAM

OPEN(LKN,FILE=FNAM,ACCESS=’DIRECT’,STATUS=’OLD’,

/ RECL=IRECL,MAXREC=MAXR)

C

DIMENSION A(KK,K),DS(N),B(N),NZ(K)

DOUBLE PRECISION A,DS,B,RATIO,EPS

C

C VECTOR OF RIGHT SIDES B INTO WORKING VECTOR DS

DO 2 I=1,N

2 DS(I)=B(I)

C

II=KEY

GO TO (1000,2000), II

C

C READ FIRST PART OF MATRIX

1000 DO 1 I=1,KK

1 READ(LKN’I) (A(I,J),J=1,K)

C

JUMP=0

C

C IEQ...STEP IN GAUSS ELIMINATION

DO 6 IEQ=1,N

C WRITE(6,21)

C21 FORMAT(1X,’ Intermediate results A(KK,K)’/)

C DO 22 ID=1,KK

C22 WRITE(6,24) (A(ID,JD),JD=1,K)

C24 FORMAT(1X,10E12.6)

JUMP=JUMP+1

IF(JUMP.GT.KK) JUMP=JUMP-KK

I=0

DO 29 J=2,K

IF (ABS(A(JUMP,J)).LT.EPS) GO TO 29

I=I+1

NZ(I)=J

29 CONTINUE

IF (I.EQ.0) GO TO 4

JUMP1=JUMP-1

DO 5 L=1,I

M=NZ(L)

ITMP=JUMP1+M

IF(ITMP.GT.KK) ITMP=ITMP-KK

IF(ABS(A(JUMP,1)).LT.EPS) GO TO 300

RATIO=A(JUMP,M)/A(JUMP,1)

IR1=M-1

DO 3 JC=L,I

MM=NZ(JC)

JTMP=MM-IR1

3 A(ITMP,JTMP)=A(ITMP,JTMP)-RATIO*A(JUMP,MM)

5 CONTINUE

C

4 KT=IEQ+KK

CHAPTER 4. IMPLEMENTATION REMARKS TO EQUATION SOLVERS 63

IF(KT.GT.N) GO TO 6

KQ=IEQ

WRITE(LKN’KQ) (A(JUMP,J),J=1,K)

READ(LKN’KT)(A(JUMP,J),J=1,K)

6 CONTINUE

C

C RECORD LAST BLOCK OF MATRIX ON DISC

IND1=(N/KK)*KK+1

IND2=N

M=1

DO 14 I=IND1,IND2

WRITE(LKN’I) (A(M,J),J=1,K)

M=M+1

14 CONTINUE

C

IND1=N-KK+1

IND2=(N/KK)*KK

DO 16 I=IND1,IND2

WRITE(LKN’I) (A(M,J),J=1,K)

M=M+1

16 CONTINUE

C

C REDUCTION SUCCESSFULLY ENDED

C

RETURN

C

C ---

C

C REDUCTION OF VECTOR DS

C READ FIRST PART OF A MATRIX

2000 DO 100 I=1,KK

100 READ(LKN’I)(A(I,J),J=1,K)

C

JUMP=0

C

DO 160 IEQ=1,N

JUMP=JUMP+1

IF(JUMP.GT.KK) JUMP=JUMP-KK

C

DO 150 IR=2,K

IF(ABS(A(JUMP,IR)).LT.EPS) GO TO 150

IR1=IR-1

RATIO=A(JUMP,IR)/A(JUMP,1)

DS(IEQ+IR1)=DS(IEQ+IR1)-RATIO*DS(IEQ)

IF(ABS(DS(IEQ+IR1)).LT.1.D-30) DS(IEQ+IR1)=0.D0

150 CONTINUE

C

KT=IEQ+KK

IF(KT.GT.N) GO TO 160

READ(LKN’KT)(A(JUMP,J),J=1,K)

160 CONTINUE

C

C BACK SUBSTITUTION

C

DS(N)=DS(N)/A(JUMP,1)

I=N

C

CHAPTER 4. IMPLEMENTATION REMARKS TO EQUATION SOLVERS 64

DO 9 M=2,KK

JUMP=JUMP-1

IF(JUMP.EQ.0) JUMP=KK

I=I-1

ITMP=I-1

C

DO 10 J=2,K

IF(ABS(A(JUMP,J)).GT.EPS) DS(I)=DS(I)-A(JUMP,J)*DS(ITMP+J)

10 CONTINUE

C

9 DS(I)=DS(I)/A(JUMP,1)

C

IF(I.EQ.1) RETURN

12 I=I-1

READ(LKN’I) (A(1,M),M=1,K)

ITMP=I-1

C

DO 8 J=2,K

IF(ABS(A(1,J)).GT.EPS) DS(I)=DS(I)-A(1,J)*DS(ITMP+J)

8 CONTINUE

C

DS(I)=DS(I)/A(1,1)

IF(I.GT.1) GO TO 12

GO TO 200

C

C

300 WRITE(6,310) JUMP,A(JUMP,1)

310 FORMAT(1X,’ERROR-RIGIDITY MATRIX NOT POSITIVE DEFINITE’//

/ 1X,’ JUMP=’,I6,5X,’A(JUMP,1)=’,E14.6)

STOP 01

C

200 RETURN

END

¤ End of Program 8.

Also a so called hypermatrix algorithm is of interest. The method consists in subdi-
viding the coefficient matrix into smaller rectangular matrices, sometimes called blocks.
The Gauss elimination process is then defined not for matrix entries, but for blocks. So
the intermost loop could look like

K⋆
ij = Kij −KT

isK
−1
ss Ksj. The method is not limited to symmetric or band matrices.

Since it is based on the sequence of matrix operations, standard library routines could
easily be employed for its implementation. For details see [8].

4.4 Frontal method

The frontal method is a variant of Gauss elimination. It was first publicly explained
by Irons [11]. Today, it bears his name and is closely related to finite element technology.
J.K. Reid [16] claims, however, that the method was used in computer programs already
in the early sixties.

Its main advantage consists in the fact that the elimination process is based on
element matrices and leads to the solution of the system of equations without a necessity
to assemble the global coefficient matrix.

Particularly, it is based on following observations

CHAPTER 4. IMPLEMENTATION REMARKS TO EQUATION SOLVERS 65

• at a given moment the elimination process is applied only to those local element
matrices that are in the same front which means that the particular unknowns are
’interrelated’. The partial results of factorization and of right-hand side reduction
are temporarily stored in small auxiliary arrays whose dimensions depends on the
size of the front, called frontwidth.

• the final elimination of the i-th unknown can be achieved as soon as we know that
no other, so far untouched, element matrix will contribute to the result.

From it follows that

• the elimination process does not proceed sequentially, starting from the first equa-
tion to the last. Instead, the first fully eliminated unknown is that which already
does not have any contribution from other unknowns. The similar way we proceed
for the remaining equations,

• the i-the unknown being eliminated, it is necessary to remove the corresponding
row and the corresponding right-hand side element from auxiliary arrays and store
them somewhere else,

• entries related to new unknowns, i.e. those belonging to element matrices that
have not yet been taken into account, are immediately being moved to locations
that were freed by unknowns eliminated in previous steps.

The effectivity of the frontal algorithm depends on the element numbering. The
notions as band and/or profile widths play no role here. There is no decrease of effectivity
due to the variable band and/or profile widths as it is in case of band and skyline solvers.
In these respects the frontal method outperform other elimination approaches

The detailed explanation and the programming considerations are in [3] and in the
Chapter 10.

4.5 Solving Ax = b by inversion

Solving the system of algebraic equation by inversion seems to be algorithmically
simple, but brings many practical obstacles, namely the greater number of operations
nad the fact that the matrices, frequently appearing in FE analysis, lose their initially
banded structure. This might be memory prohibiting when solving large systems.

There are many methods leading to inverse matrix calculation. Usually there are
based on a sort of elimination.

The following variant, capable of inverting regular matrices in place, is shown in the
template 14. For efficiency all traditional if statements were removed by explicit defini-
tion of limits of loop variables. No spectacular advantage could be achieved by this trick
on scalar mode machines, there was, however, a significant improvement by a factor of
ten, reported when this code run on a vector machine [9].

CHAPTER 4. IMPLEMENTATION REMARKS TO EQUATION SOLVERS 66

Template 14, Inversion of a matrix in place - all if ’s were removed

for i=1 to n

d = 1/a(i,i); tt = -d

for j=1 to n

a(i,j) = a(i,j)*tt

end

for k=1 to i-1

tt = a(k,i)

for j=1 to i-1

a(k,j) = a(k,j) + tt*a(i,j)

end

for i+1 to n

a(k,j) = a(k,j) + tt*a(i,j)

end

a(k,i)= tt*d

end

for k = i+1 to n

tt = a(k,i)

for j=1 to i-1

a(k,j) = a(k,j) + tt*a(i,j)

end

for j = i+1 to n

a(k,j) = a(k,j) + tt*a(i,j)

end

a(k,i) = tt*d

end

a(i,i) = d

end

Program 9
function b = inverse(n,s)

% a simple inversion program with all if’s removed

% c:\prog_all_backup_zaloha_280105\prog_c\prog\mtl\inverse.m

for i = 1:n

d = 1/s(i,i);

tt = -d;

for j = 1:n

s(i,j) = s(i,j)*tt;

end

for k = 1:i-1

tt = s(k,i);

for j = 1:i-1

s(k,j) = s(k,j) + tt*s(i,j);

end

for j = i+1:n

s(k,j) = s(k,j) + tt*s(i,j);

end

s(k,i) = tt*d;

end

for k = i+1:n

tt = s(k,i);

CHAPTER 4. IMPLEMENTATION REMARKS TO EQUATION SOLVERS 67

for j = 1:i-1

s(k,j) = s(k,j) + tt*s(i,j);

end

for j = i+1:n

s(k,j) = s(k,j) + tt*s(i,j);

end

s(k,i) = tt*d;

end

s(i,i) = d;

end b = s;

% end of inverse

¤ End of Program 9.

Solving the set of algebraic equations, the vector of unknowns can be easily achieved
by x = A−1b. This approach is not recommended but could be accepted if the coefficient
matrix is small and if memory and time requirements do not play an important role in our
considerations. Using it, however, for large matrices it dramatically spoils the chances
to succeed computationally in the task to be solved. The process is more expensive,
the operation count is proportional to n3, which is three times more than that of Gauss
elimination, furthermore the inverse matrix loses its bandedness so that no efficient
storage scheme could be meaningfully employed. A few years ago, when finite element
programmers were mentally withered with limited available memories of computers at
hands, they were prone a slightly exaggerated statement that solving the set of algebraic
equations by inversion is a computational crime. Today, with huge memories available,
one has to admit that for one-shot solutions, made quickly by brute force, the above-
mentioned crime should not be punished. Nevertheless, if the inversion is not explicitly
needed it should not be computed.

4.6 Jacobi iteration method

The Jacobi method is a representative of one of the oldest iteration methods for the
solution of algebraic equations. It is known that its rate of convergence is quite slow,
compared to other methods, the method is, however, mentioned here due to its simple
structure which is transparently suitable for parallelizing. For convergence considerations
see [15], [18].

The method is based on examining each of the n equations, assuming that the re-
maining elements (unknowns) are fixed, i.e. xi = (bi −

∑
j 6=i aijxij)/aii. It should be

noted that a regular matrix can always be rearranged in such a way that there it has no
zero diagonal entries. The iterative scheme is given by (k)xj = (bi −

∑
j 6=i aij

(k−1)xj/aii,
the corresponding template is 15.

CHAPTER 4. IMPLEMENTATION REMARKS TO EQUATION SOLVERS 68

Template 15, The Jacobi Method

Choose an initial guess (0)x to the solution x.

for k=1,2,...

for i=1,2,...,n

s(i) = 0 ! initialize the elements of summation array

for j = 1,2,...,i-1, i+1,...,n

s(i) = s(i) + a(i,j)*(k-1)x(j)

end

s(i) = (b(i) - s(i)) / a(i,i)

end

(k) x = s ! bold identifiers indicate array data structures check convergence;

continue if necessary

end

One could observe that the order in which the equations are examined is irrelevant and
that the equations can be treated independently. The iterative scheme in the Template
15, programmed by means of DO loops in Fortran 77, would run serially. Using FORALL
structure of Fortran 90 for the innermost loop as in the Template 2 would allow that
these statements could be parallelized and a parallel speed-up be achieved. Sometimes it
is claimed [12] that the speed-up is in near direct proportion to the number of processors.
The reader should take such a statement with extreme caution.

We have stated that the parallezation is language dependent. Not only that, it also
strongly depends on the memory model of the computer being used. The large-scale,
massively parallel computers have up to thousands of processors, each having its own
memory. Smaller scalable machines have only a few processors and a shared memory.
The problem, that has not changed much in the last years, is that it takes far longer to
distribute data than it does to do the computation. See the Paragraph 5.14.2.

4.7 Gauss-Seidel method

The Gauss-Seidel method is similar to Jacobi method, it uses, however, the updated
values of unknowns as soon as they are available. G. Strang claims that the method was
apparently unknown to Gauss and not recommended by Seidel. [18]. The algorithm is
in the Template 16.

BIBLIOGRAPHY 69

Template 16, The Gauss-Siedel Method

Choose an initial guess (0)x to the solution x.

for k=1,2,...

for i=1,2,...,n

sum = 0

for j=1,2,..., i-1

sum = sum + a(i,j) * (k)x(j)

end

for j=i+1,...,n

sum = sum + a(i,j) * (k-1)x(j)

end

(k)x(i) = (b(i) - sum) / a(i,i)

end

check convergence; continue if necessary

end

The rate of convergence of the Gauss-Seidel method is ussually better than that of
Jacobi, still it is relatively slow. It also strongly depends on the ordering of equations,
and on the ’closeness’ of an initial guess. See [4]. The Gauss-Seidel seems to be a fully
sequential method. A careful analysis has shown that a high degree of parallelism is
available if the method is applied to sparse matrices arising from the discretized partial
differential equations. See [2] and the Paragraph 5.14.3.

4.8 Successive overrelaxation method (SOR)

This method is derived from the Gauss-Seidel method by introducing an relaxation
parameter for increasing the rate of convergence. For the optimum choice of the relax-
ation parameter the method is faster than Gauss-Seidel by an order of magnitude. For
details see [2], [13] and the Paragraph 5.14.4.

Bibliography

[1] IBM Scientic Subroutine Package. 112 East Post Road, White Plains, N. Y, 1968.

[2] L. Adams and H. Jordan. Is sor color-blind? SIAM, Journal of Sci. Stat. Comp.,
(7):490–506, 1986.

[3] D.G. Ashwell and R.H. Gallagher. Finite Elements for Thin Shells and Curved
Members, chapter Semi Loof Shell Element by Irons, B. M. John Wiley and Sons,
New York, 1976.

[4] R. Barrett et al. Templates for the Solution of Linear Systems. SIAM, Philadelphia,
1994.

[5] K.J. Bathe and E. L. Wilson. Numerical Methods in Finite Element Analysis.
Prentice-Hall, Englewood Cliffs, N.J., 1976.

BIBLIOGRAPHY 70

[6] T.S. Chow and J.S. Kowalik. Computing with sparse matrices. International Journal
for Numerical Methods in Engineering, 7:211–223, 1973.

[7] G. E. Forsythe, M. A. Malcolm, and C. B. Moler. Computer Methods for Mathe-
matical Computations. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1977.

[8] J. Herzbergen. Iterationverfahren hoeheren ordnung zur einschliessung des inversen
einer matrix. ZAMM, 69:115–120, 1989.

[9] Y.P. Huang et al. Vectorization using a personal computer. Developments in Com-
putational Techniques for Structural Techniques Engineering, ed.: Topping, B.H.V.,
Edinburgh UK, CIVIL-COMP PRESS, pages 427–436, 1995.

[10] IMLS, Inc, GNB Building, 7500 Bellair BVLD, Houston TX 77036. EISPACK,
1989.

[11] B. M. Irons. A frontal solution program for finite element analysis. International
Journal for Numerical Methods in Engineering, 2:5–32, 1970.

[12] C.H. Koelbel, D.B. Loveman, R.S Schreiber, G.L. Steele, and M.E. Zosel. The
High Performance Fortran Hanbook. MIT Press, Cambridge Massachusetts, London
England, 1994.

[13] M. Okrouhĺık, I. Huněk, and Loucký K. Personal Computers in Technical Practice.
Institute of Thermomechanics, 1990.

[14] Y. C. Pao. Algorithm for direct access gaussian solution of structural stiffness natrix
equation. International Journal for Numerical Methods in Engineering, (12):751–
764, 1978.

[15] A. Ralston. A First Course in Numerical Analysis. McGraw-Hill, Inc., New York,
1965.

[16] J.K. Reid. Algebraic aspects of finite-element solutions. Computer Physiscs Reports,
(6):385–413, 1987.

[17] Society for Industrial and Applied Mathematics, Philadelphia. LINPACK User’s
Guide, 1990.

[18] G. Strang. Linear Algebra and its Applications. Academic Press, New York, 1976.

[19] G. Strang and G. J. Fix. An analysis of the finite element method. Prentice Hall,
1973.

[20] I. Szabó. Einfuhrung in die Technische Mechanik. Berlin, Springer-Verlag, 1963.

[21] R.P. Tewarson. Sparse matrices. Academic Press, New York, 1973.

Chapter 5

How to dirty your hands

This part was written and is maintained by M. Okrouhĺık. More details about the
author can be found in the Chapter 16.5.
The solution of

Ax = b, (5.1)

cannot be achieved if the A matrix is singular, i.e. if detA = 0 . It is known that a
solution for a system with singular matrix still exists if the right hand side vector has
a special ’position’ in the column space of A as shown in [15]. Such a solution is not
unique and will be excluded from further considerations – in the text we will mainly deal
with systems that are regular, i.e. having the property of detA 6= 0.

Actually, the boundary between singularity and regularity is not sharp, since we
are solving our equations on computers with finite number of significant digits – with
computations subjected to round-off errors. See [18] and a nice paper titled Lecture
Notes on the Status of IEEE Standard 754 for Binary Floating-Point Arithmetic by
Prof. W. Kahan provides a tour of some under-appreciated features of IEEE 754 and
includes many examples where they clarify numerical algorithms. The Kahan’s Notes
could downloaded from http://grouper.ieee.org/groups/754/.

It will be shown that it is the condition number of the A matrix, defined by

c =‖ A ‖ ‖ A−1 ‖,

that resolves the solvability of (5.1) rather than the zero or a small value of the matrix
determinant.

The matrix singularity has a nice physical interpretation when solving static prob-
lems of continuum mechanics by means of finite element method (FEM). Employing
the deformation variant of FEM the A matrix represents the stiffness matrix of the
solved mechanical system, the vector x corresponds to unknown generalized displace-
ments, while the components of vector b are prescribed generalized forces. The solution
of Ax = b, representing the static conditions of equilibrium, constitutive equations and
prescribed boundary conditions, could only be found if the mechanical system is properly
fixed to the ground – otherwise stated, if it cannot move as a rigid body. If the system
has rigid-body degrees of freedom and is subjected to applied forces, then – according to
the Newton’s second law – it starts to accelerate which, however, is the task beyond the
scope of statics. In mathematics such a situation is dutifully signalized by the matrix
singularity. It is worth noticing that nullity of a stiffness matrix is equal to the number
of rigid-mode degrees of freedom of the mechanical system.

71

http://grouper.ieee.org/groups/754/

CHAPTER 5. HOW TO DIRTY YOUR HANDS 72

5.1 Gauss elimination method

The classical Gauss elimination process for the solution of the system of algebraic
equations (5.1) is explained in many textbooks [28], [6], [30]. Before trying to program
the whole process it is expedient to play with a trivial example with a small number of
equations and do all the calculations by hand. See [15].

5.2 Gauss elimination by hand

Gauss elimination method was known long before Gauss. Its usage for three equa-
tions with three unknowns was found in Chinese scripts The Nine Chapters on the
Mathematical Art more than 2000 years ago.

The Gauss elimination consists of two basic steps. The elimination, during which
the initial matrix is put in an equivalent triangular form, i.e. A → U and the right
hand side vector b is transformed to c, and the backsubstitution by which the individual
unknowns are extracted.

¤ Example

Solve Ax = b for n = 4 with

A =




5 −4 1 0
−4 6 −4 1

1 −4 6 −4
0 1 −4 5


 , b =





0
1
0
0





.

The elimination

is carried out in (n − 1) steps.

For k = 1 – eliminate the elements under the first diagonal element

The A matrix is concatenated with the b vector and the elimination process is carried
out for both entries simultaneously.

[Ab] =




5 −4 1 0 0
−4 6 −4 1 1

1 −4 6 −4 0
0 1 −4 5 0




second row − (−4
5
) × first row

third row − (1
5
) × first row

fourth row − (0) × first row

and carry out the indicated row operations resulting in

[A(1) b(1)] =




5 −4 1 0 0

0
14

5
−16

5
1 1

0 −16

5

29

5
−4 0

0 1 −4 5 0




CHAPTER 5. HOW TO DIRTY YOUR HANDS 73

The element a
(1)
11 = 5 (generally a

(k)
kk , k = 1, 2, ... n−1) is called pivot. The multipliers

in the k-th elimination step are n(k) = a
(k−1)
ik /a

(k−1)
kk , i = k + 1, k + 2, ...n. The upper

right-hand side index is the elimination step counter.

N(1) =




1 0 0 0

4

5
1 0 0

−1

5
0 1 0

0 0 0 1




.

The A matrix and the b vector after the first step become A(1) and b(1) respectively. In
matrix form we have

A(1) = N(1)A, b(1) = N(1) b.

For k = 2 – eliminate elements under the second diagonal element

The pivot for k = 2 is a
(2)
22 = 14

5
. The corresponding multipliers, obtained from

the condition that the second row elements under the diagonal should become zero, are
stored with an opposite sign into second row of N(2). The zero elements are not printed.

N(2) =




1

0 1

0
16

14
1

0 − 5

14
0 1




.

The second elimination step could be expressed in the matrix form as

A(2) = N(2)A(1) =




5 −4 1 0

0
14

5
−16

5
1

0 0
15

7
−20

7

0 0 −20

7

65

14




; b(2) = N(2)b(1) =





0

1

8

7

− 5

14





.

CHAPTER 5. HOW TO DIRTY YOUR HANDS 74

For k = 3 – eliminate elements under the third diagonal element

The pivot for k = 3 is a
(3)
33 = 15

7
, the multiplier is −20

15
and the matrix of multipliers is

N(3) =




1

0 1

0 0 1

0 0
20

15
1




.

The sought-after upper triangular matrix U, the result of the elimination process, is

U = A(3) = N(3)A(2) =




5 −4 1 0

0
14

5
−16

5
1

0 0
15

7
−20

7

0 0 0
5

6




,

while the right hand side vector b → c, where

c = b(3) = N(3)b(2) =

{
0 1

8

7

7

6

}T

.

The equation Ux = c, obtained by the elimination process applied to Ax = b, has the
same solution as the original problem. The elimination process, written in matrix form,
is

U = N(3)A(2) = N(3)N(2)A(1) = N(3)N(2)N(1)A (5.2)

c = N(3)N(2)N(1)b. (5.3)

Back substitution

is – due to the triangular structure of the U matrix, simple. The system of equations,
after the elimination process is

5x1 − 4x2 − 1x3 + 0x4 = 0

14

5
x2 −

16

5
x3 + 1x4 = 1

15

7
x3 −

20

7
x4 =

8

7
5

6
x4 =

7

6

CHAPTER 5. HOW TO DIRTY YOUR HANDS 75

The last unknown is obtained from the last equation. Being substituted into the last
but one equation allows to get the last but one unknown. That way – backwards – we
proceed to the first equation. That’s why the term back substitution.

x4 =
7

5

x3 =

8

7
− (−20

7
)x4

15

7

=
12

5

x2 =
1 − (−16

15
)x3 − 1x4

14

5

=
13

5

x1 =
0 − (−4)x2 − 1x3 − 0x4

5
=

8

5

The Gauss elimination process, shown above, could be generalized for the system
Ax = b with n equations as follows

Triangularization of the matrix

A → U; U = NA. (5.4)

Reduction of the right hand side vector

b → c; c = Nb, (5.5)

where the matrix of multipliers N is

N = N(n−1) N(n−2) . . . N(2) N(1). (5.6)

For the k-th elimination step the matrix N(k) has the form

N(k) =




1
1

. . .

1

−n
(k)
k+1,k

−n
(k)
k+2,k
...

. . .

1

−n
(k)
n,k 1




, (5.7)

CHAPTER 5. HOW TO DIRTY YOUR HANDS 76

where the multipliers of the k-th step are

n
(k)
i,k = a

(k−1)
ik / a

(k−1)
kk , i = k + 1, k + 2, . . . n. (5.8)

It can be shown that the N(k) matrix has an interesting property – its inverse, say L(k),
is simply obtained by changing the signs of out-of diagonal elements. namely

L(k) = N(k)−1

=




1
1

. . .

1

n
(k)
k+1,k

n
(k)
k+2,k
...

. . .

1

n
(k)
n,k 1




. (5.9)

In practice the product (5.6) is not explicitly carried out, instead the intermediate partial
products A(k) = N(k)A(k−1) and b(k) = N(k)b(k−1) subsequently evaluated and stored.
Since the values of the treated arrays are being constantly rewritten, the upper right
side index is not actually needed, and the the first two steps of the Gauss process could
be written in a simpler way as follows

A → U
aij ← aij − akjaik / akk ;
j = k + 1, k + 2, . . . n; i = k + 1, k + 2, . . . n; k = 1, 2, . . . n − 1.

(5.10)

b → c
bi ← bi − bk aik/akk

i = k + 1, k + 2, . . . n; k = 1, 2, . . . n − 1.
(5.11)

The memory locations, initially reserved for the upper triangular part of A matrix, are
filled by elements of the matrix U after the elimination process. They are however are
denoted by aij. The under-diagonal elements could be nulled or the multiplier values
could be stored there for later use. It can be shown that

L = N−1 = (N(n−1) N(n−2) . . . N(2) N(1))−1 (5.12)

and
L = N(1)−1

N(2)−1

. . . N(n−1)−1

. (5.13)

It is of interest that the L matrix need not be obtained by explicit multiplication (5.13)
– due to its special structure it could be assembled by inserting individual columns of
N(k)−1

instead. The L matrix written in full is

L =




1

n
(1)
21 1

n
(1)
31 n

(2)
32

. . .
... 1

. . .

n
(1)
n,1 n

(2)
n,2 . . . n

(n−1)
n,n−1 1




. (5.14)

CHAPTER 5. HOW TO DIRTY YOUR HANDS 77

The Gauss elimination process could thus be viewed as a matrix decomposition written
in the form

A = N−1 U = LU. (5.15)

Then the U matrix could be decomposed into U = DU, where D is the diagonal matrix,
so A = LDU. If the A matrix is symmetric, then U = LT and we finally have

A = LDLT, U = DLT. (5.16)

Coming back to our numerical example we get

L =




1

−4

5
1

1

5
0 1

0 0 0 1







1

0 1

0 −16

14
1

0
5

14
0 1







1

0 1

0 0 1

0 0 −20

15
1




=




1

−4

5
1

1

5
−16

14
1

0
5

14
−20

15
1




,

D =




5

14

5

15

7

5

6




,

and finally
U = DLT, A = LDLT,

It could be shown that detA = detU = detD =
∏n

i=1 dii = 5 14
5

15
7

5
6

= 25.

Backsubstitution

could be expressed in the matrix form by

Ux = c, DLTx = c, LTx = D−1c. (5.17)

or, on an element level, by

xi =
1

aii

(bi −
n∑

j=i+1

aijxj), i = n, n − 1, . . . 1. (5.18)

End of Example ¤

CHAPTER 5. HOW TO DIRTY YOUR HANDS 78

5.3 Programming Gauss elimination

Two main steps of the Gauss elimination process, i.e. the elimination and the back-
substitution are described here, taking into account the details of programming consid-
erations. Two fundamental steps of this method are formally indicated in the Template
17, where a sort of Pascal-like programming style is simulated.
Template 17, Gauss elimination

BEGIN

ELIMINATION;

BACKSUBSTITUTION

END;

Assuming n by n matrix let’s elaborate the ELIMINATION ’procedure’ at first.
Template 18, Elimination – the first attempt to grasp the problem

Use the first equation to eliminate the variable x1 from equations 2 to n;
Use the second equation to eliminate the variable x2 from equations 3 to n;
Use the third equation to eliminate the variable x3 from equations 4 to n;
...
etc.

Let’s add a few programming details – they are elaborated in three subsequent levels.
So far, the declaration details are disregarded.

CHAPTER 5. HOW TO DIRTY YOUR HANDS 79

Template 19, Elimination – the three-level elaboration

The first – individual unknowns are addressed
FOR k := 1 TO n-1

use the k-th equation to eliminate the variable xk from equations k + 1 to n;

The second – individual equations are addressed
FOR k := 1 TO n-1 DO

FOR i := k+1 TO n DO

Use the k-th equation to eliminate the variable xk from i-th equation;

The third. What do we mean by elimination of xk from the i-th equation?
Actually, the following:

(i-th equation) ← (i-th equation) – a[i, k]/a[k, k]∗(k-th equation);

The last ’megastatement’ in Template 19, containing the term ’equation’, requires
actually addressing the coefficients of the A matrix from (5.1). So far we used k counter
for addressing unknown variables, i counter for equations. Let’s add another counter,
say j, to address individual elements ’alongside’ the i-th equation.

The next logical step is sketched in the Program 10, this time using proper Pascal
statements. It should be noticed that the right hand side elements are processed at
the same time as well. As usual in programming practice the elimination is carried out
’in place’, destroying (overwriting) thus the original values of matrix A and vector b
elements.

Program 10

Procedure ELIMINATION;

BEGIN FOR k := 1 TO n-1 DO

FOR i := k+1 TO n DO

BEGIN

FOR j := k+1 TO n DO a[i,j] := a[i,j] - a[i,k]/a[k,k]*a[k,j];

b[i] := b[i] - a[i,k]/a[k,k]*b[k]

END

END;

End of Program 10. ¤

Let’s improve the preceding reasoning a little bit.
First, the repeated multiplication by a[i, k]/a[k, k], being carried out within the j-

loop, actually does not depend on the j-counter and could thus be computed in advance
– outside that loop. An auxiliary variable, say t, might serve the purpose.

Second, there is a repeated division by the a[k, k] within the inner-most loop. This
diagonal element is often called pivot. It should be emphasized that the current a[k, k]
does not contain the value of the original matrix element. The division by the pivot which
has zero or a ’small’ value would result in erroneous overflow condition. To prevent this,
we should stop the execution of the program if this might happen. Let’s define a suitable
threshold variable, say ε – or eps in the program, and change our procedure as follows.

CHAPTER 5. HOW TO DIRTY YOUR HANDS 80

Program 11
Procedure ELIMINATION;

BEGIN

ier := 0;

FOR k := 1 TO n-1 DO

IF ABS(a[k,k]) > eps

THEN

BEGIN

FOR i := k+1 TO n DO

IF a[i,k] <> 0

THEN

BEGIN

t := a[i,k]/a[k,k];

FOR j := k+1 TO n DO a[i,j] := a[i,j]-t*a[k,j];

b[i] := b[i] - t*b[k]

END

END

ELSE ier := -1

END;

End of Program 11. ¤

The error parameter ier, being initially set to zero, was introduced. If the execution
of statement IF ABS(a[k,k])> eps gives the true value, everything is O.K. If it gives the
false value, the procedure sets the value of the error parameter to −1, indicating thus
that something is wrong. The execution of the elimination process is interrupted, the
remaining computation skipped and it is up to the user to decide what to do next. This
is not an approach with which we could be be satisfied. But we will improve it later.

Notice another statement, i.e. IF a[i,k]<>0, preventing the useless multiplication by
zero, saving thus the computing time.

Having finished the elimination part, the processed matrix has a triangular structure.
The elimination process is often called triangularization, factorization or reduction.

a11x1 + a12 x2 + · · · + a1n xn = b1

a22 x2 + · · · + a2n xn = b2

...
an−1,n−1 xn−1 + an−1,n xn = bn−1

ann xn = bn.

(5.19)

The best way to evaluate the unknowns, contained in x, is to proceed backwards –
from the last equation to the the first. That’s why the term backsubstitution is used.
It should also be reminded that the elimination process – as it is conceived above – is
processed ’in place’. The initial values of the upper part of A are lost, being replaced
by new ones, while the those of its lower part are unchanged. The original values of
the right-hand side are lost as well, being replaced by new ones. Denoting the upper
triangular part of A by U and the changed elements of b by c one can symbolically
write

A → U, c → b. (5.20)

The beauty and efficiency of the elimination and back substitution processes is based
upon the fact that the equations Ax = b and Ux = c have the same solutions – the

CHAPTER 5. HOW TO DIRTY YOUR HANDS 81

latter being solvable more easily. We start with the last equation where there is just
one unknown, i.e. xn. After being extracted, it could be substituted into the last but
one equation for solving the unknown xn−1. Similarly, we could proceed ’up’ to the first
equation. The back substitution process could be expressed by the relation

xi = (bi −
n∑

j=i+1

aij xj)/aii, i = n, n − 1, · · · 1, (5.21)

that could be programmed as follows.

Program 12

Procedure BACKSUBSTITUTION;

BEGIN

FOR i := n DOWNTO 1 DO

BEGIN

sum := 0;

FOR j := i+1 TO n DO sum := sum + a[i,j]*x[j];

x[i] := (b[i] - sum)/a[i,i]

END

END;

End of Program 12. ¤

If there appears a zero pivot during the elimination process we cannot proceed the
way indicated so far. There is, however, a way. If the equation (5.1) has a unique and
nontrivial solution we could circumvent the division by zero by reordering the remaining
equations. Usually, the equation with zero pivot is replaced by that having the element
- in the column under the faulty pivot – with the greatest absolute value.

newpivot ← max
i=k,k+1,···n

|aik|. (5.22)

This is called the partial pivoting. This process does not change the order of variables
in contradistinction to the process called the full pivoting where the search for a suitable
pivot is carried out within all the remaining matrix elements.

newpivot ← max
i=k,k+1,···n, j=k,k+1,···n

|aij|. (5.23)

In other cases, when the system of equations does not have a solution or has infinitely
many of them, the elimination process necessarily fails and cannot be resuscitated by
any, whatever ingenious, pivoting. Sources of troubles should then be found. They
usually comes from erroneous input data and/or from the physical nature of the solved
problem.

Solving the systems of equations, having their origin in continuum mechanics tasks
by finite element method, we are lucky since in most cases our matrices are symmetric
and banded. Furthermore they are often positive definite – this property guarantees that
all the pivots are positive and – in most cases – no pivoting is required. See [30].

One has to proceed carefully during the pivoting process. Let’s show it by means of
the following trivial example.

CHAPTER 5. HOW TO DIRTY YOUR HANDS 82

¤ Example.

0.0001x1 + x2 = 1

x1 + x2 = 2.
(5.24)

The exact solution is
x1 = 1.0001

x2 = 0.9999.
(5.25)

Assume that we have a computer working with a three-digit arithmetics. The numerical
results are rounded, not cut. Multiplying the first equation by −10000 and adding it to
the second we get (exactly)

−9999x2 = −9998. (5.26)

From this, in three-digit arithmetics, we get

x2 = 1.00 (5.27)

and substituting this into the first one

x1 = 0.00, (5.28)

we get a completely wrong result. Reordering the equations (pivoting) we get

x1 + x2 = 2

0.0001x1 + x2 = 1
(5.29)

and solving it we obtain
x1 = 1.00
x2 = 1.00,

(5.30)

which, considering the employed three-digit arithmetics, is an acceptable result. The
moral of the story is that one has to avoid not only zero pivots, but the small ones as
well.

End of Example. ¤

The influence of pivoting on the propagation of errors during the Gauss elimination
was studied by John von Neumann a H.H. Goldstine [14] back in 1947. Their à-priory
approach to the error analysis lead to very pessimistic conclusions. They predicted that
elimination methods would fail when attempting to solve large systems of equations.

This topics was treated later – à-posteriori approaches prevailed – and it was found
that that the round-off errors do not sum up during the elimination process, rather they
have a tendency to cancel out themselves. See [34].

A few notes to remember

• The full pivoting spoils the matrix symmetry and quadruples the number of nec-
essary floating point operations needed for the elimination process.

• The partial pivoting does not change the order of equations and requires only a
slightly greater number of operations than that with no pivoting at all.

• Solving the system with a positive definite matrix requires no pivoting. All the
pivots are positive.

CHAPTER 5. HOW TO DIRTY YOUR HANDS 83

More details about the partial pivoting

If, during the k-the step of the elimination process, there is a zero pivot, then we
start to look for a new candidate in the column immediately bellow the akk element,
i.e. from rows k + 1, k + 2, · · ·n. We will opt for an element having in absolute value
the greatest magnitude. It might happen that all the potential candidates will have a
value zero or be in absolute value smaller than the chosen threshold ε. In such a case the
system has no solution, or has infinitely many solutions – the matrix is singular (actually
or computationally) and the execution of the program has to be stopped.

Let’s define a new boolean variable, say singularity, having the true value in case
the matrix is singular and modify our previous program as follows
Template 20, Improved elimination

BEGIN

ELIMINATION;
IF singularity THEN writeln (Error – matrix is singular);

ELSE BACKSUBSTITUTION

END.

Now, insert the matrix reordering process together with singularity checks into the
Elimination procedure.
Template 21, Reorder equations and check the singularity condition

k := 1

REPEAT

Reorder equations and check for the singularity;
IF NOT singularity THEN

eliminate xk from equations k + 1 to n;
k := k+1

UNTIL (k = n) OR singularity;

Now, we are looking for a suitable pivot. If the bellow-the-pivot element, having in
absolute value the greatest magnitude, is located in the l-th row, then we could proceed
followingly
Template 22, Search for a suitable pivot

Start with l := k;
FOR i := k+1 TO n DO

IF ABS (a[i,k]) > ABS (a[l,k]) THEN l := i;

After the cycle is finished the variable l points to the row, containing the new pivot.
If, after the cycle is finished, the variable alk contains zero or a value (in absolute value)
smaller than the threshold ε, we conclude that there is no suitable pivot available and
that the matrix is singular.

Knowing where the best pivot candidate resides, we can exchange equations.

CHAPTER 5. HOW TO DIRTY YOUR HANDS 84

Template 23, Exchange equations

IF ABS (a[l,k]) < ε THEN singularity := true

ELSE IF k <> l THEN exchange equations k and l;

By exchanging equations k and l is actually understood exchanging their elements.
In the k-th step of elimination the unknowns x1, x2, · · · xk−1 has already been eliminated
– what remains to exchange are elements from the k-th to n-th position.
Template 24, Exchange matrix and vector elements

BEGIN

FOR j := k TO n DO exchange matrix elements (a[k,j], a[l,j]);
exchange right-hand side elements (b[k], b[l])

END;
The Exchange procedure could be as follows
Procedure EXCHANGE (VAR x,y: real);

VAR t:real;
BEGIN t := x; x := y; y := t; END;

Having come to this point there is still a possibility that the zero or small pivot
resides in the last equation, i.e. in ann xn = bn. This might be treated by the statement
appearing in the Template 25.
Template 25, The last equation singularity treatment

IF NOT singularity THEN singularity := ABS (a[n,n]) < ε;

The last statement secures that the pivot ann is tested after all the previous n − 1
equations have been successfully treated, i.e. with no singularity detected.

In the Program 13 all pieces of the Pascal puzzle are put together.
Program 13
PROGRAM PIVOT;

CONST N=4; EPS=1E-6;

TYPE RMAT= ARRAY[1..N,1..N] OF REAL;

RVEC= ARRAY[1..N] OF REAL;

VAR A,AC : RMAT;

X,B,BC,R : RVEC;

I,J,K : INTEGER;

SINGULARITY : BOOLEAN;

PROCEDURE EXCHANGE(VAR X,Y:REAL);

VAR T : REAL;

BEGIN T := X; X := Y; Y := T END;

PROCEDURE REORDER;

VAR I,J,L : INTEGER;

BEGIN

L:=K;

FOR I:=K+1 TO N DO (* Find the greatest sub-pivot element *)

IF(ABS(A[I,K]) > ABS(A[L,K])) THEN L:=I;

IF ABS(A[L,K]) < EPS (* and check whether it is not too small *)

THEN SINGULARITY := TRUE

ELSE IF K<>L THEN BEGIN (* REORDER *)

FOR J := K TO N DO EXCHANGE(A[K,J],A[L,J]);

CHAPTER 5. HOW TO DIRTY YOUR HANDS 85

EXCHANGE(B[K],B[L])

END

END;

PROCEDURE ELIMINATION;

VAR I,J : INTEGER;

T : REAL;

BEGIN

K := 1;

SINGULARITY := FALSE;

REPEAT

REORDER;

IF NOT SINGULARITY THEN (* ELIMINATION itself *)

FOR I := K+1 TO N DO

BEGIN

T := A[I,K]/A[K,K];

FOR J := K+1 TO N DO

A[I,J] := A[I,J] - T*A[K,J];

B[I] := B[I] - T*B[K];

END;

K := K+1

UNTIL (K = N) OR SINGULARITY;

END;

PROCEDURE BACKSUBSTITUTION;

VAR SUM : REAL;

I,J : INTEGER;

BEGIN

FOR I := N DOWNTO 1 DO

BEGIN

SUM := 0;

FOR J := I+1 TO N DO SUM := SUM + A[I,J]*X[J];

X[I] := (B[I] - SUM)/A[I,I]

END

END;

BEGIN (* main *)

(* Matrix *)

A[1,1]:=2; A[1,2]:=4; A[1,3]:=1; A[1,4]:=2;

A[2,1]:=1; A[2,2]:=2; A[2,3]:=2; A[2,4]:=3;

A[3,1]:=2; A[3,2]:=1; A[3,3]:=3; A[3,4]:=3;

A[4,1]:=1; A[4,2]:=3; A[4,3]:=1; A[4,4]:=2;

(* Right-hand side vector *)

B[1]:=17; B[2]:=16; B[3]:=16; B[4]:=14;

(* make a copy *)

AC := A; BC := B;

(* start *)

ELIMINATION;

IF SINGULARITY

THEN WRITELN (* matrix is singular *)

ELSE BACKSUBSTITUTION;

(* if the matrix is not singular, print the result *)

(* and compute the residuum *)

IF NOT SINGULARITY THEN

BEGIN

WRITELN (’result’);

FOR I := 1 TO N DO WRITELN(I:2,X[I]:12:6)

CHAPTER 5. HOW TO DIRTY YOUR HANDS 86

;

(* residuum (R)=[A](X)-(B) *)

FOR I := 1 TO N DO

BEGIN

R[I] :=0;

FOR J := 1 TO N DO R[I] := R[I] + AC[I,J]*X[J];

R[I] := R[I] - BC[I]

END;

(*print *)

WRITELN (’residuum’);

FOR I:=1 TO N DO WRITELN (I:2,R[I]:12:6)

END

END. (* of main *)

End of Program 13. ¤

Before executing the Program 13 one has to choose a suitable value for the threshold
variable EPS. Evidently, this can be neither ’pure’ zero nor a value of the order of the
unit roundoff or of the machine epsilon.

The unit roundoff is the smallest positive number, say u, for which 1 + u is different
from 1. There is a similarly defined quantity, the machine epsilon, often denoted machep

= a - 1, where a is the smallest representable number greater than 1. For binary com-
puters with rounding we usually have machep = 2*u. In many texts this distinction is not
observed, since both values are very small and furthermore of the same order. For more
details see a nice book, written by one of the founding fathers of the numerical analysis
and Matlab, namely C. Moler, where – among others – the floating point arithmetics is
explained in a way that nobody could misunderstand it1. It could be downloaded from

www.mathworks.com/moler.
The previous paragraph should be complemented by a few words about the repre-

sentation of real numbers on the computer together with a reminder that the term real
numbers is currently being used in two different and rather contradictory meanings.
First, in mathematics, the term denotes the positive and negative numbers, together
with zero, but excluding the imaginary numbers. They range from −∞ to +∞ and
completely fill the number axis. Second, in the computer jargon, the same term actually
denotes the numbers of the real type, that could be represented on a computer using
the finite number of bits for their internal representation. There is a finite number of
numbers that could be represented this way, they are unequally spaced on the number
axis and furthermore their range is limited as schematically indicated in Fig. 5.1. Today,
the internal storage of integer and floating point numbers is standardized by IEEE stan-
dards. For more details see

www.psc.edu/general/software/packages/ieee/ieee.php.

An amusing paper about floating point intricacies titled How Futile are Mindless As-
sessments of Roundoff in Floating point computation? could be downloaded from

www.cs.berkeley.edu/~wkahan/Mindless.pdf.

The values of unit roundoffs and those of maximum represented numbers for a single

1Murphy law: If you explain something so clearly that nobody could misunderstand it, then there is
always somebody who will.

www.mathworks.com/moler
www.psc.edu/general/software/packages/ieee/ieee.php
www.cs.berkeley.edu/~wkahan/Mindless.pdf

CHAPTER 5. HOW TO DIRTY YOUR HANDS 87

¥¥ +

R

R
~

0

- realmax + realmax

underflow

- realmin + realmin

Figure 5.1: Real numbers R and numbers of real type R̃

and double precision are listed in the following table.

precision unit roundoff max number
single 6 × 10−8 1038

double 2 × 10−16 10308

The author of [28] recommends to set the elimination threshold as EPS = n*machep,
where n is the order of the matrix being solved.

5.4 Error estimation for Ax = b

The solution of Eq. (5.1) could formally be expressed as x = A−1b. Generally, the
input values, i.e. the values of A and of b are known with a limited precision. Our
goal is to find out how the error of the output, i.e. of the solution x, is influenced by
uncertainties of input data.

At first, let’s assume that it is only the right-hand side vector which is subjected to
errors, say ∆b. Then the solution of Eq. (5.1), instead of x will be x + ∆x

A(x + ∆x) = b + ∆b.

Substituting the last equation from (5.1) we get

A∆x = ∆b.

Assuming that A is regular we can write

∆x = A−1 ∆b.

Applying norms we get
‖∆x‖ = ‖A−1∆b‖,
‖∆x‖ ≤ ‖A−1‖‖∆b‖. (5.31)

Since b = Ax we can also write

‖b‖ ≤ ‖A‖‖x‖. (5.32)

CHAPTER 5. HOW TO DIRTY YOUR HANDS 88

Multiplying the second equation of (5.31) by (5.32) we get

‖∆x‖ ‖b ≤ ‖A‖ ‖A−1‖ ‖x‖ ‖∆b‖.

Assuming a nonzero vector b, whose norm is naturally ‖b‖ 6= 0, the previous equation
could be rearranged into

‖∆x‖
|x‖ ≤ ‖A‖ ‖A−1‖‖∆b‖

‖b‖ . (5.33)

The matrix norm product in (5.33) is called the condition number and could be denoted
by

c(A) = ‖A‖ ‖A−1‖. (5.34)

The condition number is defined for square matrices only and depends on the type of
norm utilized. Since we are looking for an error estimation the type of the norm being
used does not play a significant role. Rather, we should be interested in obtaining the
norm of the inverse matrix without inverting it. The inequality (5.33) could be rewritten
into

∆‖x‖
‖x‖ ≤ c(A)

‖∆b‖
‖b‖ . (5.35)

The relation ‖∆b‖ / ‖b‖ from (5.35) represents the relative error of the right hand side
and similarly, the term ‖∆x‖ / ‖x‖ corresponds to the relative error of the result. The
condition number c(A) could then be interpreted as the amplification factor of the right
hand side errors. Since c(A) ≥ 1, it is obvious that the accuracy of the result can never
be better than the accuracy with which we know the right hand-side-element values.

Now, let’s analyze what happens if the matrix elements are subjected to errors.
Starting with

Ax = b and (A + ∆A) (x + ∆x) = b,

then by subtracting and rearrangement we get

∆x = −A−1 ∆A (x + ∆x).

Applying the norms
‖∆x‖ ≤ ‖A−1‖ ‖∆A‖ ‖x + ∆x‖

and rearranging we get

‖∆x‖
‖x + ∆x‖ ≤ ‖A−1‖ ‖∆A‖ = c(A)

‖∆A‖
‖A | . (5.36)

One can state that the relative error of the result is bounded by the relative error of
matrix elements multiplied by the condition number of the matrix.

Large value of the condition number signifies that the matrix is badly conditioned
and that the results of (5.1) will be subjected to significant errors. At the same time, the
determinant value need not, however, be ’small’. It should be emphasized that a small
determinant value does not indicate that the matrix is ’nearly’ singular.

CHAPTER 5. HOW TO DIRTY YOUR HANDS 89

¤ Example

The solution of Ax = b with

A =

[
5 1
4 6

]
, b =

{
1
32

}

is {
x1

x2

}
=

{
−1
6

}
.

The matrix determinant detA = 26, while the matrix column norm is ‖A‖ = 9. The
inverse matrix, computed by hand, is

A−1 =
1

detA

[
a22 −a12

−a21 a11

]
=

1

26

[
6 −1
−4 5

]
.

The column norm of the inverse matrix is

‖A−1‖ = 10/26.

The condition number, computed from (5.34), is c(A) = 90/26. It is known that the
solution of (5.1) does not change if all the matrix elements, as well as the elements of the
right hand side, are multiplied by a constant, say 10−6. From the physical point of view
it only means that the variables and constants, we are we using for the computation are
expressed in different physical units. Now, our equation has the form

[
5 × 10−6 1 × 10−6

4 × 10−6 6 × 10−6

] {
x1

x2

}
=

{
1 × 10−6

32 × 10−6

}
.

The matrix determinant is then 10−12 times smaller, while the condition number, com-
puted from (5.34), does not change. Nor does change the result, i.e. {x} = {−1, 6}T.

Let’s continue in our example by changing the value of an element, say a11, by 1%.
The solution of (5.1) with

A =

[
5.05 × 10−6 1 × 10−6

4 × 10−6 6 × 10−6

]
, b =

{
1 × 10−6

32 × 10−6

}
.

is {
x1

x2

}
= A−1

{
b1

b2

}
=

{
−0.9885931558935361 . . .
5.992395437262357 . . .

}
.

A small change of input data values caused a similarly small change of result values. We
say that such a system (matrix) is well conditioned. An obvious conclusion is that a
small determinant value is immaterial2 provided that the matrix is well conditioned.

It remains to show what is a badly conditioned matrix. It is a matrix whose columns
are ’nearly’ linearly dependent. Remaining with trivial examples, we could take a sort
of insight from finding the intersection of two ’nearly’ parallel lines depicted in Fig. 5.2.
The equations are

2We are tacitly assuming that the floating point computation is employed. It should be reminded
that the above conclusion would not be valid for a system working with fixed point representation of
real numbers, which is typical for real time operating systems

CHAPTER 5. HOW TO DIRTY YOUR HANDS 90

x = 0,99992

x = x 0,00012 1

x2

x1

x2

x1

x1

0,0001

Figure 5.2: Two nearly parallel lines

x1 − x2 = 0.0001,

0.9999x1 − x2 = 0.

The matrix and its determinant are

A =

[
1 −1

0.9999 −1

]
, detA = 0.0001.

The inverse matrix is

A−1 = −10000

[
−1 1

−0.9999 1

]
.

The column norms and the condition number are

‖A‖ = 2, ‖A−1‖ = 20000, c(A) = 40000.

The solution is
{

x1

x2

}
= A−1

{
b1

b2

}
=

[
10000 − 10000

9999 − 10000

]
×

{
0.0001

0

}
=

{
1

0.9999

}
.

Again, let’s observe the influence of a small change of matrix element on the solution.
In this case

Ā =

[
1.01 −1

0.9999 −1

]
, b =

{
0.0001

0

}
,

then det Ā = −0.0101 and

Ā−1 = −99.00990099

[
−1 1

−0.9999 1.01

]
.

The solution is {
x̄1

x̄2

}
= Ā−1

{
b1

b2

}
=

{
0.00990099 · · ·
0.00990000 · · ·

}
.

CHAPTER 5. HOW TO DIRTY YOUR HANDS 91

Now, the 1% change of input data leads to hundredfold change of the result. Geo-
metrical explanation is obvious – a small change of the gradient of one line, being closely
parallel to the other line, significantly relocates their intersection.

End of Example. ¤

5.5 Condition number computation

Using the definition of the condition number by (5.31) for its computation requires to
invert the original matrix and then compute its norm. For n by n matrix additional n3 +
2n2 floating point operations are approximately needed. To circumvent this hindrance
we are looking for alternative approaches.

An approximate computation of the condition number could be based upon the fol-
lowing reasoning – see [28].

Let w and y are n-element vectors for which the following relation is satisfied

w = A−1y.

Applying norms we get
‖w‖ ≤ ‖A−1‖ ‖y‖,

from which we get
‖A−1‖ ≥ ‖w‖/‖y‖.

We can take an arbitrary sequence of vectors y(i), i = 1, 2, · · · k, k < n and apply the
Gauss elimination process to

Aw(i) = y(i)

for solving vectors w(i). The approximate norm of the inverse matrix, as shown in [6],
could than be taken as

‖A−1‖ = max(‖w(i)‖/‖y(i)‖). (5.37)

Practical experience shows that the approximate ratio of arbitrary vectors ‖w‖/‖y‖
processed by (5.34) converges to 1

2
‖A−1‖.

This approach is advocated in the classical book by Forsythe, Malcolm and Moler,
see [6]. A collection of Fortran90 procedures for mathematical computation, based on
the ideas from the book, could be downloaded from

http://www.pdas.com/programs/fmm.f90.

A cheep estimate of the norm of the inverse matrix is based on the following reasoning.
Denoting by x̄ the computed solution of Ax = b then

x̄ = A−1b,

then
‖x̄‖ ≤ ‖A−1‖ ‖b‖

and the estimate of the inverse matrix norm is

‖A−1‖ ≤ ‖x̄‖/‖b‖. (5.38)

http://www.pdas.com/programs/fmm.f90

CHAPTER 5. HOW TO DIRTY YOUR HANDS 92

5.6 Other ways to estimate the condition number

Assume that solving Ax = b by Gauss elimination we got the solution x̄. We could
thus compute a residual vector

r̄ = b − Ax̄, (5.39)

which would be zero provided that there were no round-off errors. Rearranging we get

r̄ = A(x − x̄) = Aē, (5.40)

where we defined the absolute error by

ē = x − x̄. (5.41)

The equation Aē = r̄ might subsequently be solved for

ē = A−1r̄ (5.42)

leading to an ’exact’ solution in the form

x = x̄ + ē. (5.43)

Before accepting this tempting solution, let’s analyze the the propagation of round-off
errors. Assuming that the magnitudes of elements of A matrix are not far from unity
and that the computation is provided with 8 significant digits and that 5 digits are lost
due to round-off errors during the elimination process. From it follows that the result is
known with precision of three digits only. Let’s denote the valid digits by V and the lost
ones by L.

A,b : 0.VVVVVVVV

x̄ = A−1b : 0.VVVLLLLL

r̄ : 0.000VVVVVLLL

Using the mentioned eight-digit arithmetics we actually do not see the last three digits
of the residual vector r̄. Solving (5.42) for ē we would lose five digits again and the
vector ē

ē = 0.000LLLLLLLL

would contain pure numerical garbage. So trying to estimate error ē by solving (5.42)
fails. The ’computing reality’ is not usually be as black as in the presented case where
we have lost five significant digits out of eight. To get a reasonable answer using this
approach requires to compute the residuum with the precision which is higher than that
for the rest of computation. The idea might be implemented as indicated in the Program
14.

Program 14
DOUBLE PRECISION SUM,AIJ,XJ,BI

...

DO 10 I = 1,N

SUM = 0.D0

DO 20 J = 1,N

AIJ = A(I,J)

XJ = X(J)

SUM = SUM + AIJ*XJ

CHAPTER 5. HOW TO DIRTY YOUR HANDS 93

20 CONTINUE

BI = B(I)

SUM = BI - SUM

R(I) = SUM

10 CONTINUE

End of Program 14. ¤

Another estimate of the condition number might be obtained by applying norms to
(5.39), which gives

‖ē‖ ≤ ‖A−1‖ ‖r̄‖. (5.44)

In most cases, a generic element of r̄ will have a magnitude equal to a few of last
significant digits of aij x̄j, i.e. to b−t maxi=1,2,...n (‖aij‖ ‖xj‖) where b is the digit basis for
the internal representation of ’real’ numbers on the computer being employed and t is the
number of significant digits representing the mantissa part of the number representation.
The residual norm could thus be expressed in the form

‖r̄‖ .
= b−t‖A‖ ‖x‖.

Substituting the last equation into (5.44) we get

‖ē‖ ≤ b−t‖A−1‖ ‖A‖ ‖x̄‖,
or

‖ē‖ ≤ b−tp (A)x̄.

So another estimate of the condition number is

c(A) ≥ ‖ē‖
‖x̄‖ bt. (5.45)

Since the order of b−t is equal to the order of the unit round-off error εM we can use
the previous relation for the relative error estimate of c(A) followingly

‖ē‖
‖x̄‖≤ c(A) b−t = c(A) εM. (5.46)

In technical practice we often assess the precision by number of significant digits in the
result. Assuming that we have at our disposal a computer with t significant decimal
digits then the order of relative errors of the matrix input data could be expressed as

‖∆A‖
‖A‖

.
= 10−t. (5.47)

Obtaining the result with s significant digits actually means

‖∆x‖
‖x + ∆x‖

.
= 10−s. (5.48)

Substituting Eqs. (5.47) and (5.48) into do Eq. (5.36) and rearranging we get a nice
and simple relation

s ≥ t − log10(c(A)) (5.49)

for the estimate of the number of significant digits or the result obtained when solving
Ax = b on a computer working with t significant decimal digits for a matrix whose
condition number is c(A).

CHAPTER 5. HOW TO DIRTY YOUR HANDS 94

5.7 Another partial pivoting example

How to proceed when a partial pivoting is required is shown in the Program 15, where
a Basic3 program, adapted from [6], is presented. The Fortran version of this program,
together with many others, can be downloaded from

www.pdas.com/programs/fmm.f90.

The Program 15 solves the system of n algebraic equations by means of two procedures,
namely DECOMP and SOLVE. The former assumes that the input matrix is stored in A(N,N)

array and creates – in the same place – the upper triangular matrix resulting from
the Gauss elimination process. During this process the condition number COND, using
Eq. (5.37), is computed and the matrix singularity is being checked. The procedure
employs two auxiliary vectors P(N) and W(N). The right hand side vector B(N) has to be
introduced only after the triangularization process has been finished, since the DECOMP

procedure employs it for the condition number evaluation. The SOLVE procedure provides
the right hand side reduction and the back substitution. The result is stored in the B(N)

vector and thus its initial contents is destroyed.
Program 15
4 REM N02EB last ver. 2008 12 23, ok

5 REM Program FORSYTE41

6 REM

7 OPEN "N02EB.txt" FOR OUTPUT AS #1

10 REM test decomp a solve

17 DEFDBL A-H,O-Z : DEFINT I-N

20 N=10

30 DIM A(N,N):DIM B(N)

40 DIM W(N): DIM P(N)

45 DIM C(N)

50 FOR I=1 TO N

51 FOR J=1 TO N

52 A(I,J)=0

54 NEXT J

55 NEXT I

56 FOR I=2 TO N-1

58 A(I,I-1)=-.5

60 A(I,I)=1

62 A(I,I+1)=-.5

64 XJ=2*N+2

65 NEXT I

66 A(1,1)=(N+2)/XJ

68 A(N,N)=A(1,1)

70 A(1,2)=-.5

72 A(N,N-1)=-.5

74 A(1,N)=1/XJ

76 A(N,1)=A(1,N)

210 REM

220 FOR I=1 TO N

222 B(I)=0

224 NEXT I

226 B(N)=1

250 REM make a copy

3An old fashioned GwBasic style is used. The Czech reference could be found at
http://www.dmaster.wz.cz/kurzy/basic/basic.htm. The interpreter itself could be downloaded
from http://www.geocities.com/rhinorc/gwbasic.html.

www.pdas.com/programs/fmm.f90
http://www.dmaster.wz.cz/kurzy/basic/basic.htm
http://www.geocities.com/rhinorc/gwbasic.html

CHAPTER 5. HOW TO DIRTY YOUR HANDS 95

260 FOR I=1 TO N

261 C(I)=B(I)

262 NEXT I

270 PRINT #1, "Right hand side vector": PRINT

280 FOR I=1 TO N

290 PRINT #1, B(I);" ";

300 NEXT I

310 PRINT #1, " ";

320 REM Call DECOMP(n,a,cond,b,p)

330 GOSUB 1000

340 PRINT #1, "cond=";COND

350 CONDP=COND+1

360 IF CONDP=COND THEN PRINT "Matrix is singular":STOP

362 REM Define the right hand side vector here - not sooner!!)

363 REM ***********************

365 FOR I=1 TO N: B(I)=C(I):NEXT I

366 REM ***********************

370 REM Call SOLVE(n,a,b,p)

380 GOSUB 3000

390 PRINT #1, " Results Rel. errrors [%]"

392 PRINT #1, "---"

400 FOR I=1 TO N

410 PRINT #1, I TAB(10) B(I) TAB(30) (I-B(I))*100/I

420 NEXT I

425 CLOSE #1

430 STOP

1000 REM DECOMP(n,a,cond,p,w)

1002 REM

1004 REM n matrix order

1006 REM a input matrix on input

1008 REM a triangugularized matrix on output

1010 REM cond condition number

1012 REM p,w pivot and auxiliary vectors

1014 REM

1016 P(N)=1

1018 IF N=1 THEN GOTO 1192

1020 NM1=N-1

1022 REM a-norm

1024 ANORM=0

1026 FOR J=1 TO N

1028 T=0

1030 FOR I=1 TO N

1032 T=T+ABS(A(I,J))

1034 NEXT I

1036 IF T>ANORM THEN ANORM=T

1038 NEXT J

1040 REM gaus. elim. - part. piv.

1042 FOR K=1 TO NM1

1044 KP1=K+1

1046 REM find a pivot

1048 M=K

1050 FOR I=KP1 TO N

1052 IF (ABS(A(I,K))>ABS(A(M,K)))THEN M=I

1054 NEXT I

1056 P(K)=M

1058 IF M<>K THEN P(N)=-P(N)

1060 T=A(M,K)

CHAPTER 5. HOW TO DIRTY YOUR HANDS 96

1062 A(M,K)=A(K,K)

1064 A(K,K)=T

1066 REM skip if pivot=0

1068 IF T=0 THEN GOTO 1098

1070 REM multipliers

1072 FOR I=KP1 TO N

1074 A(I,K)=-A(I,K)/T

1076 NEXT I

1078 REM exchange and eliminate

1080 FOR J=KP1 TO N

1082 T=A(M,J)

1084 A(M,J)=A(K,J)

1086 A(K,J)=T

1088 IF T=0 THEN GOTO 1096

1090 FOR I=KP1 TO N

1092 A(I,J)=A(I,J)+A(I,K)*T

1094 NEXT I

1096 NEXT J

1098 NEXT K

1100 REM estimate cond

1102 REM res. (a-trans)*y=e

1104 FOR K=1 TO N

1105 PRINT "k=";K

1106 T=0

1108 IF K=1 THEN GOTO 1118

1110 KM1=K-1

1112 FOR I=1 TO KM1

1114 T=T+A(I,K)*W(I)

1116 NEXT I

1118 EK=1

1120 IF T<0 THEN EK=-1

1122 IF A(K,K)=0 THEN GOTO 1196

1124 W(K)=-(EK+T)/A(K,K)

1126 NEXT K

1128 FOR L=1 TO NM1

1130 K=N-1

1132 T=0

1134 KP1=K+1

1136 FOR I=KP1 TO N

1138 T=T+A(I,K)*W(K)

1140 NEXT I

1142 W(K)=T

1144 M=P(K)

1146 IF M=K THEN GOTO 1154

1148 T=W(M)

1150 W(M)=W(K)

1152 W(K)=T

1154 NEXT L

1156 REM

1158 YNORM=0

1160 FOR I=1 TO N

1162 YNORM=YNORM+ABS(W(I))

1164 NEXT I

1166 REM solution A*Z=Y

1168 REM Call SOLVE(n,a,w,p)

1170 FOR I=1 TO N

1171 B(I)=W(I)

CHAPTER 5. HOW TO DIRTY YOUR HANDS 97

1172 NEXT I

1174 GOSUB 3000

1175 FOR I=1 TO N: W(I)=B(I): NEXT I

1176 ZNORM=0

1178 FOR I=1 TO N

1180 ZNORM=ZNORM+ABS(W(I))

1182 NEXT I

1184 REM estimate cond.

1186 COND=ANORM*ZNORM/YNORM

1188 IF COND<1 THEN COND=1

1190 RETURN

1192 REM 1 by 1

1194 IF A(1,1)<>0 THEN RETURN

1196 REM exact singularity

1198 COND=1E+32

1200 RETURN

1202 REM end of DECOMP

3000 REM SOLVE(n,a,b,p)

3002 REM

3004 REM input

3006 REM n .. matrix order

3008 REM a .. triang. matrix from DECOMP

3010 REM b .. RHS vector

3012 REM p .. pivot vector from DECOMP

3014 REM output

3016 REM b .. vector of results

3018 REM

3020 REM forward elimination

3022 IF N=1 THEN GOTO 3064

3024 NM1=N-1

3026 FOR K=1 TO NM1

3028 KP1=K+1

3030 M=P(K)

3032 T=B(M)

3034 B(M)=B(K)

3036 B(K)=T

3038 FOR I=KP1 TO N

3040 B(I)=B(I)+A(I,K)*T

3042 NEXT I

3044 NEXT K

3046 REM back substitution

3048 FOR L=1 TO NM1

3049 KM1=N-L

3050 K=KM1+1

3052 B(K)=B(K)/A(K,K)

3054 T=-B(K)

3056 FOR I=1 TO KM1

3058 B(I)=B(I)+A(I,K)*T

3060 NEXT I

3062 NEXT L

3064 B(1)=B(1)/A(1,1)

3066 RETURN

3068 REM end

3070 STOP

End of Program 15. ¤

The DECOMP (1000 - 1202) subroutine has the following input parameters

CHAPTER 5. HOW TO DIRTY YOUR HANDS 98

N number of unknowns, dimension of matrix, vectors,
A(N,N) array containing the matrix - generally unsymmetric.

The DECOMP subroutine has the following output parameters
A(N,N) triangularized input matrix,
COND estimate of condition number,
P(N) vector containing pivots.

The SOLVE (3000 - 3066) procedure has the following input parameters
N number of unknowns,
A(N,N) triangularized matrix from DECOMP,
B(N) right hand side vector,
P(N) vector containing pivots from DECOMP.

The SOLVE (3000 - 3066) procedure has the only parameter, i.e. B(N) vector, contain-
ing the solution.

For testing purposes the following input matrix is used

A =




(n + 2)/(2n + 2) −1/2 0 0 · · · 0 1/(2n + 2)
−1/2 1 −1/2 0 · · · 0 0

0 −1/2 1 −1/2 · · · 0 0
...
0 0 · · · −1/2 1 −1/2

1/(2n + 2) 0 · · · 0 −1/2 (n + 2)/(2n + 2)




.

(5.50)
It is a nice matrix, because its inverse is known in a general algebraic form, see [25],
namely

A−1 =




n n − 1 n − 2 · · · 2 1
n − 1 n n − 1 · · · 3 2
n − 2 n − 1 n · · · 4 3

...
2 3 4 · · · n n − 1
1 2 3 · · · n − 1 n




. (5.51)

Assuming the right hand side vector in the form

bT = { 0 0 0 · · · 0 1 },
the solution of (5.25) is evidently just the last column of A, i.e.

xT = { 1 2 3 · · · n − 1 n }.
The results of the Program 15 for n = 10 are presented in the following table

cond = 126.6239077610022

Counter Results Rel. errrors [%]

1 0.999999999999999 1.040834085586084D-13

2 1.999999999999999 5.828670879282072D-14

3 2.999999999999999 4.440892098500626D-14

4 3.999999999999999 3.608224830031759D-14

5 4.999999999999999 3.108624468950438D-14

6 5.999999999999999 2.405483220021173D-14

7 6.999999999999999 1.903239470785983D-14

8 7.999999999999999 1.249000902703301D-14

9 8.999999999999999 7.401486830834377D-15

10 10 4.440892098500626D-15

CHAPTER 5. HOW TO DIRTY YOUR HANDS 99

In Matlab, after the input data for the matrix and the right hand side vector have
been loaded, it suffices to write

Program 16
......

cond(A), x = A\b;

......

End of Program 16. ¤

Executing the Program 16, written in Matlab, we get

cond = 1.323604518682353e+002

Counter Results Rel. errrors [%]

1 9.999999999999889e-001 1.110223024625157e-012

2 1.999999999999987e+000 6.328271240363392e-013

3 2.999999999999986e+000 4.588921835117313e-013

4 3.999999999999985e+000 3.774758283725532e-013

5 4.999999999999983e+000 3.375077994860476e-013

6 5.999999999999982e+000 2.960594732333751e-013

7 6.999999999999985e+000 2.157004733557447e-013

8 7.999999999999987e+000 1.665334536937735e-013

9 8.999999999999989e+000 1.184237892933500e-013

10 9.999999999999993e+000 7.105427357601002e-014

Evaluating condition numbers by the Program 16 for different dimensions of A ma-
trix, defined by (5.50), and computing the estimated number of significant digits in the
result of Ax = b, using the formula (5.46) with t = 16, we get

matrix dimension condition number number of significant

digits (rounded)

10 132.360451868235 14

100 13507.5820929118 12

1000 1351031.12977951 10

5000 33775844.3395144 8

The Fig. 5.2 shows how the condition number – in this case – depends on the order
of the matrix. It also shows that whatever you plot in logarithmic coordinates closely
resembles a line.

Comparing the menial effort required to write a program for solving the system of
algebraic equations in Basic (Program 15) and in Matlab (Program 16) one might come
to conclusion – evidently a naive one, as the reader is hoped to discover soon – that
to work with element level languages (Basic, Pascal, Fortran77) is a futile activity that
should be avoided at all costs.

There are at least two important reasons why it is not so.
First, to effectively use languages with high-level programming primitives, allowing

the efficient processing of matrix algebra tasks, requires detailed knowledge of the matrix
algebra rules and of their particular implementations. One has to know what to choose
and from where

Second, and even more important, is the size and the ’standardness’ of the problem we
are trying to solve. This e-book is primarily written for human non-standard problem

CHAPTER 5. HOW TO DIRTY YOUR HANDS 100

solvers. Standard and ’regular’ problems could easily be tackled using a brute force
approach using standard problem oriented packages and freely available programming
libraries covering a wide range of numerical problems. Non-standard problems and/or
huge memory and time requirements necessitate – among others – in non-standard data
storage schemes which in turn require that standard procedures providing matrix algebra
operations have to be completely rewritten from the scratch which requires to be familiar
with matrix operations on an element level. So dirtying our hands with low, element
level programming is a necessity until the progress in computer technology provides for
a new measure of what is a huge size problem and what is a non-standard problem.

10
1

10
2

10
3

10
4

10
2

10
3

10
4

10
5

10
6

10
7

10
8

matrix size

M
at

la
b

co
nd

(A
)

Figure 5.3: Condition number for the matrix defined by (5.37) as a function of the
number of equations

5.8 Gauss elimination with a symmetric matrix

Symmetric matrices play an important role in computational mechanics since their
properties can advantageously be exploited for saving both the memory storage and the
computing time requirements.

Storing the elements, residing in the upper triangular part of the A matrix, in a vector
w columnwise – this storage approach, initially introduced by IBM in their programming
libraries, is known under the name symmetric matrix storage mode, is explained in the
Chapter 4 – requires n(n − 1)/2 memory locations instead of n for a regular ’full’ or
’general’ storage approach characterized by the statement of DIMENSION A(n,n) type. Of
course n is the order of the matrix.

CHAPTER 5. HOW TO DIRTY YOUR HANDS 101

The number of floating point operations – computing time – can be saved by realizing
that the property of symmetry is being maintained during the elimination process4.

From it follows that eliminating the k-th column of a symmetric matrix it suffices to
work with a part of the i-th row which is ’behind’ the diagonal. So the j-loop limits are
set to from i to n, instead of k+1 to n as it is in a ’full’ storage case.

One has also to realize that employing the symmetric matrix storage mode we not
have at our disposal the the under-diagonal element aik needed for the multiplier t =
aik/akk. This element has to be replaced by its symmetric counterpart, i.e. by aki. The
considerations, explaining the programming differences for a general, symmetric and
symmetric banded5 storage modes are summarized in Fig. 5.4.

a

a

IMAX N

JMAX N JMAX IMAXJMAX N
T A(I,K)/A(K,K)
JMIN K+1

T A(K,I)/A(K,K)
JMIN I

IMAX MINO (K+NBAND-1, N)

matrix
type

matrix
type

b

b

c

c

K=1 TO N-1

I=K+1 TO IMAX

J=JMIN TO JMAX

A(I,J) A(I,J)-A(K,J) T*

NEXT J

NEXT I

NEXT K

Matrix triangularization - Gauss elimination method

- general - symmetric - symmetric
banded

Figure 5.4: Employing symmetry and bandednes of a matrix during the Gauss elimina-
tion process

4So far no pivoting is assumed
5See the following paragraph – 5.9.

CHAPTER 5. HOW TO DIRTY YOUR HANDS 102

5.9 Gauss elimination with a symmetric, banded ma-

trix

The rectangular storage mode suitable for symmetric banded matrices is described
in 4.

Additional savings could be achieved by employing the matrix bandedness. To elim-
inate the k-th column elements it suffices to address the elements of the the i-th row
from the diagonal to the end of the band, since the elimination process does not create
new elements outside the band.

Thus the i-loop ranges from j to do JMAX where kde JMAX is the smaller value from
k + NBAND - 1, and n, where NBAND is the half-band width including the diagonal. Fur-
thermore, there is no need to eliminate the under-diagonal elements so the i counter
ranges from IMAX = JMAX only. See Fig. 5.3 again.

If, in addition to that, the matrix is positive definite, the pivoting process could
be avoided entirely, since all the pivots are to be positive. Of course, they still have to
checked. See [28]. An implementation example of the Gauss elimination with rectangular-
storage-mode ideas, written in Pascal, is in the Program 17. Procedure is named gre and
for the solution of the system of algebraic equations has to be called twice. First, with
key = 1 the matrix triangularization is obtained, then, with key = 2 the reduction of he
right hand side and the back substitution is carried out. This way allows for efficient
solution of cases with multiple right hand sides.

As a side product of triangularization we obtain the determinant value which is known
to be the product of diagonal elements of the upper triangular matrix, see [30]. If any
pivot becomes ’small’ or negative, the execution of the procedure is stopped with a an
error flag ier = -1.

CHAPTER 5. HOW TO DIRTY YOUR HANDS 103

Program 17
program tegrem1;

{test of gre and mavba procedures}

const

ndim=6;mdim=3;

type

rmat=array[1..ndim,1..mdim] of real;

rvec=array[1..ndim] of real;

var

a,acopy : rmat;

b,c,q,bcopy,r : rvec;

i,j,jm,n,ier,key,nband : integer;

eps, det : real;

procedure gre(var a:rmat; var b,q:rvec;

var n,nband,ier,key:integer;

var det,eps:real);

{ Solution of [A](q)=(b)}

{ for a symmetric positive definite matrix }

{ efficiently stored in a rectangular array}

label 9,99;

var i,j,k,imax,jmax : integer;

akk,aki,aij,akj,aii,ann,t,sum : real;

begin

ier:=0; det:=1;

case key of

1: begin {triangular decomposition ... key=1}

for k:=1 to n-1 do

begin

akk:=a[k,1]; imax:=k+nband-1;

if imax > n then imax:=n;

jmax:=imax;

if akk < eps then begin ier:=-1; goto 99 end;

det:=det*akk;

for i:=k+1 to imax do

begin

aki:=a[k,i-k+1];

if abs(aki) < eps then goto 9;

t:=aki/akk;

for j:=i to jmax do

begin

aij:=a[i,j-i+1];

akj:=a[k,j-k+1];

a[i,j-i+1]:=aij-t*akj

end;

9: end;

end;

det:=det*a[n,1];

end; {the end of triangularization}

2:begin {reduction of the right hand side ... pro key=2}

for k:=1 to n-1 do

begin

CHAPTER 5. HOW TO DIRTY YOUR HANDS 104

akk:=a[k,1]; imax:=k+nband-1;

if imax > n then imax:=n;

for i:=k+1 to imax do

begin

aki:=a[k,i-k+1]; t:=aki/akk; b[i]:=b[i]-t*b[k];

end;

end;

{ back substitution }

for i:=n downto 1 do

begin

aii:=a[i,1]; sum:=0; jmax:=i+nband-1;

if jmax > n then jmax:=n;

for j:=i+1 to jmax do

begin

aij:=a[i,j-i+1]; sum:=sum+aij*q[j];

end;

q[i]:=(b[i]-sum)/aii;

end;

end; {end of the reduction of the RHS and of the backsubstitution}

end; {of case}

99: {error return} end; {of GRE}

procedure mavba(var a:rmat; var b,c:rvec; var n,nband:integer);

{ matrix - vector multiplication (c) <- [A](b)}

{ matrix is stored in a rectangular array n*nband}

label 4; var i,j,key : integer;

sum1,sum2 : real;

begin

for i:=1 to n do

begin

sum1:=0; sum2:=0;

if i < nband then key:=1

else if i < n-nband+2 then key:=2

else key:=3;

case key of

1: begin

for j:=i to i+nband-1 do sum1:=sum1+b[j]*a[i,j-i+1];

if i=1 then goto 4;

for j:=1 to i-1 do sum2:=sum2+b[j]*a[j,i-j+1];

end;

2: begin

for j:=i to i+nband-1 do sum1:=sum1+b[j]*a[i,j-i+1];

for j:=i-nband+1 to i-1 do sum2:=sum2+b[j]*a[j,i-j+1];

end;

3: begin

for j:=i to n do sum1:=sum1+b[j]*a[i,j-i+1];

for j:=i-nband+1 to i-1 do sum2:=sum2+b[j]*a[j,i-j+1];

end;

end; {end of case}

4: c[i]:=sum1+sum2;

end; {of i-loop}

end; {of MAVBA}

{main}

begin

CHAPTER 5. HOW TO DIRTY YOUR HANDS 105

n:=6; nband:=3; eps:=1e-6;

{test matrix}

a[1,1]:=1; a[1,2]:=2; a[1,3]:=-1;

a[2,1]:=8; a[2,2]:=4; a[2,3]:=-2;

a[3,1]:=19; a[3,2]:=9; a[3,3]:=-3;

a[4,1]:=26; a[4,2]:=5; a[4,3]:=-3;

a[5,1]:=14; a[5,2]:=1; a[5,3]:=0;

a[6,1]:=6; a[6,2]:=0; a[6,3]:=0;

{make a copy}

acopy:=a;

{RHS vector}

b[1]:=-2; b[2]:=-10; b[3]:=35; b[4]:=47; b[5]:=-34; b[6]:=-3;

{mae a copy}

bcopy:=b;

write(’matrix’); writeln;

for i:=1 to n do

begin

writeln;

for j:=1 to nband do write(a[i,j]:7:2);

end;

writeln;

writeln(’RHS vector’);

for i:=1 to n do write(b[i]:7:2);

writeln;

key:=1;

gre(a,b,q,n,nband,ier,key,det,eps); {triangularization}

writeln(’ier,det:’,ier,det);

if ier=0 then

begin

key:=2;

gre(a,b,q,n,nband,ier,key,det,eps); {RHS reduction and backsubstitution}

writeln(’result’);

for i:=1 to n do write(q[i]:7:2);

writeln;

end

else writeln(’solution failed’);

{check (c) <- [A](q)}

mavba(acopy,q,c,n,nband);

writeln(’check (c) <- [A](q)’);

for i:=1 to n do write(c[i]:7:2);

{reziduum}

for i:=1 to n do r[i]:=c[i]-bcopy[i];

writeln; writeln(’rezidual vector’);

for i:=1 to n do writeln(r[i]);

end.

End of Program 17. ¤

The Program contains a trivial test example. Also the mavba procedure for the matrix
vector multiplication is presented, explaining the need for dirtying our fingertips with
low level element programming in cases when a special storage schemes are employed.

The Fortran77 equivalent of the procedure for solving the system of algebraic equa-
tions, whose matrix is stored in the rectangular storage mode, is in the Program 18.
Program 18

SUBROUTINE GRE(A,B,Q,N,NDIM,NBAND,DET,EPS,IER,KEY)

DIMENSION A(NDIM,NBAND),B(N),Q(N)

CHAPTER 5. HOW TO DIRTY YOUR HANDS 106

DOUBLE PRECISION SUM

C *** Solution of [R]{Q} = {B}

C *** by Gauss elimination for a symmetric,

C *** banded, positive definite matric [R]

C

C It is assumed that the upper triangular part

C of the band [R] is stored in a rectangular array A(NBAND,N)

C Parameters

C A on input contains the upper triangular band of [R] matrix

C on output triangularized part of [R]

C

C B RHS vector

C Q result vector

C N number of unknowns

C NDIM row dimension of A array declared in main

C NBAND half bandwidth (including diagonal)

C DET matrix determinant

C EPS smallest acceptable pivit value

C IER error parameter

C = 0 ... O.K.

C = -1 matrix is singular or not positive definite

C computation is interupted

C

C KEY key of the solution

C = 1 ... triangularization of the input matrix

C = 2 ... RHS reduction and back substitution

NM1=N-1

IER=0

II=KEY

GO TO (1000,2000), II

C triangularization

1000 DET=1.

DO 9 K=1,NM1

AKK=A(K,1)

IMAX=K+NBAND-1

IF(IMAX .GT. N) IMAX=N

JMAX=IMAX

IF(AKK .GT. EPS) GO TO 5

IER=-1

RETURN

5 DET=DET*AKK

KP1=K+1

DO 9 I=KP1,IMAX

AKI=A(K,I-K+1)

IF(ABS(AKI) .LT. EPS) GO TO 9

T=AKI/AKK

DO 8 J=I,JMAX

AIJ=A(I,J-I+1)

AKJ=A(K,J-K+1)

8 A(I,J-I+1)=AIJ-AKJ*T

9 CONTINUE

ANN=A(N,1)

DET=DET*ANN

C success

RETURN

CHAPTER 5. HOW TO DIRTY YOUR HANDS 107

C reduction of B

2000 DO 90 K=1,NM1

KP1=K+1

AKK=A(K,1)

IMAX=K+NBAND-1

IF(IMAX .GT. N) IMAX=N

DO 90 I=KP1,IMAX

AKI=A(K,I-K+1)

T=AKI/AKK

B(I)=B(I)-T*B(K)

if(abs(b(i)) .lt. 1.e-30) b(i)=0.0

90 continue

back substitution

Q(N)=B(N)/A(N,1)

AL1=A(N-1,2)

AL2=A(N-1,1)

Q(N-1)=(B(N-1)-AL1*Q(N))/AL2

DO 10 IL=3,N

I=N-IL+1

AII=A(I,1)

SUM=0.D0

J1=I+1

JMAX=MIN0(I+NBAND-1,N)

DO 20 J=J1,JMAX

AIJ=A(I,J-I+1)

20 SUM=SUM+AIJ*Q(J)

10 Q(I)=(B(I)-SUM)/AII

RETURN

END

End of Program 18. ¤

5.10 Gauss elimination with a matrix stored by means

of skyline scheme

This storage scheme is also known as variable band or variable profile mode. It is
described in the Chapter 4.

It is known – see [30] and [28] – that there appear no fill-in elements outside the
skyline of the matrix during the elimination process. That’s why it is suitable to store
only under-skyline elements in the memory.

The Fortran implementation of the Gauss elimination process with a matrix stored
in the skyline storage mode is listed in [2].

CHAPTER 5. HOW TO DIRTY YOUR HANDS 108

5.11 Gauss elimination with a tri-diagonal matrix

The elements of a tri-diagonal matrix

A =




a11 a12 0 0 · · · 0
a21 a22 a23 0 · · · 0
0 a32 a33 a34

. . .

an−2,n−1 an−1,n−1 an,n−1

0 · · · an,n−1 an,n




could be associated with three vectors e, f , g as follows

A =




e1 f1 0 0
d2 e2 f2 0
0 d3 e3 f3

0 0 d4 e4

. . .

dn−1 en−1 fn−1

dn en




Then, we can could proceed as follows

A = TU,

where

T =




1 0 0
t2 1 0 0
0 t3 1
...

. . .

0 · · · tn 1




, U =




u1 f1 0 · · · 0
u2 f2 0

u3 f3
...

0
. . .

un−1 fn−1

un




.

Assuming the matrix regularity we could triangularize the matrix as indicated in the
Template 26.
Template 26, Triangularization A → U

u1 = e1

FOR i = 2 TO n
ti = di/ui−1

ei = ei − ti fi−1

NEXT i ,

Template 27, Right hand side reduction b → c

c1 = b1

FOR i = 2 TO n
ci = bi − ti ci−1

NEXT i

Template 28, Back substitution

CHAPTER 5. HOW TO DIRTY YOUR HANDS 109

xn = cn/, un

FOR i = n − 1 TO 1
xi = ci − fi xi+1/ui

NEXT i

The Basic implementation of the Gauss elimination process with a tridiagonal matrix is
indicated in the Program 19.
Program 19
4 REM NUMAT21, last rev. 010392, ok

5 REM Program TRIDIAG

6 REM Gauss elimination for a system of algebraic equations

7 REM with a tridiagonal matrix

10 N=10

20 DIM A(N,N)

30 DIM E(N): DIM F(N): DIM D(N)

40 DIM B(N): REM right hand side

50 DIM X(N): REM solution

60 DIM U(N)

70 DIM R(N): DIM T(N)

100 REM matrix

105 REM diagonal

110 FOR I=1 TO N

120 A(I,I)=I

130 E(I)=I

140 NEXT I

150 REM above diagonal elements

160 FOR I=1 TO N-1

170 A(I,I+1)=I+1

180 F(I)=A(I,I+1)

190 NEXT I

200 REM under diagonal elements

210 FOR I=2 TO N

220 A(I,I-1)=N-I

225 D(I)=A(I,I-1)

230 NEXT I

240 REM print

250 FOR I=1 TO N

260 FOR J=1 TO N

270 PRINT A(I,J);" ";

280 NEXT J

290 PRINT

300 NEXT I

305 PRINT "Right Hand Side"

310 REM RHS

320 FOR I=1 TO N

330 B(I)=2*I-N

340 PRINT B(I);" ";

350 NEXT I

360 PRINT

370 GOSUB 1000

380 REM print result

390 PRINT "Solution"

400 FOR I=1 TO N

410 PRINT I,X(I)

420 NEXT I

430 REM Residual vector

CHAPTER 5. HOW TO DIRTY YOUR HANDS 110

435 PRINT "Residual vector"

440 FOR I=1 TO N

450 R(I)=0

460 FOR J=1 TO N

470 R(I)=R(I)+A(I,J)*X(J)

480 NEXT J

490 R(I)=R(I)-B(I)

500 PRINT I,R(I)

510 NEXT I

520 STOP

1000 REM procedure TRIDIAG

1010 REM Solution of [A]{x}={b} with a tridiagonal matrix

1020 REM matrix diagonal is stored in e(n)

1030 REM under diagonal elements are in d(n)

1040 REM above diagonal elements are in f(n)

1050 REM u(n),t(n) auxiliary fields

1055 REM b(n) RHS

1060 REM x(n) solution

1070 REM

1080 REM matrix triangularization

1090 U(1)=E(1)

1100 FOR I=2 TO N

1110 T(I)=D(I)/U(I-1)

1120 U(I)=E(I)-T(I)*F(I-1)

1130 NEXT I

1140 REM reduction of RHS

1150 X(1)=B(1)

1160 FOR I=2 TO N

1170 X(I)=B(I)-T(I)*X(I-1)

1180 NEXT I

1190 REM back substitution

1200 X(N)=X(N)/U(N)

1210 FOR I=N-1 TO 1 STEP -1

1220 X(I)=(X(I)-F(I)*X(I+1))/U(I)

1230 NEXT I

1240 RETURN

1250 REM end of TRIDIAG

End of Program 19. ¤

5.12 Using Gauss elimination for the inverse matrix

computation

One way how to solve Ax = b consists in computation of A−1 complemented by its
multiplication by the right hand side vector b.

Such a process, however, is highly inefficient, since the inverse matrix computation
generally requires n3 operations, where n the matrix order. The consequent matrix-vector
multiplication adds additional n2 operations. The solution of the system of algebraic
equations with one right hand side requires only n3/3 + n2 −n/3 operations as shown in
[30].

There is another, even more significant reason against matrix inversion, namely the
loss of symmetry and banddedness of the matrix being inverted. This prevents usage of
any efficient matrix storage modes.

CHAPTER 5. HOW TO DIRTY YOUR HANDS 111

A few decades ago solving a system of equations by the matrix inversion was con-
sidered to be a sort of computational crime. Today, when a 1000 × 1000 matrix can
be inverted in a fraction of second executing the simple Matlab statement inv(A), one
can proceed unpunished for doing this. But, as before, it is the problem size and its
’standardness’ which influences the decision of an acceptable brute force solvability. The
limits are higher than before, as well as the consequences and fines we have pay for our
eventual failures.

So if we insist on the computing the matrix inversion we still could do in a memory-
efficient way by solving the system of equations n times

Ax(i) = e(i), i = 1, 2, · · · n,

with right hand side vectors e(i) containing zeros with the exception of a single ’1’ at its
i-th location. Each solution gives a single vector x(i) which is just the i-th column of the
inverse matrix A−1 , i.e.

A−1 = [x(1) x(2) · · · x(n)].

This way we can carry out the triangularization of the matrix only once employing thus
the suitable efficient matrix storage schemes. Obtaining the inverse this way requires
the 4n3/3 operations, which is still more than using classical Gauss-Jordan reduction
process. It might be acceptable if the memory limitations are more severe than those of
time efficiency.

5.13 Cholesky decomposition

There are other methods based on the matrix decomposition into two or more ma-
trices. One of them, based on the decomposition of the input matrix into the product
of two matrices, bears the name after its ’invertor’ André-Luis Cholesky. See [27]. The
Cholesky decomposition is a product of the lower tridiagonal matrix L and the upper
tridiagonal one U with 1’s on its diagonal, i.e.

A = LU, (5.52)

where

L =




l11 0 · · · 0
l21 l22
...

. . . 0
ln1 · · · lnn


 , U =




1 u12 · · · u1n

0 1 · · · u2n

. . .
...

0 · · · 0 1


 . (5.53)

Writing the Eq. (5.52) element wise, considering the explicit forms of the L and U
matrices we get

aij =
n∑

k=1

likukj =

j−1∑

k=1

likukj + lij. (5.54)

From Eq. (5.54) all the elements of U and L could be expressed. For the first row
elements we have

l11 = a11

u11 = 1; u1j = a1j/l11, j = 2, 3, · · · , n
(5.55)

CHAPTER 5. HOW TO DIRTY YOUR HANDS 112

and for the remaining ones, i.e. for i = 2, 3, · · · , n

li1 = ai1,

lij = aij −
∑j−1

k=1 likukj, j = 2, 3, · · · , i

uij = (aij −
∑i−1

k=1 likukj)/lii j = i + 1, i + 2, · · · , n.

(5.56)

You should notice that each element of A matrix is used only once, so the resulting
elements of L and of U matrices could be stored in the matrix being decomposed.
Evidently the diagonal elements need not be stored at all – they are already in place.

The initial problem
Ax = b (5.57)

is thus expressed by the equivalent form

LUx = b, (5.58)

that can alternatively be written as

Ly = b Ux = y. (5.59)

Also the following relations are valid

U = L−1 A; y = L−1b. (5.60)

So triangularizing the input matrix we, at the same time, are reducing the right hand
side vector. The vector of unknowns is then obtained by the back substitution process
from the second equation of (5.59).

The use of the Cholesky decomposition is advantageous mainly for symmetric matri-
ces. In this case, instead of (5.58), the matrix is decomposed of two matrices that are
mutually transposed

A = RT R. (5.61)

It has been proved, see [5], that this decomposition is unique. Writing the product on
the element level we get




a11 a12 · · · a1n

a22 a2n

. . .
...

ann


 =




r11 0 · · · 0
r12 r22

. . .
...

r1n · · · rnn







r11 r12 · · · r1n

0 r22

. . .
...

0 · · · 0 rnn


 . (5.62)

We express the individual elements from Eq. (5.62). The first row of R is

r11 =
√

a11

r1j = a1j/r11, j = 2, 3, · · · , n.
(5.63)

For the remaining rows, i.e. for i = 2, 3, · · · , n, we have

rii =

√√√√aii −
i−1∑

k=1

r2
ki,

rij = aij −
i−1∑

k=1

rkirkj, j = i + 1, i + 2, · · · , n.

(5.64)

CHAPTER 5. HOW TO DIRTY YOUR HANDS 113

Similarly to (5.59) we write
RTy = b, Rx = y. (5.65)

Writing out explicitly the element products in previous equations we get the following
formulas

yi = (bi −
i−1∑

k=1

rki yk)/rii, i = 1, 2, · · · , n,

xi = (yi −
n∑

k=1+i

rik xk)/rii, i = n, n − 1, · · · , 1.

(5.66)

The sums are executed only if their upper limits are not smaller then the lower ones.
Programs in Basic implementing the above ideas, commented in Czech, are available in
[17] and [16].

Another approach for the Cholesky decomposition is based on the decomposition
of the quadratic form, belonging to the symmetric positive A matrix, into the sum of
squares of linear terms. Let’s rewrite the input matrix in the form

A =

[
a11 bT

b B

]
. (5.67)

The B matrix is symmetric and positive definite as well. Now the A can be decomposed
as follows

(0)A = A =

[√
a11 0T

b/
√

a11 I

] [
1 0T

0 (1)A

] [√
a11 bT/

√
a11

0 I

]
. (5.68)

Comparing (5.67) with (5.68) we get

(1)A = B − bbT

a11

. (5.69)

Repeating this process we obtain the matrix of the first order and meanwhile the de-
composition (5.68) will yield the product of the lower triangular and upper triangular
matrices.

Gauss and Cholesky factorizations require roughly the same number of operations.
See [30].

The incomplete Cholesky factorizations became popular as a precondition matrix
in iterative methods for the solution of algebraic equations. See [1]. To carry out
the incomplete Cholesky factorizations one should use the standard Cholesky algorithm
modified in such a way that any resulting entry is set to zero if the corresponding entry
in the original matrix is also zero. This forcefully prevents the fill-in, so the incompletely
factorized matrix has the same sparsity as the original one. See [7].

5.14 Iterative methods

The systems of algebraic equations could alternatively be solved by iterative methods.
In general the number of iterations needed for reaching the result cannot be predicted
in contradistinction to ’direct’ methods (Gauss, Cholesky, Gauss-Jordan, etc) where the
result is obtained by the finite number of computing operations, known in advance.

In this paragraph a few iterative methods as simple iteration, Jacobi, Gauss-Seidel
will be briefly mentioned.

CHAPTER 5. HOW TO DIRTY YOUR HANDS 114

5.14.1 Simple (successive substitution) iteration method

The system of algebraic equations

Ax = b, (5.70)

with a regular, square matrix A of the n-th order and with the right hand side vector b
is to be solved for unknown vector x.

The iterative process for solving (5.70) might start with

x = Ux + v, (5.71)

where the U matrix is square and of the order n, and the v vector are known.
Choosing (0)x as a suitable initial approximation we construct the sequence

(k+1)x = U (k)x + v, (5.72)

where k is the iteration counter. The procedure defined by (5.72) will be called as the
basic stationary iterative scheme of the first order (see [8]). It is called stationary, since
the U matrix does not change during the the process. The first order implies that the
new approximation (k+1)x depends on the preceding one (k)x only.

The method (5.72) converges to the solution of (5.70) if the spectral radius of U is
ρ(U) < 1. The convergence does not depend on the choice of the initial approximation
of (0)x.. The proof can be found in [5]. The spectral radius is defined as in absolute
value the greatest eigenvalue of the matrix, i.e.

ρ(U) = max
i=1 ···n

|λi|,

where λi are the eigenvalues of U. For the exact solution x∗, using (5.71), we can write

x∗ = Ux∗ + v. (5.73)

Subtracting (5.73) from (5.72), we get

(k+1)e = U (k)e, where (k)e = (k)x − x∗,

which is the k-th step error. Back substituting we get

(k+1)e = U (0)e, (0)e = (0)x − x∗. (5.74)

The sufficient condition for the convergence of the simple iteration method is following.
If for the U matrix of (5.72) its norm ‖U‖ < 1, then the iterative process is independent
of the choice of the initial approximation and the absolute error estimate is

‖x∗ − (k)x‖ ≤ ‖U‖
1 − ‖U‖ ‖(k)x − (k−1)x‖. (5.75)

The proof is in [33].

CHAPTER 5. HOW TO DIRTY YOUR HANDS 115

Implementation of the simple iteration method

To get (5.71) out of (5.70) we proceed as follows. To each side of Ax = b we add
the x vector

x + Ax = x + b

and then
x = (I − A)x + b, where I is the identity matrix.

The iterative scheme is thus conceived as

(k+1)x = (I − A) (k)x + b, (5.76)

with U = I − A, and v = b. It goes under the name the simple iterative method or the
Richardson’s methods. See [8]. The above method could be modified as follows.

The initial equation (5.72) is multiplied by a scalar c.

cAx = cb.

Now, we will proceed as before, i.e. the vector x will be added and the iteration scheme
could be conceived as

(k+1)x = (I − cA) (k)x + cb. (5.77)

It can be shown (see [8], [29], [12]), that using c = 2
M(A)+m(A)

the method (5.77) converges
for any choice of an initial approximation. It is assumed the A matrix is positive definite
and M(A) and m(A) are their maximum and minimum eigenvalues respectively.

Implementation considerations are in the Template 29.

CHAPTER 5. HOW TO DIRTY YOUR HANDS 116

Template 29, Simple iteration

Preliminaries
Chose a nonzero scalar c
Compute U matrix:

U ← I − cA
Compute v vector

v ← cb
Parameters
ier = 0 error parameter
k = 0 iteration counter
ε precision threshold
kmax admissible number of iterations
x initial estimation, might be a zero vector

Iteration (5.72)

A : k ← k + 1
if k > kmax then ier=-1; RETURN

x ← Us + v a new iteration
r ← ‖x − s‖ difference of two consecutive iterations
rnorm = ‖r‖ norm of the difference

Test convergence

if rnom < ε then x is solution; RETURN

else s ← x; GO TO A

On the output the error parameter ier has the following meaning

ier = 0 converged,
= −1 failed, i.e. kmax steps not enough for reaching the required precision.

The Basic implementation of previous considerations is in the Program 20.
Program 20
4 REM NUMAT17 last rev. 100109, ok

5 REM Program SimpleIter

6 REM solution of [A]{x} = {b} by the simple iteration

10 N=4

20 DIM A(N,N), V(N), D(N), B(N), X(N), S(N), R(N)

60 REM parameters

70 C=1

80 EPS=.0000001

90 KMAX=30

100 PRINT "Solution of [A]{x} = {b}"

120 REM matrix

130 FOR I=1 TO N: FOR J=1 TO N

140 A(I,J)=1

150 NEXT J: NEXT I

160 REM its diagonal

170 FOR I=1 TO N

180 A(I,I)=-9

CHAPTER 5. HOW TO DIRTY YOUR HANDS 117

190 NEXT I

200 REM RHS vector

210 FOR I= 1 TO N

220 B(I)=-I

230 NEXT I

240 PRINT

250 REM

260 PRINT "Matrix"

280 FOR I=1 TO N

290 FOR J=1 TO N

300 PRINT A(I,J);" ";

320 NEXT J

330 PRINT

340 NEXT I

350 REM

360 PRINT "RHS vector"

380 FOR I=1 TO N

390 PRINT B(I);" ";

410 NEXT I

420 REM

440 GOSUB 1000: REM simple iteration

450 IF IER=-1 THEN PRINT "Failed": STOP

460 IF IER=-2 THEN PRINT "norma [U] >= 1, solution will not converge": STOP

470 REM

480 PRINT "Solution for a given eps=";EPS;" c=";C

500 PRINT "was obtained with ";K;" iterations:"

520 FOR I=1 TO N

530 PRINT X(I);" ";

550 NEXT I

560 STOP

1000 REM simple iteration

1002 REM

1004 REM input data

1006 REM c a nonzero constant

1008 REM eps prescribed threshold

1010 REM kmax ... admissible number of iterations

1012 REM a(n,n) . matrix (its contents is destroyed on the way)

1014 REM b(n) ... RHS vector

1016 REM output data

1018 REM x(n) ... solution

1020 REM ier error parameter

1022 REM = 0 O.K.

1024 REM = -1 failed for a given kmax and eps

1026 REM = -2 norm [U]>= 1, no convergence possible

1028 REM v(n),d(n),s(n) ... auxiliary vectors

1030 REM

1032 IER=0

1034 REM compute d(i)

1036 FOR I=1 TO N

1038 D(I)=1/(A(I,I)+C)

1040 NEXT I

1042 REM compute [E] in place of [A]

1044 FOR I=1 TO N: FOR J=1 TO N

1046 A(I,J)=-A(I,J)

1048 NEXT J: NEXT I

1050 REM diagonal

1052 FOR I=1 TO N

CHAPTER 5. HOW TO DIRTY YOUR HANDS 118

1054 A(I,I)=C

1056 NEXT I

1058 REM product [D]*[E] in an efficient way

1060 FOR I=1 TO N: FOR J=1 TO N

1062 A(I,J)=D(I)*A(I,J)

1064 NEXT J: NEXT I

1066 REM compute norm of [U]

1068 SUM=0

1070 FOR I=1 TO N: FOR J=1 TO N

1072 SUM=SUM+A(I,J)*A(I,J)

1074 NEXT J: NEXT I

1076 UNORM=SQR (SUM)

1078 PRINT "norma [U]=";UNORM

1080 IF UNORM>=1 THEN LET IER=-2: RETURN

1082 REM vector {v}

1084 FOR I=1 TO N

1086 V(I)=D(I)*B(I)

1088 NEXT I

1090 K=0

1092 REM initial approximation

1094 FOR I=1 TO N

1096 S(I)=0

1098 NEXT I

1100 REM iteration loop

1102 K=K+1

1104 IF K>KMAX THEN IER=-1: RETURN

1106 REM [U]*{x}+{v}

1108 FOR I=1 TO N

1110 S1=0

1112 FOR J=1 TO N

1114 S1=S1+A(I,J)*S(J)

1116 NEXT J

1118 REM sum [U]*{x}+{v}

1120 X(I)=S1+V(I)

1122 NEXT I

1124 REM difference of old and new iterations

1126 FOR I=1 TO N

1128 R(I)=ABS (X(I)-S(I))

1130 NEXT I

1132 REM norm of the difference

1134 SUM=0

1136 FOR I=1 TO N

1138 SUM=SUM+R(I)*R(I)

1140 NEXT I

1142 RNORM=SQR (SUM)

1144 IF RNORM<EPS THEN RETURN

1146 REM current iteration

1148 PRINT"k=";K

1152 FOR I=1 TO N

1154 PRINT X(I);" ";

1158 NEXT I

1160 PRINT

1162 REM do it again

1164 FOR I=1 TO N

1166 S(I)=X(I)

1168 NEXT I

1170 GOTO 1100

CHAPTER 5. HOW TO DIRTY YOUR HANDS 119

1182 REM end of simple iteration procedure

End of Program 20. ¤

5.14.2 Jacobi method

Assuming the matrix A of (5.70) is regular, one can – using pivoting – avoid zero
elements on the diagonal. Then the Eq. (5.70) could be rewritten into the form

x1 = − 1
a11

(0 + a12x2 + · · · + a1nxn − b1),

x2 = − 1
a22

(a21x1 + 0 + · · · + a2nxn − b2),
...

xn = − 1
ann

(an1x1 + an2x2 + · · · + 0 − bn).

(5.78)

or

xi =
1

aii

(bi −
i−1∑

j=1

aijxj −
n∑

j=i+1

aijxj) i = 1, · · · , n. (5.79)

The Jacobi iteration is defined as

(k+1)xi =
1

aii

(bi −
i−1∑

j=1

aij
(k)xj −

n∑

j=i+1

aij
(k)xj) i = 1, · · · , n. (5.80)

where for i = 1
i−1∑

j=1

aijxj = 0,

while for i = n
n∑

j=i+1

aijxj = 0.

To express the Jacobi method in the matrix form we write

A = AL + D + AU,

where

D =




a11

a22 0
. . .

0 ann


 (5.81)

AL =




0
a21 0 0
...

. . .

an1 · · · an,n−1 0


 , AU =




0 a12 · · · a1n

0 · · · a2n

. . .

0 0 an−1,n

0




.

The Jacobi iteration (5.80) in matrix form is
k+1x = −D−1 (AL + AU) (k)x + D−1 b. (5.82)

Comparing (5.82) with (5.72) we find that the Jacobi method could be classified as the
basic iteration method of the fist order with

U = −D−1 (AL + AU),
v = D−1 b.

(5.83)

CHAPTER 5. HOW TO DIRTY YOUR HANDS 120

Convergence of Jacobi method

A sufficient condition for the Jacobi method to converge is

|aii| >
n∑

j=1

|aij|, pro i = 1, 2, · · · , n (5.84)

This is also the condition of the diagonal dominance of the matrix.

Comparing the simple and Jacobi iteration methods

Elements of the Jacobi iteration matrix D−1(AL + AU) will be in absolute value
smaller than those of I − A when the diagonal elements of A are in absolute value > 1.
Furthermore the diagonal elements of the Jacobi iteration matrix are zero. Thus its
norm is smaller than that of the iteration norm of the simple iteration and the former
method iterates faster.

From it follows that solving the system by Jacobi method is identical to that of simple
iteration provided that the initial equation is divided by diagonal elements, i.e.

D−1 Ax = D−1b,

since
U = I − D−1A = I − D−1(AL + D + AU) = −D−1(AL + AU).

The programming considerations could be followed reading the listing of the Program
21.

Program 21
4 REM NUMAT18 last rev. 010392, ok

5 REM Program JACOITER

6 REM solution of [A]{x} = {b} by the Jacobi method

10 N=4

20 DIM A(N,N), D(N), B(N), X(N), S(N), R(N)

60 REM parameters

70 EPSZ=.000001: EPS=.000001: KMAX=30

100 PRINT "Solution of [A]{x} = {b} by the Jacobi method"

120 REM [A] matrix

130 FOR I=1 TO N: FOR J=1 TO N

140 A(I,J)=1

150 NEXT J: NEXT I

160 REM diagonal

170 FOR I=1 TO N

180 A(I,I)=-9

190 NEXT I

200 REM RHS vector

210 FOR I= 1 TO N

220 B(I)=-I

230 NEXT I

240 PRINT

250 REM

260 PRINT "[A] matrix"

280 FOR I=1 TO N

290 FOR J=1 TO N

300 PRINT A(I,J);" ";

CHAPTER 5. HOW TO DIRTY YOUR HANDS 121

320 NEXT J

330 PRINT

340 NEXT I

350 REM

360 PRINT "RHS vector"

380 FOR I=1 TO N

390 PRINT B(I);" ";

410 NEXT I

420 REM

430 PRINT

440 GOSUB 1000: REM Jacobi iteration

450 IF IER=-1 THEN PRINT "Failed": STOP

460 IF IER=-2 THEN PRINT "Convergence condition not satisfied": STOP

465 IF IER=-3 THEN PRINT "There are zeros on diagonal": STOP

470 REM

480 PRINT "The solution for the prescribed eps=";EPS

500 PRINT "was obtained with ";K;" iterations:"

520 FOR I=1 TO N

530 PRINT X(I);" ";

550 NEXT I

560 STOP

1000 REM Jacobi iteration

1002 REM Solution od [A]{x} = {b} by Jacobi iteration method

1004 REM input data

1006 REM eps prescribed precision

1008 REM epsz ... test for the nonzero value of the diagonal element

1010 REM kmax ... permissible number of iterations

1012 REM a(n,n) . [A] matrix (destroyed)

1014 REM b(n) ... RHS vector

1016 REM output data

1018 REM x(n) ... solution

1020 REM ier error parameter

1022 REM =0 O.K.

1024 REM =-1 no convergence for given kmax and eps

1026 REM =-2 convergence condition not satisfied

1027 REM =-3 zero diagonals

1028 REM v(n),d(n),s(n) ... auxiliary vectors

1030 REM

1032 IER=0

1034 REM check the convergence conditions

1036 REM diagonal elements

1038 S1=0

1040 FOR I=1 TO N

1042 S1=S1+ABS(A(I,I))

1044 NEXT I

1046 REM out-of diagonal elements

1048 S2=0: S3=0

1050 FOR I=1 TO N

1052 FOR J=1 TO I-1

1054 S2=S2+ABS(A(I,J))

1056 NEXT J

1058 FOR J=I+1 TO N

1060 S3=S3+ABS(A(I,J))

1062 NEXT J

1064 NEXT I

1066 IF S1<(S2+S3) THEN IER=-2: RETURN

1068 REM check zeros on the diagonal

CHAPTER 5. HOW TO DIRTY YOUR HANDS 122

1070 FOR I=1 TO N

1072 IF (ABS(A(I,I)) < EPSZ) THEN IER=-3: RETURN

1074 NEXT I

1076 REM zeroth iteration

1078 FOR I=1 TO N

1080 S(I)=0

1082 NEXT I

1084 REM

1086 K=0

1088 REM iteration

1090 K=K+1

1092 IF K>KMAX THEN IER=-1: RETURN

1094 FOR I=1 TO N

1096 S1=0: S2=0

1098 FOR J=1 TO I-1

1100 S1=S1+A(I,J)*S(J)

1102 NEXT J

1104 FOR J=I+1 TO N

1106 S2=S2+A(I,J)*S(J)

1108 NEXT J

1110 X(I)=(B(I)-S1-S2)/A(I,I)

1112 NEXT I

1114 REM difference of old and new iterations

1116 FOR I=1 TO N

1118 D(I)=ABS (X(I)-S(I))

1120 NEXT I

1122 REM its norm

1124 SUM=0

1126 FOR I=1 TO N

1128 SUM=SUM+D(I)*D(I)

1130 NEXT I

1132 RNORM=SQR (SUM)

1134 IF RNORM<EPS THEN RETURN

1136 REM current iteration

1138 PRINT "k=";K

1142 FOR I=1 TO N

1144 PRINT X(I);" ";

1148 NEXT I

1150 PRINT

1152 REM do it again

1154 FOR I=1 TO N

1156 S(I)=X(I)

1158 NEXT I

1160 GOTO 1090

1162 REM end of Jacobi

End of Program 21. ¤

A contemporary way, based on high programming primitives, dealing with matrices
as building blocks, that are available in Matlab, is shown in Programs 22 and in 23. The
function procedures are taken from [1]. Its electronic version is available at

http://www.netlib.org/linalg/html_templates/Templates.html.

Program 22
function [x, error, iter, flag] = jacobi(A, x, b, max_it, tol)

http://www.netlib.org/linalg/html_templates/Templates.html

CHAPTER 5. HOW TO DIRTY YOUR HANDS 123

% -- Iterative template routine --

% Univ. of Tennessee and Oak Ridge National Laboratory

% October 1, 1993

% Details of this algorithm are described in "Templates for the

% Solution of Linear Systems: Building Blocks for Iterative

% Methods", Barrett, Berry, Chan, Demmel, Donato, Dongarra,

% Eijkhout, Pozo, Romine, and van der Vorst, SIAM Publications,

% 1993. (ftp netlib2.cs.utk.edu; cd linalg; get templates.ps).

%

% [x, error, iter, flag] = jacobi(A, x, b, max_it, tol)

%

% jacobi.m solves the linear system Ax=b using the Jacobi Method.

%

% input A REAL matrix

% x REAL initial guess vector

% b REAL right hand side vector

% max_it INTEGER maximum number of iterations

% tol REAL error tolerance

%

% output x REAL solution vector

% error REAL error norm

% iter INTEGER number of iterations performed

% flag INTEGER: 0 = solution found to tolerance

% 1 = no convergence given max_it

iter = 0; % initialization

flag = 0;

bnrm2 = norm(b);

if (bnrm2 == 0.0), bnrm2 = 1.0; end

r = b - A*x;

error = norm(r) / bnrm2;

if (error < tol) return, end

[m,n]=size(A);

[M, N] = split(A , b, 1.0, 1); % matrix splitting

for iter = 1:max_it, % begin iteration

x_1 = x;

x = M \ (N*x + b); % update approximation

error = norm(x - x_1) / norm(x); % compute error

if (error <= tol), break, end % check convergence

end

if (error > tol) flag = 1; end % no convergence

% END jacobi.m

%

End of Program 22. ¤

You may notice that the split function is required. It is as follows.
Program 23

CHAPTER 5. HOW TO DIRTY YOUR HANDS 124

function [M, N, b] = split(A, b, w, flag)

%

% function [M, N, b] = split(A, b, w, flag)

%

% split.m sets up the matrix splitting for the stationary

% iterative methods: jacobi and sor (gauss-seidel when w = 1.0)

%

% input A DOUBLE PRECISION matrix

% b DOUBLE PRECISION right hand side vector (for SOR)

% w DOUBLE PRECISION relaxation scalar

% flag INTEGER flag for method: 1 = jacobi

% 2 = sor

%

% output M DOUBLE PRECISION matrix

% N DOUBLE PRECISION matrix such that A = M - N

% b DOUBLE PRECISION rhs vector (altered for SOR)

[m,n] = size(A);

if (flag == 1), % jacobi splitting

M = diag(diag(A));

N = diag(diag(A)) - A;

elseif (flag == 2), % sor/gauss-seidel splitting

b = w * b;

M = w * tril(A, -1) + diag(diag(A));

N = -w * triu(A, 1) + (1.0 - w) * diag(diag(A));

end;

% END split.m

End of Program 23. ¤

5.14.3 Gauss-Seidel method

The convergence of the Jacobi method could naturally be accelerated by using the
newly computed iteration matrix elements immediately after they have been obtained.
It means that when computing (k+1)x according to (5.80) we use (k+1)x2 instead of (k)x2

as before.
The Gauss-Seidel iteration could then be described by

(k+1)xi =
1

aii

(bi −
i−1∑

j=1

aij
(k+1)xj −

n∑

j=i+1

aij
(k)xj), i = 1, · · · , n. (5.85)

In matrix form we have

(AL + D) (k+1)x = −AU
(k)x + b,

i.e.
(k+1)x = (AL + D)−1 (−AU

(k)x + b). (5.86)

CHAPTER 5. HOW TO DIRTY YOUR HANDS 125

Gauss-Seidel iteration matrix and the corresponding vector are

U = −(AL + D)−1 AU,

v = (AL + D)−1 b.

Convergence of Gauss-Seidel method

A sufficient condition for the convergence is the same as that for the Jacobi method,
i.e. the matrix diagonal dominance of the A matrix

|aii| >

n∑

j = 1
j 6= i

|aij|, i = 1, 2, · · · , n.

The Gauss-Seidel method converges for any initial approximation, provided the matrix
A is symmetric, positive definite. See [8], [23]. All the needed steps for implementing
the Gauss-Seidel algorithm on the element level are listed in the Program 24.

Program 24
4 REM NUMAT19 last rev. 010392, ok

5 REM Program GSITER

6 REM Solution of [A]{x} = {b} by Gauss Seidel

10 N=4

20 DIM A(N,N), D(N), B(N), X(N), S(N), R(N)

60 REM parameters

70 EPSZ=.000001: EPS=.000001: KMAX=30

100 PRINT "solution of [A]{x} = {b} by Gauss Seidel"

120 REM [A] matrix

130 FOR I=1 TO N: FOR J=1 TO N

140 A(I,J)=1

150 NEXT J: NEXT I

160 REM diagonal

170 FOR I=1 TO N

180 A(I,I)=-9

190 NEXT I

200 REM RHS vector

210 FOR I=1 TO N

220 B(I)=-I

230 NEXT I

240 PRINT

250 REM

260 PRINT "[A] matrix"

280 FOR I=1 TO N

290 FOR J=1 TO N

300 PRINT A(I,J);" ";

320 NEXT J

330 PRINT

340 NEXT I

350 REM

360 PRINT "RHS vector"

380 FOR I=1 TO N

390 PRINT B(I);" ";

410 NEXT I

CHAPTER 5. HOW TO DIRTY YOUR HANDS 126

420 REM

430 PRINT

440 GOSUB 1000: REM Gauss-Seidel method

450 IF IER=-1 THEN PRINT "Failed": STOP

460 IF IER=-2 THEN PRINT "Convergence condition not satisfied": STOP

465 IF IER=-3 THEN PRINT "The are zeros on the diagonal": STOP

470 REM

480 PRINT "The solution for a given eps= ";EPS

500 PRINT "was obtained with ";K;" iterations:"

520 FOR I=1 TO N

530 PRINT X(I);" ";

550 NEXT I

560 STOP

1000 REM Gauss-Seidel iteraction

1002 REM Solution of [A]{x} = {b} by Gauss-Seidel method

1004 REM input parameters

1006 REM epsz ... zero threshold for diagonal elements

1008 REM eps prescribed precision

1010 REM kmax ... permissible number of iterations

1012 REM a(n,n) . [A] matrix (destroyed)

1014 REM b(n) ... RHS vector

1016 REM output parameters

1018 REM x(n) ... solution

1020 REM ier error parameter

1022 REM = 0 O.K.

1024 REM =-1 no convergence for given kmax and eps

1026 REM =-2 convergence condition not satisfied

1027 REM =-3 zero diagonals

1028 REM v(n),d(n),s(n) ... auxiliary vectors

1030 REM

1032 IER=0

1034 REM check the convergence conditions

1036 REM diagonal elements

1038 S1=0

1040 FOR I=1 TO N

1042 S1=S1+ABS(A(I,I))

1044 NEXT I

1046 REM out-of diagonal elements

1048 S2=0: S3=0

1050 FOR I=1 TO N

1052 FOR J=1 TO I-1

1054 S2=S2+ABS (A(I,J))

1056 NEXT J

1058 FOR J=I+1 TO N

1060 S3=S3+ABS(A(I,J))

1062 NEXT J

1064 NEXT I

1066 IF S1<(S2+S3) THEN IER=-2: RETURN

1068 REM check zeros on the diagonal

1070 FOR I=1 TO N

1072 IF (ABS(A(I,I))<EPSZ) THEN IER=-3: RETURN

1074 NEXT I

1076 REM zero-th iteration

1078 FOR I=1 TO N

1080 S(I)=0

1082 NEXT I

1084 REM

CHAPTER 5. HOW TO DIRTY YOUR HANDS 127

1086 K=0

1088 REM iteration

1090 K=K+1

1092 IF K>KMAX THEN IER=-1: RETURN

1094 FOR I=1 TO N

1096 S1=0: S2=0

1098 FOR J=1 TO I-1

1100 S1=S1+A(I,J)*X(J)

1102 NEXT J

1104 FOR J=I+1 TO N

1106 S2=S2+A(I,J)*S(J)

1108 NEXT J

1110 X(I)=(B(I)-S1-S2)/A(I,I)

1112 NEXT I

1114 REM difference of old and new iterations

1116 FOR I=1 TO N

1118 D(I)=ABS (X(I)-S(I))

1120 NEXT I

1122 REM its norma

1124 SUM=0

1126 FOR I=1 TO N

1128 SUM=SUM+D(I)*D(I)

1130 NEXT I

1132 RNORM=SQR (SUM)

1134 IF RNORM<EPS THEN RETURN

1136 REM current iteration

1138 PRINT "k=";K

1142 FOR I=1 TO N

1144 PRINT X(I);" ";

1148 NEXT I

1150 PRINT

1152 REM update and do it again

1154 FOR I=1 TO N

1156 S(I)=X(I)

1158 NEXT I

1160 GOTO 1090

1162 REM end of Gauss-Seidel

End of Program 24. ¤

5.14.4 Successive overrelaxation (SOR) method

The Gauss-Seidel method could be accelerated by introducing so called relaxation
parameter, which is denoted ω here.

The new approximation is taken as

(k+1)xi = (k)xi + ω ((k+1)xGS
i − (k)xi), (5.87)

where (k+1)xGS
i is the approximation taken from the Gauss-Seidel method. For ω = 1

the method is identical with the Gauss-Seidel method. Substituting (5.85) into (5.87)
we get

(k+1)xi = (1−ω) (k)xi +
ω

aii

(bi−
i−1∑

j=1

aij
(k+1)xj −

n∑

j=i+1

aij
(k)xj), i = 1, · · · , n (5.88)

CHAPTER 5. HOW TO DIRTY YOUR HANDS 128

or

(k+1)xi = (k)xi +
ω

aii

(bi −
i−1∑

j=1

aij
(k+1)xj −

n∑

j=i

aij
(k)xj). (5.89)

The matrix formulation of (5.88) is

(k+1)x = (D + ωAL)−1(−ωAU + (1 − ω)D) (k)x + ωb. (5.90)

The iteration matrix of the successive overrelaxation method is

U = (D + ωAL)−1 (−ωAU + (1 − ω)D).

Convergence of the successive overrelaxation method

A necessary condition for the SOR method to converge is that the relaxation param-
eter ω is bounded by 0 < ω < 2. This is the condition necessary but not sufficient.

If, however the A matrix is symmetric and positive definite then the SOR method
converges for every ω ∈ (0, 2) and for every initial approximation. For more details see
[32]. The Basic program in can be found in [17].

5.15 Solution of large systems

Modelling the continuum mechanics problems by discretization methods often re-
quires solving the system of large algebraic equations.

What is a large scale problem in computational mechanics can be characterized by
the order of a matrix which is subjected to solution of linear algebraic equations. The
notion of ’largeness’ of a matrix size dramatically changed during our lifetime. In 1965
it was the order of 100 by 100 which was considered large by A. Ralston ([26]), B.N.
Parlett ([22]) in 1978 considered a symmetric matrix 200 by 200 being large. In 1993 M.
Papadrakakis ([21]) discusses the medium sized problems with a few hundred thousands
equations. The largest matrix used for testing the high performance computers in 2007
was of the order 2 456 063. The matrix was full, nonsymmetric. See

www.top500.org.

Today, (written at the end of 2008) one can expect troubles with storing more than
a million of equations in the operational memory of currently available computers. A
definition of what is a currently available computer is politely declined here.

So for large problems, approximately defined above, the methods using auxiliary
disk storage have to be used. Suddenly the problem cannot be solved by a brute force
and all the special matrix features (symmetry, bandedness, positive definiteness) should
be efficiently employed in order to minimize the transfer of data between the internal
memory and the disk medium.

Modelling physical and engineering tasks in continuum mechanics by methods based
on the discretization requires to solve large systems of algebraic equations. The memory
requirements often exceeds the available internal memory of a computer available for the
task. The memory problems could be circumvented either

• by domain decomposition methods described in the Chapter 7,

CHAPTER 5. HOW TO DIRTY YOUR HANDS 129

• or by using the famous frontal method, invented by B. Irons see [11] and [9]. The
frontal method does not carry out the global stiffness assembly process explicitly –
instead it provides the Gauss elimination on neighboring finite elements and stores
the intermediary results on a disk medium. As such the frontal method is capable
of solving the systems with millions of equations. For the programming details see
the Chapter 10,

• or by disk oriented algorithms based on storing the working matrices and/or their
parts on an external memory medium, usually on a disk. See the paragraph 5.15.1.

In this paragraph we will concentrate on the implementation of Gauss elimination
process with a matrix stored in the rectangular storage mode in a disk file. The multiple
right-hand sides are allowed.

Of course the communication with external memory is substantially slower than with
the internal one, so when designing software based on these considerations, one has to
try to minimize the the amount of data transfers. And of course to employ all the nice
matrix properties as their symmetry, sparsity, positive definiteness, etc.

In this respect the nature is kind to us since our matrices are frequently endowed
with the above mentioned properties.

5.15.1 Disk band algorithm

Let the half-band width, including the diagonal, is denoted NBAND. It is assumed
that the upper part of matrix is stored columnwise on the disk file the as indicated in
Fig. 5.5. One should notice that only the triangular part of the matrix under the row

NBAND

N

symmetric positive
definite banded

matrix

Figure 5.5: Rectangular band storage on the disk

containing the current pivot is influenced by the corresponding elimination operations
at each elimination step. After the elimination step with the row containing the pivot
has been finished and stored on the disk, the next consecutive column is being read from
the disk. The size of internal memory needed for this kind of elimination algorithm is
proportional to the hatched triangle which moves down during the elimination process.

CHAPTER 5. HOW TO DIRTY YOUR HANDS 130

A similar algorithm, together with Fortran listing, is presented in [31].
A more effective algorithm, coming from the workshop of the Institute of Thermo-

mechanics, is listed in the Program 25.
Program 25

SUBROUTINE DBANGZ(N,K,KK,A,DS,B,EPS,KEY,LKN,FNAM,IRECL,MAXR,NZ)

C

C THE CATALOG NAME OF THIS SUBROUTINE IS ’S.DBANGZ’

C Programmed and tested by Ivo Hunek

C ***

C * *

C * SOLUTION OF A SYSTEM OF LINEAR ALGEBRAIC EQUATIONS *

C * WITH POSITIVE DEFINITE SYMMETRIC AND BANDED MATRIX *

C * BY DIRECT-ACCESS GAUSS ELIMINATION METHOD. *

C * (SUITABLE FOR LARGE SYSTEMS OF EQUATIONS IN FEM) *

C * *

C ***

C

C * DOUBLE PRECISION VERSION *

C IN THE CALLING PROGRAM THE ARRAY NZ(K) MUST BE DECLARED

C

C BEFORE CALLING PROCEDURE THE FILE MUST EXIST ON THE DISC

C WITH DIRECT ACCESS,LINK NAME ’LKN’ AND WITH N RECORDS,

C WHICH CONTAINS BANDED MATRIX,EFFICIENTLY STORED

C IN RECTANGULAR FORM.

C

C --

C DESCRIPTION OF PARAMETERS:

C

C N.........NUMBER OF EQUATIONS=NUMBER OF RECORDS IN INPUT DISC

C FILE

C K.........HALF WIDTH OF BAND OF MATRIX (WITH DIAGONAL)

C KK........NUMBER OF ROWS OF SYSTEM’S MATRIX,

C WHICH MAY BE IN MEMORY AT THE SAME TIME

C K<=KK<=N

C A(KK,K)...WORKING MATRIX,IN WHICH ROWS OF SYSTEM’S MATRIX

C ARE HANDLED (IT MUST BE DECLARED IN MAIN)

C DS(N).....WORKING VECTOR

C ON INPUT: ARBITRARY

C ON OUTPUT: VECTOR OF SOLUTION

C B(N)......THE RIGHT SIDE VECTOR

C EPS.......IF ELEMENT OF MATRIX IS >= EPS,THEN

C IT IS TAKEN AS NON-ZERO *** DOUBLE PRECISION ***

C KEY.......SOLUTION KEY

C =1 REDUCTION OF MATRIX

C =2 REDUCTION OF THE RIGHT SIDE VECTOR

C AND BACK SUBSTITUTION

C LKN.......LINK NAME OF FILE,IN WHICH A MATRIX OF SYSTEM IS STORED

C FNAM......NAME OF DISC FILE (TYPE CHARACTER - IT MUST BE

C DECLARED IN MAIN, MAXIMUM IS 12 CHARACTERS)

C IRECL.....RECORD LENGHT (IN BYTES)

C MAXR......MAXIMUM NUMBER OF RECORDS

C NZ(K).....WORKING VECTOR

C ---

C

CHARACTER*(12,V) FNAM

OPEN(LKN,FILE=FNAM,ACCESS=’DIRECT’,STATUS=’OLD’,

/ RECL=IRECL,MAXREC=MAXR)

CHAPTER 5. HOW TO DIRTY YOUR HANDS 131

C

DIMENSION A(KK,K),DS(N),B(N),NZ(K)

DOUBLE PRECISION A,DS,B,RATIO,EPS

C

C VECTOR OF RIGHT SIDES B INTO WORKING VECTOR DS

DO 2 I=1,N

2 DS(I)=B(I)

C

II=KEY

GO TO (1000,2000), II

C

C READ FIRST PART OF MATRIX

1000 DO 1 I=1,KK

1 READ(LKN’I) (A(I,J),J=1,K)

C

JUMP=0

C

C IEQ...STEP IN GAUSS ELIMINATION

DO 6 IEQ=1,N

C WRITE(6,21)

C21 FORMAT(1X,’ MEZIVYSLEDKY: MATICE A(KK,K)’/)

C DO 22 ID=1,KK

C22 WRITE(6,24) (A(ID,JD),JD=1,K)

C24 FORMAT(1X,10E12.6)

JUMP=JUMP+1

IF(JUMP.GT.KK) JUMP=JUMP-KK

I=0

DO 29 J=2,K

IF (ABS(A(JUMP,J)).LT.EPS) GO TO 29

I=I+1

NZ(I)=J

29 CONTINUE

IF (I.EQ.0) GO TO 4

JUMP1=JUMP-1

DO 5 L=1,I

M=NZ(L)

ITMP=JUMP1+M

IF(ITMP.GT.KK) ITMP=ITMP-KK

IF(ABS(A(JUMP,1)).LT.EPS) GO TO 300

RATIO=A(JUMP,M)/A(JUMP,1)

IR1=M-1

DO 3 JC=L,I

MM=NZ(JC)

JTMP=MM-IR1

3 A(ITMP,JTMP)=A(ITMP,JTMP)-RATIO*A(JUMP,MM)

5 CONTINUE

C

4 KT=IEQ+KK

IF(KT.GT.N) GO TO 6

KQ=IEQ

WRITE(LKN’KQ) (A(JUMP,J),J=1,K)

READ(LKN’KT)(A(JUMP,J),J=1,K)

6 CONTINUE

C

C RECORD LAST BLOCK OF MATRIX ON DISC

IND1=(N/KK)*KK+1

IND2=N

CHAPTER 5. HOW TO DIRTY YOUR HANDS 132

M=1

DO 14 I=IND1,IND2

WRITE(LKN’I) (A(M,J),J=1,K)

M=M+1

14 CONTINUE

C

IND1=N-KK+1

IND2=(N/KK)*KK

DO 16 I=IND1,IND2

WRITE(LKN’I) (A(M,J),J=1,K)

M=M+1

16 CONTINUE

C

C REDUCTION SUCCESSFULLY ENDED

C

RETURN

C

C ---

C

C REDUCTION OF VECTOR DS

C READ FIRST PART OF A MATRIX

2000 DO 100 I=1,KK

100 READ(LKN’I)(A(I,J),J=1,K)

C

JUMP=0

C

DO 160 IEQ=1,N

JUMP=JUMP+1

IF(JUMP.GT.KK) JUMP=JUMP-KK

C

DO 150 IR=2,K

IF(ABS(A(JUMP,IR)).LT.EPS) GO TO 150

IR1=IR-1

RATIO=A(JUMP,IR)/A(JUMP,1)

DS(IEQ+IR1)=DS(IEQ+IR1)-RATIO*DS(IEQ)

IF(ABS(DS(IEQ+IR1)).LT.1.D-30) DS(IEQ+IR1)=0.D0

150 CONTINUE

C

KT=IEQ+KK

IF(KT.GT.N) GO TO 160

READ(LKN’KT)(A(JUMP,J),J=1,K)

160 CONTINUE

C

C BACK SUBSTITUTION

C

DS(N)=DS(N)/A(JUMP,1)

I=N

C

DO 9 M=2,KK

JUMP=JUMP-1

IF(JUMP.EQ.0) JUMP=KK

I=I-1

ITMP=I-1

C

DO 10 J=2,K

IF(ABS(A(JUMP,J)).GT.EPS) DS(I)=DS(I)-A(JUMP,J)*DS(ITMP+J)

10 CONTINUE

CHAPTER 5. HOW TO DIRTY YOUR HANDS 133

C

9 DS(I)=DS(I)/A(JUMP,1)

C

IF(I.EQ.1) RETURN

12 I=I-1

READ(LKN’I) (A(1,M),M=1,K)

ITMP=I-1

C

DO 8 J=2,K

IF(ABS(A(1,J)).GT.EPS) DS(I)=DS(I)-A(1,J)*DS(ITMP+J)

8 CONTINUE

C

DS(I)=DS(I)/A(1,1)

IF(I.GT.1) GO TO 12

GO TO 200

C

C

300 WRITE(6,310) JUMP,A(JUMP,1)

310 FORMAT(1X,’ ERROR-RIGIDITY MATRIX NOT POSITIVE DEFINITE’//

/ 1X,’ JUMP=’,I6,5X,’A(JUMP,1)=’,E14.6)

STOP 01

C

200 RETURN

END

End of Program 25. ¤

The algorithm was designed for symmetric, positive definite matrices with a constant
band width. Only the upper symmetric part, from the diagonal to the band boundary,
is stored (rowwise) in the disk memory as indicated in the Fig. 5.6. The intermediate

matrix [A]

K

KN

N

0

0

0

disk file

the first record

the n-th record

Figure 5.6: Rectangular band storage scheme. Caution: Identifier K is used here instead
of NBAND

working array for the Gauss elimination, which is kept in the operational memory, is

CHAPTER 5. HOW TO DIRTY YOUR HANDS 134

rectangular and has dimensions KK × K, where the number of working rows is KK ≥ K.
The row dimension of the working array KK should be as large as possible, constrained
by the available memory size, to minimize the number of data transfers between the disk
and the operational memory. In the fist step, see Fig. 5.7, the rows 1 to KK read from the

read and write
from and to

disk file

N

K
K

NBAND

Figure 5.7: Data transfer

disk file, proper elimination steps within the working array are executed and then the
first row is written to the disk file and is replaced by the Then the first row is replaced
the (KK + 1)-th row, the second one by the (KK + 2)-th row, etc.

Detailed description of the DBANGZ procedure

The system of algebraic equations Ax = b is solved. It is assumed that the matrix is
symmetric, banded, positive definite. The classical Gauss elimination without pivoting
is used. The number of records of the disk file, see Fig. 5.6, is equal to the number
of equations N. In this case the half-band width is denoted K, instead of NBAND as it was
before. Number of rows kept in the memory, i.e. KK, is stored in an auxiliary vector A.
The minimum number of rows of A is the bandwidth size, i.e. K.

The subroutine DBANGZ is a modification of that initially described in[19], which in
turn is based on the program published in [20]. Now the subroutine DBANGZ allows for
multiple right-hand sides.

The input and output parameters of the procedure are at the beginning of the listing
in the Program 25.

At first, the right-hand side (RHS) vector B is copied into the auxiliary vector DS, just
in case it is needed again. Then, depending on the KEY value, i.e. 1 or 2, the triangular
factorization or the RHS reduction and the back substitution is carried out.

CHAPTER 5. HOW TO DIRTY YOUR HANDS 135

Triangular factorization – KEY = 1

The first part of the matrix, defined by KK × K, is copied into the auxiliary array A.
The pointer IEQ denotes the row, containing the current pivot. The IEQ-th row of the
matrix, also the IEQ-th record of the disk file, is in the auxiliary array stored in its JUMP-th
row. So the the integer variable JUMP varies from 1, to KK. See the do-loop with label 6.

The pivot for the IEQ-th elimination step is – due to the assumed rectangular storage
scheme – located at A(JUMP,1). Having the general storage scheme for N × N in mind, then
at each step the nonzero elements in the column under the pivot are to be eliminated.
Due to the matrix symmetry, and the rectangular storage scheme being used, these
elements are identical with A(JUMP,J) for J = 2 to K.

See Fig. 5.8, where a hypothetical situation at the third elimination step is indicated.
Now, one has to eliminate the elements with indices (5,3) and (6,3), in the classical

general storage (10x10)

K

K
K

K

K

N

10

10

9

9

8

8

7

77

6

66

5

55

4

4

4

4

4

4

3

3

3

3

3

3

2

2 2

2

2

1

1 1
1

1

PIVOT

rectangular storage (7x4)

auxiliary field NZ
for JUMP=3 is

Figure 5.8: General and rectangular storage compared. Crosses indicate non-zero ele-
ments

general storage scheme – on the left in Fig. 5.8 – whose position in the ’rectangular’
storage scheme (on the right) is (JUMP,3) and (JUMP,4), with JUMP=3 in the A array. The
J indices of non-zero elements in A(JUMP,J) are being stored in the auxiliary array NZ.
which efficiently controls the subsequent processing of following rows. See do-loop with
label 29.

If there is at least one pointer in the NZ array, the under-pivot elements in subse-
quent rows are nulled. The pointers to these rows in the A array are given by ITMP

= (JUMP+NZ(L)-1) modulo6 KK, where L = 1 ... I with I being the number of non-zero
elements in A(JUMP,J).

The multiplier for the ITMP-th row is obtained from RATIO = A(JUMP,NZ(L)) / A(JUMP,1)

with L = 1, ... I. Next, the elements in the ITMP-th row are processed. The process
is limited only to those elements A(ITMP, JTMP), whose column index is JTMP = NZ(JC) -

NZ(L) + 1, where JC = L, ... ,I, i.e. only for such elements having a non-zero element

6Modulo function provides the remainder after the integer division.

CHAPTER 5. HOW TO DIRTY YOUR HANDS 136

in the pivot row ’above’ them (the term ’above’ is expressed ’optically’ in the general
storage mode). This way the repeated check of non-zero elements is avoided.

Having finished the IEQ-th step of elimination, the row – pointed to by JUMP value
appearing in A) – is not needed any longer and is written into the IEQ-th record of the
disk file. Then the IEQ+KK-th row from the disk (the next one) is read from the disk file.

The subsequent over-writing the rows of the auxiliary A array requires to compute
the row pointer modulo KK.

CHAPTER 5. HOW TO DIRTY YOUR HANDS 137

Reduction of RHS and backsubstitution – KEY = 2

• Reduction of the right hand side

The first part of the triangularized matrix (rows 1 · · · KK) is read from the disk
and stored into the auxiliary array A. The multiplier is evaluated the same way as
before, i.e. by RATIO = A(JUMP,IR)/A (JUMP,1), where IQ os the pointer to nonzero
elements of the JUMP-th row, i.e. 2 ≤ IR ≤ K.

• Backsubstitution

The contents of the auxiliary array DS, is being filed by newly computed components
of the solution backwards. The last KK components is computed directly, since the
elements of the last part of the triangularized matrix is already available in the
CPU memory.

5.15.2 Block Gauss elimination

This method is limited neither by the halfband size, nor by the number of equation
assuming that the available disk memory is sufficient.

The principle of this approach consists in division of the original matrix into square
submatrices of the same size and expressing the elimination process with submatrices.
(See [4] and [31])

K∗
ij = Kij − KT

is K−1
ss Ksj.

If the number of equation is a power of 2, the recursive approach could be implemented.
See [24], [10].

5.16 Solution of overdetermined systems

Sometimes we could have more equations than unknowns – then the system of equa-
tions has the form

Am×nxn×1 − bm×1 = 0m×1 (5.91)

with A matrix being rectangular. The Eq. (5.91) is classified as overdetermined and
generally is not solvable, i.e. one cannot find the x vector satisfying the Eq. (5.91)
exactly. The overdetermined system usually arises as the result of repeated experimental
measurements and it would be unwise to disregard any of m − n equations to get a
solution.

Instead, assuming that all the equation have the same statistical significance, we will
try to get a ’closest possible’ solution. We could proceed as follows. First, we compute
a residuum of the overdetermined system

r = Ax − b, (5.92)

and try to find conditions for its minimization. A good measure of the ’best’ solution
might be the minimum of the Euclidian norm of the residuum. The square of that norm
will satisfy the required condition as well

‖r‖2 = (r, r) = rTr. (5.93)

CHAPTER 5. HOW TO DIRTY YOUR HANDS 138

Substituting r from (5.92) into (5.93) we get

‖r‖2 = xTATAx − bTAx − xTATb − bTb. (5.94)

The middle scalar terms in (5.94) are identical, so

‖r‖2 = xTATAx − 2xTATb − bTb. (5.95)

The extremal value is obtained from the condition of a zero derivative. Since it holds

∂(xTAx)

∂x
= 2Ax,

∂(xTa)

∂x
= a, (5.96)

we can write
∂‖r‖2

∂x
= 2ATAx − 2ATb = 0 (5.97)

or
AT(Ax − b) = 0. (5.98)

The extremum x obtained from (5.98) is really the sought-after minimum. For any other
vector, say x′, we would have

‖Ax′ − b‖2 = (Ax′ − b,Ax′ − b) =
= (A(x′ − x) + Ax − b,A(x′ − x) + Ax − b) =
= (A(x′ − x),A (x′ − x)) + 2(A(x′ − x),Ax − b)+
+(Ax − b,Ax − b) =
= ‖A (x′ − x)‖2 + ‖Ax − b‖2 ≥
≥ ‖Ax − b‖2,

(5.99)

since
(A (x′ − x,Ax − b)) =
= (A (x′ − x))T (Ax − b) =
= (x′ − x)T AT (Ax − b) = 0

(5.100)

the last term is equal to zero. The ’best possible’ solution of (5.98) can be obtained from

AT Ax = AT b (5.101)

provided that AT A matrix is regular.
It should be emphasized that individual equations of (5.101) are usually ’almost’

linearly dependent since they were obtained by measuring the same phenomenon under
the ’same’ conditions. If they were ’fully’ linearly dependent, we could proclaim the
measurement as contradictory and not of a great physical significance. From it follows
that the condition number of AT,A matrix will be large and that the obtained result
will be subjected to significant round-off errors. See [13].

5.17 Solution with some of unknowns prescribed

Solving the problems of technical practice we are often required to solve a system of
algebraic equation with a few of unknowns known in advance. Using the deformation
variant of the finite element method, see [3], the solution of a static problem is prescribed
by

Kq = F,

CHAPTER 5. HOW TO DIRTY YOUR HANDS 139

where K is the stiffness matrix, the q and F vectors contain the unknown displacements
and the prescribed external forces respectively.

Now, let’s assume that some displacements are known, while the corresponding forces
are not, so the overall number of equations is the same, as before.

The stiffness matrix could be reordered in such a way that the unknown displacements
and forces are separated, i.e.

[
K11 K12

K21 K22

] {
q1

q2

}
=

{
F1

F2

}
, (5.102)

where Kij, qi, Fi are submatrices and subvectors respectively. In (5.102) we denoted

q1 − unknown displacements, F1 − prescribed forces,
q2 − prescribed displacements, F2 − unknown forces – reactions.

Rewriting (5.102) we get two matrix equations

K11 q1 + K12 q2 = F1

K21 q1 + K22 q2 = F2.
(5.103)

The unknown displacements could be found by solving the first equation of (5.103) for
q1

K11 q1 = F1 − K12 q2,

while the unknown reactions F2 we get after substituting the q1 displacements into the
second equation.

This straightforward approach is easy to implement, but becomes difficult for large
systems of equations, especially in cases when special storage modes are employed – in
these case the above mentioned reordering should be avoided.

A possible approach is shown here by means of a simple example. At first we make
a formal changes in the system matrix, then we solve it by classical equation solvers.

¤ Example

Starting with Eq. (5.102) for n = 8 and m = 3 we assume that the prescribed
variables reside at the third, fifth and seventh rows. The are renamed as u1, u2, u3. We
thus could create a pointer array IP and write

IP(1) = 3 u1

IP(2) = 5 ⇐⇒ u2

IP(3) = 7 u3

So, x3 = u1, x5 = u2, x2 = u3, while the unknown elements of the right hand side are
b3, b5, b7. The initial system of equations

a11x1 + a12x2 + a13x3 + · · · + a18x8 = b1

a21x1 + a22x2 + a23x3 + · · · + a28x8 = b2
...
a81x1 + a82x2 + a83x3 + · · · + a88x8 = b8

CHAPTER 5. HOW TO DIRTY YOUR HANDS 140

could thus be rearranged into the form

a11x1 + a12x2 + 0 + a14x4 + 0 + a16x6 + 0 + a18x8 = b1 − a13u1 − a15u2 − a17u3 (1)
a21x1 + a22x2 + 0 + a24x4 + 0 + a26x6 + 0 + a28x8 = b2 − a23u1 − a25u2 − a27u3 (2)
0 + 0 + 1 · x3 + 0 + 0 + 0 + 0 + 0 = u1 (3)
a41x1 + a42x2 + 0 + a44x4 + 0 + a46x6 + 0 + a48x8 = b4 − a413u1 − a45u2 − a47u3 (4)
0 + 0 + 0 + 0 + 1 · x5 + 0 + 0 + 0 = u2 (5)
a61x1 + a62x2 + 0 + a64x4 + 0 + a66x6 + 0 + a68x8 = b6 − a63u1 − a65u2 − a67u3 (6)
0 + 0 + 0 + 0 + 0 + 0 + 1 · x7 + 0 = u3 (7)
a81x1 + a82x2 + 0 + a84x4 + 0 + a86x6 + 0 + a88x8 = b8 − a83u1 − a85u2 − a87u3 (8)

(5.104)
To preserve the original structure of the system, the third, fifth and seventh equations
were replaced by identities x3 = u1, x5 = u2 a x7 = u3.

The unknown elements b3, b5 a b7 of the right hand side could evaluated from

Template 30, RHS unknowns

for i = 1 to m

bIP(i) =
∑n

j=1 aIP(i),j xj

next i.

CHAPTER 5. HOW TO DIRTY YOUR HANDS 141

In more detail we have
Template 31, RHS unknowns in detail

for i = 1 to m

bIP(i) = 0
for j = 1 to n

bIP(i) = bIP(i) + aIP(i),j xj

next j

next i.

¤ End of Example

Summarizing the steps shown in the previous example we see that the following
changes were made.

• The right hand side.

In rows pointed to by IP(L), L=1, · · · , m the right hand side element was re-
placed by the uL value.

In the remaining rows the the right hand side elements are evaluated from

bi −
m∑

L=1

ai,IP(L) · uL.

• The matrix. The rows and columns pointed to by IP(L), L=1, · · · , m are replaced
by zeros, with the exception of diagonal places where ones are inserted.

The system of equation being processed this way could be consequently solved by a
suitable equation solver.

For a symmetric, positive definite matrix whose upper band is stored in a rectangular
array, see the paragraph 4.1.2, the Fortran subroutine DPREGRE preparing the system
matrix for the standard ’equation’ processing is listed in the Program 26. The procedure
to be called after DPREGRE is called DGRE and is listed in the Program 18.
Program 26

SUBROUTINE DPREGRE(XK,B,N,NDIM,NBAND,U,IP,M,IER)

C This is a pre-processor to DGRE subroutine.

C It reformulates the matrix and the RHS vector for a case with

C M prescribed displacements U, whose pointers are stored in IP array.

C Stiffness matrix is stored in a rectangular array.

c must be called before DGRE.

C

C Parameters

C XK(N,NBAND) Stiffness matrix

C B(N) RHS vector

C N Number of equations

C NDIM Row dimension of XK array in main

C NBAND half-band size

C U(M) vector of prescribed displacements

C IP(M) pointer to the position of prescribed displacements

C M Number of prescribed displacements (unknowns)

C IER Error parameter

CHAPTER 5. HOW TO DIRTY YOUR HANDS 142

C IER = 0 ... O. K.

C =-1 ... M .GE. N

C =-2 ... M .EQ. 0

C **

C

DIMENSION XK(NDIM,NBAND),B(N),U(M),IP(M)

DOUBLE PRECISION XK,B,U,T,SUM

C

IF (M .GE. N) GO TO 9000

IF (M .EQ. 0) GO TO 9010

C

C Rearrange the RHS vector B

C

C Loop over rows

DO 100 I=1,N

C Does the row correspond to prescribed displacements?

DO 20 L=1,M

IF(IP(L) .NE. I) GO TO 20

C Yes it does

C the L-th prescribed displacement corresponds to the I-th row

B(I)=U(L)

GO TO 100

20 CONTINUE

C SUM

SUM=0.D0

DO 40 L=1,M

J=IP(L)

IF (I .GT. J) THEN

C The under-diagonal elements are replaced

C by their above-diagonal equivalents

IS=J

JS=I

ELSE

C we are above the diagonal

IS=I

JS=J

END IF

C out-off band elements are equal to zero

C and are not kept in the memory

IF (JS .GT. IS+NBAND-1) THEN

T=0.D0

ELSE

T=XK(IS,JS-IS+1)

END IF

C

SUM=SUM+T*U(L)

40 CONTINUE

C New RHS is

B(I)=B(I)-SUM

100 CONTINUE

C

C Rearrangement of the stiffness matrix

C

C insert zeros into the corresponding rows

DO 200 L=1,M

DO 200 J=1,NBAND

XK(IP(L),J)=0.D0

BIBLIOGRAPHY 143

200 CONTINUE

C insert zeros into the corresponding columns’

DO 210 L=1,M

DO 220 I=1,N

J=IP(L)

C under-diagonal elements are not kept in the memory

IF (I .GT. J) GO TO 220

C the same for the out-off band elements, do nothing

IF(J .GT. I+NBAND-1) GO TO 220

C compute the correct pointer

JR=J-I+1

XK(I,JR)=0.D0

220 CONTINUE

210 CONTINUE

C insert ones into the diagonal places

DO 230 L=1,M

XK(IP(L),1)=1.D0

230 CONTINUE

RETURN

C ERROR RETURN

9000 IER=-1

RETURN

9010 IER=-2

RETURN

END

End of Program 26. ¤

Bibliography

[1] R. Barrett, M. Berry, T.F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,
R. Pozo, C. Romine, and H. Van der Vorst. Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, 2nd Edition. SIAM, Philadelphia,
PA, 1994.

[2] K.J. Bathe. Numerical methods in finite element analysis. Prentice-Hall, Inc.,
Englewood Cliffs, 1976.

[3] K.J. Bathe and E.L. Wilson. Numerical methods in finite element analysis. Prentice-
Hall, Englewood Cliffs, 1976.

[4] G. Cantin. An equation solver of very large capacity. International Journal for
Numerical Methods in Engineering, 3:379–388, 1971.

[5] M. Fiedler. Specialni matice a jejich pouziti v numericke matematice. SNTL Praha,
1981.

[6] G.E. Forsythe, M.A. Malcolm, and C.B. Moler. Computer methods for mathematical
computations. Prentice-Hall, Englewood Cliffs, 1977.

[7] G.H. Golub and Ch.F VanLoan. Matrix computation. John Hopkins, ISBN 978-0-
8018-5414-9, New York, 1996.

[8] L.A. Hageman and D.M. Young. Applied Iterative Methods. Academic, in Russian,
Moskva Mir, 1986.

BIBLIOGRAPHY 144

[9] Owen D.R.J. Hinton, E. Finite Element Programming. Academic Press, London,
1977.

[10] R.A. Horne and C.A. Johnson. Matrix analysis. Cambridge University Press, 1993.

[11] B.M. Irons. A frontal solution program for finite elemenent analysis. International
Journal for Numerical Methods in Engineering, 2:5–32, 1970.

[12] G. Marčuk. Metody numericke matematiky. Praha, Academia, 1987.

[13] C. Moler, J. Little, and S. Bangert. PC-Matlab. The MathWorks, Inc., Sherborn,
MA, 1987.

[14] J. Neumann and H.H. von Goldstine. Numerical inverting of matrices of high order.
Bull. Amer. Math. Soc.

[15] M. Okrouhĺık. Technicka mechanika II: Reseni uloh mechaniky pevnych teles
metodou konecnych prvku. CVUT Praha, 1984.

[16] M. Okrouhĺık. Personal computers in computational mechanics (in Czech). Vyda-
vatelstvi CVUT, Prague, 1992.

[17] M. Okrouhĺık, I. Huněk, and K. Loucký. Personal computers in technical practice,
part VI (in Czech). Dům techniky, Prague, 1990.

[18] S. Oliviera and D. Steward. Writing scientific software. Cambridge University Press,
New York, 2006.

[19] L. Ondris. Jednoduchy a ucinny podprogram pro reseni velkych soustav linearnich
rovnic v mkp. In Teorie a praxe vypocetnch metod v mechanice kontinua, pages
32–37.

[20] Y.C. Pao. Algorithms for direct-access gaussian solution of structural stiffness ma-
trix equation. International Journal for Numerical Methods in Engineering, 12:751–
764, 1978.

[21] M. Papadrakakis. Solving Large-Scale Problems in Mechanics. John Wiley and Sons
Ltd, Chichester, Baffins Lane, 1993.

[22] B.N. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood Cliffs,
N. J., 1978.

[23] S.R. Phansalkar. Matrix Iterative Methods for Structural Reanalysis, Vol. 4. Com-
puters & Structures, 1974.

[24] H. Prokop. Cache oblivious algorithm. Master’s thesis, MIT, 1999.

[25] J.S. Przemiecki. Theory of matrix structural analysis. McGraw-Hill, New York,
1968.

[26] A. Ralston. A first course in numerical analysis. McGraw-Hill, New York, 1965.

[27] K. Rektorys. Prehled uzite matematiky. SNTL Praha, 1981.

BIBLIOGRAPHY 145

[28] J.R. Rice. Matrix Computation and mathematical software. McCraw-Hill, Auckland,
1983.

[29] A.A. Samarskij and A.V. Gulin. Cislennyje metody. Moskva Nauka, 1989.

[30] G. Strang. Linear algebra and its applications. Academic Press, Englewood Cliffs,
1976.

[31] J. Valenta, J. Němec, and E. Ulrych. Novodobe metody vypoctu tuhosti a pevnosti
ve strojirenstvi. SNTL Praha, 1975.

[32] R.S. Varga. Matrix Iterative Analysis. Prentice-Hall, New Jersey, 1965.

[33] E. Volkov. Cislennyje metody. Moskva Nauka, 1987.

[34] J.H. Wilkinson. Modern error analysis. SIAM Review, 13:751–764, 1971.

Chapter 6

Implementation remarks to
nonlinear tasks

This part was written and is maintained by M. Okrouhĺık. More details about the
author can be found in the Chapter 16.5.

In this chapter we will concentrate on numerical solution of systems of nonlinear real
algebraic equations. A few iterative approaches will be described and explained using
simple examples.

6.1 Preliminaries, terminology and notation

We will devote our attention to two types of problems. They will be confined to n-
dimensional Euclidian space.

• Solution of n nonlinear equations with n unknowns described by a vector function
of a vector variable. The equations have the form g(x) = 0, or gi(xk) = 0, or

g1(x1, x2, . . . , xn) = 0,

g2(x1, x2, . . . , xn) = 0,

...

gn(x1, x2, . . . , xn) = 0.

(6.1)

We are looking for such a value of x that satisfies Eq. (6.1). The found solution,
sometimes called a root, is denoted x∗.

• Minimization of a scalar function of a vector variable F (x), i.e.

F (x1, x2, . . . , xn). (6.2)

We are looking for such a value of x for which the function (6.2) reaches its mini-
mum. Sometimes the minimum value is required as well, i.e. Fmin = F (x∗).

146

CHAPTER 6. IMPLEMENTATION REMARKS TO NONLINEAR TASKS 147

If the function F (x), tohether with their first derivatives, is continuous, then its
gradient g(x) could be expressed in the form

g(x) = ∇F (x) =





∂F

∂x1

∂F

∂x2
...

∂F

∂xn





. (6.3)

Under these conditions the vector x∗, satisfying g(x∗) = 0 – the solution of (6.1), ’points’
to the location where the function F (x) has its minimum – in other words Fmin = F (x∗).
Proof can be found in [4].

The first derivatives of the g(x) function can be assembled into the matrix which
goes under the name of Jacobi matrix. Generally, it is defined by the relation

Jij(x1, x2, . . . , xn) =
∂gi(x1, x2, . . . , xn)

∂xj

, (6.4)

whose matrix representation is

J(x) =
∂g(x)

∂xT
=




∂g1

∂x1

∂g1

∂x2

. . .
∂g1

∂xn

∂g2

∂x1

∂g2

∂x2

. . .
∂g2

∂xn
. . .

∂gn

∂x1

∂gn

∂x2

. . .
∂gn

∂xn




. (6.5)

Notes

• To save the printing space in relations above, we have used F instead of F (x1, x2, · · · , xn)
and gi instead of gi(x1, x2, . . . , xn). In the text to follow we will similarly write
g = g(x), J = J(x), etc.

• The transposition of the Jacobi matrix is denoted

JT =
∂g

∂x
=




∂g1

∂x1

∂g1

∂x1

. . .
∂g1

∂x1

∂g2

∂x2

∂g2

∂x2

. . .
∂g2

∂x2
. . .

∂gn

∂xn

∂gn

∂xn

. . .
∂gn

∂xn




. (6.6)

• The determinant of Jacobi matrix is called Jacobian.

CHAPTER 6. IMPLEMENTATION REMARKS TO NONLINEAR TASKS 148

• The Hess matrix contains the second derivatives of the function g(x), i.e.

Hij =
∂

2gi

∂xi ∂xj

. (6.7)

End of notes ¤

Example 1.
A scalar function of a vector variable

F (x) = x4
1 + x2

1 x2
2 + 2x4

2 − 0.904x1 − 6.12x2, (6.8)

depicted in Fig. 6.1, could be used as a simple benchmark for different iteration schemes.
The function has a minimum at (0.4, 0.9) – the minimum value is Fmin = −4.4022.

−0.2
0

0.2
0.4

0.6
0.8

0.6
0.8

1

−4.6

−4.4

−4.2

−4

−3.8

−3.6

−3.4

−3.2

−3

x
1

Minimum of F(x
1
, x

2
) is at 0.4, 0.9

x
2

z
=

 F
(x

1, x
2)

Figure 6.1: Minimum of z = F (x1, x2) and its location

According to(6.8) the gradient of F (x) is

∇F =





∂F

∂x1

∂F

∂x2





= g =

{
g1

g2

}
=

{
4x3

1 + 2x1x
2
2 − 0.904

2x2
1x2 + 8x3

2 − 6.12

}
. (6.9)

CHAPTER 6. IMPLEMENTATION REMARKS TO NONLINEAR TASKS 149

A note for finite element readers

A nonlinear function g(x) = 0 could be alternatively written in the form

K(x)x = b. (6.10)

In this case we have

K =

[
4x2

1 2x1 x2

2x1 x2 8x2
2

]
, x =

{
x1

x2

}
and b =

{
0.904
6.12

}
. (6.11)

In the deformation variant of the finite element method the Eq. (6.10) represents the
formulation of a static equilibrium which takes the constitutive relations into account
as well. The matrix K(x) then represents the secant stiffness matrix – generally, it is a
function of the unknown vector of displacements, i.e. of x. The b vector contains the
components of loading forces. If the function g(x) = 0 is linear, then the matrix K is
constant and the equation Kx = b leads a system of linear algebraic equations that
could be solved by finite methods.

End of note ¤

In this example the problem of finding the minimum of F (x), defined by (6.8), is
identical with the solution of ∇F (x) = 0 – or in another notation g(x) = 0, where g(x)
is given by (6.9). Obviously, the extremum appears in a location where the function
derivative equals zero. The graphical approach to the solution of this task is depicted in
Fig. 6.2. Notice the intersection of ’gradient’ surfaces g1(x1, x2) and g2(x1, x2) with the
horizontal plane z = 0. The vertical line points to the sought after solution, i.e. to (0.4,
0.9).

In matrix notation the Jacobi matrix for g(x), see (6.9), is

J = g′(x) =
∂g(x)

∂xT
=




∂g1

∂x1

∂g1

∂x2

∂g2

∂x1

∂g2

∂x2


 =

[
12x2

1 + 2x2
2 4x1 x2

4x1 x2 2x2
1 + 24x2

2

]
. (6.12)

It is the Jacobi matrix which plays the role of the secant matrix in finite element
method. Compare with (6.10). Numerically, the solution can be found by iterating the
increments from the equation

J(x) ∆x = ∆b. (6.13)

The Hess matrix contains the second derivatives of the function g(x), see (6.9), i.e.

Hij =
∂

2gi

∂xi ∂xj

. (6.14)

In our example we get

H =




∂
2g1

∂x1 ∂x1

∂
2g1

∂x2 ∂x1

∂
2g2

∂x1 ∂x2

∂
2g2

∂x2 ∂x2


 =

[
24x1 4x2

4x1 48x2

]
. (6.15)

End of example 1. ¤

CHAPTER 6. IMPLEMENTATION REMARKS TO NONLINEAR TASKS 150

Figure 6.2: Graphical solution of ∇F (x1, x2) = 0

6.1.1 Newton-Raphson method

The method often goes under alternative names as the Newton or Newton-Gauss
method and could be used for the solution of a system of nonlinear algebraic equations.
The method is based on the Taylor series expansion of a vector function of a vector
variable g(x), at the location x + ∆x, in the n-dimensional space and can be written in
the form

g(x + ∆x) = g(x) + J(x) ∆x + higher order terms, (6.16)

where

g(x + ∆x) =





g1(x1 + ∆x1, x2 + ∆x2, . . . , xn + ∆xn)
g2(x1 + ∆x1, x2 + ∆x2, . . . , xn + ∆xn)
...
gn(x1 + ∆x1, x2 + ∆x2, . . . , xn + ∆xn)





.

The vector of increments is ∆x = {∆x1∆x2 · · ·∆xn}T, the function g(x) is defined
by Eq. (6.1) while the Jacobi matrix J(x) by Eq. (6.5).

Neglecting the higher order terms and realizing that we are looking for such a value
of ∆x for which the left-hand side of Eq. (6.16) is equal to zero, we get the system of

CHAPTER 6. IMPLEMENTATION REMARKS TO NONLINEAR TASKS 151

linear algebraic equations for unknown increments ∆x in the form

J(x) ∆x = −g(x). (6.17)

The increment ∆x, obtained by solving Eq. (6.17), is used for evaluating the next
approximation of the solution

x(1) = x + ∆x, (6.18)

which, however, has to be be improved by a subsequent iteration process. We might
proceed as follows

J(x(k)) ∆x(k) = −g(x(k)), ⇒ ∆x(k),
x(k+1) = x(k) + ∆x(k).

(6.19)

The upper right-hand side index denotes the iteration counter for which k = 0, 1, 2, . . .
.

Let’s assume that i) the function g(x) and its derivatives, defined in an open convex
region D, are continuous, and ii) there is such a x∗ for which g(x∗) = 0 in this region
and iii) the matrix J(x∗) is regular.

If the function g(x) in the vicinity of (x∗) has at least two derivatives, then the so
called Lipschitz condition having the form

‖J(x) − J(x∗)‖ ≤ γ‖(x) − (x∗)‖, (6.20)

is satisfied for a suitably chosen value of γ constant.
If the above conditions are satisfied then the iterative process, described by (6.19)

for k = 0, 1, 2, . . . , converges to the solution x∗

‖x(k+1) − x∗‖ ≤ κ(k)‖x(k) − x∗‖2, (6.21)

in such a way that the sequence κ(k) → 0. Proof can be found in [3].
Theoretically, the Newton-Raphson method converges quadratically if the initial ap-

proximation starts from the D region.
Practically, one cannot guarantee the satisfaction of the above assumptions and might

thus experience troubles if the initial approximation is far from the expected solution.
Also, more than one solution of g(x) = 0 might exist in the region. In each iteration step
one has to evaluate the function values as well as the values of its first derivatives, i.e.
g(k) = g(x(k)) and J(k) = J(x(k)), since they are a functions of the current position x(k),
and to solve the system of algebraic equations. One of possible approaches is sketched
in the Template 32.

CHAPTER 6. IMPLEMENTATION REMARKS TO NONLINEAR TASKS 152

Template 32, Newton-Raphson method

Initial approximation
x(0)

Iterate
for k = 0, 1, 2, ...

g = g(x(k)) function values
J = J(x(k)) values of derivatives
J ∆x = −g; ⇒ ∆x solve the system of equations
x(k+1) = x(k) + ∆x next iteration
test of convergence, continue if not satisfied

end

The vaguely expressed metastatement test of convergence, continue if not satisfied

requires to satisfy the following conditions.

• The norm of the increment has to be ’smaller’ than the required threshold (toler-
ance) value. It is recommended to work with relative tolerances,

• the root value of the function has to be ’small’, i.e. smaller than the required
function threshold. Here we have to work with absolute values which are to be
compared with ’pure’ zeros,

• the total number of iteration should not exceed a ’reasonable’ limit.

Due to the vectorial nature of variables their magnitudes, within the iterative process,
could only be measured in ’suitably defined’ norms and compared to ’reasonable’ values
of tolerances. The abundance of quote characters in the text above indicate that the
choice of the tolerance values is not easy – always it is problem dependent. Besides the
generally valid hints there is no universally valid approach which might be advocated.

One of a possible approaches how to finish the iterative process is presented in the
Template 33. The value of the logical variable satisfied might be either true or false.
The logical operators and and not are used in their usual meanings, i.e. conjunction and
negation.

CHAPTER 6. IMPLEMENTATION REMARKS TO NONLINEAR TASKS 153

Template 33, Finishing the iteration process

εx required relative tolerance for the solution (root)
εg required absolute tolerance for the function value at the root
kmax admissible number of iterations
k = 0 counter
satisfied = false at the beginning a priori not satisfied
while not(satisfied) iterate, while not satisfied

k = k + 1

compute new values of x, ∆x and g(x)

satisfied =
‖ ∆x ‖
‖ x ‖ < εx and ‖ g(x) ‖< εg and k <= kmax are you satisfied?

end

A possible procedure for finding roots of the system of nonlinear equations g(x) = 0,
where g = g(x) is given by (6.9), is presented in the Program 27. The function proce-
dure Newton_Raphson.m is quite general. Using alternative user created function procedures
calling actual functions, i.e. g(x) and their derivatives g′(x) – namely function_g.m and
jacobi_m – one can use the program for solving other tasks of this type as well. The
rest of the program consists of ’administrative’ ballast and the statements needed for
graphical presentation.

Program 27
% NR_c2

% Solution of the system of nonlinear equations g(x) = 0.

%

% Required functions

% Newton_Raphson.m, which requires function_F.m, function_g.m, jacobi_g.m,

%

% The functional values of g(x) are generated by function_g.m

% The values of its derivatives J(x) are generated by jacobi_g.m

%

% In this case the function g(x) is a gradient of function F(x).

% At first compute values of F(x) for plotting its contours.

% The values of F(x) are generated by function function_F.m

%

% 1. Preliminaries

clear, clf, format short e, format compact

xmin = -0.2; xmax = 0.9; % x-boundaries of plot area

ymin = 0.6; ymax = 1.1; % y-boundaries of plot area

ndivx = 70; ndivy = 70; % number of plot increments

dx = (xmax - xmin)/ndivx; % x-increment

dy = (ymax - ymin)/ndivy; % y-increment

xrange = xmin:dx:xmax; % plot range for x

yrange = ymin:dy:ymax; % plot range for y

ixmax = length(xrange); % x-counter

jymax = length(yrange); % y-counter

ff = zeros(ixmax,jymax); % working array, its dimensions

% Evaluate values of F(x1, x2) and store them for future use

for i = 1:ixmax

xx = xmin + (i - 1)*dx;

for j = 1:jymax

CHAPTER 6. IMPLEMENTATION REMARKS TO NONLINEAR TASKS 154

yy = ymin + (j - 1)*dy;

xv = [xx yy];

ff(i,j) = function_F(xv);

end

end

% input data

x = [0 1]’; xini = x; % initial approximation, store it for future

epx = 1e-3; % tolerance parameter for solution

epg = 1e-3; % tolerance parameter for zero value

itmax = 30; % permissible number of iterations

% 2. The solution itself

[x,ier,n_step,xhist,residuum] = Newton_Raphson(xini,itmax,epx,epg);

% 3. Presentation of results

if ier == 0, % print and plot results if OK

xplot = xhist(1,:); yplot = xhist(2,:);

res = [ier n_step xplot(n_step) yplot(n_step)];

disp(’ier, no. of steps, x1, x2:’), disp(res)

disp(’residual value of g at x1, x2:’), disp(residuum)

lab = ...

[’Newton-Raphson, no. of iterations = ’ int2str(n_step), ’, epx =

’ num2str(epx), ’, epg = ’ num2str(epg)];

%

figure(1)

vv = [-3.1 -3.5 -3.8 -4 -4.2 -4.3 -4.391];

[c, h] = contour(xrange, yrange, ff’, vv); axis(’equal’); % axis(’square’)

clabel(c,h); title(lab, ’fontsize’, 14); colormap([0 0 0])

xlabel(’x_1’, ’fontsize’, 14); ylabel(’x_2’, ’fontsize’, 14)

hold on

plot(0.4, 0.9,’or’,’markersize’, 10, ’linewidth’, 2)

hold on

plot(xini(1), xini(2),’or’,’markersize’, 10, ’linewidth’, 2)

axis([-0.2 0.9 0.6 1.1])

hold on

plot([xini(1) xplot],[xini(2) yplot],’o-k’);

hold off

print -deps -r300 NR_plot

format long e

else % print error message

disp(’Prescribed tolerace not reached ’)

end

% end of NR_c2

%%%

function [x,ier,n_step,xhist,residuum] = Newton_Raphson(xini,itmax,epx,epg)

% Newton-Raphson method for the solution of

% the system of nonlinear equations g(x) = 0.

% Two problem dependent functions are required

% 1. function_g.m generates values of function g(x)

% 2. jacobi_g.m jacobi matrix for function g(x)

% input values

% xini initial approximation

% epx; relative tolerance parameter for solution

% epg absolute tolerance parameter for zero value of the function

% itmax permissible number of iterations

% output values

% x solution

CHAPTER 6. IMPLEMENTATION REMARKS TO NONLINEAR TASKS 155

% ier error parameter, if OK ier = 0; if not OK ier = -1

% n_step number of iteration steps required

% xhist history of iterations

% residuum functional residuum at solution

%

satisfied = false; % a priori unsatisfied

it = 0; % iteration counter

ier = 0; % error indicator, 0 if OK, -1 if wrong

x = xini;

% NR itself

while not(satisfied)

it = it + 1; % increase iteration counter by one

if(it > itmax), ier = -1; break, end % error if too many iterations

g = function_g(x); % evaluate function for the current step

j = jacobi_g(x); % evaluate Jacobi matrix for the current step

dx = j\(-g’); % solve for increment dx by Gauss elimination

x_new = x + dx; % new iteration

rdif1(it) = norm(dx)/norm(x_new); % relative measure for root position

rdif2(it) = norm(g); % absolute measure for function value at root

satisfied = (rdif1(it) <= epx & rdif2(it) <= epg); % convergence test

x = x_new; % update for the next iteration

xhist(:,it) = x’; % keep history of iteration results

end

residuum = function_g(x);

n_step = it;

% end of Newton_Raphson

%%%

function F = function_F(x)

% the scalar function of a vector variable

F = x(1)^4 + x(1)^2*x(2)^2 + 2*x(2)^4 - 0.904*x(1) - 6.12*x(2);

% end of function_F

%%%

function g = function_g(x)

% generates values of vector function g(x1,x2) of vector variable

g(1) = 4*x(1)^3 + 2*x(1)*x(2)^2 - 0.904;

g(2) = 2*x(1)^2*x(2) + 8*x(2)^3 - 6.12;

% end of function_g

%%%

function j = jacobi_g(x)

% jacobi matrix for function g given by

% g(1) = 4*x(1)^3 + 2*x(1)*x(2)^2 - 0.904;

% g(2) = 2*x(1)^2*x(2) + 8*x(2)^3 - 6.12;

% see function_g.m

j(1,1) = 12*x(1)^2 + 2*x(2)^2;

j(1,2) = 4*x(1)*x(2);

j(2,1) = 4*x(1)*x(2);

j(2,2) = 2*x(1)^2 + 24*x(2)^2;

% end of jacobi_g

%%%

>> NR_c2 output

ier, no. of steps, x1, x2:

0 4 4.0000e-001 9.0000e-001

residual value of g at x1, x2:

3.5060e-009 1.3158e-009

%%%

End of Program 27. ¤

CHAPTER 6. IMPLEMENTATION REMARKS TO NONLINEAR TASKS 156

The results for the initial approximation {0 1}T and for tolerances εx = εg = 0.001
are presented at the end of listing of the Program 27. Parameters ier, no of steps

denote the error parameter and the number of iteration steps required for obtaining
the required accuracy. The values of x1 and x2 point to the root location, i.e. to the
location of minimum. The remaining two values indicate the residual values of the g
function at the minimum when the iteration is stopped. A ’search’ trip from the initial
approximation to the root is graphically depicted in Fig. 6.3 together with contour lines
of the F function.

−4.391

−4.3

−4.3

−4.3

−4.2

−4.2

−4
.2

−4.2
−4.2

−4

−4
−4

−4

−4−4

−4

−3.8 −3.8

−
3.8

−3.8−3.8

−3.8

−3.5

−3.5

−3.5

Newton−Raphson, no. of iterations = 4, epx = 0.001, epg = 0.001

x
1

x 2

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Figure 6.3: Newton-Raphson

6.1.2 Modified Newton-Raphson method

If the evaluation of the Jacobi matrix is too time demanding, then one can compute
it only once, before the iteration process starts, using the derivative of the g function
at the location of the initial approximation. Such an approach is known as the modified
Newton-Raphsom method. For the simplification of the iterative process we are punished
by a slower convergence rate. The iterative process, initially given by relations (6.19), is
changed as follows

J(x(0)) ∆x(k) = −g(x(k)), ⇒ ∆x(k),
x(k+1) = x(k) + ∆x(k).

(6.22)

Since the Jacobi matrix J(0) = J(x(0)) does not change during the iteration process,
the solution of the system of linear algebraic equations can be profitably divided into
two parts. The matrix triangulation (factorization) is executed only once, before the
iteration process, and within the iteration loop one is providing the reduction of the

CHAPTER 6. IMPLEMENTATION REMARKS TO NONLINEAR TASKS 157

right-hand side and the back substitution as follows.

Instead of the ’full’ elimination of J ∆x = g

we decompose the matrix J → L U, only once, before starting the iteration process

⇒ L U ∆x = g

⇒ U ∆x = L−1 g

and in each iteration step we provide only

the reduction of the right-hand side c = L−1 g

and the back substitution ∆x = U−1 c.

(6.23)

Of course, the inversion of U and of L matrices need not be explicitly carried out. It
should be noted however, that the suggested procedure is not advantageous in Matlab,
where the Gauss elimination is simply secured by the backslash operator. Nevertheless,
it can bring a substantial time savings in a programming code where the matrix trian-
gularization and the back substitution processes are treated independently. For more
details see [2]. A possible way how to algorithmize the modified Newton-Raphson is in
the Program 28. Only modified_Newton_Raphson.m function is presented.

Program 28
function [x,ier,n_step,xhist,residuum] = modified_Newton_Raphson(xini,itmax,epx,epg)

% Modified Newton-Raphson method

%

% the same comment as in Newton_Raphson

%

satisfied = false; % a priori unsatisfied

it = 0; % iteration counter

ier = 0; % error indicator, 0 if OK, -1 if wrong

x = xini;

j = jacobi_g(x); % use initial approximation and evaluate Jacobi matrix

[L,U] = lu(j); % as well as its LU decomposition

% modified NR itself

while not(satisfied)

it = it + 1; % increase iteration counter by one

if(it > itmax), ier = -1; break, end % error if too many iterations

g = function_g(x); % evaluate function for the current step

c = -L\g’; % factorization of the right-hand side

dx = U\c; % back substitution

x_new = x + dx; % new iteration

rdif1(it) = norm(dx)/norm(x_new); % relative measure for root position

rdif2(it) = norm(g); % absolute measure for function value at root

satisfied = (rdif1(it) <= epx & rdif2(it) <= epg); % convergence test

x = x_new; % update for the next iteration

xhist(:,it) = x’; % keep history of iteration results

end

residuum = function_g(x);

n_step = it;

% end of modified Newton_Raphson

%%%

>> mNR_c2 output

ier, no. of steps, x1, x2:

0 30 3.9984e-001 8.9999e-001

residual value of g at x1, x2:

-5.8603e-004 -4.2605e-004

%%%

CHAPTER 6. IMPLEMENTATION REMARKS TO NONLINEAR TASKS 158

End of Program 28. ¤

The results of the iteration process obtained by the modified Newton-Raphson method
are listed at the end of the Program 28. Comparing the results with those previously
obtained by the classical Newton-Raphson method we observe that for reaching the
same precision we need 30 instead of 4 iteration steps. One should note, however, that
the number of iteration steps themselves is not generally directly proportional to total
computational demands of the solved task.

The convergence of the modified Newton-Raphson method might be accelerated by
the ’correction’ of the Jacobi matrix after a few iteration steps.

6.1.3 Method of the steepest gradient

If the vector function g(x) is a gradient of the scalal function F (x)1, then the solution
of the system of nonlinear equations g(x) = 0 can alternatively be treated as the search
for the minimum of the function F (x). In the Example 1 the function g(x) was created
from the function F (x) by means of (6.3). For a solution of the system of equations
g(x) = 0 a suitable scalar function could be generated rather arbitrarily, for example by
the relation

FF (x) = (g(x))T g(x). (6.24)

For g(x), defined by Eq. (6.9), we get the function FF (x) in the form

FF (x) = 16x1
6 + 20 x1

4x2
2 − 904

125
x1

3 + 36 x1
2x2

4−
452

125
x1 x2

2 +
597994

15625
− 612

25
x1

2x2 + 64 x2
6 − 2448

25
x2

3.
(6.25)

The symbolical form of the dot product, defined by Eq. (6.24), – including its LATEX
source expression, generating the appearance text of Eq. (6.25) – was ’miraculously’
obtained by a few statements listed in the Program 29. It should be noted that the
Matlab .’ operator stands for the transposition.

Program 29
% sym_F

clear

syms x1 x2 g g1 g2

g1 = 4*x1^3 + 2*x1*x2^2 - 0.904;

g2 = 2*x1^2*x2 + 8*x2^3 - 6.12; g = [g1 ; g2]; FF = g.’*g;

r = expand(FF); latex(r)

End of Program 29. ¤

The functions F (x) and FF (x) have a different minimum value, nevertheless they
have it in the same location. The minimum value of the function FF (x) and its location
are depicted in Fig. 6.4. Similarly that for the function F (x) in Fig. 6.1. From now on
we will proceed with the function F (x), defined by Eq. (6.8).

1Expressed otherwise – if the scalar function has a gradient.

CHAPTER 6. IMPLEMENTATION REMARKS TO NONLINEAR TASKS 159

0.6 0.7 0.8 0.9 1 1.1

0

10

20

30

40

50

60

x
2

minimum of FF(x
1
, x

2
) is at 0.4, 0.9

z
=

 F
F

(x
1, x

2)

−0.2 0 0.2 0.4 0.6 0.8

0

10

20

30

40

50

60

minimum of FF(x
1
, x

2
) is at 0.4, 0.9

x
1

z
=

 F
F

(x
1, x

2)

Figure 6.4: Minimum of z = FF (x1, x2) and its location

Generally, the F (x) is a function of n variables. The function z = F (x) is defined in
the Rn+1 space. Differentiating the function z = F (x) we get

∂F

∂x1

dx1 +
∂F

∂x2

dx2 + · · · + ∂F

∂xn

dxn − dz = 0, (6.26)

which can be written in the form
nT dt = 0, (6.27)

where

n =





∂F

∂x1

∂F

∂x2

· · · ∂F

∂xn︸ ︷︷ ︸
gT

| −1





T

(6.28)

and
dt = {dx1 dx2 · · · dxn dz}T. (6.29)

Notice that both vectors have n + 1 elements. The n vector represents a surface
normal to F (x). Its components, excluding the last one, are identical with components
the gradient components g(x) = ∇F (x), representing thus the projection of the normal
to the Rn space. And the contour lines – they depict the projection of the function
z = F (x), obtained for different values of z = const. The projection of the normal is
perpendicular to a particular contour line and represents the direction of the steepest
slope of the function F . For the function z = F (x) of two independent variables the
situation is depicted in Fig. 6.5.

CHAPTER 6. IMPLEMENTATION REMARKS TO NONLINEAR TASKS 160

−0.2

0

0.2

0.4

0.6

0.8

0.6

0.8

1

−4.6

−4.4

−4.2

−4

−3.8

−3.6

−3.4

−3.2

−3

x
1

Normal of F(x
1
, x

2
) and its projection at a point

x
2

z
=

 F
(x

1, x
2)

Figure 6.5: Normal of z = F (x1, x2) and its projection

The normal, as well as its projection, ’points’ out of the surface, thus the steepest gra-
dient method takes the ’negative’ gradient as the approximation of a direction pointing
to the location of minimum.

The iterative process can be conceived as follows

x(k+1) = x(k) + α ∆x(k) = x(k) − α ∇F (x(k)) = x(k) − α g(x(k)), (6.30)

where the scalar α constant is still to be determined. One possible way of its determina-
tion is to look for a local minimum in the gradient direction. This must be done in each
iteration step. The function values of F in the gradient direction, for the k-the iteration
step, can be written in the form

z(α) = F (x(k) + α ∆x(k)) (6.31)

which, in the vicinity of x(k), can be approximated by Taylor series, neglecting the third
and higher derivatives, by

z(α) = F (x(k)) + α
(
F ′(x(k))

)T
∆x(k) +

α2

2

(
∆x(k)

)T (
F ′′(x(k))

)
∆x(k), (6.32)

CHAPTER 6. IMPLEMENTATION REMARKS TO NONLINEAR TASKS 161

where

∆x(k) = −g(x(k)),

F ′(x(k)) = ∇F (x)|x=x(k) = g(x)|x=x(k) = g(x(k)),

F ′′(x(k)) = g′(x(k)) =
∂g(x)

∂x
|x=x(k) = J(x(k)) = H(x(k)).

(6.33)

Thus

z(α) = F (x(k)) − α
(
g(x(k))

)T
g(x(k)) +

α2

2

(
g(x(k))

)T
J(x(k)) g(x(k)). (6.34)

The appropriate α value for a local minimum in the gradient direction can be determined

from the condition
∂z

∂x
= 0. For the k-th iteration we get

α(k) =

(
F ′(x(k))

)T
F ′(x(k))

(F ′(x(k)))
T

F ′′(x(k)) F ′(x(k))
=

(
g(x(k))

)T
g(x(k))

(g(x(k)))
T

J(x(k)) g(x(k))
. (6.35)

In this case we exploited the fact that the Hess matrix of the function F (x) is at
the same time the Jacobi matrix of the function g(x). The steepest gradient method
could be programmed as indicated in the steep_grad.m procedure listed as a part of the
Program 30. The results of our benchmark test are attached at the end of the listing.

Program 30
function [x,ier,n_step,xhist,residuum,minimum] = steep_grad(xini,itmax,epx,epg)

% Method of the steepest gradient for finding

% 1. the minimum of a scalar function F({x}) and its location,

% 2. the root of a system of equations g({x}) = {0},

% where the vector {x} = {x(1,) x(2), ... x(n)}.

% It is assumed that function g({x}) is a gradient of F({x}).

% In such a case the system of equations g = 0 is satisfied at the same location

% where the function F has a minimum.

% Three problem dependent functions are required

% 1. function_F.m values of function F(x)

% 2. function_g.m values of its gradient, i.e. of function g({x})

% 3. jacobi_g.m Jacobi matrix for function g({x}),

% i.e Hess matrix of function F({x})

% input values

% xini initial approximation

% epx; relative tolerance parameter for solution

% epg absolute tolerance parameter for zero value of the function

% itmax permissible number of iterations

% output values

% x solution

% ier error parameter, if OK ier = 0; if not OK ier = -1

% n_step number of iteration steps required

% xhist history of iterations

% residuum functional residuum of g at solution

% minimum The value of F at minimum

%

satisfied = false; % a priori unsatisfied

CHAPTER 6. IMPLEMENTATION REMARKS TO NONLINEAR TASKS 162

it = 0; % iteration counter

ier = 0; % error indicator, 0 if OK, -1 if wrong

x = xini;

% the method of the steepest gradient itself

while not(satisfied)

it = it + 1; % increase iteration counter by one

if(it > itmax), ier = -1; break, end % error if too many iterations

dx = (-function_g(x))’; % direction = -gradient, transposed

a = jacobi_g(x); % Hess matrix of F, i.e. Jacobi matrix of g

alphak = dx’*dx/(dx’*a*dx);

x_new = x + alphak*dx; % new iteration

rdif1(it) = norm(dx)/norm(x_new); % relative measure for root position

rdif2(it) = norm(dx); % absolute measure for function value at root

satisfied = (rdif1(it) <= epx & rdif2(it) <= epg); % convergence test

x = x_new; % update for the next iteration

xhist(:,it) = x’; % keep history of iteration results

end

residuum = function_g(x);

minimum = function_F(x);

n_step = it;

% end of steep_grad

%%%

>> steep_grad_plots_c2 output

ier, no. of steps, x1, x2:

0 19 3.9990e-001 9.0003e-001

residual value of g at x1, x2:

-3.2114e-004 4.5122e-004

minimum value of F at x1, x2:

-4.4022e+000

%%%

End of Program 30. ¤

The actual ’search trip’ for the minimum can be observed in Fig. 6.6. It always starts
perpendicularly to the actual contour line. After the local minimum, in that direction
has been found, the descent is stopped and a new direction has to be found. There
is a nice analogy to a descending skier in a narrow mountain valley who did not learn
to turn. He starts going straight down the slope until he stops. Then he finds a new
straight-down-the-hill direction and continues with another iteration. Poor fellow.

A few last steps of the above descent are plotted in Fig. 6.7 in detail. The position of
successive approximations is marked by circles. The adjacent numbers are the iteration
counters. The cross indicates the location of the looked-after minimum. The diameter
of the circle around the minimum corresponds to the prescribed location tolerance, i.e.
εx = 0.001. One can observe that there is a long way to the minimum if it it hidden in
a deep and narrow valley.

In this case the iteration process is stopped after the root function tolerance has been
reached. This is due to the fact that in the decision statement, defining the end of the
iteration process, both tolerances are coupled by the logical and operator.

An open-eyed reader surely notices that the number of iteration steps, indicated
above Fig. 6.7, is greater by one than that associated with the last iteration step. This
is due to the fact that the starting iteration is denoted by the counter one, not zero. So
after n iteration steps we reach the counter n + 1.

BIBLIOGRAPHY 163

−4.38

−4.38

−4.345

−4.345

−4
.3

45

−4.237

−4.237

−4.237

−4.237

−4.12

−4.12 −4.12

−4.12

−4.12

−4.12

−3.8
−3.8

−3
.8

−3.8

−3.8

−3.8

−3.5

−3.5

−3.5

Method of the steepest gradient, no. of iterations = 19, epx = 0.001, epg = 0.001

x
1

x 2

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Figure 6.6: Steepest gradient method

The steepest gradient method, used for a minimum search, requires the function
evaluation, as well as that of the first two derivatives. No system of algebraic equations
has to be solved, however.

6.1.4 Conjugate gradient method

More details about the conjugate gradient method with an extensive list of references
can be found for example in [1]. Here we only mention that the method is actually a
misnomer, taking its name from the the theory of conic section geometry.

Each line passing through the center of an ellipse is called a diameter. Two diameters
are mutually conjugate if each of them divide (into two segments of the same length)
the chords being parallel with the other diameter. For more details see the Chapter 7.

A nice introductory titled text An introduction to the conjugate gradient method with-
out agonizing pain is in

http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf.

Bibliography

[1] C. Höschl and M. Okrouhĺık. Solution of systems of non-linear equations. Strojńıcky
Časopis, 54:197–227, 2003.

[2] M. Okrouhĺık. Aplikovaná mechanika kontinua II. Vydavatelstv́ı ČVUT, Praha,
1989.

[3] J.M. Ortega and W.C. Rheinbold. Iterative solution of nonlinear equations in several
variables. Academia Press. New York, 1970.

http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf

BIBLIOGRAPHY 164

Method of the steepest gradient, no. of iterations = 19, epx = 0.001, epg = 0.001

x
1

x 2

11

12

13

14

15

16

17
18

1920

0.3985 0.399 0.3995 0.4 0.4005 0.401 0.4015
0.8985

0.899

0.8995

0.9

0.9005

0.901

0.9015

Figure 6.7: A few last steps of the steepest gradient method in detail

[4] G. Strang. Introduction to Applied Mathematics. Wellesley-Cambridge Press, USA,
1986.

Chapter 7

Domain decomposition methods

This part was written and is maintained by Mrs. Marta Čert́ıková. More details
about the author can be found in the Chapter 16.1.

7.1 List of abbreviations

There is a lot of abbreviations used throughout this chapter.
For a quick reference they are listed in alphabetical order here.

BDD Balanced Domain Decomposition
BDDC Balanced Domain Decomposition by Constraints
DD Domain Decomposition
dof degree of freedom
FEM Finite Element Method
FETI Finite Element Tearing and Interconnecting
FETI-DP FETI Dual-Primal
GMRES Generalized Minimal Residual
PCG Preconditioned Conjugate Gradient

7.2 Introduction

Numerical solution of many problems in linear and nonlinear mechanics requires
solving of large, sparse, unstructured linear systems.

Direct methods are often used for solution of these systems, like a frontal algorithm
by Irons [11] - a variant of Gauss elimination especially designed for the FEM. Its more
recent generalization suitable for parallel computers, a multifrontal algorithm, was pro-
posed by Duff and Reid [7] and is implemented for instance in MUMPS library [1]. The
direct solvers usually need a lot of memory and also computational time increases fast
with data size.

Iterative solvers like PCG are less expensive in terms of memory and computational
time, but they does not guarantee to converge for ill-conditioned systems. The con-
vergence rate of iterative methods deteriorates with growing condition number of the
solved linear system. The condition number of linear systems obtained by discretization

165

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 166

of many problems in mechanics typically grows as O(h−2), where h is the meshsize of
the triangulation, so the larger the problem, the better preconditioner is usually needed.

Linear systems derived from huge problems are hard to solve by direct solvers be-
cause of their size and their lack of structure. They are also hard to solve by iterative
solvers because of their large condition number. Most efficient recent methods use com-
bination of both approaches, often together with some hierarchy in meshing. Domain
Decomposition methods are powerful tools to handle huge linear systems arising from
the discretization of differential equations. They have many common traits with another
efficient tool, the multigrid methods, which are, however, out of scope of this section (an
introductory article to multigrid methods is for example [28]).

Historically, they emerged from the analysis of partial differential equations, begin-
ning with the work [25] of Schwarz in 1870. A general approach of DD methods is to
decompose the underlying domain into subdomains and use this information for splitting
the original large linear system into number of smaller and numerically more convenient
ones. Most often DD methods are used as very efficient preconditioners for an iterative
method like PCG. The intrinsic parallelism of DD algorithms and the straightforward
distributability of the associated data makes this approach suitable for parallel comput-
ing.

Basic ideas of two main classes of DD methods are described here, namely of over-
lapping and nonoverlapping Schwarz methods. The overlapping methods presented in
section 7.4 appeared earlier and are more intuitive. The nonoverlapping methods, some-
times also called substructuring, are described in section 7.5. It also includes two of the
more recent leading DD algorithms, FETI-DP and BDDC. DD methods are generally
used as preconditioners; this is why they are formulated as Richardson methods and in
the section 7.6 the use of Richardson methods as preconditioners is described.

Brief illustrations of the partitioning of a domain into overlapping or nonoverlapping
subdomains are given in both sections 7.4 and 7.5. Usually some existing software tool
for partitioning graphs is used to complete this task, like METIS [12] or Chaco [10].

For simplicity we mainly stick to matrix and vector notation here and work only with
linearized discretized equations. However, for a better understanding of DD methods it is
vital to study their abstract operator and differential properties. We also assume already
meshed domains and work only with matching meshes on subdomains. Discretization
by means of FEM is assumed throughout this text.

For a better insight, algebraical formulations are illustrated on an example of a 2D
Poisson equation, one of the most common partial differential equations encountered in
various areas of engineering.

DD methods have developed a lot during past twenty years and the literature of the
field is quite extensive. Let us mention just two summary texts here. A good introduction
to the field is a monograph by Le Tallec [17]; it introduces the model problem in solid
mechanics, presents its mathematical formulation and describes the principles of the DD
methods in several forms: differential, operator and matrix form. Monograph by Toselli
and Widlund [27] is a modern comprehensive 400-pages book with a list of nearly 500
related references.

An excellent textbook on iterative methods generally is Saad [24]. Aside from detailed
description of iterative methods suitable for sparse linear systems, a background on linear
algebra and the basic concepts of FEM and other disretization methods are given there;
a whole chapter is devoted also to DD. Full text of the first edition of this book is
available on url http://www-users.cs.umn.edu/̃ saad/books.html. A survey information

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 167

with templates on iterative methods and preconditioning can also be found in a book by
Barrett et al [2] accessible on url http://www.netlib.org/templates/Templates.html.

7.3 Problem to be solved

After the discretization of a linearized partial differential equation in a given domain
Ω, a linear algebraic system

Ku = f (7.1)

is to be solved with a matrix K and a right hand side f for unknown vector u. Compo-
nents of u are often called degrees of freedom (dofs).

The matrix depicted in Fig. 7.1 right, with nonzero items marked by black dots, is an
example of a matrix K which arises from a 2D Poisson equation discretized by four-node
bilinear finite elements in the domain Ω depicted in the Fig. 7.1 left. Most of the items
of the matrix K are zeros. Distribution of nonzero items is given by numbering of the
nodes. In this example nodes in the domain are numbered along columns from top down
and from left to right in order to achieve a banded matrix (it is schematically indicated
in Fig. 7.1 bellow the domain).

1 5 9 16 23 30 37 44
2 6 10 17 24 31 38 45
3 7 11 18 25 32 39 46
4 8 12 19 26 33 40 47

13 20 27 34 41 48
14 21 28 35 42 49
15 22 29 36 43 50

Figure 7.1: Domain Ω discretized by bilinear finite elements (left) and a structure
of the corresponding matrix (right), assuming standard node numbering by columns
(the numbering is schematically indicated bellow the domain).

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 168

In terms of mechanics the Poisson equation on the domain Ω can be regarded for in-
stance as an equation of a thin membrane displacement. In the discretized Poisson
equation of the form (7.1) the operator K represented by the stiffness matrix K as-
sociates vertical displacements at nodes represented by a vector u, with vertical force
represented by a node force vector f . Then i-th component of the vector u represents
numerically computed value of a displacement at i-th node.

In order to have a problem well posed, usually the displacements are prescribed in a
part of a boundary of Ω, or, by other words, the solution satisfies a Dirichlet boundary
condition there. In a discretized form it means that there are prescribed values of solution
at certain boundary dofs, sometimes called fixed variables. Let us renumber nodes so
that nodes with fixed variables are the last ones, let ux represent prescribed values of
the fixed variables and uf represent unknown values of the rest, free variables. Let us
decompose K, u and f into blocks accordingly:

K =

[
Kff Kfx

Kxf Kxx

]
, u =

[
uf

ux

]
, f =

[
ff
fx

]
.

In order to have the problem well posed, the fixed variables need to be chosen so that the
matrix Kff is regular. There are two different approaches to solving (7.1) for unknowns uf ,
either direct (7.2) or via Lagrange multipliers (7.3). Both of these approaches are used
in the following text.

The unknowns uf in dependence on the prescribed values ux can be obtained directly
by solving a problem

Kffuf = ff − Kfxux. (7.2)

By means of Lagrange multipliers, problem (7.2) for unknowns uf can be expressed
as 


Kff Kfx 0
Kxf Kxx I
0 I 0







uf

ux

λ


 =




ff
fx
ux


 , (7.3)

where I is the identity matrix and ux is prescribed.
In terms of the above example of the thin membrane displacements, values λ of the

Lagrange multipliers can be interpreted as reactions (node forces) at the nodes with
fixed variables. In the context of DD methods the notion of the reactions at the nodes
with fixed variables proved to be very useful. We will use the formulation (7.3) both
for notational purposes and for computation of model examples of problems with fixed
variables inside a domain.

In order not to get stuck in technical details, in the rest of this chapter the matrix K
of (7.1) is assumed to be invertible, i.e. with given Dirichlet boundary condition incor-
porated to the right hand side by technique (7.2). However, in graphical representation
of a structure of the different permutations of K all variables are expected to be free in
order not to distort the structure.

7.4 Overlapping methods

Overlapping methods represent whole class of iterative methods for solving (7.1).
Just to explain the main ideas, only two basic algorithms are described here, namely ad-
ditive and multiplicative overlapping Schwarz methods on matching meshes. Both these

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 169

methods at every iteration step solve only local, subdomain problems with a Dirichlet
boundary condition prescribed on the inner part of subdomain boundary (it is the part
that lies inside the whole domain). Solving the local problem is the same as solving
the global problem (7.1) for unknown variables inside subdomain only, with all other
variables fixed.

The additive method solves at each iteration step all subdomain problems simulta-
neously using only information from previous iteration step and then sums the results
up, so there is a straightforward way of its parallelization by subdomains.

The multiplicative method at each iteration step solves all subdomain problems one
after another, always using information obtained from subdomain problem just solved
to improve a formulation of remaining subdomain problems. Its parallelization is more
difficult, but its convergence is usually faster.

More on overlapping methods can be found for instance in Toselli and Widlund [27]
or Saad [24].

7.4.1 Division of a discretized domain into overlapping subdo-
mains

In this subsection two techniques are shown for generating overlapping subdomains
with matching meshes.

Let us start by dividing all the nodes into disjunct clusters as in the Fig 7.2 left: there
are three clusters of nodes marked yellow, blue and red, respectively. For every cluster
let us construct a subdomain by grouping together all elements that include at least one
of the nodes from the cluster as is shown in the Fig. 7.2 right for a yellow cluster –
the subdomain is colored yellow. All the nodes which are not involved in elements lying
outside the subdomain represent a set of interior nodes (marked yellow) of the yellow
subdomain. Note that also nodes on the boundary of the original domain are labeled as
”interior” in this sense.

Figure 7.2: Left: distinct clusters of nodes. Right: subdomain specified by yellow nodes.

By this process the domain is divided into subdomains that overlap over one layer of
elements, see Fig. 7.3 left (the overlaps are characterized by mixed colors, i.e. overlap
of the blue and the yellow subdomains is green, and so on). For larger overlaps, every
cluster can be enlarged by adding all nodes which are neighbors of the nodes in the
cluster; now the clusters are not disjunct any more and resulting subdomains overlap

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 170

over three layers of elements. This process can be repeated, always adding another extra
layer of neighboring vertices to every cluster, making the overlap larger and larger.

Figure 7.3: Left: three subdomains (red, yellow, blue) overlapping over one layer of
elements. Right: three nonoverlapping subdomains (red, yellow, blue), all overlapped by
an interface subdomain (grey).

There is another way how to divide a domain into overlapping subdomains that is
related to an approach of the nonoverlapping methods. First, the domain is split into
nonoverlapping subdomains and interface nodes are identified as in the subsection 7.5.1
bellow. Then one extra interface subdomain is constructed so that it consists of all
elements that include at least one interface node, see Fig. 7.3 right. This way a set
of nonoverlapping subdomains is obtained that generates set of mutually independent
problems, which are ”glued together” by an interface problem generated by the inter-
face subdomain. Again, an overlap of the interface subdomain over the others can be
expanded by adding neighboring layers of nodes to the cluster of interface nodes.

7.4.2 Additive overlapping Schwarz method

The additive Schwarz methods solve a boundary value problem for a partial differ-
ential equation approximately by splitting it into boundary value problems on smaller
domains and adding the results.

Let us assume that the given domain is divided into N overlapping subdomains. The
first approximation of the solution on the whole domain is somehow chosen, for instance
all zeros. Computation of the next approximation from the previous one is described in
Template 34.

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 171

Template 34, One iteration step of the additive overlapping Schwarz method

1. On each subdomain compute a new local approximation: solve local (subdomain)
problem using values from the last (global) approximation on the inner part of
subdomain boundary.
This can be done in parallel.

2. On each subdomain compute a local correction as a difference between the last
global approximation restricted to the subdomain and the new local approxima-
tion (computed in the previous step).

3. Compute the next global approximation by adding all the local corrections to
the last global approximation.

For algebraic description of the Schwarz additive method let us introduce an operator
Ri of a restriction from Ω to interior of Ωi in a standard manner (see Saad [24], Le
Tallec [17] or Toselli and Widlund [27]). Operator Ri is represented by a rectangular
permutation matrix Ri of zeros and ones, which extracts only those components of a
vector that belong to interior of Ωi. Its transpose RiT corresponds to the operator RiT

of a prolongation from interior of Ωi to Ω.
Let us denote ui

o = Riu variables corresponding to interior of Ωi and ui
r the rest of

the components of the vector u. Let u(k) be the last approximation of the solution of
(7.1). In (k + 1)-th iteration step, problem (7.1) is solved on each subdomain Ωi for its

interior unknowns ui
o
(k+1)

with the rest of variables ui
r
(k)

fixed, see also (7.2):

Ki
oou

i
o

(k+1)
= f i

o − Ki
oru

i
r

(k)
, (7.4)

where f i
o = Rif , Ki

oru
i
r
(k)

= RiKu(k) − Ki
ooR

iu(k) and

Ki
oo = RiKRiT (7.5)

is a stiffness matrix of the local (subdomain) problem with zero values prescribed on
the inner part of its boundary, which can be constructed by a subassembling process by
considering only degrees of freedom inside Ωi.

Local correction ∆ui
o
(k)

is a difference between the new local approximation ui
o
(k+1)

and the last approximation u(k) restricted to i-th subdomain and can be expressed as

∆ui
o

(k)
= ui

o

(k+1) − Riu(k) = (Ki
oo)

−1
(f i

o − Ki
oru

i
r

(k) − Ki
ooR

iu(k))

= (Ki
oo)

−1
Ri(f − Ku(k)) = (Ki

oo)
−1

Rir(k),

where r(k) is a residual of u(k). Local components ∆ui
o
(k)

are put on their global places

by the prolongation operator RiT and all these local corrections are summed up and
added to the last approximation u(k) to obtain a next approximation u(k+1) as

u(k+1) = u(k) +
N∑

i=1

RiT∆ui
o

(k)
, (7.6)

where N is the number of subdomains.

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 172

This can be formulated as a Richardson method for the problem (7.1) as

u(k+1) = u(k) +
N∑

i=1

RiT(Ki
oo)

−1
Ri r(k). (7.7)

Algebraic description of the additive overlapping Schwarz method is summarized in
Template 35.
Template 35, Algebraic description of the additive overlapping Schwarz method

Choose u(0) arbitrarily and for k := 0, 1, 2, . . . repeat

1. Compute residual r(k) := f − Ku(k). If residual is small enough, stop.

2. Compute local corrections ∆ui
o
(k)

:= (Ki
oo)

−1
Rir(k).

This can be done on subdomains in parallel.

3. Compute the next approximation by adding the local corrections to the last

approximation: u(k+1) := u(k) +
∑N

i=1 RiT∆ui
o
(k)

.

Implementation remarks:
Matrices Ri and RiT are used here only for notational purposes, they need not to be

constructed.
The computation of the local correction ∆ui

o
(k)

is usually implemented as solution of
a subdomain problem with zero Dirichlet boundary condition on the inner boundary.

A computation of the residual at the first step of the algorithm can also be imple-
mented by subdomains and so the whole matrix K need not be assembled.

Let us ilustrate the overlapping Schwarz additive method on the example given above
with the division of Ω depicted in Fig. 7.3 left. In the Fig. 7.4 left there is the matrix K
with parts corresponding to interior nodes of subdomains coloured by the same color as
the corresponding subdomains, with scheme of node numbering bellow. The algorithm is
more clear after permutation of the matrix as in the Fig. 7.4 right: first take all interior
nodes of the first subdomain (yellow), then all interior nodes of the second one (red)
and then the last one (blue). The resulting matrix has on its diagonal square matrices
Ki

oo (yellow, red and blue) corresponding to interior nodes of individual subdomains. In
every step linear systems with the diagonal blocks Ki

oo are solved. It can be seen that in
this special case the algorithm of the Schwarz additive method is the same as a standard
block-Jacobi method.

Such a permutation can be only done in case that all clusters of interior nodes are
disjunct. If subdomains overlap over more then one layer of elements or elements of higher
degree are used, this simplifying rearrangement of the whole matrix is not possible and
the additive overlapping Schwarz method can be regarded as a more general block-Jacobi
method with overlapping blocks (for more details see Saad [24]).

The stiffness matrix after the permutation corresponding to the division of Ω as in
Fig. 7.3 right is depicted in the Fig. 7.5.

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 173

1 5 9 16 23 30 37 44
2 6 10 17 24 31 38 45
3 7 11 18 25 32 39 46
4 8 12 19 26 33 40 47

13 20 27 34 41 48
14 21 28 35 42 49
15 22 29 36 43 50

1 5 9 13 17 30 31 32
2 6 10 14 18 33 34 35
3 7 11 15 19 36 37 38
4 8 12 16 20 39 40 41

21 24 27 42 43 44
22 25 28 45 46 47
23 26 29 48 49 50

Figure 7.4: The stiffness matrix for domain in Fig. 7.3 left before (left) and after
renumbering (right). The scheme of node numbering is bellow the corresponding matrix.

7.4.3 Multiplicative overlapping Schwarz method

Multiplicative overlapping Schwarz method (or Schwarz alternating method) differs
from the additive Schwarz method in Template 35 by solving subdomain problems not si-
multaneously but one after another, immediately updating the current approximation by
the local correction and using this updated approximation in the following computation.

One iteration step of the multiplicative overlapping Schwarz method is described in
Template 36.

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 174

1 5 9 12 15 44 27 28
2 6 10 13 16 45 29 30
3 7 11 14 17 46 31 32
4 8 41 42 43 47 33 34

18 21 24 48 35 36
19 22 25 49 37 38
20 23 26 50 39 40

Figure 7.5: The stiffness matrix for domain in Fig. 7.3 right, after renumbering.

Template 36, One iteration step of the multiplicative overlapping Schwarz method

Repeat for all subdomains, one after another:

1. Compute a new local approximation: solve local (subdomain) problem using
values from the current global approximation as a Dirichlet boundary condition
prescribed on the inner part of the subdomain boundary.

2. Compute a local correction as a difference between the current global approxi-
mation restricted to the subdomain and the new local approximation.

3. Update the current global approximation by adding the local correction to it.

Algebraic description of the multiplicative overlapping Schwarz method is in Tem-
plate 37.

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 175

Template 37, Algebraic description of the multiplicative overlapping Schwarz method

Choose u(0) arbitrarily and for k := 0, 1, 2, . . . repeat

1. Set u(k,0) := u(k) and for i := 1, 2, . . . N repeat

(a) Compute the local correction on subdomain Ωi:

∆ui
o
(k)

:= (Ki
oo)

−1
Ri (f − Ku(k,i−1)) .

(b) Update the approximation by adding the local correction to it:

u(k,i) := u(k,i−1) + RiT∆ui
o
(k)

.

Set u(k+1) := u(k,N)

2. Compute residual r(k+1) := f − Ku(k+1). If residual is small enough, stop.

Implementation remarks:
Matrices Ri and RiT are used here only for notational purposes, they need not to

be constructed. Moreover, the local residual Ri(f −Ku(k,i−1)) at the inner cycle can be
updated locally.

Computation of the local correction ∆ui
o
(k)

is usually implemented as solution of a
subdomain problem with zero Dirichlet boundary condition on the inner boundary.

The global residual at the last step is in fact already computed by successive updating
during the computation of the local residuals at the inner cycle and so the whole matrix
K need not be assembled.

On the example of the domain divided as in Fig. 7.3 left with corresponding matrix
in the Fig. 7.4, one step of the Schwarz multiplicative method can be described like this:
consider only components that correspond to interior nodes of the yellow subdomain
(yellow blocks) as unknown and compute their new value; all other variables are fixed
with values of the last approximation. Construct an updated approximation that consists
of these new values at interior nodes of the yellow subdomain and old values elsewhere.
Now repeat the same procedure for red subdomain using the updated approximation as
values for fixed variables, then repeat it for the last, blue subdomain.

With help of the Fig. 7.4 right it can be seen that in this example the algorithm of
the Schwarz multiplicative method is the same as a standard block-Gauss-Seidel method.
The permutation of the Fig. 7.4 can be done only in case that all clusters of interior nodes
are disjunct. If subdomains overlap over more then one layer of elements or elements of
higher degree are used, this simplifying rearrangement of the whole matrix is not possible
and the multiplicative overlapping Schwarz method can be regarded as a more general
block-Gauss-Seidel method with overlapping blocks (for more details see Saad [24]).

Multiplicative Schwarz methods generally have better convergence properties, on the
other hand there is no straightforward way of their parallelization. However, if the
domain is divided into subdomains like in the Fig. 7.3 right, an interface problem on
the interface subdomain can be alternated with problems on the rest of the subdomains,
which are mutually independent and can be solved in parallel, see also the Fig. 7.5.

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 176

7.5 Nonoverlapping methods

Nonoverlapping methods (also called substructuring) can be regarded as a general-
ization of the overlapping algorithms using the partition of the domain like in the Fig.
7.3 right: the domain is split into nonoverlapping subdomains tied-up together by means
of some interface communication. There are many other choices of the communication
than the interface subdomain as in the case of the overlapping methods.

Nonoverlapping methods are represented here by two basic approaches to interconnec-
tion among the subdomains, a primal and a dual one, with the interface problem formed
by a Schur complement problem. Recent leading algorithms of both types, namely the
BDDC and FETI-DP methods, are described. More details on nonoverlapping meth-
ods can be found for instance in Toselli and Widlund [27], comprehensive overview and
comparison of these methods can also be found in [26].

7.5.1 Interface and interior

Let us start again with the discretized domain as in the Fig. 7.1 and split the domain
into nonoverlapping subdomains so that every element belongs to exactly one subdomain,
as in the Fig. 7.6 left. Now we can distinguish two types of nodes, see Fig. 7.6 right:

• Interface nodes - marked green - nodes belonging to more than one subdomain.

• Interior nodes - marked the same colour as the corresponding subdomain - nodes
belonging only to one subdomain. Note that nodes on the boundary of the original
domain are labeled as ”interior” in this sense, if they belong to (outer) boundary
of one subdomain only.

Figure 7.6: Left: Domain divided into nonoverlapping subdomains.
Right: Interior (yellow, red and blue) and interface (green) nodes

7.5.2 Schur complement system for interface nodes

The Schur complement problem represents a reduction of the original problem to the
interface by eliminating all interior unknowns; this reduction is sometimes called a static
condensation.

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 177

The matrix in Fig. 7.7 left is an example of a stiffness matrix which arises from a
Poisson equation discretized by bilinear finite elements in the domain in the Fig. 7.6.
Items of the matrix corresponding to interior of a particular subdomain are colored by
the same color as the subdomain, nonzero items are marked as black dots. Nodes are
numbered as usual in order to achieve a banded matrix, this is column by column in this
example. Scheme of node numbering is bellow the matrix.

1 5 9 16 23 30 37 44
2 6 10 17 24 31 38 45
3 7 11 18 25 32 39 46
4 8 12 19 26 33 40 47

13 20 27 34 41 48
14 21 28 35 42 49
15 22 29 36 43 50

1 5 9 12 15 44 27 28
2 6 10 13 16 45 29 30
3 7 11 14 17 46 31 32
4 8 41 42 43 47 33 34

18 21 24 48 35 36
19 22 25 49 37 38
20 23 26 50 39 40

Figure 7.7: The stiffness matrix for domain in Fig. 7.6 before (left) and after renumbering
(right). The scheme of node numbering is bellow the corresponding matrix.

In order to get a suitable structure for Schur complement system, let us rearrange
the system Ku = f and rewrite it in a block form, with the first block corresponding to
unknowns in subdomain interiors ordered subdomain after subdomain and the second
block corresponding to unknowns on the interface (see Fig. 7.7 right):

[
Koo Kor

Kro Krr

] [
uo

û

]
=

[
fo
f̂

]
, (7.8)

where û represents all the interface unknowns. The hat (̂) symbol is used to denote
global interface quantities.

Different subdomains have disjunct sets of interior unknowns with no connections

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 178

among them, so Koo, uo and fo have the structure

Koo =




K1
oo

K2
oo

. . .

KN
oo


 , uo =




u1
o

u2
o
...

uN
o


 , fo =




f1
o

f2
o
...

fN
o


 , (7.9)

where ui
o and f i

o represent uo and fo restricted to Ωi and Koo is a block diagonal matrix
with each block Ki

oo corresponding to interior unknowns of subdomain Ωi. Each Ki
oo

can be interpreted as a matrix of a problem on Ωi with Dirichlet boundary condition on
the interface and so it is invertible. Interface unknowns cannot be separated this way,
as every of them belongs to two or more subdomains.

After eliminating all the interior unknowns from (7.8) we get
[

Koo Kor

0 Ŝ

] [
uo

û

]
=

[
fo
ĝ

]
, (7.10)

where Ŝ = Krr − KroK
−1
oo Kor is a Schur complement of (7.8) with respect to interface

and ĝ = f̂ − KroK
−1
oo fo is sometimes called condensed right hand side.

Problem (7.10) can be split into subdomain problems

Koouo = fo − Korû , (7.11)

and a Schur complement problem
Ŝ û = ĝ . (7.12)

Problem (7.11) represents N independent subdomain problems with Dirichlet boundary
condition ui

r prescribed on the interface

Ki
oou

i
o = f i

o − Ki
oru

i
r , (7.13)

where ui
r represents û restricted to the interface of Ωi and Ki

or is a block of Kor corre-
sponding to Ωi (when using FEM for discretization, Ki

oo and Ki
or are assembled only from

element matrices for elements contained in Ωi). The Schur complement problem (7.12)
represents a problem for interface unknowns û only. Its decomposition to subdomain
problems is handled in the next section, as it is not so straightforward.

Original problem (7.8) now can be solved by formulating and solving the Schur com-
plement problem (7.12) for û and then obtaining uo from (7.11) after substitution of
û to the right hand side. Schur complement algorithm for solving (7.8) is described in
Template 38.
Template 38, Schur complement algorithm

1. Compute Ŝ and ĝ by eliminating all interior unknowns from (7.8), i.e. by fac-
torization of Koo. The elimination can be done in parallel on subdomains.

2. Solve (7.12) for û.

3. Solve (7.11) for uo. This represents a backsubstitution using factorization of
Koo from step (1) and can be done in parallel on subdomains.

Implementation remark:

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 179

The Schur complement Ŝ need not be computed and stored explicitly if (7.12) is

solved by iterative methods like PCG, that use only multiplication of Ŝ by some vector
v. The multiplication can be implemented by using existing block factorization of Koo as
Ŝv = (Krr−KroKoo

−1Kor)v = Krrv−Krovor , where vor is a solution of Koovor = −Korv.
In a matrix form this can be also expressed as




Koo Kor 0
Kro Krr I
0 I 0







vor

v

−Ŝv


 =




0
0
v


 , (7.14)

where I is an identity matrix.

Benefits of the Schur complement algorithm consist in decomposing one large global
problem into several independent, smaller local (subdomain) problems (7.11) and the
Schur complement problem (7.12), that is global, but smaller and tends to be better
conditioned than the original problem. Its condition number grows as O(H−1h−1), where
h is a characteristic element size and H is a characteristic subdomain size, while a
condition number of K grows as O(h−2) (see Brenner [3]). Standard algebraic methods,
either direct or iterative, often can be used for its solution. Typically PCG is used for
symmetric and preconditioned GMRES for nonsymmetric linear systems, with standard
preconditioners. Schur complement technique can be used recursively, which leads to
multilevel methods.

For later use, let us analyze the problem (7.10) in more detail. The interior part uo

of the solution of (7.10) can be further split as uo = uoo + uor with uoo reflecting an
effect of fo and the problem (7.11) can be split accordingly:

Koouoo = fo , (7.15)

Koouor = −Korû . (7.16)

Problem (7.15) represents independent subdomain problems with zero Dirichlet bound-
ary condition on the interface and its solution uoo can be used for formulation of the
right hand side of (7.10) or (7.12) as ĝ = fr − Krouoo. Problem (7.15) can be expressed
in a way compatible with (7.10) as

[
Koo Kor

0 Ŝ

] [
uoo

0

]
=

[
fo
0

]
. (7.17)

Problem (7.16) represents independent subdomain problems with û prescribed as
Dirichlet boundary condition on the interface. The Schur complement problem can be
expressed either as (7.12) in terms of just the interface unknowns, or on the whole domain
using (7.12) and (7.16) together as

[
Koo Kor

0 Ŝ

] [
uor

û

]
=

[
0
ĝ

]
. (7.18)

Solutions of (7.18) are sometimes called functions with minimal energy inside subdo-
mains. They are completely represented by their values û on the interface; interior
values uor are determined by (7.16).

For a better insight, this algebraical formulation will be illustrated on an example of
a 2D Poisson equation representing displacements of a thin membrane. In the discretized

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 180

Poisson equation Ku = f the operator K represented by the matrix K associates vector
u of vertical displacements of a thin membrane at nodes of a given 2D domain with node
force vector f . A solution of the Poisson equation on a rectangular domain is depicted
in the Fig.7.8 left. The membrane is fixed on the left and right edge by prescribed zero
displacements and its front part is loaded by forces oriented down.

Let us assume the domain to be divided into two rectangular subdomains so that the
interface is parallel with the fixed edges. Equation (7.15) or (7.17) represents problem
with zero displacements on the interface and the given node force fo at interior nodes,
see Fig. 7.8 center. Equation (7.16) or (7.18) represents problem with displacements û
on the interface and zero node forces at interior nodes, see Fig. 7.8 right.

0

5

10

15
0 5 10 15 20

−2.5

−2

−1.5

−1

−0.5

0

0.5

0

5

10

15
0 5 10 15 20

−2.5

−2

−1.5

−1

−0.5

0

0.5

0

5

10

15
0 5 10 15 20

−2.5

−2

−1.5

−1

−0.5

0

0.5

[
uo

û

]
=

[
uoo

0

]
+

[
uor

û

]

Figure 7.8: An example of a solution of a 2D Poisson equation (left), decomposed to the
Schur complement part (right) and the part reflecting an effect of the interior load forces
(center).

Problem (7.11) can be solved for any given vector û of interface displacements, but
only if also (7.12) holds, the interior solution uo computed from (7.11) represents the
interior part of the solution of the original problem Ku = f . If û does not satisfy equa-
tion (7.12), solution computed from (7.11) shows inbalanced reactions on the interface

corresponding to additional interface nodal forces Ŝû− ĝ, which disturb the equilibrium
on the interface.

7.5.3 Decomposition of the Schur complement problem

If the original problem is too large, even the Schur complement problem (7.12) might
be too large and ill-conditioned to be solved by standard algebraic methods. An advan-
tage of using iterative substructuring DD methods for solving (7.12) is that the Schur
complement problem is not assembled and solved as a whole. Instead only local Schur
complement problems on subdomains are repeatedly solved and in every iteration step
just interface information between neighboring subdomains is exchanged. Moreover,
even local Schur complement problems need not be assembled; subdomain problems
with Dirichlet and Neumann boundary condition on the interface can be solved instead.

The local Schur complement operator Si operates only on the interface unknowns of
a subdomain Ωi. The local Schur complement problem is obtained as in the previous
section, the only difference is that the process is performed on the subdomain Ωi rather

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 181

than on the whole domain Ω. Let us consider problem (7.8) restricted to Ωi:

[
Ki

oo Ki
or

Ki
ro Ki

rr

] [
ui

o

ui
r

]
=

[
f i
o

f i
r

]
, (7.19)

where ui
r represents interface unknowns belonging to Ωi and Ki

rr, Ki
ro and Ki

or represent
a local contribution of Ωi to the global blocks Krr, Kro and Kor (when using FEM
for discretization, Ki

rr, Ki
ro and Ki

or are assembled from element matrices for elements
contained in Ωi only). However, it is not clear how to determine local interface forces f i

r ;
for more detail see end of this section.

After eliminating all the interior unknowns from (7.19) we get

[
Ki

oo Ki
or

0 Si

] [
ui

o

ui
r

]
=

[
f i
o

gi

]
, (7.20)

where Si = Ki
rr − Ki

ro(K
i
oo)

−1Ki
or is the local Schur complement of (7.19) with respect

to interface and gi = f i
r −Ki

ro(K
i
oo)

−1f i
o. Problem (7.20) can be split into two problems:

the local subdomain problem (7.13) and the local Schur complement problem

Si ui
r = gi. (7.21)

In terms of the example of a 2D discretized Poisson equation, the local Schur comple-
ment Si can be viewed as an assignment of the local interface node force vector gi to the
local interface nodal displacement ui

r so that a problem (7.13) with Dirichlet boundary
condition ui

r on the interface and a problem (7.20) with Neumann boundary condition
gi on the interface have the same solution ui on Ωi.

The local Schur complement problem (7.21) generally is not well posed, as local Schur
complement Si is not invertible if Ωi is so called floating subdomain, boundary of which
does not contain any part of Dirichlet boundary condition of the original problem.

The local Schur complement problem can be expressed either as (7.21) in terms of
just local interface unknowns, or like (7.18) on the whole subdomain as

[
Ki

oo Ki
or

0 Si

] [
ui

or

ui
r

]
=

[
0
gi

]
(7.22)

with solution representing some function with minimal energy on Ωi.
Now we can decompose the Schur complement problem (7.12) to independent local

Schur complement problems as
Sur = g , (7.23)

where

S =




S1

S2

. . .

SN


 , ur =




ur
1

ur
2

...
ur

N


 , g =




g1

g2

...
gN


 . (7.24)

In order to establish relations among the Schur complement Ŝ and the local Schur
complements Si, function spaces Ŵ , W and W i and operators R and Ri are introduced
in a standard manner (see Mandel, Dohrmann and Tezaur [21]):

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 182

Ŵ ... a space of functions with minimal energy on subdomains, continuous across the
interface. Function û ∈ Ŵ is represented by a vector û of values at global degrees of
freedom at interface. Values inside subdomains can be then determined from (7.16). An

example of a function from Ŵ is in Fig. 7.8 right.
W i ... a space of functions from Ŵ restricted to Ωi; ui

r ∈ W i is represented by a vector
ui

r of values at local degrees of freedom at interface of Ωi.
W = W 1 × W 2 × · · · × WN ... space of functions with minimal energy on subdomains,
possible discontinuous (”teared apart”) across the interface. Function ur ∈ W is repre-
sented by a vector ur of values at union of independent instances of all local interface
dofs from all subdomains (so for every global interface dof belonging to m subdomains
there can be m different local values coming from different subdomains). An example of
a function from W is in Fig. 7.9 bellow.
Ŵ ′, W i′ and W ′ ... dual spaces to Ŵ , W i and W , respectively.

Schur complement operator Ŝ: Ŵ → Ŵ ′ is represented by Schur complement Ŝ, local
Schur complement operator Si: W i → W i′ is represented by local Schur complement Si.

In terms of mechanics, primal spaces Ŵ , W and W i represent displacements resulting
in zero reactions inside subdomains, dual spaces Ŵ ′, W ′ and W i′ represent nodal forces
(or reactions) at interface. Spaces Ŵ and Ŵ ′ represent quantities continuous across the
interface (displacements and nodal forces, respectively). Spaces W and W ′ represent
these quantities discontinuous across the interface, it means that at interface nodes
they can have different values coming from different subdomains containing this node.
Space W i represents displacements restricted to interface of Ωi and space W i′ represents
reactions (node forces) at interface of Ωi - as if we cut the subdomain Ωi away from the
rest of the domain and considered it independently.

Ri: Ŵ → W i ... operator of a restriction from Ω to Ωi. Operator Ri is represented by
a matrix Ri that keeps only those components of a vector that belong to closure of Ωi.
Note that operator of a restriction Ri defined here keeps also interface components that
lie on the boundary of Ωi and so it differs from the operator of restriction in a context of
overlapping subdomains defined in the section (7.4) that keeps only interior components
of Ωi.

RiT: W i′ → Ŵ ′ ... operator of a prolongation from Ωi to Ω. It is represented by a
transpose RiT to the matrix Ri, which takes a variable from Ωi and represents it as the
equivalent variable in Ω.

R: Ŵ → W ... operator of tearing interface unknowns to independent subdomains.
It is represented by a matrix

R =




R1

R2

...
RN


 (7.25)

which m-times copies every global unknown belonging to m subdomains.
RT: W ′ → Ŵ ′ ... a transpose of the operator R. It is represented by a matrix RT,

which sums local interface values from adjacent subdomains.
Relations among global and local displacements can be expressed as ur = Rû and

ui
r = Ri û.

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 183

The Schur complement Ŝ and the condensed right hand side ĝ can be expressed as

Ŝ = RTSR =
∑

RiTSiRi, (7.26)

ĝ = RTg =
∑

RiTgi, (7.27)

where
gi = f i

r − Ki
ro(K

i
oo)

−1f i
o, f̂ =

∑
RiTf i

r . (7.28)

In terms of mechanics, R copies values of displacements from global interface nodes
to local interface nodes of all subdomains, Ri copies values of displacements from global
interface nodes to local interface nodes of subdomain Ωi, RT sums local interface reactions
from adjacent subdomain interfaces to create global interface node forces representing
inbalance in reactions at interface and RiT expresses subdomain interface node reactions
in Ωi as global interface forces in Ω.

It would be nice if we could replace problem (7.12) by problem (7.23) consisting of
N independent subdomain problems, but there are two difficulties preventing it.

First, local Schur complements Si are not invertible on floating subdomains, so if a
decomposition of Ω contains floating subdomains, problem (7.23) is not invertible.

Second, the decomposition (7.23) is not unique. Its right hand side g is determined
by subdomain interface node forces f i

r via (7.28) left, whereas f i
r must represent a decom-

position of the prescribed global interface node forces f̂ given by the relationship (7.28)
right. However, this relationship is not enough for specifying f i

r uniquely: there are many

ways how to decompose global interface node forces f̂ to subdomain interface node forces
f i
r so that (7.28) holds. Only one choice is correct and leads to solution ur of (7.23) which

is continuous across the interface (and so exists ûr ∈ Ŵ such that Rû = ur). For other
choices the solution ur has different values on adjacent subdomains at the same global
dofs.

Let us illustrate this uncertainty concerning the choice of the decomposition of f̂ (and
consequently ĝ, see relationships (7.27) and (7.28)) on the example from the Fig. 7.8.

The correct decomposition of f̂ leads to the solution in the Fig. 7.8 right, unfortunately
this decomposition is not known in advance. Other decompositions lead to solutions
that are not continuous across the interface, as the solution in the Fig. 7.9, which was
obtained by distributing the global interface node forces a half to the first subdomain
and a half to the second one.

7.5.4 Primal and Dual methods

Let us suppose in this section that every diagonal block of S, formed by local Schur
complement Si, is invertible (floating subdomains will be treated in the next section).

Both primal (Neumann-Neumann, BDD type) and dual (FETI type) methods are
iterative methods for solving the Schur complement problem (7.12) using the decomposed
problem (7.23). Only local Schur complement problems are solved, although repetitively.

7.5.4.1 Primal methods

The primal DD methods iterate on the primal space Ŵ . In order to clarify ideas,
description of one iteration step in terms of mechanics is described first in Template 39.
(An algebraic description follows in Template 40.)

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 184

0

5

10

15
0 5 10 15 20

−2.5

−2

−1.5

−1

−0.5

0

0.5

iteration 1, subdomain corrections

Figure 7.9: An example of a solution of local Schur complement problems (7.23): function
with minimal energy on every subdomain, possibly discontinuous across the interface.

Template 39, Primal method in terms of mechanics

Let û be the last approximation of (global) interface displacements.

1. Compute residual r̂ = ĝ − Ŝû of (7.12) subdomain by subdomain:

(a) Decouple all subdomains: for every subdomain, create a vector of local
interface displacements ur

i as a restriction of û to Ωi.

(b) For every subdomain, compute local interface reactions gi that correspond
to local interface displacements: gi = Siur

i.

(c) From local interface reactions, compute residual r̂ at global interface nodes
(as the global interface node forces minus a sum of local interface reactions
at all local nodes corresponding to the given global node.

Residual represents force inbalance at interface.

2. If residual r̂ in a suitable norm is still large, distribute it back to subdomain
interfaces: for every subdomain Ωi create a vector of local interface reactions
∆ri that allocates to Ωi its (approximate) share of a global inbalance represented
by r̂.

3. Find subdomain displacements corrections ∆ur
i that would locally compensate

for the local interface reactions: Si∆ur
i = ∆ri. This is the place where the

assumption of invertibility of Si is used.

4. Compute interface correction ∆û as some average of subdomain corrections
∆ur

i. Subdomain corrections generally are not continuous across the interface,
i.e. different values of displacement computed at different subdomains can exist
for the same global interface node.

5. Take û + ∆û as the next approximation.

Let us consider the example in the Fig. 7.8 with the first approximation on the

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 185

interface chosen as zero. Then the function in Fig. 7.8 center represents the first ap-
proximation of the solution on the whole domain. According to the Template 39, its
residual is computed and distributed among the two subdomains and the correction is
computed. If the residual was distributed among the subdomains in the right manner,
the correction would be the solution of the Schur complement problem (Fig. 7.8 right)
and the accurate solution would be obtained in the first iteration. Generally the proper
distribution of the residual is not guessed correctly and so the resulting correction is
discontinuous as in the Fig. 7.9. The continuity is then achieved by some averaging.

For algebraic description of the primal method algorithm in Template 40 we need to
introduce an operator E for averaging displacements discontinuous across the interface:
E: W → Ŵ ... operator of averaging of interface values from adjacent subdomains; it is
represented by a matrix E
ET: Ŵ ′ → W ′ ... operator of distributing of global interface forces to subdomains,
represented by a transpose ET of the matrix E.
The simple example of E is an arithmetic average: value at interface node is set as an
arithmetic average of values at corresponding node from all subdomains containing that
node. For more sofisticated choices of E see Mandel, Dohrmann and Tezaur [21] or
Klawonn and Widlund [15]. The only limitation on E is that

ERû = û (7.29)

holds for any û ∈ Ŵ . Consequently, for any ĝ ∈ Ŵ ′

RTETĝ = ĝ. (7.30)

In terms of mechanics, relation (7.29) demands that, after copying global interface dis-
placements û to local interface displacements by operator R and then averaging them
back by operator E, we get the original displacements û. Relation (7.30) states that as a
consequence of (7.29), after distributing interface node forces ĝ to subdomain interfaces
using operator ET and then summing them back by operator RT, we get the original
interface node forces ĝ.
Template 40, Algebraic description of the primal method algorithm

Choose û(0) arbitrarily and repeat for k := 0, 1, 2, . . . :

1. (a) ur
(k) := Rû(k)

(b) g(k) := Sur
(k)

(c) r̂(k) := ĝ − RTg(k)

if a suitable norm of r̂(k) is small enough, stop

2. ∆r(k) := ETr̂(k)

3. ∆ur
(k) := S−1 ∆r(k)

4. ∆û(k) := E∆ur
(k)

5. û(k+1) := û(k) + ∆û(k)

Putting the last four steps of the algorithm in Template 40 together, we get a mathemat-
ical formulation of the primal (Neumann-Neumann) method as a Richardson method for

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 186

the Schur complement problem (7.12):

û(k+1) = û(k) + ES−1ETr̂(k). (7.31)

Implementation remarks:
Matrices E, R and their transposes are used just for description of the algorithm,

they are not expected to be explicitly constructed in programs.
Computations at the steps (1b) and (3) of the algorithm in the Template 40 can be

realized locally subdomain by subdomain due to block-diagonal structure of S as gi :=
Siur

i and ∆ur
i := (Si)−1 ∆ri, respectively (superscript (k) was omitted for simplicity).

Moreover, local Schur complements Si need not be stored nor factorized explicitly.
Multiplication of a vector v by Si, needed at the step of (1b), can be implemented by
solving the Dirichlet problem (7.16) on subdomain using existing block factorization
of Koo: Siv = (Ki

rr − Ki
ro(K

i
oo)

−1Ki
or)v = Ki

rrv − Ki
rovor , where vor is a solution of

Ki
oovor = −Ki

orv, see also implementation remark bellow the Schur complement algo-
rithm in Template 38.

A solution v of a problem Siv = ∆ri needed at the step (3) can be implemented by
solving the Neumann problem (7.19) on subdomain with f i

r = ∆ri and f i
o = 0 and using

just an interface part ui
r of the solution. For f i

o = 0, problem (7.19) is equivalent to the
problem (7.22) with gi = f i

r .

7.5.4.2 Dual methods

The dual DD methods iterate on the dual space W ′ or, strictly speaking, on a space
of Lagrange multipliers, as will be shown later. The correct decomposition of ĝ is to be
found such that simultaneously a solution ur of (7.23) is continuous across the interface
and (7.27) holds. Relation (7.27) can be expressed as

ĝ = RT(g − r), (7.32)

for any r satisfying
RTr = 0, (7.33)

whereas g is an arbitrarily chosen decomposition of ĝ satisfying (7.27). For instance
we can set g = ETĝ, then (7.27) follows from (7.30). Vector r can be interpreted as
local interface reactions and equation (7.33) states that interface reactions from adjacent
subdomains must annulate each other. Problem (7.12) can be formulated using (7.23)
and (7.32) as to find subdomain interface reactions r such that (7.33) holds and a problem

Sur = g − r (7.34)

has solution ur with no jumps across the interface.
In order to clarify ideas, description of one iteration step of a dual method in terms

of mechanics is described first in Template 41.

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 187

Template 41, Dual method in terms of mechanics

Let g be a decomposition of ĝ satisfying (7.27). Let r be the last approximation of
local interface reactions satisfying (7.33) i.e. they cancel each other.

1. Compute local interface displacements ur
i corresponding to the local interface

reactions: Siur
i = gi−ri. This is the place where the assumption of invertibility

of Si is used.

2. Compute the jump across the interface in local interface displacements of adja-
cent subdomains. If there is no jump, ur

i represent solution of (7.12).

3. Distribute the jump among subdomains: for every subdomain Ωi create a vector
of local interface displacements ∆ur

i that allocates to Ωi its (approximate) share
of the global interface jump.

4. Find subdomain corrections of reactions ∆ri that would locally compensate for
the local interface jump: Si∆ur

i = ∆ri.

5. Take ri + ∆ri as the next approximation.

For algebraic description of the dual algorithm we need to introduce a vector space
Λ of Lagrange multipliers that represents jumps in values of functions from W , its dual
space Λ′ representing jumps in W ′, and two operators B and BD for computing jumps.
In terms of mechanics, Λ represents jumps in displacements across the interface between
adjacent subdomains, characterized by red strokes in the Fig. 7.10, Λ′ represents jumps
(inbalance) in reactions across the interface.

Figure 7.10: Jumps in displacements across the interface between adjacent subdomains,
represented by the red strokes.

B: W → Λ ... operator which computes interface jumps in displacements in W ; it is
represented by a matrix B
BD: W ′ → Λ′ ... operator which computes interface jumps in reactions in W ′ as a
weighted sum of local interface reactions; it is represented by a matrix BD

BT: Λ′ → W ′ ... expresses an interface jumps in reactions as some function in W ′ with
the same jumps across the interface; it is represented by a transpose BT to the matrix

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 188

B
BT

D: Λ → W ... expresses an interface jumps in displacements as some function in W
with the same jumps across the interface; it is represented by a transpose BT

D to the
matrix BD.

In terms of mechanics, in case an interface node is common to just two adjacent
subdomains, a jump in displacements is computed as a difference of local displacements
at this node, a jump in reactions is computed as a weighted sum of local interface
reactions at this node.

The only limitation on a choice of BD is that

BDBTλ′ = λ′ (7.35)

holds for any λ′ ∈ Λ′. Consequently, for any λ ∈ Λ

BBT
Dλ = λ. (7.36)

In terms of mechanics, relation (7.35) just demands that if we represent given jump λ′

by BT as interface node reactions and then determine jump in these reactions using BD,
we obtain the original jump λ′. Relation (7.36) states that as a consequence of (7.35), if
we use B for computing jump in displacements determined by BT

D as a representation of
a given jump λ in displacements, we get the same jump λ.

Functions from the space Ŵ (displacements continuous across the interface) can be
represented in the space W (displacements with possible jumps across the interface) as
functions with zero jumps across the interface or, by other words, as a null space of
operator B: û ∈ Ŵ can be identified with ur ∈ W such that

Bur = 0. (7.37)

Functions from the space Ŵ ′ (”balanced” reactions across the interface) can be rep-
resented in space W ′ (reactions with possible jumps across the interface) as functions

with zero jumps across the interface or as a null space of operator BD: ĝ ∈ Ŵ ′ can be
identified with g ∈ W ′ such that BDg = 0.

Algebraic description of the dual method algorithm in reactions is given by Template
42. We are seeking r satisfying (7.33) such that the solution ur of the problem (7.34)
has zero jump across the interface, i.e. it satisfies (7.37).
Template 42, Algebraic description of the dual method algorithm in reactions

Choose g := ETĝ and r(0) := 0 and repeat for k := 0, 1, 2, . . . :

1. ur
(k) := S−1(g − r(k))

2. λ(k) := Bur
(k) , if λ(k) is small enough, stop

3. ∆ur
(k) := BT

Dλ(k)

4. ∆r(k) := S∆ur
(k)

5. r(k+1) := r(k) + ∆r(k)

Putting the last three steps of algorithm described by Template 42 together, we get

r(k+1) = r(k) + SBT
Dλ(k). (7.38)

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 189

More suitable mathematical formulation of the dual method is in terms of jumps in
reactions, rather than in terms of the reactions themselves. A condition that the solution
ur of (7.34) has no jumps can be expressed as:

0 = Bur = BS−1(g − r). (7.39)

Using operator BT, reactions r can be expressed as representing some jump λ′ in reactions
across the interface:

r = BTλ′. (7.40)

Substituting (7.40) into (7.39), we obtain a problem (7.34) reformulated for unknown
jumps in reactions across the interface:

BS−1BTλ′ = BS−1g. (7.41)

Residual of the problem (7.41) for a given λ′ is a vector λ = BS−1(g − BTλ′) which
represents jumps in displacements u obtained from (7.34) after substitution of (7.40) to
the right hand side.

Substitution of (7.40) to the algorithm formulated in reactions r in Template 42 leads
to algorithm formulated in Lagrange multipliers λ′ in Template 43.
Template 43, Algebraic description of the dual algorithm in Lagrange multipliers

Choose g := ETĝ and λ′(0) := 0 and repeat for k := 0, 1, 2, . . . :

1. ur
(k) := S−1(g − BTλ′(k)

)

2. λ(k) := Bur
(k) , if λ(k) is small, stop

3. ∆ur
(k) := BT

Dλ(k)

4. ∆λ′(k)
:= BDS∆ur

(k)

5. λ′(k+1)
:= λ′(k)

+ ∆λ′(k)

Putting the last three steps of algorithm described by Template 43 together, we get a
mathematical formulation of the dual method as a Richardson method for the problem
(7.41):

λ′(k+1)
= λ′(k)

+ BDSBT
Dλ(k). (7.42)

Implementation remarks:
Matrices E, B, BD and their transposes are used just for description of the algorithm,

they are not expected to be explicitly constructed in programs.
Computations with S can be realized locally subdomain by subdomain due to block-

diagonal structure of S; moreover, local Schur complements Si need not be stored nor
factorized explicitly. See also Implementation remarks bellow the Primal method algo-
rithm in Template 40.

Remark:
If K is a symmetric positive definite operator, then S is a symmetric positive semidef-

inite operator and problem (7.23) constrained by (7.37) is equivalent to minimization

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 190

1

2
ur

TSur − ur
Tg → min subject to Bur = 0. (7.43)

Then problem (7.41) can be derived from (7.43) by using Lagrange multipliers for for-
mulating a saddle point problem equivalent to (7.43)

[
S BT

B 0

] [
ur

λ′

]
=

[
g
0

]
(7.44)

and after eliminating primal unknowns ur:

[
S BT

0 −BS−1BT

] [
ur

λ′

]
=

[
g

−BS−1g

]
, (7.45)

problem (7.41) for unknown λ′ immediately follows.

Relation between primal and dual methods
Primal and dual methods are very closely related. Until now no relation between the
choice of an operator BD for computing a weighted sum of reactions and an averaging
operator E was demanded. Let us assume now that

BT
DBur + REur = ur (7.46)

holds for every ur ∈ W . This means that a function ur ∈ W with jumps across the
interface is decomposed to a sum of some averaged function REur continuous across the
interface and some function BT

DBur representing a jump of the ur across the interface.
If ur is continuous across the interface, then ur = REur and Bur = 0 (and consequently
BT

DBur = 0). Under assumption of (7.46), RE and BT
DB are complementary projections

on W and corresponding primal and dual method are in a sense complementary, too.
Primal method seeks solution ur of the problem (7.23) such that ur = REur and con-
sequently BT

DBur = 0. Dual method seeks solution ur of the problem (7.23) such that
Bur = 0 and consequently ur = REur. For more details on relationship between primal
and dual methods and their similar convergence properties see Mandel, Dohrmann and
Tezaur [21] or Klawonn and Widlund [15].

7.5.5 BDDC and FETI-DP

Primal (Neumann-Neumann) and dual (FETI type) methods, as described in the
previous section, have two main drawbacks. First, no floating subdomains are allowed in
order to have local Schur complements invertible. Second, there is no global communica-
tion as in each iteration step information is exchanged between neighbouring subdomains
only. This leads to deteriorating of the convergence rate with growing number of subdo-
mains.

There have been many different attempts to tackle the first drawback. Let us mention
just two successful methods from early 1990s, the FETI method by Farhat and Roux [9]
and the BDD method by Mandel [19].

Most advanced recent methods seem to be the BDDC (Balancing Domain Decomposi-
tion by Constraints) developed by Dohrmann [5] and the FETI-DP (FETI Dual-Primal)
introduced by Farhat et al. [8]. Both methods are described and compared in an abstract

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 191

algebraic setting in Mandel, Dohrmann and Tezaur [21] and in Mandel and Soused́ık [22],
or in a functional analytic framework in Brenner and Sung [4].

Both BDDC and FETI-DP methods construct a new space W̃ ⊂ W by imposing some
continuity constraints across the interface in coarse degrees of freedom (coarse unknowns)

so that Ŵ ⊂ W̃ and S from (7.23) restricted to W̃ is invertible. Then methods from

previous section are used on W̃ instead of W : primal method in the case of BDDC and
dual method in the case of FETI-DP.

It was shown that a smart choice of the coarse degrees of freedom resolves even
the second drawback. It can not only improve convergence properties, but also make
convergence independent of the number of subdomains (see Toselli and Widlund [27] or
Mandel and Dohrmann [20]).

The coarse degrees of freedom
A choice of the coarse dofs usually starts by a selection of some nodes on the interface
as coarse nodes, typically corners of subdomains are chosen first and then other nodes
are added as needed. Values at coarse nodes are used as coarse dofs. W̃ ⊂ W consists
of functions continuous across the interface at coarse nodes, represented by functions in
W for which values at coarse dofs coincide. There are two examples of functions from
W̃ in Fig. 7.11. Coarse dofs need not be teared apart to subdomains, because values at
coarse dofs do not differ in adjacent subdomains.

For better convergence properties not only values at coarse nodes are used as coarse
dofs, but also weighted averages of values over edges and faces of adjacent subdomains.
More details can be found for instance in Mandel and Dohrmann [20], Klawonn, Widlund
and Dryja [16], Klawonn and Rheinbach [14] or in Li and Widlund [18], where a change
of variables is used for treating averages so that each average corresponds to an explicit
degree of freedom, like a coarse node.

For simplicity let us assume now that coarse dofs are values at coarse nodes only, so
we can divide all the interface unknowns to coarse unknowns and the rest.

Let us denote the system (7.23) restricted to W̃ as

S̃ũ = g̃ (7.47)

and rewrite it in a block form with the last block corresponding to all the coarse un-
knowns: [

Srr Src

Scr Ŝc

] [
ur

ûc

]
=

[
gr

ĝc

]
, (7.48)

where a symbol ̂ denotes coarse (continuous) quantities of the problem, which are the
same as in the original Schur complement problem (7.12). Srr, ur and gr represent
”teared” interface quantities and can be written in a block form analogous to (7.24):

Srr =




S̃1

S̃2

. . .

S̃N


 , ur =




ũ1
r

ũ2
r
...

ũN
r


 , gr =




g̃1

g̃2

...
g̃N


 , (7.49)

where ũi
r consists of interface unknowns of Ωi that are not coarse. Coarse unknowns ûc

cannot be separated this way, as every of them belongs to two or more subdomains.

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 192

Coarse dofs must be chosen so that S̃ and Srr are invertible (and consequently every

subdomain matrix S̃i is invertible). This means that no subdomain nor group of subdo-
mains can be left floating; all subdomains must be sufficiently interconnected by coarse
dofs.

If all the interface unknowns are selected as coarse, then Ŝc = Ŝ, ûc = û and ĝc = ĝ
and the problem (7.48) become the original problem (7.12). On the other hand, if no

coarse unknowns are selected, then S̃ = S, ũ = ur and g̃ = gr and the problem (7.48)
become the totally decomposed problem (7.23).

Let us denote
R̃T: W̃ ′ → Ŵ ′ ... a restriction of operator RT to W̃ ′,
R̃: Ŵ → W̃ ... transpose of the operator R̃T,
Ẽ: W̃ → Ŵ ... a restriction of an average operator E to W̃ .
In the case the coarse dofs are values at coarse nodes only, operators R̃ and Ẽ written
in a block form have a block diagonal structure:

R̃ =

[
Rr 0
0 I

]
=

[
R̃r

Rc

]
, Ẽ =

[
Er 0
0 I

]
=

[
Ẽr RT

c

]
, (7.50)

where matrix Rc keeps only coarse unknowns of a vector, R̃r tears apart only unknowns
that are not coarse and similarly Ẽr averages only unknowns that are not coarse. If all
the interface unknowns are selected as coarse, then W̃ = Ŵ and R̃ = Ẽ = I (identity

operator), if no coarse unknowns are selected, then W̃ = W , R̃ = R and Ẽ = E.

The Schur complement Ŝ can be expressed as

Ŝ = R̃TS̃R̃ =

[
RT

r SrrRr RT
r Src

ScrRr Ŝc

]
(7.51)

and for relations among ĝ, û and g̃, ũ it holds

ĝ = R̃Tg̃ =

[
RT

r gr

ĝc

]
, ũ = R̃û =

[
Rrûr

ûc

]
. (7.52)

7.5.5.1 BDDC method

The BDDC algorithm (Template 44) is the primal algorithm (Template 40) rewritten
for partially decomposed problem (7.47) instead of totally decomposed problem (7.23).
Template 44, The BDDC method algorithm

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 193

Choose û(0) arbitrarily and repeat for k := 0, 1, 2, . . . :

1. (a) ũ(k) := R̃ û(k)

(b) g̃(k) := S̃ ũ(k)

(c) r̂(k) := ĝ − R̃T g̃(k)

if r̂(k) is small enough, stop

2. ∆r̃(k) := ẼT r̂(k)

3. ∆ũ(k) := (S̃)−1 ∆r̃(k)

4. ∆û(k) := Ẽ∆ũ(k)

5. û(k+1) := û(k) + ∆û(k)

Putting the last four steps of this algorithm together, we get a mathematical formu-
lation of the BDDC method as a Richardson method for the Schur complement problem
(7.12):

û(k+1) = û(k) + Ẽ(S̃)−1ẼT r̂(k). (7.53)

Remark:
Computation of the residual at the step 1 of the Template 44 could also be performed

with fully decomposed Schur complement as in the step 1 of the basic primal algorithm
in the Template 40.

Let us consider the example in the Fig. 7.8 with the first approximation on the
interface chosen as zero. Then the function in Fig. 7.8 center represents the first approx-
imation of the solution on the whole domain. Its residual is computed and distributed
among the two subdomains and the correction is computed, see Fig. 7.11, where 2
(left) or 3 (right) coarse nodes were selected. It differs by the continuity at the coarse
nodes from the correction depicted in the Fig. 7.9 of the basic primal method algorithm
described in Template 39.

7.5.5.2 FETI-DP method

The FETI-DP algorithm (Template 45) is the dual algorithm (Template 43) rewritten
for partially decomposed problem (7.47) instead of totally decomposed problem (7.23).
Consequently a problem

B̃S̃−1B̃Tλ′ = B̃S̃−1g̃ (7.54)

is solved instead of (7.41), whereas B̃: W̃ → Λ is a restriction of the operator B to W̃ .

Let B̃D: W̃ ′ → Λ′ be a restriction of the operator BD to W̃ ′ .

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 194

0

5

10

15

0
5

10
15

20

−2.5

−2

−1.5

−1

−0.5

0

0.5

iteration 1, sum of corrections

0

5

10

15
0 5 10 15 20

−2.5

−2

−1.5

−1

−0.5

0

0.5

iteration 1, sum of corrections

Figure 7.11: An example of subdomain displacements corrections for two subdomains:
function with minimal energy on every subdomain, continuous at the coarse nodes and
possibly discontinuous on the rest of the interface. Left: 2 coarse nodes (the corners).
Right: 3 coarse nodes (the corners and the middle-point).

Residual of the problem (7.54) for a given λ′ is a vector λ = B̃S̃−1(g̃ − B̃Tλ′) which
represents jumps across the interface at displacements ur (there are no jumps at the
coarse displacements ûc).
Template 45, The FETI-DP algorithm

Choose g̃ := ẼT ĝ and λ′(0) := 0 and repeat for k := 0, 1, 2, . . . :

1. ũ(k) := (S̃)−1(g̃ − B̃Tλ′(k)
)

2. λ(k) := B̃ ũ(k) , if λ(k) is small enough, stop

3. ∆u(k) := B̃T
D λ(k)

4. ∆λ′(k)
:= B̃DS̃∆u(k)

5. λ′(k+1)
:= λ′(k)

+ ∆λ′(k)

Putting the last three steps of this algorithm together, we get a mathematical for-
mulation of the FETI-DP method as a Richardson method for the problem (7.41):

λ′(k+1)
= λ′(k)

+ B̃DS̃ B̃T
D λ(k). (7.55)

7.5.5.3 Coarse space and coarse problem

The BDDC algorithm (Template 44) and the basic primal algorithm (Template 40)
seems to be nearly the same, but there is one great difference between them: S is a
block diagonal matrix but S̃ is not. In consequence, operations Sv and S−1r in the basic
primal algorithm can be done independently on subdomains, in contrast to operations
S̃v and (S̃)−1r in the BDDC algorithm. The same difference exists between the basic
dual algorithm (Template 43) and the FETI-DP algorithm (Template 45).

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 195

In order to decompose global interface problem (7.47), both BDDC and FETI-DP
introduce a coarse space and decompose the problem (7.47) to local problems and a
global coarse problem. To this end Schur complement technique can be used in a similar
way as in section 7.5.2, as the problems (7.8) and (7.47) have the same structure.

Recall that only values at coarse nodes are assumed as coarse dofs, so all the interface
unknowns can be divided into coarse ones and the rest, not involved in coarse dofs.
(If averages are used as coarse dofs, similar ideas as described here are employed, but
everything is technically much more complicated; more about this can be found for
instance in Toselli and Widlund [27] or Mandel and Dohrmann [20].)

Every subdomain matrix S̃i is assumed to be invertible, so all interface unknowns
that are not coarse can be eliminated from (7.48):

[
Srr Src

0 Sc

] [
ur

ûc

]
=

[
gr

gc

]
, (7.56)

where Sc = Ŝc − ScrS
−1
rr Src is a Schur complement of (7.47) with respect to the coarse

unknowns and gc = ĝc − ScrS
−1
rr gr.

Problem (7.56) can be split into independent subdomain problems

Srrur = gr − Srcûc (7.57)

and a global coarse problem
Scûc = gc . (7.58)

In order to disjoin the problems (7.57) and (7.58), solution ur of (7.57) is split as
ur = urr+urc with urr reflecting an effect of gr, and the problem (7.57) is split accordingly:

Srrurr = gr , (7.59)

Srrurc = −Srcûc . (7.60)

Problem (7.59) represents subdomain interface problems with zero Dirichlet boundary

condition at coarse nodes and can be solved as N independent problems S̃iũi
rr = g̃i.

Solution urr of (7.59) can be used for formulation of the right hand side of (7.58) as
gc = ĝc − Scrurr . Problem (7.60) represents subdomain interface problems with ûc

prescribed as Dirichlet boundary condition at coarse nodes and can be solved as N
independent problems, too.

The coarse problem can be expressed either as (7.58) in terms of just the coarse
unknowns, or on the whole interface using (7.58) and (7.60) together as

[
Srr Src

0 Sc

] [
urc

ûc

]
=

[
0
gc

]
, (7.61)

or on the whole domain using (7.18) and (7.61) together as




Koo Kor Koc

0 Srr Src

0 0 Sc







uorc

urc

ûc


 =




0
0
gc


 (7.62)

with solution representing some function with values ûc at the coarse nodes and minimal
energy elsewhere on subdomains.

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 196

The problem (7.59) can be expressed on the whole interface as

[
Srr Src

0 Sc

] [
urr

0

]
=

[
gr

0

]
, (7.63)

or on the whole domain using (7.18) and (7.63) together as




Koo Kor Koc

0 Srr Src

0 0 Sc







uorr

urr

0


 =




0
gr

0


 (7.64)

with solution representing some function with zero values at the coarse nodes, values urr

on the interface out of the coarse nodes and minimal energy inside subdomains.
Let us illustrate the coarse space on the example of the Poisson equation with 2

or 3 coarse nodes. Functions from corresponding W̃ spaces are depicted in Fig. 7.11,
reproduced again on the left column of the Fig. 7.12. They are decomposed to the coarse
part - the solution of 7.62 (right) and the rest - the solution of 7.64, with zero values at
the coarse nodes (center).

0

5

10

15

0
5

10
15

20

−2.5

−2

−1.5

−1

−0.5

0

0.5

iteration 1, sum of corrections

0

5

10

15
0 5 10 15 20

−2.5

−2

−1.5

−1

−0.5

0

0.5

iteration 1, subdomain corrections

0

5

10

15
0 5 10 15 20

−2.5

−2

−1.5

−1

−0.5

0

0.5

iteration 1, coarse correction

0

5

10

15
0 5 10 15 20

−2.5

−2

−1.5

−1

−0.5

0

0.5

iteration 1, sum of corrections

0

5

10

15
0 5 10 15 20

−2.5

−2

−1.5

−1

−0.5

0

0.5

iteration 1, subdomain corrections

0

5

10

15
0 5 10 15 20

−2.5

−2

−1.5

−1

−0.5

0

0.5

iteration 1, coarse correction

[
ur

ûc

]
=

[
urr

0

]
+

[
urc

ûc

]

Figure 7.12: An example of two functions from space W̃ (left column), for 2 and 3 coarse
nodes (upper and lower row, respectively) decomposed to the coarse part (right) and the
rest (center).

Remark:
In the section 7.5.2, a splitting of the global problem (7.8) to local problems (7.15),

(7.16) and a smaller global interface problem (7.12) was described. In this section,
a splitting of this global interface problem (7.12) to local interface problems (7.59),
(7.60) and even smaller global coarse problem (7.58) was described. Both processes use
technique of the Schur complement and are essentially the same. Following this way the
global coarse problem (7.58) can also be split to get the remaining global problem even

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 197

smaller and ”coarser” and so on, resulting in multilevel methods, see Mandel, Soused́ık
and Dohrmann [23].

For description of the BDDC and the FETI-DP algorithms with the coarse problem,
let us start with a decomposition of the space W̃ as

W̃ = W̃r ⊕ W̃c, (7.65)

where W̃r ... a space of functions that have zero values at coarse degrees of freedom and
minimal energy inside subdomains, corresponding to solutions of the problem (7.64). It

can be further decomposed as W̃r = W̃ 1 × W̃ 2 × · · · × W̃N , where W̃ i is a space of
functions from W̃r restricted to Ωi,
W̃c ... a coarse space of functions that have minimal energy out of the coarse nodes,
corresponding to solutions of the problem (7.62).

Since spaces W̃c and W̃r are S̃-orthogonal (i.e. wT
c S̃w = 0 ∀wc ∈ W̃c, w ∈ W̃r),

problem (7.47) can be split to independent problems on W̃c and W̃r that can be solved

in parallel and then summed up. In the space W̃r the basic primal or dual algorithm
from section 7.5.4 is used. In the coarse space W̃c the coarse problem is formulated and
solved by direct or iterative method.

Functions from W̃c are represented by their values ûc at the coarse nodes, that can
be obtained from û by an operator Rc represented by the matrix Rc from (7.50) that
keeps only coarse unknowns of a vector:

ûc = Rcû. (7.66)

Values ũc at the whole interface are then given by r-block of (7.61) or (7.62) as

ũc =

[
urc

ûc

]
= Ψ ûc , where Ψ =

[
Ψr

I

]
=

[
−S−1

rr Src

I

]
. (7.67)

Columns of the matrix Ψ consist of interface values of coarse base functions (see Fig.
7.13, where coarse base functions for 3 coarse nodes from example in the Fig. 7.12 bellow
are depicted) that have value of 1 at one of the coarse dofs, zeros at all other coarse dofs
and minimal energy on the rest of the subdomains. Coarse base functions are continuous
only at coarse dofs. The coarse space with the coarse basis can be regarded as a finite
element space formed by ”superelements” represented by subdomains.

0

5

10

15 0

5

10

15

20−0.5

0

0.5

1

coarse base function 3

0

5

10

15 0

5

10

15

20−0.5

0

0.5

1

coarse base function 2

0

5

10

15 0

5

10

15

20−0.5

0

0.5

1

coarse base function 1

Figure 7.13: An example of the three coarse base functions for 3 coarse nodes (note that
on the interface they are continuous only at the coarse nodes).

Transpose ΨT of the matrix Ψ allows to project r̃ ∈ W̃ ′ to rc ∈ W̃ ′
c as

rc = ΨT r̃ . (7.68)

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 198

In mechanics it represents a replacement of node forces (or reactions) given at all the
interface nodes by coarse node forces only.

The coarse basis Ψ and the coarse matrix Sc can be also expressed in a way similar
to (7.14) as a problem with multiple right hand side




Srr Src 0

Scr Ŝc I
0 I 0







Ψr

I
−Sc


 =




0
0
I


 . (7.69)

The BDDC algorithm with explicitly formulated coarse problem is described in Tem-
plate 46. It differs from the BDDC algorithm in Template 44 only by organization of the
computation: in Template 46 a parallelization is made explicit by means of the coarse
problem (parallel operations at single steps are separated by a ”|” symbol). Results of
both algortihms should be the same in every iteration (except rounding errors).

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 199

Template 46, The BDDC method with the coarse problem

Choose û(0) arbitrarily and repeat for k := 0, 1, 2, . . . :

1. (a) ur
(k) := Rû(k)

(b) g(k) := Sur
(k)

(c) r̂(k) := ĝ − RTg(k)

if r̂(k) is small enough, stop

2. ∆r
(k)
c := ΨT ẼT r̂(k) | ∆r

(k)
r := ẼT

r r̂(k)

3. ∆û
(k)
c := S−1

c ∆r
(k)
c | ∆ur

(k) := S−1
rr ∆r

(k)
r

4. ∆û(k) := Ẽ Ψ ∆û
(k)
c + Ẽr ∆ur

(k)

5. û(k+1) := û(k) + ∆û(k)

Putting the last four steps of this algorithm together, we get a mathematical formu-
lation of the BDDC method with explicit coarse problem as a Richardson method for
the Schur complement problem (7.12):

û(k+1) = û(k) + Ẽ Ψ S−1
c ΨT ẼT r̂(k) + Ẽr S

−1
rr ẼT

r r̂(k). (7.70)

The last two terms are sometimes called coarse and subdomain correction, respectively.
Their examples are depicted in the Fig. 7.13 right and center columns, respectively.
Both corrections are independent and can be computed in parallel.
Remark: Computation of the residual at the step 1 of the Template 46 is the same as
in the basic primal algorithm in the Template 40. It could also be done with the coarse
problem as

1. (a) û
(k)
c := Rc û

(k) | u
(k)
r := R̃r û

(k)

(b) ĝ
(k)
c := Sc û

(k)
c | grr

(k) := Srr (u
(k)
r + ΨT

r û
(k)
c)

(c) r̂(k) := ĝ − RT
c ĝ

(k)
c − R̃T

r grr
(k)

If the coarse dofs are values at coarse nodes only as assumed above, jump operators
B̃ and B̃D written in a block form have zeros at the coarse blocks

B̃ =

[
Br 0
0 0

]
=

[
B̃r

0

]
, B̃D =

[
BDr 0
0 0

]
=

[
B̃Dr 0

]
. (7.71)

Coarse components of both λ and λ′ are zeros, as there are no jumps in the coarse
unknowns. The problem (7.54) then shrinks to

BrSrr
−1BT

r λ′
r = B̃rS̃

−1g̃. (7.72)

The FETI-DP algorithm with explicitly formulated coarse problem is described in
Template 47. It differs from the FETI-DP algorithm in Template 45 by restriction to
coarse nodes only (no averages) and by an organization of the computation at the first

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 200

step: in Template 47 a parallelization is made explicit by means of the coarse problem
(parallel operations are separated by a ”|” symbol). Results of both algortihms should
be the same in every iteration (except rounding errors).
Template 47, The FETI-DP algorithm with coarse problem

Choose gc := ΨT ẼT ĝ , gr := ẼT
r ĝ , λ′(0) := 0 and repeat for k := 0, 1, 2, . . . :

1. û
(k)
c := S−1

c (gc − ΨT
r λ′(k)

r) | u
(k)
rr := S−1

rr (g
(k)
r − BT

r λ′(k)
r)

2. λ(k)
r := Br (u

(k)
rr + Ψr û

(k)
c) , if λ(k)

r is small enough, stop

3. ∆u
(k)
r := BT

Dr λ(k)
r

4. ∆λ′(k)
r := BDr Srr ∆u

(k)
r

5. λ′(k+1)
r := λ′(k)

r + ∆λ′(k)
r

7.6 DD methods as preconditioners

DD methods usually are not used on their own. They are used as outstanding precon-
ditioners, specifically tailored to the given problem. The original problem (7.1), or the
Schur complement problem (7.12), or problems (7.41) or (7.54) for Lagrange multipli-
ers, are actually solved using some other iterative method, typically PCG for symmetric
problems and GMRES for nonsymetric ones.

A preconditioner M for a given problem Ax = b is sought so that it has two
concurrent properties:

• the problem MAx = Mb has good spectral properties (in this sense M can be
regarded as some approximation of A−1), and

• a preconditioned residual p = Mr is cheap to obtain for any given r.

A good preconditioner improves the convergence of the iterative method; without a
preconditioner the iterative method may even fail to converge. More about precondi-
tioners and iterative methods can be found in Saad [24] or Barret et al [2].

Next idea is adopted from Le Tallec [17]: DD methods in preceeding sections are
formulated as Richardson iterative methods with a preconditioner M for a problem
Ax = b as

x(k+1) = x(k) + ρMr(k), (7.73)

where r(k) = b−Ax(k) is a residual at k-th iterative step and ρ = 1. Any such method
can be understood as a recipe for computing a preconditioned residual p by using only
second term of (7.73) as p = Mr. This is the way how DD methods are used in practice.
Remark:

When DD methods are used as preconditioners, computer time and memory can be
saved by solving subdomain problems (i.e. problems solved in W̃) only approximately,
see [17], [6] or [13].

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 201

7.7 DD Appendix - Matlab programs

An example of a 2D Poisson equation on a rectangular domain split into two rect-
angular subdomains used for ilustration of the substructuring domain decomposition
methods was generated and solved by Matlab programs presented in this Appendix.
Methods Neumann-Neumann (basic primal algorithm), FETI (basic dual algorithm),
BDDC or FETI-DP can be used.

First of all, data and program structures need to be prepared. Most of them are
the same for all these four methods and they are generated by a script prep.m listed as
Program 34. All the input data are described and submitted at the beginning of the
script. Some examples of the input data are listed in the section 7.7.1 bellow.

After running the prep.m script, either BDDC.m listed as Program 35 or FETIDP.m
listed as Program 36 scripts can be used, repeatedly. The only input to these scripts is
the number of iterations, submitted at the beginning of the scripts.

The BDDC.m script solves the problem using a primal method: either the Neumann-
Neumann method (if no coarse problem is given) or the BDDC method (if a coarse
problem is given).

The FETIDP.m script solves the problem using a dual method: either the FETI
method (if no coarse problem is given) or the FETI-DP method (if a coarse problem is
given).

These three main scripts use several auxiliary functions listed as Programs 37 to 43.

7.7.1 Examples of the input data

All examples from used in the previous text have fixed bottom and upper boundary
line with zero Dirichlet condition and nonzero body forces.

The inputs to prep.m for basic primal or dual methods are listed as Program 31. For
the primal method the BDDC.m and for the dual method the FETIDP.m script should
then be run, respectively.

The inputs to prep.m for BDDC or FETI-DP methods are listed as Program 32. The
only difference from the basic primal or dual algorithm is that the coarse problem is
given. For the BDDC method the BDDC.m and for the FETI-DP the FETIDP.m script
should then be run, respectively. Not only the coarse nodes can be used, but also the
coarse averages, as in the Program 33, where no coarse node and one coarse average is
used.
Program 31

nx = 14; ny = 20;

% grid with nx rows, ny columns

Tgr=ones(nx,ny);

% fixed bottom and upper boundary line

Tgr(:,1)=0; Tgr(:,ny)=0;

% interface nodes

nyd = ceil((ny+2)/3);

Tgr(:,nyd) = 2;

% coarse averages at interface

np = 0;

Pgr = 2*ones(nx, np);

% nc - number of fixed nodes

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 202

% c[nc] - column of node numbers of fixed nodes

c = find(Tgr == 0);

nc = length(c);

% values at fixed nodes

hc=zeros(size(c));

% node forces

hf = 10/(nx*ny) * ones(nx,ny);

hf(ceil(nx/2):nx,1:ny)= -20/(nx*ny);

% specification of the view

azim = 102; elev = 30;

Program 32

nx = 14; ny = 20;

% grid with nx rows, ny columns

Tgr=ones(nx,ny);

% fixed bottom and upper boundary line

Tgr(:,1)=0; Tgr(:,ny)=0;

% interface nodes

nyd = ceil((ny+2)/3);

Tgr(:,nyd) = 2;

% coarse nodes

Tgr(1,nyd) = 3;

Tgr(nx,nyd) = 3;

% coarse averages at interface

np = 0;

Pgr = 2*ones(nx, np);

% nc - number of fixed nodes

% c[nc] - column of node numbers of fixed nodes

c = find(Tgr == 0);

nc = length(c);

% values at fixed nodes

hc=zeros(size(c));

% node forces

hf = 10/(nx*ny) * ones(nx,ny);

%hf = zeros(nx,ny); % alternative

hf(ceil(nx/2):nx,1:ny)= -20/(nx*ny);

% specification of the view

azim = 102; elev = 30;

Program 33

nx = 14; ny = 20;

% grid with nx rows, ny columns

Tgr=ones(nx,ny);

% fixed bottom and upper boundary line

Tgr(:,1)=0; Tgr(:,ny)=0;

% interface nodes

nyd = ceil((ny+2)/3);

Tgr(:,nyd) = 2;

% coarse averages at interface

np = 1;

Pgr = 2*ones(nx, np);

if (np>0)

%%%% this particular choice of averages can be changed

nua = floor(nx/np);

for i = 1:np

Pgr(((i-1)*nua+1):(i*nua),i) = 4;

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 203

end

end

% nc - number of fixed nodes

% c[nc] - column of node numbers of fixed nodes

c = find(Tgr == 0);

nc = length(c);

% values at fixed nodes

hc=zeros(size(c));

% node forces

hf = 10/(nx*ny) * ones(nx,ny);

hf(ceil(nx/2):nx,1:ny)= -20/(nx*ny);

% specification of the view

azim = 102; elev = 30;

7.7.2 Script listings

Program 34

prep.m

%%%

% prepares data for programs BDDC and FETIDP

% - programs for substructuring methods

% on a 2D Poisson equation given on a rectangular

% domain divided into 2 subdomains.

%%%

%

% FEM with bilinear elements is used for discretization.

% Domain is meshed by unit-squares and divided into 2

% rectangular subdomains by line parallel with x-axis

% (so there is a "bottom" subdomain and an "upper" one).

% Dirichlet type boundary condition is assumed to be given

% on a part of a boundary. If the classic Neumann-Neumann

% or FETI method is to be used (i.e. no coarse problem),

% both subdomains must have Dirichlet b.c. prescribed on

% a part of their boundary.

%

% functions used: MKP (uses psg), mat, matsed, psf, kres

%%%

clear

%%

%%%%%%%%%%%%%%%%% INPUT %%%%%%%%%%%%%%%%%%%%%%

%%

%%%%% specification of the domain %%%%%%%%%%%%%

%%%%% and its substructuring %%%%%%%%%%%%%

%%%

% nx, ny - the number of nodes in x and y direction

% Tgr - the geomery of the domain:

% a rectangular grid with classified nodes (the

% attitude is as in the Matlab function numgrid)

% 0 ... prescribed Dirichlet boundary condition

% (fixed nodes)

% 1 ... prescribed nodal force or Neumann b.c.

% 2 ... interface nodes without constraint

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 204

% 3 ... coarse nodes - continuity constraint

% nodes are ordered first by x, then by y:

% k=i+nx*(j-1) is number of the node (x_i, y_j),

% or k=ind2sub(nx,ny,x_i,y_j) , i=1,..nx, j=1,..ny

% Example of Tgr for nx = 4, ny = 6, fixed corners:

% 0 1 1 3 1 0

% 1 1 1 2 1 1 x-axis downstairs,

% 1 1 1 2 1 1 y-axis to the right

% 0 1 1 3 1 0

% nyd - specification of the interface:

% Tgr(:,nyd) represents the interface

% (nyd = 4 in the example above)

% np - number of coarse averages on the interface

% Pgr - grid of classified interface nodes

% Pgr(:,i) - i-th average on the interface:

% 2 ... nodes not involved at i-th average

% 4 ... nodes involved at i-th average

% Example of Pgr for the above example for

% 2 coarse averages, the first one involving

% all the interface nodes and the second only

% the inner two nodes:

% 4 2

% 4 4

% 4 4

% 4 2

%%%%% specif. of the Poisson problem %%%%%%%%%%

%%%

% hc - column of values at fixed nodes

% ordered by columns of the grid Tgr

% hf - prescribed array of nodal forces at interior

% nodes of the domain; boundary values are not

% used (Neumann b.c. is assumed to be zero)

% h(i, j) - value at node (x_i, y_j)

% bilinear interpolation between nodes is assumed

nx = 14; ny = 20;

% grid with nx rows, ny columns

Tgr=ones(nx,ny);

% fixed corners

%Tgr(1,1)=0;Tgr(nx,1)=0;

%Tgr(1,ny)=0;Tgr(nx,ny)=0;

% fixed bottom and upper boundary line (an alternative)

Tgr(:,1)=0; Tgr(:,ny)=0;

% interface nodes

nyd = ceil((ny+2)/3);

Tgr(:,nyd) = 2;

% coarse nodes

Tgr(1,nyd) = 3;

Tgr(nx,nyd) = 3;

% coarse averages at interface

np = 0;

%np = 1;

Pgr = 2*ones(nx, np);

if (np>0)

%%%% this particular choice of averages can be changed

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 205

nua = floor(nx/np);

for i = 1:np

Pgr(((i-1)*nua+1):(i*nua),i) = 4;

end

end

% nc - number of fixed nodes

% c[nc] - column of node numbers of fixed nodes

c = find(Tgr == 0);

nc = length(c);

% values at fixed nodes

hc=zeros(size(c));

%hc(1:nx) = 4; % alternatives

%hc(nx+1:2*nx) = 4;

%for i=1:nx

% hc(i) = -(nx-2*i)^2/nx^2;

% hc(nx+i) = -(nx-2*i)^2/nx^2;

%end

%hc(1:2) = 4;

%hc(nc) = 4;

% node forces

hf = 10/(nx*ny) * ones(nx,ny);

%hf = zeros(nx,ny); % alternative

hf(ceil(nx/2):nx,1:ny)= -20/(nx*ny);

% specification of the view

azim = 102; elev = 30;

%%

%%%%%%%%%%%% END OF INPUT %%%%%%%%%%%%%%%%%%%%

%%

% coordinates of the bottom left corner of the domain

kx = 1; ky = 1;

% nci - the number of the coarse nodes

nci = length(find(Tgr == 3));

% control prints

fprintf(’number of coarse nodes: %d \n’, nci);

fprintf(’number of coarse averages: %d \n’, np);

%%%

%%% FEM solution on the domain %%%%

%%% (just for comparison of the results) %%%

%%%

U = MKP(nx, ny, hf, [0], [0 0 0 0], nc, c, hc, 0, [1], [1], [1]);

figure(1); clf;

kres(U, nx, ny, kx, ky, ’m’);

title(’FEM solution’); view(azim, elev);

% control print - values on the interface

% fprintf(’FEM solution on the interface:\n’)

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 206

% k=find(Tgr(:)>1); U(k)’

%%%

%%%%% auxiliary variables %%%%%%%%%%%%%%%

%%%

% nu[np] - row vector of counts of nodes at averages

nu=sum(Pgr(:,:)==4);

% ph(:,i) - node numbers of nodes involved at i-th average

% (local numbers at interface , i.e. in upper subdomain)

ph = zeros(nx, np);

for i = 1:np

pp = find(Pgr(:,i)==4);

for j = 1:length(pp)

ph(j,i) = pp(j);

end

end

% difh - offset for local node numbers for upper subdomain

difh = nx*(nyd-1);

%%% the bottom subdomain %%%%%%%%%%%%%%%%%%%%%

%%%

%%% local node numbers = global numbers

% local numbers of the nodes on interface

intfd = find(Tgr(:,1:nyd) > 1);

% local numbers of coarse nodes

cid = find(Tgr(:,1:nyd) == 3);

% fixed nodes (Dirich. b.c.)

cd = find(Tgr(:,1:nyd) == 0); % local numbers of fixed nodes

ncd = length(cd); % count of fixed nodes

hcd=hc(1:ncd); % values of fixed nodes

% coarse averages

hpd = zeros(np,1); % field for values of coarse averages

pd = ph + difh*ones(size(ph)); % local numbers of nodes in averages

%%% the upper subdomain %%%%%%%%%%%%%%%%%%%%%%

%%%

%%% local node numbers are global ones minus difh

% local numbers of the nodes on interface

intfh = find(Tgr(:,nyd));

% local numbers of coarse nodes

cih = find(Tgr(:,nyd) == 3);

% fixed nodes (Dirich. b.c.)

ch = find(Tgr(:,nyd:end) == 0); % local numbers of fixed nodes

nch = nc-ncd; % count of fixed nodes

hch = hc((ncd+1):nc); % values of fixed nodes

% coarse averages

hph = zeros(np,1); % field for values of coarse averages

%%%

%%%%% preliminary computations %%%%%%%%%%%%

%%%

%%% the bottom subdomain %%%%%%%%%%%%%%%%%%%%%

%%%

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 207

Kd=mat(nx, nyd); % the stiffness matrix (singular)

Fd=psf(hf(1:nx,1:nyd),nx,nyd); % rhs

% local Neumann problem

bgd=[0 1 0 0]; % interface represents upper side

hcnd=zeros(1,ncd); % values of Neumann b.c.

% local Dirich. problem = prescribed values

% at interface and global Dirich. b.c.

ncdd = nx + ncd; % the number of fixed nodes

cdd = [cd; intfd]; % local node numbers of fixed nodes

% coarse problem: nci+np = the number of coarse dofs

if ((nci+np)>0)

% Psid(:,i) - i-th coarse base function on subdomain:

% zero at dofs with Dirichlet b.c.

% 1 at i-th coarse dof, zero at other coarse dofs

A=matsed(Kd, nx*nyd, ncd + nci, [cd; cid], np, nu, pd);

B=[zeros(nx*nyd+ncd,nci+np); eye(nci+np)];

Psid=A\B;

% plotting the coarse base functions - the bottom part

% for i=1:(nci+np)

% figure(i+1); clf;

% kres(Psid(1:nx*nyd,i), nx, nyd, kx, ky, ’b’);

% title(sprintf(’coarse base function %g’, i));

% view(azim, elev); hold on;

% end

% Psiid - coarse base functions reduced to interface

Psiid=Psid((nx*(nyd-1)+1):(nx*nyd),1:(nci+np));

% local coarse matrix

Kcd=-Psid((nx*nyd+ncd+1):(nx*nyd+ncd+nci+np),1:(nci+np));

end

%%% the upper subdomain %%%%%%%%%%%%%%%%%%%%%%

%%%

% nyh - the number of nodes in y-direction

% that belong to the upper subdomain

nyh = ny - nyd + 1;

Kh=mat(nx, nyh);

Fh=psf(hf(1:nx,nyd:ny),nx,nyh);

bgh=[1 0 0 0];

hcnh=zeros(1,nch);

ncdh = nx + nch;

cdh= [ch; intfh];

kyh = nyd;

if ((nci+np)>0)

A=matsed(Kh, nx*nyh, nch + nci, [ch; cih], np, nu, ph);

B=[zeros(nx*nyh+nch,nci+np); eye(nci+np)];

Psih=A\B;

% plotting the coarse base functions - the upper part

% for i=1:(nci+np)

% figure(i+1);

% kres(Psih(1:nx*nyh,i), nx, nyh, kx, kyh, ’b’);

% end

Psiih=Psih(1:nx,1:(nci+np));

Kch=-Psih((nx*nyh+nch+1):(nx*nyh+nch+nci+np),1:(nci+np));

end

%%% the global coarse matrix %%%%%%%%%%%%%%%%%%

%%%

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 208

if ((nci+np)>0)

Kc=Kcd+Kch;

end

%%%%%%%%%%%%%%%%% END %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Program 35

BDDC.m

%%%

% BDDC.m - program for Neumann-Neumann and BDDC methods

% on a 2D Poisson equation on a rectangular domain

% divided into 2 subdomains.

%%%

%

% FEM with bilinear elements is used for discretization.

% Domain is meshed by unit-squares and divided into 2

% rectangular subdomains by line parallel with x-axis

% (so there is a "bottom" subdomain and an "upper" one).

% Dirichlet type boundary condition is assumed to be

% given on a part of a boundary. If the classic BDDC

% method is to be used (i.e. no coarse problem), both

% subdomains must have Dirichlet b.c. prescribed on

% a part of their boundary.

%

% functions used: mat, matsed, psf, psg, ,SolCons, kres

% preliminary call of the "prep_struct.m" is expected

% (it prepares data for BDDC.m)

%%%

%%%%%%%%%%%%%% INPUT %%%%%%%%%%%%%%%%%%%%%%

%%%%% number of BDDC iterations %%%%%%%%%%%%%

pocit=2;

% the first approx. of the solution on the interface

hintf = zeros(nx,1);

%%%

%%%%%%%%% BDDC ITERATIONS %%%%%%%%%%%%%%%%%%%

%%%

for m=1:pocit

%%%%%% Dirichlet problems on subdomains %%%%%%%%%%%%%%%%%%%%

%%%%%% Ud, Uh - solutions on the bottom and upper subd. %%%%%

% bottom

hcdd=[hcd; hintf]; % prescribed values of Dirichlet b.c.

Ud = SolCons(Kd, Fd, nx*nyd, ncdd,cdd,hcdd, 0, nu, pd, hpd);

% upper

hcdh=[hch; hintf];

Uh = SolCons(Kh, Fh, nx*nyh, ncdh,cdh,hcdh, 0, nu, ph, hph);

%%%%%%%%%%%%% interface residual %%%%%%%%%%%%%%%%%%%%%%

% last nx items of the saddle-point solution of the Dirichlet problem

k = nx*nyd+ncdd;

Rd = Ud((k-nx+1):k); % bottom subdomain

k = nx*nyh+ncdh;

Rh = Uh((k-nx+1):k); % upper subdomain

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 209

R = (Rh+Rd); % total residual

%%%%%%%%%%%%% graph of current approximation %%%%%%%%%%%%%%%

figure; clf;

title(sprintf(’iteration %g’, m));

view(azim, elev); grid on; hold on;

kres(Ud, nx, nyd, kx, ky, ’black’);

kres(Uh, nx, nyh, kx, kyh, ’black’);

fprintf(’iteration %g: residual = %g \ncurrent approximation\n’, m, sqrt(R’*R))

pause

%%%%%%%%%%%%% coarse problem %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%% Uc - solution of the coarse problem %%%%%%%%%%%%%

%%%%%%%%%%%%% Ucd, Uch - coarse solution on the interface %%%%%

if ((nci+np)>0)

% coarse residual

Rcd = Psiid(1:nx,1:(nci+np))’*R;

Rch = Psiih(1:nx,1:(nci+np))’*R;

Rc = 0.5*(Rcd + Rch);

% coarse solution

Uc = Kc\Rc;

% coarse solution distributed to all interface nodes

Ucd = Psid(1:nx*nyd,:)*Uc(:);

Uch = Psih(1:nx*nyh,:)*Uc(:);

figure; clf;

title(sprintf(’iteration %g, coarse correction’, m));

view(azim, elev); grid on; hold on

kres(Uch, nx, nyh, kx, kyh, ’r’);

kres(Ucd, nx, nyd, kx, ky, ’r’);

fprintf(’coarse correction\n’)

pause

end

%%%%%% Neumann problems on subdomains %%%%%%%%%%%%%%%%%%%%%

%%%%%% Ud, Uh - solutions on the bottom and upper subd. %%%%

% Neumann b.c. on the interface = part of the residual

% allocated to the subdomain

% Dirichlet b.c. (coarse and given) = zero

% distributing the residual among subdomains

Rd = 0.5*(R);

Rh = 0.5*(R);

% solution on the bottom subdomain

Gd= [zeros(nx*(nyd-1),1); Rd];

Ud=SolCons(Kd, Gd, nx*nyd, ncd + nci, [cd; cid], zeros(ncd + nci,1), ...

np, nu, pd, zeros(np,1));

% solution on the upper subdomain

Gh= [Rh; zeros(nx*(nyh-1),1)];

Uh=SolCons(Kh, Gh, nx*nyh, nch + nci, [ch; cih], zeros(nch + nci,1), ...

np, nu, ph, zeros(np,1));

figure; clf;

title(sprintf(’iteration %g, subdomain corrections’, m));

view(azim, elev); grid on; hold on

kres(Ud, nx, nyd, kx, ky, ’b’);

kres(Uh, nx, nyh, kx, kyh, ’b’);

fprintf(’subdomain corrections\n\n’)

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 210

pause

%%%%%%%%% hintf - values on the interface %%%%

% adding averaged subdomain corrections to the last approximation

hintf = hintf+0.5*(Ud(difh+1:difh+nx)+Uh(1:nx));

if ((nci+np)>0)

% adding coarse correction averaged on the interface

hintf = hintf+0.5*(Ucd(difh+1:difh+nx)+Uch(1:nx));

end

%%%

%%%%%% END OF BDDC ITERATIONS %%%%%%%%%%%%%%%

%%%

end

Program 36

FETIDP.m

%%%

% FETIDP.m - program for FETI and FETI-DP methods

% on a 2D Poisson equation on a rectangular domain

% divided into 2 subdomains.

%%%

%

% FEM with bilinear elements is used for discretization.

% Domain is meshed by unit-squares and divided into 2

% rectangular subdomains by line parallel with x-axis

% (so there is a "bottom" subdomain and an "upper" one).

% Dirichlet type boundary condition is assumed to be

% given on a part of a boundary. If the classic FETI

% method is to be used (i.e. no coarse problem), both

% subdomains must have Dirichlet b.c. prescribed on

% a part of their boundary.

%

% functions used: mat, matsed, psf, psg, ,SolCons, kres

% preliminary call of the "prep_struct.m" is expected

% (it prepares data for FETIDP.m)

%%%

%%%%%%%%%%%%%% INPUT %%%%%%%%%%%%%%%%%%%%%%

%%%%% number of FETI iterations %%%%%%%%%%%%%

pocit=2;

%%%%%%% the first approx. of the interface node forces %%%%%%%%

%%%%%%% Dirichlet problems on subdomains %%%%%%%%%%%%%%%%%%%%

%%%%%%% Ud, Uh - solutions on the bottom and upper subd. %%%%%

% bottom

% hcdd - prescribed values of Dirichlet b.c., zero on interface

hcdd=[hcd; zeros(nx,1)];

Ud0 = SolCons(Kd, Fd, nx*nyd, ncdd,cdd,hcdd, 0, nu, pd, hpd);

% upper

hcdh=[hch; zeros(nx,1)];

Uh0 = SolCons(Kh, Fh, nx*nyh, ncdh,cdh,hcdh, 0, nu, ph, hph);

% plotting the initial approximation

figure; clf;

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 211

title(sprintf(’initial approximation’));

view(azim, elev); grid on; hold on

kres(Uh0, nx, nyh, kx, kyh, ’black’);

kres(Ud0, nx, nyd, kx, ky, ’black’);

fprintf(’initial approximation\n’)

pause

%%%%%%% g0 - the first approx. of the interface node forces %%%

% g0 = sum of the last nx items of Ud and Uh

ndofd = nx*nyd;

ndofh = nx*nyh;

g0 = Ud0((ndofd+ncd+1):ndofd+ncd+nx) + Uh0((ndofh+nch+1):ndofh+nch+nx);

% g0 distributed to subdomains:

g0h = 0.5*g0;

g0d = 0.5*g0;

% Lagrange multipliers - reactions on interface

% the first approximation

lm = zeros(nx,1);

%%%

%%%%%%%%% FETI ITERATIONS %%%%%%%%%%%%%%%%%%%

%%%

for m=1:pocit

%%%%%%%%%%%%% coarse problem %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%% Uc - solution of the coarse problem %%%%%%%%%%%%%

%%%%%%%%%%%%% Ucd, Uch - coarse solution on the interface %%%%%

if ((nci+np)>0)

% coarse dual solution

Rcd = Psiid(1:nx,1:(nci+np))’*(g0d + lm);

Rch = Psiih(1:nx,1:(nci+np))’*(g0h - lm);

Rc = (Rcd + Rch);

% coarse solution

Uc = Kc\Rc;

% coarse solution distributed to all nodes

Ucd = Psid(1:nx*nyd,:)*Uc(:);

Uch = Psih(1:nx*nyh,:)*Uc(:);

% plotting the coarse solution

figure; clf;

title(sprintf(’iteration %g, coarse solution’, m));

view(azim, elev); grid on; hold on

kres(Uch, nx, nyh, kx, kyh, ’r’);

kres(Ucd, nx, nyd, kx, ky, ’r’);

fprintf(’coarse solution\n’)

pause

end

%%%%%% Neumann problems on subdomains %%%%%%%%%%%%%%%%%%%%%%

%%%%%% Ud, Uh - solutions on the bottom and upper subd. %%%%%

% Neumann b.c. on interface = the residual of primal sol. (reactions)

% Dirichlet b.c. = prescribed values

% values at coarse nodes = zeros

% right hand side = r.h.s. computed from prescribed forces

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 212

% solution on the bottom subdomain

Gd= [zeros(nx*(nyd-1),1); g0d + lm];

Ud=SolCons(Kd, Gd, nx*nyd, ncd + nci, [cd; cid], [zeros(size(hcd)); zeros(nci,1)], ...

np, nu, pd, hpd);

% solution on the upper subdomain

Gh= [g0h - lm; zeros(nx*(nyh-1),1)];

Uh=SolCons(Kh, Gh, nx*nyh, nch + nci, [ch; cih], [zeros(size(hch)); zeros(nci,1)], ...

np, nu, ph, hph);

% plotting the subdomain solution

figure; clf;

title(sprintf(’iteration %g, subdomain solution’, m));

view(azim, elev); grid on; hold on

kres(Uh, nx, nyh, kx, kyh, ’r’);

kres(Ud, nx, nyd, kx, ky, ’r’);

fprintf(’subdomain solution\n’)

pause

if ((nci+np)>0)

% sum of coarse and Neumann subdomain solutions

Ud = Ud + [Ucd;zeros(ncd+nci+np,1)];

Uh = Uh + [Uch;zeros(nch+nci+np,1)];

end

%%%%%%%%%%%%% dual residual = primal jump on the interface %%%%

% bottom subdomain - last nx values of the local solution

Rd = Ud((ndofd-nx+1):ndofd);

% upper subdomain - first nx values of the local solution

Rh = Uh(1:nx);

% difference between bottom and upper values = the jump

R = (Rd-Rh);

% norm of the dual residual

%residual = sqrt(R’*R);

% plotting the current approximation

figure; clf;

title(sprintf(’iteration %g’, m));

view(azim, elev); grid on; hold on

kres(Uh(1:ndofh)+Uh0(1:ndofh), nx, nyh, kx, kyh, ’black’);

kres(Ud(1:ndofd)+Ud0(1:ndofd), nx, nyd, kx, ky, ’black’);

fprintf(’iteration %g: residual = %g \ncurrent approximation\n’, m, sqrt(R’*R))

pause

%%%%% Dirichlet problems on subdomains

%%%%% (corrections of the interface jump in primal solutions) %%%

% Dirichlet b.c. on the interface = half of the jump in the primal sol.

% given Dirichlet b.c. = zero

% coarse b.c. = zero (involved in R)

% right hand side = zero

% bottom

hcdd=[zeros(1,ncd), -0.5*R’];

Ud = SolCons(Kd, zeros(nx*nyd,1), nx*nyd, ncdd, cdd, hcdd’, 0, nu, pd, [0]);

% upper

hcdh=[zeros(1,nch), 0.5*R’];

Uh = SolCons(Kh, zeros(nx*nyh,1), nx*nyh, ncdh, cdh, hcdh’, 0, nu, ph, [0]);

% plotting the subdomain correction

figure; clf;

title(sprintf(’iteration %g, subdomain correction’, m));

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 213

view(azim, elev); grid on; hold on

kres(Uh, nx, nyh, kx, kyh, ’m’);

kres(Ud, nx, nyd, kx, ky, ’m’);

fprintf(’subdomain correction\n\n’)

pause

%%%% lm - reactions on the interface - corrected %%%%

lmd = Ud((ndofd+ncd+1):ndofd+ncd+nx); % last nx items

lmh = Uh((ndofh+nch+1):ndofh+nch+nx); % last nx items

lm = lm + 0.5*(lmh-lmd);

%fprintf(’lambda\n’)

%lm’

%%%

%%%%%% END OF FETI ITERATIONS %%%%%%%%%%%%%%%

%%%

end

Program 37

function [U] = MKP(nx, ny, hf, hg, bg, nc, c, hc, np, nu, p, hp)

% FEM solution of a 2D Poisson equation given on a rectangular domain.

% Bilinear elements are used, mesh is made of unit-squares. Dirichlet type

% (node or average values, for arbitrary nodes) and Neumann type

% (for whole sides only) boundary conditions are enabled.

% input:

% nx, ny - the number of nodes in x, y direction

% hf[nx, ny] - values of prescribed nodal forces f at nodes:

% hf(i,j) - value of force at (x_i, y_j), i=1,..nx, j=1,..ny

% bilinear interpolation is used on the rest of the domain

% hg[4,n] - values of prescribed normal derivatives g (Neumann b.c.)

% hg(j, i) - derivative at i-th node on side j of the domain:

% hg(1,*) - bottom, hg(2,*) - upper, hg(3,*) - left, hg(4,*) - right

% (i.e. corners are involved twice), n = max(nx, ny)

% bilinear interpolation is used between the nodes on the side

% bg[4] - if bg(i)==1, then Neumann b.c. is given at i-th side (by hg(i,*))

% nc - the number of fixed nodes (Dirichlet b.c.)

% c[nc] - node numbers of fixed nodes

% hc[nc] - values at fixed nodes

% np - the number of fixed averages (Dirichlet b.c.)

% nu[np] ... nu(i) - the number of nodes at i-th average

% p[*,np] ... p(*, i) - node numbers of nodes involved at i-th average

% hp[np] - values of averages

% output:

% U[nx*ny + nc + np]

% U(1:nx*ny) - vector of solution at nodes:

% nodes are ordered first by x, then by y:

% U(i+nx*(j-1)) is value at (x_i, y_j), i=1,..nx, j=1,..ny

% U(nx*ny + 1 : nx*ny + nc) - "reactions" at fixed nodes (Dirichlet b.c.)

% U(nx*ny + nc+1 : nx*ny + nc + np) - "reactions at averages" (Dirichlet b.c.)

% functions used: mat, matsed, psf, psg

% K - the stiffness matrix

K = mat(nx, ny);

% A - the saddle-poit problem matrix (Dirichlet b.c. added)

A = matsed(K, nx*ny, nc, c, np, nu, p);

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 214

% F - contribution of "body forces" to the right hand side

F = psf(hf, nx, ny);

% G - contribution of prescribed Neumann b.c. to the right hand side

G = psg(hg, bg, nx, ny);

% B - the saddle-poit right hand side

B = [F + G ; hc(1:nc) ; hp(1:np)’];

% U(1:nx*ny) - the solution

U = A\B;

% ****************** end ********************

Program 38

function M = mat (nx, ny)

% computes the stiffness matrix for a 2D Poisson equation given on

% a rectangular domain discretized by bilinear elements on unit squares

% all base functions are used

% (i.e. no Dirichlet condition - the matrix is singular)

% nodes are ordered first by x, then by y

% input:

% nx, ny - the number of nodes in x, y direction

% output:

% M[nx*ny, nx*ny] - the stiffness matrix

n = nx*ny;

M = zeros (n, n);

% the matrix is block tridiagonal: ny square blocks of size nx

% irb - loop for rows of blocks

for irb = 1:ny

% ir - the first row in the blocks

ir = (irb-1)*nx + 1;

% isb - loop for a columns of blocks

% only up to 3 nonzero blocks in a column

if (irb == 1)

kk=1;

else

kk=2;

end

if (irb == ny)

pp=1;

else

pp=0;

end

for isb = pp:kk

% is - the first column of the block

is = (irb-isb)*nx + 1;

% d = 6 * diagonal value, md = 6 * nondiagonal value

if (isb == 1)

d=16;

md=-2;

if (irb == 1 || irb == ny)

d=8;

md=-1;

end

else

d=-2;

md=-2;

end

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 215

% filling the tridiagonal block

M(ir,is) = d/12;

M(ir,is+1) = md/6;

% loop for rows

for irr = 1:(nx-2)

% only 3 nonzero values

M(ir+irr,is+irr-1) = md/6;

M(ir+irr,is+irr) = d/6;

M(ir+irr,is+irr+1) = md/6;

end

M(ir+nx-1,is+nx-2) = md/6;

M(ir+nx-1,is+nx-1) = d/12;

end

end

% ****************** end ********************

Program 39

function K = matsed (M, n, nc, c, np, nu, p)

% adds rows and columns with constraints to stiffness matrix M,

% i.e. assembles a matrix for a saddle-point problem:

% M C^T

% C 0

% input:

% M - stiffness matrix (e.g. M = mat(nx, ny))

% n - the number of rows (or columns) of M (e.g. n = nx*ny)

% nc - the number of fixed nodes

% c[nc] - node numbers of fixed nodes

% np - the number of fixed averages

% nu[np] ... nu(i) - the number of nodes at i-th average

% p[*,np] ... p(*, i) - node numbers of nodes involved at i-th average

% output:

% K - matrix of a saddle-point problem

m=nc+np; % the number of all constraints

% K - matrix M with m zero columns and rows added

K=[M, zeros(n,m); zeros(m,m),zeros(m,n)];

% filling ones to positions of fixed nodes

for i=1:nc

m = c(i); % number of the fixed node

K(n+i,m)=1;

K(m,n+i)=1;

end

% filling values to positions of nodes involved at averages

for i=1:np % loop for averages

k = nu(i); % the number of nodes at i-th average

for j=1:k % loop for nodes at i-th average

m = p(j,i); % node number

K(n+nc+i,m)=1/k;

K(m,n+nc+i)=1/k;

end

end

% ****************** end ********************

Program 40

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 216

function F = psf(hf, nx, ny)

% computes vector F - contribution of "body forces" f to right hand side

% for a 2D Poisson equation given on rectangular domain discretized by

% bilinear elements on unit squares; all base functions are used

% (i.e. no Dirichlet condition); nodes are ordered first by x, then by y

% input:

% nx, ny - the number of nodes in x, y direction

% hf[nx, ny] - values of prescribed "force" f at nodes:

% hf(i,j) - value of "force" at (x_i, y_j), i=1,..nx, j=1,..ny

% bilinear interpolation is used on the rest of the domain

% output:

% F[nx*ny, 1] - contribution to right hand side due to given "body forces"

n=nx*ny;

F=zeros(n,1);

% loop for elements, first in x direction, then y

for iy=1:(ny-1)

ky=(iy-1)*nx;

for ix=1:(nx-1)

k=ky+ix; % global number of bottom left corner of element

f1=hf(ix,iy)/36;

f2=hf(ix+1,iy)/36;

f3=hf(ix+1,iy+1)/36;

f4=hf(ix,iy+1)/36;

F(k)=F(k)+4*f1+2*(f2+f4)+f3;

F(k+1)=F(k+1)+4*f2+2*(f1+f3)+f4;

F(k+nx+1)=F(k+nx+1)+4*f3+2*(f2+f4)+f1;

F(k+nx)=F(k+nx)+4*f4+2*(f1+f3)+f2;

end

end

% ****************** end ********************

Program 41

function G = psg(hg, bg, nx, ny)

% computes vector G - contribution of prescribed Neumann boundary condition g

% to right hand side for a 2D Poisson equation given on rectangular domain

% discretized by bilinear elements on unit squares

% input:

% nx, ny - the number of nodes in x, y direction

% hg[4,n] - values of prescribed normal derivatives g

% hg(j, i) - derivative at i-th node on side j of the domain:

% hg(1,*) - bottom, hg(2,*) - upper, hg(3,*) - left, hg(4,*) - right

% (i.e. corners are involved twice), n = max(nx, ny)

% bilinear interpolation is used between the nodes on the side

% bg[4] - if bg(i)==1, then Neumann b.c. is given at i-th side (by hg(i,*))

% only whole rectangular side can be involved to Neumann b.c.

% output:

% G[nx*ny, 1] - contribution to right hand side due to given derivatives

% on boundary

G = zeros(nx*ny,1);

% bottom side (y = y_1)

if (bg(1)==1)

G(1) = 2*hg(1,1)+hg(1,2);

CHAPTER 7. DOMAIN DECOMPOSITION METHODS 217

for i=2:(nx-1)

G(i) = 4*hg(1,i)+hg(1,i-1)+hg(1,i+1);

end

G(nx) = 2*hg(1,nx)+hg(1,nx-1);

end

% upper side (y = y_ny)

if (bg(2)==1)

k = nx*(ny-1);

G(k+1) = 2*hg(2,1)+hg(2,2);

for i=2:(nx-1)

G(k+i) = 4*hg(2,i)+hg(2,i-1)+hg(2,i+1);

end

G(k+nx) = 2*hg(2,nx)+hg(2,nx-1);

end

% left side (x = x_1)

if (bg(3)==1)

G(1) = G(1) + 2*hg(3,1)+hg(3,2);

for i=2:(ny-1)

G((i-1)*nx+1) = 4*hg(3,i)+hg(3,i-1)+hg(3,i+1);

end

k = (ny-1)*nx+1;

G(k) = G(k) + 2*hg(3,ny)+hg(3,ny-1);

end

% right side (x = x_nk)

if (bg(4)==1)

G(nx) = G(nx) + 2*hg(4,1)+hg(4,2);

for i=2:(ny-1)

G(i*nx) = 4*hg(4,i)+hg(4,i-1)+hg(4,i+1);

end

G(nx*ny) = G(nx*ny) + 2*hg(4,ny)+hg(4,ny-1);

end

G = G/6;

% ****************** end ********************

Program 42

function U = SolCons(K, F, n, nc, c, hc, np, nu, p, hp)

% solves a system with matrix K and right hand side F

% with added constraints

% input:

% K - stiffness matrix (e.g. K = mat(nx, ny))

% F[n,1] - right hand side (e.g. F = psf(hf, nx, ny))

% n - the number of rows (or columns) of K (e.g. n = nx*ny)

% nc - the number of fixed nodes

% c[nc] - node numbers of fixed nodes

% hc[nc] - values at fixed nodes

% np - the number of fixed averages

% nu[np] ... nu(i) - the number of nodes at i-th average

% p[*,np] ... p(*, i) - node numbers of nodes involved at i-th average

% hp[np] - values of averages

% output:

% U[n + nc + np]

% U(1:n) - vector of solution of KU = F with given constraints

% U(n+1 : n+nc) - "reactions" at fixed nodes (Dirichlet b.c.)

% U(n+nc+1 : n+nc+np) - "reactions at averages" (Dirichlet b.c.)

% functions used: matsed

BIBLIOGRAPHY 218

% A - matrix of a saddle-point problem

A=matsed(K, n, nc, c, np, nu, p);

% B - rhs of a saddle-point problem

B=[F ; hc(1:nc) ; hp(1:np,1)];

U=A\B;

% ****************** end ********************

Program 43

function kres(U, nx, ny, kx, ky, cl)

% plots a surface on a rectangular grid made of unit squares

% surface is given by a vector of nodal values

% nodes are ordered first by x, then by y

% input:

% nx, ny - number of nodes in x, y direction

% (kx, ky) - coordinates of the bottom left corner of the grid

% U[nx*ny] - vector of values at nodes:

% U(i+nx*(j-1)) is value at (x_i, y_j), i=1,..nx, j=1,..ny

% cl - color (for instance ’red’, ’r’, [1 0 0] or [0.5 0 0])

% (only for Matlab; doesn’t work in Octave)

% output: picture

% Z(i,j) - value at (x_i, y_j)

Z=ones(nx,ny);

k=find(Z);

Z(k)=U(k);

[X,Y]=meshgrid(kx:(kx+nx-1),ky:(ky+ny-1));

% mesh(X,Y,Z,’EdgeColor’,cl, ’LineWidth’, 2); % for Matlab

mesh(X’,Y’,Z); % for Octave

% ****************** end ********************

Bibliography

[1] P. R. Amestoy and I. S. Duff. MUMPS – a multifrontal massively parallel sparse
direct solver. http://mumps.enseeiht.fr.

[2] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,
R. Pozo, C. Romine, and H. Van der Vorst. Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia, PA, 1994.
http://www.netlib.org/templates/Templates.html.

[3] Susanne C. Brenner. The condition number of the Schur complement in domain
decomposition. Numer. Math., 83(2):187–203, 1999.

[4] Susanne C. Brenner and Li-Yeng Sung. BDDC and FETI-DP without matrices or
vectors. Comput. Methods Appl. Mech. Engrg., 196(8):1429–1435, 2007.

[5] Clark R. Dohrmann. A preconditioner for substructuring based on constrained
energy minimization. SIAM J. Sci. Comput., 25(1):246–258, 2003.

[6] Clark R. Dohrmann. An approximate BDDC preconditioner. Numerical Linear
Algebra with Applications, 14(2):149–168, 2007.

http://mumps.enseeiht.fr
http://www.netlib.org/templates/Templates.html

BIBLIOGRAPHY 219

[7] I. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse symmetric
linear systems. ACM Trans. Math. Softw., 9:302–325, 1983.

[8] C. Farhat, M. Lesoinne, P. Le Tallec, K. Pierson, and Rixen, D. FETI-DP: a dual-
primal unified FETI method. I. A faster alternative to the two-level FETI method.
Internat. J. Numer. Methods Engrg., 50(7):1523–1544, 2001.

[9] Charbel Farhat and Francois-Xavier Roux. A method of finite element tearing and
interconnecting and its parallel solution algorithm. Internat. J. Numer. Methods
Engrg., 32:1205–1227, 1991.

[10] B. Hendrickson and R. Leland. CHACO: Software for partitioning graphs.
http://www.sandia.gov/~bahendr/chaco.html.

[11] Bruce M. Irons. A frontal solution scheme for finite element analysis. Internat. J.
Numer. Methods Engrg., 2:5–32, 1970.

[12] G. Karypis and V. Kumar. METIS – family of multilevel partitioning algorithms.
http://glaros.dtc.umn.edu/gkhome/views/metis/index.html.

[13] Axel Klawonn and Oliver Rheinbach. Inexact FETI-DP methods. International
journal for numerical methods in engineering, 69(2):284–307, 2007.

[14] Axel Klawonn and Oliver Rheinbach. Robust FETI-DP methods for heteroge-
neous three dimensional elasticity problems. Comput. Methods Appl. Mech. Engrg.,
196(8):1400–1414, 2007.

[15] Axel Klawonn and Olof B. Widlund. FETI and Neumann-Neumann iterative sub-
structuring methods: connections and new results. Comm. Pure Appl. Math.,
54(1):57–90, 2001.

[16] Axel Klawonn, Olof B. Widlund, and Maksymilian Dryja. Dual-primal FETI meth-
ods for three-dimensional elliptic problems with heterogeneous coefficients. SIAM
J. Numer. Anal., 40(1):159–179, 2002.

[17] Patrick Le Tallec. Domain decomposition methods in computational mechanics.
Computational Mechanics Advances, 1(2):121–220, 1994.

[18] Jing Li and Olof B. Widlund. FETI-DP, BDDC, and block Cholesky methods.
Internat. J. Numer. Methods Engrg., 66(2):250–271, 2006.

[19] Jan Mandel. Balancing domain decomposition. Comm. Numer. Methods Engrg.,
9(3):233–241, 1993.

[20] Jan Mandel and Clark R. Dohrmann. Convergence of a balancing domain decom-
position by constraints and energy minimization. Numer. Linear Algebra Appl.,
10(7):639–659, 2003.

[21] Jan Mandel, Clark R. Dohrmann, and Radek Tezaur. An algebraic theory for primal
and dual substructuring methods by constraints. Appl. Numer. Math., 54(2):167–
193, 2005.

http://www.sandia.gov/~bahendr/chaco.html
http://glaros.dtc.umn.edu/gkhome/views/metis/index.html

BIBLIOGRAPHY 220

[22] Jan Mandel and Bedřich Soused́ık. BDDC and FETI-DP under minimalist assump-
tions. Computing, 81:269–280, 2007.

[23] Jan Mandel, Bedřich Soused́ık, and Clark R. Dohrmann. On multilevel BDDC.
Lecture Notes in Computational Science and Engineering, 60:287–294, 2007. Domain
Decomposition Methods in Science and Engineering XVII.

[24] Yousef Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2003.
http://www-users.cs.umn.edu/~saad/books.html.

[25] H. A. Schwarz. Über einen Grenzübergang durch alternierendes Verfahren. Viertel-
jahrsschrift der Naturforschenden Gesellschaft in Zürich, 15:272–286, May 1870.

[26] Bedřich Soused́ık. Comparison of some domain decomposition meth-
ods. PhD thesis, Czech Technical University in Prague, Fac-
ulty of Civil Engineering, Department of Mathematics, 2008.
http://www-math.cudenver.edu/~sousedik/papers/BSthesisCZ.pdf.

[27] Andrea Toselli and Olof Widlund. Domain decomposition methods—algorithms and
theory, volume 34 of Springer Series in Computational Mathematics. Springer-
Verlag, Berlin, 2005.

[28] Irad Yavneh. Why multigrid methods are so efficient. Computing in Science and
Engineering, 8(6):12–22, November/December 2006.

http://www-users.cs.umn.edu/~saad/books.html
http://www-math.cudenver.edu/~sousedik/papers/BSthesisCZ.pdf

Chapter 8

FETI Based Domain
Decompositions

This part was written and is maintained by Jiř́ı Dobiáš. More details about the author
can be found in the Chapter 16.3.

8.1 Introduction

In general, any domain decomposition method is based on the idea that an original
domain can be divided into several sub-domains that may or may not overlap. This is
depicted in Fig. 8.1 for a two-dimensional problem.

W

W W

G

G

1

2 3

12

23

W

W

W

W

1

1

2

2

U

a) Original problem b) Non-overlapping partition c) Overlapping partition

Figure 8.1: Principle of domain decomposition methods

There are three sub-domains in the non-overlapping case and two in the overlapping
one. Then the original problem is considered on every sub-domain, which generates
sub-problems of reduced sizes. They are coupled with each other in terms of variables
along their interfaces or throughout the overlapping regions. The overlapping region is
shown as the cross-hatched area in Fig. 8.1c). The techniques based on overlapping sub-
domains are referred to as Schwarz methods, while those making use of non-overlapping
sub-domains are usually referred to as sub-structuring techniques.

221

CHAPTER 8. FETI BASED DOMAIN DECOMPOSITIONS 222

There exist three fundamental monographs on the subject of the domain docompo-
sition methods,[11, 10, 9], and a great number of other references. The list of references
appended to the first book is quite extensive.

In this chapter we are concerned with one of the domain decomposition methods
called FETI and its variant TFETI. In the following sections we explain principles of
the method, introduce briefly the underlying mathematics, and show results of some
numerical experiments.

8.2 The FETI method

In 1991 Ch. Farhat and F.-X. Roux came up with a novel domain decomposition method
called FETI (Finite Element Tearing and Interconnecting method) [7]. This method
belongs to the class of non-overlapping totally disconnected spatial decompositions. Its
key concept stems from the idea that satisfaction of the compatibility between spatial
sub-domains, into which a domain is partitioned, is ensured by the Lagrange multipliers,
or forces in this context. After eliminating the primal variables, which are displacements
in the displacement based analysis, the original problem is reduced to a small, relatively
well conditioned, typically equality constrained quadratic programming problem that
is solved iteratively. The CPU time that is necessary for both the elimination and
iterations can be reduced nearly proportionally to the number of processors, so that
the algorithm exhibits the parallel scalability. This method has proved to be one of
the most successful algorithms for parallel solution of problems governed by elliptic
partial differential equations. Observing that the equality constraints may be used to
define so called ‘natural coarse grid’, Farhat, Mandel and Roux modified the basic FETI
algorithm so that they were able to prove its numerical scalability, i.e. asymptotically
linear complexity [6].

In addition, the fact that sub-domains act on each other in terms of forces suggests
that the FETI approach can also be naturally applied to solution to the contact problems
with great benefit. To this effect the FETI methodology is used to prescribe conditions
of non-penetration between bodies.

8.2.1 FETI method principle

Consider two bodies in contact as in Fig. 8.2. Decompose them into sub-domains. The
interfaces between sub-domains can pass either along the contact interface or through the
bodies, which creates fictitious borders between the sub-domains, while we should abide
by all the recommendations regarding the aspect ratios, and so on. This process may
produce either reasonably constrained sub-domains, which are unhatched here, or partly
constrained, which are cross-hatched, or without any constrained, which are hatched.
All the sub-domains with not enough constraints can move like a rigid body, or can
float, or can undergo the rigid body modes. This class of sub-domains requires special
treatment, because their underlying stiffness matrices are singular so that they exhibit
defects ranging from one to the maximum, which is 6 for 3D mechanic problems or 3 for
2D problems.

Let us consider the static case of a system of two solid deformable bodies that are in
contact. This is basically the boundary value problem known from the continuum solid
mechanics. The problem is depicted in Fig. 8.3 a).

CHAPTER 8. FETI BASED DOMAIN DECOMPOSITIONS 223

Figure 8.2: Constrained and floating sub-domains

Two bodies are denoted by (Ω1, Ω2) ⊂ Rn, n = 2 or n = 3, where n stands for
number of the Euclidean space dimensions. Γ denotes their boundary. We assume
that the boundary is subdivided into three disjoint parts. The Dirichlet and Neumann
boundary conditions are prescribed on the parts Γu and Γf , respectively. The third kind
of the boundary conditions, Γc, is defined along the regions where contact occurs and
can in general be treated as both the Dirichlet or Neumann conditions. The governing
equations are given by the equilibrium conditions of the system of bodies. In addition
to these equations, the problem also is subject to the boundary conditions; see, e.g., [8,
Chapter 2] for comprehensive survey of formulations.

Fig. 8.3 b) shows the discretised version of the problem from Fig. 8.3 a). Both sub-
domains are discretised in terms of the finite elements method. This figure also shows
applied Dirichlet boundary conditions, some displacements, denoted as u, associated
with the nodal points, and the contact interface. The displacements are the primal
variables in the context of the displacement based finite element analysis.

The result of application of the FETI method to the computational model from
Fig. 8.3 a) is depicted in Fig. 8.4 a).

The sub-domain Ω1 is decomposed into two sub-domains in this case with fictitious
interface between them. The contact interface remains the same. The fundamental idea
of the FETI method is that the compatibility between sub-domains is ensured by means
of the Lagrange multipliers or forces. λE denotes the forces along the fictitious interface
and λI stands for the forces generated by contact.

8.2.2 FETI method basic mathematics

Let N be a number of sub-domains and let us denote for i = 1, . . . , N by K(i),
f (i), u(i) and B(i) the stiffness matrix, the vector of externally applied forces, the vector
of displacements and the signed matrix with entries −1, 0, 1 defining the sub-domain
interconnectivity for the (i)-th sub-domain, respectively. The matrix B is composed of

CHAPTER 8. FETI BASED DOMAIN DECOMPOSITIONS 224

W

W

1

2

G

G G

G

G

G

G

G

G

u

u u

c

u

f

f

u

u

u

u
u

u

u u u u

u

u

u

u

u

u

u

u

u

u
u

u

u

u

u u
u

1

7

13

14

19 33 40 47

48

49

50

51

52

53

20

21

22

8

2

3

4

5

6 12

18

Contact interface

a) Original problem b) Primal variables

Figure 8.3: Basic notation

matrices BI and BE, B =
[
BI BE

]
. BE introduces connectivity conditions along the

fictitious interfaces and BI along the contact ones.
The discretised version of the problem is governed by the equation

min
1

2
u⊤Ku − f⊤u subject to BIu ≤ 0 and BEu = 0 (8.1)

where

K =




K(1)

. . .

K(N)


 , f =




f (1)

...
f (N)


 , u =




u(1)

...
u(N)


 . (8.2)

The original FETI method assumes that Dirichlet boundary conditions are inherited
from the original problem, which is shown in Fig. 8.4 a). This fact implies that defects
of the stiffness matrices, K(i), may vary from zero, for the sub-domains with enough
Dirichlet conditions, to the maximum (6 for 3D solid mechanics problems and 3 for 2D
ones) in the case of the sub-domains exhibiting some rigid body modes. General solution
to such systems requires computation of generalised inverses and bases of the null spaces,
or kernels, of the underlying singular matrices. The problem is that the magnitudes of
the defects are difficult to evaluate because this computation is extremely disposed to
the round off errors [5].

To circumvent the problem of computing bases of the kernels of singular matrices,
Dostál came up with a novel solution [2]. His idea was to remove all the prescribed
Dirichlet boundary conditions and to enforce them by the Lagrange multipliers denoted
as λB in Fig. 8.4 b). The effect of the procedure on the stiffness matrices of the sub-
domains is that their defects are the same and their magnitude is known beforehand.
From the computational point of view such approach is advantageous, see [5] for discus-
sion of this topic. This variant of the FETI method is called the total FETI because
there are no primal variables whatsoever considered after elimination of the displace-
ments. The fundamental mathematics behind both FETI and TFETI is presented next.
It stems from [6] and others, e.g. [3].

CHAPTER 8. FETI BASED DOMAIN DECOMPOSITIONS 225

l

l
l

l

ll
1

4

5

10

32

E E E

I

I
I

l

l
l

l

l

l

l l

l

l

ll
1

4

5

10

11

13

12 15

16

14

32

E E E

I

B

B

B B

B

B

I
I

a) FETI b) Total FETI

Figure 8.4: Principles of FETI and TFETI

The Lagrangian associated with the problem governed by Equation (8.1) is as reads

L(u, λ) =
1

2
u⊤Ku − f⊤u + λ⊤Bu. (8.3)

This is equivalent to the saddle point problem

Find (ū, λ̄) so that L(ū, λ̄) = sup
λ

inf
u

L(u, λ). (8.4)

For λ fixed, the Lagrangian L(., λ) is convex in the first variable and a minimiser u of
L(., λ) satisfies the following equation

Ku − f + B⊤λ = 0. (8.5)

Equation (8.5) has a solution if and only if

f − B⊤λ ∈ ImK, (8.6)

which can be expressed in a more convenient way in terms of the matrix R whose columns
span the kernel of K as follows

R⊤(f − B⊤ λ) = 0. (8.7)

The kernels of the sub-domains are known and can be assembled directly.
It is necessary to eliminate the primal variable u from (8.5). Assume that λ satisfies

(8.6) and denote by K† any symmetric positive definite matrix satisfying at least one of
the Penrose axioms

KK†K = K. (8.8)

It may be easily verified that if u is a solution to (8.5), then there exists a vector α such
that

u = K†(f − B⊤λ) + Rα. (8.9)

CHAPTER 8. FETI BASED DOMAIN DECOMPOSITIONS 226

Substituting (8.9) into (8.4), we get the following minimisation problem

min
1

2
λ⊤BK† B⊤ λ − λ⊤BK†f , s. t. R⊤(f − B⊤ λ) = 0. (8.10)

Let us introduce notations

F = BK†B⊤, G = R⊤B⊤, e = R⊤f , d = BK†f , (8.11)

so that the problem (8.10) reads

min
1

2
λ⊤Fλ − λ⊤d s. t. Gλ = 0. (8.12)

The final step stems from observation that the problem (8.12) is equivalent to

min
1

2
λ⊤PFPλ − λ⊤Pd s. t. Gλ = 0, (8.13)

where
P = I − Q and Q = G⊤(GG⊤)−1G (8.14)

stand for the orthogonal projectors on the kernel of G and the image space of G⊤,
respectively.

The problem (8.13) may be solved efficiently by the conjugate gradient method be-
cause the estimate of the spectral condition number κ for the FETI method

κ(PFP|ImP) ≤ const
H

h
(8.15)

holds also for TFETI [2]. Here H denotes the decomposition parameter a h stands for
the discretisation parameter. Minute analysis of the proof of (8.15) reveals that the
constants in the bound may be in many cases more favourable for TFETI than for the
original FETI.

It was shown that application of TFETI methodology to the contact problems con-
verts the original problem to the quadratic programming one with simple bounds and
equality constraints. This problem can be further transformed by Semi-Monotonic Aug-
mented Lagrangians with Bound and Equality constraints (SMALBE) method to the
sequence of simply bounded quadratic programming problems. These auxiliary prob-
lems may be solved efficiently by the Modified Proportioning with Reduced Gradient
Projection (MPRGP) method. The detail descriptions of SMALBE and MPRGP are
beyond the scope of this text and can be found in [4]. It was proved in [1] that applica-
tion of combination of both these methods to solution to contact problems benefits the
numerical and parallel scalabilities.

8.3 Numerical Experiments

To demonstrate the ability of our algorithms to solve contact problems, we show results
of two sets of numerical experiments we carried out. The first case is concerned with
contact problem of two cylinders, and the second one with contact problem of the pin
in hole with small clearance.

CHAPTER 8. FETI BASED DOMAIN DECOMPOSITIONS 227

8.3.1 The Contact Problem of Two Cylinders

Consider contact of two cylinders with parallel axes. Mesh of the computational
model is shown in Fig. 8.5 and its detail in vicinity of the contact region in Fig. 8.6.
We can consider only one half of the problem due to its symmetry. The diameter of the
upper cylinder Ru = 1 m and of the lower one Rl = ∞. In spite of the fact that it is
the 2D problem, it is modelled with 3D continuum tri-linear elements with two layers
of them along the axis of symmetry of the upper cylinder. Nevertheless, the number
of layers is irrelevant. The model consists of 8904 elements and 12765 nodes. The
boundary conditions are imposed in such a way that they generate, from the physical
point of view, the plane strain problem. The material properties are as follows: Young’s
modulus E = 2.0 × 1011 Pa and Poisson’s ratio ν = 0.3.

Figure 8.5: Problem of two cylinders: mesh

Figure 8.6: Detail of mesh

First, the upper cylinder is loaded by 40 MN/m along its upper line and the problem
is considered as linearly elastic and linearly geometric. Fig. 8.7 shows solution in terms
of the deformed mesh.

Next, the problem was computed on the same mesh with the same loading, but
we considered the linearly–elastic–perfectly–plastic material model with the yield stress

CHAPTER 8. FETI BASED DOMAIN DECOMPOSITIONS 228

σY = 800 MPa. We also considered the geometric non-linearity. The deformed mesh is
depicted in Fig. 8.8.

Figure 8.7: Deformed mesh, linear problem.

Figure 8.8: Deformed mesh, non-linear problem.

8.3.2 The Pin-in-Hole Contact Problem

Consider a problem of the circular pin in circular hole with small clearance. The
radius of the hole is 1 m and the pin has its radius by 1% smaller. Again, the 2D

BIBLIOGRAPHY 229

problem is modelled with 3D elements. The model consists of 15844 tri-linear elements
and 28828 nodes. The pin is loaded along its centre line by 133 MN/m. The geometric
non-linearity was considered. The material properties are the same as in the previous
case.

Fig. 8.9 shows von Mises stress distribution on the deformed mesh.

Figure 8.9: The pin-in-hole problem: deformed mesh, von Mises stress, geometrically
non-linear problem

Fig. 8.10 depicts results in terms of distributions of the normal contact stress along
surfaces of both the pin and hole from the plane of symmetry upwards. Both curves are
practically identical, but they are not quite smooth. It is caused by the fact that we
used the linear finite elements with different sizes for modelling the hole and pin, so that
the mesh was general with faceted surfaces.

Bibliography

[1] Z. Dostál. Inexact Semi-monotonic Augmented Lagrangians with Optimal Feasibil-
ity Convergence for Convex Bound and Equality Constrained Quadratic Program-
ming. SIAM Journal on Numerical Analysis, 43(2):96–115, 2005.

[2] Z. Dostál, D. Horák, and R. Kučera. Total FETI - an Easier Implementable Variant
of the FETI Method for Numerical Solution of Elliptic PDE. Communications in
Numerical Methods in Engineering, to be published.

[3] Z. Dostál, D. Horák, R. Kučera, V. Vondrák, J. Haslinger, J. Dobiáš, and S. Pták.
FETI Based Algorithms for Contact Problems: Scalability, Large Displacements and
3D Coulomb Friction. Computer Methods in Applied Mechanics and Engineering,
194(2–5):395–409, 2005.

BIBLIOGRAPHY 230

0 50 100 150 200 250 300 350 400 450 500
−250

−200

−150

−100

−50

0

50

Arc length, (mm)

S
tr

es
s

co
m

po
ne

nt
 n

or
m

al
 to

 th
e

su
rf

ac
e,

 (
M

P
a)

PIN
HOLE

Figure 8.10: Normal stress distribution

[4] Z. Dostál and J. Schöberl. Minimizing Quadratic Functions over Non-negative Cone
with the Rate of Convergence and Finite Termination. Computational Optimization
and Application, 30(1):23–43, 2005.

[5] Ch. Farhat and M.G Géradin. On the General Solution by a Direct Method of a
Large-scale Singular System of Linear Equations: Application to the Analysis of
Floating Structures. International Journal for Numerical Methods in Engineering,
41(7):675–696, 1998.

[6] Ch. Farhat, J. Mandel, and F.-X. Roux. Optimal Convergence Properties of the
FETI Domain Decomposition Method. Computer Methods in Applied Mechanics
and Engineering, 115(5):365–385, 1994.

[7] Ch. Farhat and F.-X. Roux. A Method of Finite Element Tearing and Intercon-
necting and its Parallel Solution Algorithm. International Journal for Numerical
Methods in Engineering, 32(12):1205–1227, 1991.

[8] T.A. Laursen. Computational Contact and Impact Mechanics. Springer-Verlag,
2002.

[9] A. Quarteroni and A. Valli. Domain Decomposition Methods for Partial Differential
Equations. Oxford Science Publication, 1999.

[10] B Smith, P. Bjørstad, and W. Gropp. Domain Decomposition. Cambridge University
Press, 1996.

[11] A. Toselli and O. Widlund. Domain Decomposition Methods – Algorithms and
Theory. Springer, 2004.

Chapter 9

Solution of nonlinear equilibrium
equations – BFGS method

This part was written and is maintained by Dušan Gabriel. More details about the
author can be found in the Chapter 16.4.

Consider a discrete system of governing equilibrium equations of the form of residual
vector g(u)

g(u) = F(u) − R(u) = 0, (9.1)

where u represents the solution vector, F the internal force vector depending (nonlin-
early) on u, and R the prescribed vector of the external forces acting on the nodal points.
The vectors u,F,R (all of length LSOL denoting the total number of degrees of freedom)
have been generated by a finite element discretization. The most frequently used itera-
tion scheme for the solution of nonlinear finite element equations is the Newton-Raphson
method (NR). Assume that we have evaluated approximation of solution ui

g(ui) 6= 0, (9.2)

where i is the iteration counter. Denote gi = g(ui) and perform the Taylor expansion of
(9.1) about ui

g(u) = gi + Ki(u − ui) + O(u − ui)
2 = 0, (9.3)

where

Ki =
∂g

∂u

∣∣∣∣∣
ui

(9.4)

is the Jacobian (tangential) matrix and O(u − ui)
2 represents an approximation error.

Neglecting the higher-order terms in (9.3), we get the relation for a new approximation
ui+1

Ki(ui+1 − ui) = −gi. (9.5)

The major disadvantage of the Newton-Raphson method is the need for a fresh refac-
torization every time the tangential matrix Ki is formed. Such frequent factorizations
require a lot of CPU time, which might sometimes be prohibitive. Another drawback of
the method is its potential divergence. Replacing Ki with K0, where K0 is the tangen-
tial matrix computed at the beginning of each loading step and then kept constant, we
arrive at the modified Newton-Raphson method (MNR), which is relatively robust, but
its convergence is slow [6].

231

CHAPTER 9. SOLUTION OF NONLINEAR EQUILIBRIUM EQUATIONS – BFGS METHOD232

In this section an alternative approach to the Newton-Raphson methods, known as
quasi-Newton methods, is discussed. We consider the most popular quasi-Newton solver
for finite element applications, the BFGS (Broyden-Fletcher-Goldfarb-Shanno) method
[4]. Several BFGS implementations are possible for the solution of (9.1). Based on
the general framework given in [4] we outline the implementation utilized in the finite
element code PMD (Package for Machine Design [7]), which is fully documented in [6].

9.1 Line search

The line search is crucial for a general success of quasi-Newton algorithms. Instead
of taking ui+1 as an approximation, we define a searching direction di+1 as

di+1 = ui+1 − ui, (9.6)

which we try to improve by a suitable multiplier β. It cannot be expected that the new
guess will find exact solution g(ui + βdi+1) = 0. However, it is possible to choose β so
that the component g in the search direction di+1 is zero

G(β) = dT
i+1g(ui + βdi+1) = 0. (9.7)

To solve the non-linear algebraic equation (9.7), we first bracket the solution by guesses
β ∈ {βk} = {1, 2, 4, 8, 16} and stop the search once G(β) has changed its sign. The finer
adjustement of β is done by the Illinois algorithm [4], which is an accelerated secant
method. The criteria of convergence is

G(β) ≤ STOL ∗ G(0) = STOL ∗ dT
i+1g(ui). (9.8)

Since too accurate the line search can unnecessarily increase the total cost of computa-
tion, it is important to choose the search tolerance STOL efficiently. In most references
the tolerance STOL is typically set to STOL = 0.5 ([4], [3]). In case that function (9.7)
has not change its sign, we take as the last value β = 16.

9.2 BFGS method

The idea of the quasi-Newton methods is the replacement of the tangential matrix
Ki with a secant matrix K̃i, which can be constructed as

K̃i∆ui = ∆gi (9.9)

where increments

∆ui = ui − ui−1,
∆gi = g(ui) − g(ui−1)

(9.10)

are determined from the current and previous iteration steps. Having established K̃i, we
can solve

K̃idi+1 = −gi (9.11)

CHAPTER 9. SOLUTION OF NONLINEAR EQUILIBRIUM EQUATIONS – BFGS METHOD233

and the line search described in Section 9.1 can be used to find the optimum parameter
β according to the equation (9.8). Finally, the new approximation of solution ui+1 is
updated

ui+1 = ui + βdi+1. (9.12)

Note that the secant matrix K̃i is not uniquely defined by (9.9) (with the exception of
one-dimensional case). The idea of Davidon is to update K̃i or K̃−1

i in a simple way after
each iteration, rather than to recompute it entirely (NR) or leave it unchanged (MNR).
In the BFGS method we apply symmetric transformation to the inverse of matrix

K̃−1
i = AT

i K̃−1
i−1Ai, (9.13)

where
Ai = I + viw

T
i . (9.14)

The auxiliary vectors vi,wi are defined by (9.17). Substituting into (9.11) we get

di+1 = −AT
i K̃−1

i−1Aigi (9.15)

or, by recursion

di+1 = −
[

i∏

m=1

(I + wmvT
m)

]
K−1

0

[
i∏

n=1

(I + vnw
T
n)

]
gi . (9.16)

Thus, in contrast to Newton-Raphson the updated inverses K̃−1
i are not explicitly com-

puted and stored. Instead, the updated search direction is more economically calculated
by means of vector dot products, addition operations and a backsolve using the factorized
matrix K̃0 done in the initialization of iteration process. Another important advantage
of the algorithm is that the number of auxiliary vectors vi,wi can be kept reasonably
small. They are set to satisfy (9.9) as

vi = −
√

∆uT
i ∆gi

∆uT
i K̃i−1∆ui

K̃i−1∆ui − ∆gi ,

wi = ∆ui

∆uT
i gi

(9.17)

or substituting from (9.7) and (9.11)

vi =
(
1 +

β
c

)
gi−1 − gi ,

wi = ∆ui

G(β) − G(0)
,

(9.18)

where

c =

√
βG(0)

G(0) − G(β)
. (9.19)

We show that c is also the condition number. The eigenvalues of matrix A are

λj =

{
1 , j = 1, 2, . . . , N − 1
1 + wT

i vi , j = N .
(9.20)

Realizing that the condition number as c = |λN/λ1|, i.e.

CHAPTER 9. SOLUTION OF NONLINEAR EQUILIBRIUM EQUATIONS – BFGS METHOD234

Template 48, BFGS algorithm

1. Initialize the iteration process

(a) Set iteration counter: i = 0

(b) Initialize values: R0, K̃0 = Kelastic,u0 = uelastic (initial guess)

(c) Evaluate: K̃−1
0 ,g(0),g(u0)

2. Loop on i (iteration counter) for equilibrium

(a) Compute search direction: K̃idi+1 = g(ui)

(b) Line search and solution vector update:

i. Evaluate: G(0) = dT
i+1g(ui)

ii. Loop over β; β ∈ {βk} = {1, 2, 4, 8, 16}
• Evaluate: G(β) = dT

i+1g(ui + βdi+1)

• IF G(β) ≤ STOL ∗ G(0) THEN go to step iii

• IF G(β) changed its sign THEN

– finer adjustment of β ∈ 〈βk−1, βk〉 by means of accelerated secant
method (Illinois algorithm [4])

ENDIF

iii. Update: ui+1 = ui + βdi+1

(c) Equilibrium check

IF (‖g(ui+1)‖ < RTOL‖g(0)‖) THEN equilibrium achieved → EXIT

(d) Increment iteration counter: i = i + 1

(e) Stability check

i. Evaluate the condition number: c =

√
βG0

G0 − G(β)

ii. IF c > ccrit ≈ 5 THEN

• Take previous quasi-secant matrix: K̃i = K̃i−1

• go to step 2a

(f) Perform BFGS update

i. Evaluate: ∆ui = ui − ui−1 , ∆gi = g(ui) − g(ui−1)

ii. Compute BFGS auxiliary vectors:

vi = −
√

∆uT
i ∆gi

∆uT
i K̃i−1∆ui

K̃i−1∆ui − ∆gi

wi = ∆ui

∆uT
i gi

iii. Compute the inverse quasi-secant matrix: K̃−1
i = (I+wiv

T
i)K̃−1

i−1(I+viw
T
i)

iv. go to step 2a

CHAPTER 9. SOLUTION OF NONLINEAR EQUILIBRIUM EQUATIONS – BFGS METHOD235

c = |1 + wT
i vi| , (9.21)

which is equal to (9.19). In most references the critical value of c is taken as 105. However,
realizing that β ∈ 〈0, 16〉 and G(β)/G(0) ≤ 1 at most but probable G(β)/G(0) ≤ STOL,
the critical value is set to a more safe value c ≈ 5, which follows from the Fig. 9.1.
Otherwise, the transformation (9.13) becomes nearly singular.

Figure 9.1: Contours of the condition number c (adopted from [6]).

The implementation of the BFGS algorithm utilized in the finite element code PMD is
outlined in Template 48. The algorithm starts with an initialization of iteration process.
The elastic solution is usually taken as the starting approximation. In the iteration loop,
we first compute the search direction di+1 (step 2a), which we improve by the line search.

When the optimum multiplier β is found and the solution vector ui+1 is updated,
the equilibrium check follows in step 2c. The user-prescribed tolerance RTOL related to
the residual norm ‖g(0)‖ is usually set to 10−3. In the case that equilibrium is achieved,
the calculation is finished. Otherwise, the algorithm continues with a stability check
procedure, which consists in the evaluation of condition number c (9.19). Finally, BFGS
update is performed in step 2f, where the inverse of the quasi-Newton secant matrix

K̃−1
i = (I + wiv

T
i)K̃−1

i−1(I + viw
T
i) (9.22)

is iteratively updated by means of auxiliary vectors vi,wi (9.17).

9.3 The BFGS method for a constrained system

In this section we outline the modification of the BFGS method for constrained non-
linear system that results, for example, from the finite element discretization of contact
problem where the contact conditions are enforced by the penalty method [1, 2]. The

CHAPTER 9. SOLUTION OF NONLINEAR EQUILIBRIUM EQUATIONS – BFGS METHOD236

penalty parameter must be chosen as large as possible, in most cases several orders of
magnitude greater than the stiffness of support, which makes considerable demands on
the solution technique.

9.3.1 A simple model problem

In order to demonstrate the behaviour of the proposed solution scheme, we now
present a solution of a simple model problem. We consider a one-dimensional, one
degree of freedom mechanical system, subject to a single constraint: a simple linear
spring with stiffness k, whose right end contacts against an obstacle. The spring is
loaded by external force Fext (see Fig. 9.2). This contact imposes a unilateral constraint
on unknown displacement u, allowing a gap to open but preventing from penetration.
The solution to this system is apparent: if Fext < 0, then u = Fext/k; if Fext ≥ 0, then
u = 0 to avoid penetration.

xxx
xxx
xxx

xxx
xxx
xxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

k F
ext

x

xxx
xxx
xxx

F
ext

xF
c

F
s

u

xxx
xxx
xxx

x
x
x

Figure 9.2: Simple one dimensional spring system subject to a single constraint.

Denoting by Fs the force produced by the spring and Fc = ξd the penalty force
expressed as a linear function of the penetration depth d multiplied by penalty parameter
ξ, equilibrium is enforced through the definition of the residual force G

G = Fs + Fc − Fext. (9.23)

When G = 0, the equilibrium condition is satisfied. In addition to the equilibrium
condition (9.23), u and Fc are subject to the contact conditions

u ≤ 0 Fc ≥ 0 Fc u = 0. (9.24)

A graphical illustration of solution of this example with penalty constraint, plotted
as the residual force G versus u, is shown in Fig. 9.3, which represents polygonal char-
acteristic (solid line) with slopes given by the penalty parameter ξ (for u > 0) and the
spring stiffness k (for u < 0), denoted by KCS = 1. We should emphasize that the final
numerical solution (G = 0) is always entailed by undesirable penetration dfinal, which
violates conditions (9.24).

Now, we demonstrate the BFGS and MNR iteration process. Both methods start at
point ‘0’ directed by initial stiffness k toward point ‘1’ corresponding to elastic solution
uelastic for unconstrained spring. There contact force Fc induces an increase of the residual

CHAPTER 9. SOLUTION OF NONLINEAR EQUILIBRIUM EQUATIONS – BFGS METHOD237

1

2
3

4

3*
u

G

spring characteristic

 (KCS = 1)

penalty
 characteris

tic

 (K
CS = 0)

0
u
elastic

2*

BFGS

MNR
d

final

Figure 9.3: The BFGS and MNR iterations for a single degree of freedom system with
penalty constraint.

G. As a result, the spring rebounds to point ‘2’, from where the MNR method keeping
initial direction regresses to point ‘1’ and the cycle is repeated. The BFGS method using
algorithmic secant based on the curent and previous iteration step gradually drifts to
the solution but the convergence is very slow (points ‘3’, ‘4’,...).

In order to improve the convergence properties we fix spring to obstacle by penalty
force after initial bounce has been encountered. In graphical interpretation it represents
the replacement of the spring part of characteristic with penalty one for u < 0 (dash-
and-dot line), denoted by KCS = 0 in Fig. 9.3. Then, the solution of the spring model
is obtained in three steps for the BFGS method (points ‘2∗’, ‘3∗’), whereas the MNR
method still diverges.

9.3.2 The modified BFGS algorithm

Now, we generalize the discussion of this simple model by considering the multiple
degrees of freedom discrete system of governing equilibrium equations (see equation (18)
in [2]), which is useful to rewrite in the form of the residual vector g(ui)

g(ui) = F(ui) − R(ui) − Rc1(ui) − Rc2(ui) (9.25)

or briefly
gi = Fi − Ri − Rc1i − Rc2i. (9.26)

The vectors u,F,R and Rc1,Rc2 are of length LSOL. The vectors Rc1,Rc2 contain penalty
forces resulting from finite element discretization. Similarly, as in one dimensional exam-
ple the iteration process is controlled by setting of key KCS: KCS = 1 means that contact
search is performed while KCS = 0 corresponds to the case when existing contact surfaces
are only re-established regardless of sign the penetration dIG [2]. The implementation of
the BFGS algorithm for constrained nonlinear system is outlined in Template 49.

CHAPTER 9. SOLUTION OF NONLINEAR EQUILIBRIUM EQUATIONS – BFGS METHOD238

The crucial point of the algorithm is the following: after the contact search has
been performed in the evaluation of g(u0) the assigned contact surfaces are sticked
together by penalty tractions (KCS = 0) regardless of their signs. In a general 3D
case it cannot be expected that the next approximation will find solution g(u) as in
the model example, thus the calculation must be performed until the equilibrium is
reached (see Example 9.3.3). Then, the verification of the correct contact state (step
3) is necessary since tension tractions can occur on contact boundaries. All the penalty
constraints are removed and the convergence condition is tested again with KCS = 1. If it
is not satisfied, the algorithm continues with the iteration process with re-initialization
K̃0 = Kelastic,u0 = uc and KCS = 1 by returning to step 2.

CHAPTER 9. SOLUTION OF NONLINEAR EQUILIBRIUM EQUATIONS – BFGS METHOD239

Template 49, BFGS algorithm for constrained nonlinear system.

1. Initialize the iteration process
(a) Set initial parameters: i = 0, KCS = 1

(b) Initialize values: R0, K̃0 = Kelastic,u0 = uelastic (initial guess)

(c) Evaluate: K̃−1
0 ,g(0),g(u0)

(d) Set key: KCS = 0

2. Loop on i (iteration counter) for equilibrium
(a) Compute search direction: K̃idi+1 = g(ui)

(b) Line search and solution vector update:

i. Evaluate G(0) = dT
i+1g(ui)

ii. Loop over β; β ∈ {βk} = {1, 2, 4, 8, 16}
• Evaluate: G(β) = dT

i+1g(ui + βdi+1)

• IF G(β) ≤ STOL ∗ G(0) THEN go to step iii

• IF G(β) changed its sign THEN

– finer adjustment of β ∈ 〈βk−1, βk〉 by means of accelerated secant
method (Illinois algorithm [4])

ENDIF

iii. Update: ui+1 = ui + βdi+1

(c) Equilibrium check

IF (‖g(ui+1)‖ < RTOL‖g(0)‖) THEN

• IF (KCS = 1) THEN equilibrium achieved → EXIT

• go to step 3

ENDIF

(d) Increment iteration counter: i = i + 1

(e) Stability check

i. Evaluate the condition number: c =

√
βG0

G0 − G(β)
ii. IF c > ccrit ≈ 5 THEN

• Take previous quasi-secant matrix: K̃i = K̃i−1

• go to step 2a

(f) Perform BFGS update

i. Evaluate: ∆ui = ui − ui−1 , ∆gi = g(ui) − g(ui−1)

ii. Compute BFGS auxiliary vectors:

vi = −
√

∆uT
i ∆gi

∆uT
i K̃i−1∆ui

K̃i−1∆ui − ∆gi, wi = ∆ui

∆uT
i gi

iii. Compute the inverse quasi-secant matrix: K̃−1
i = (I+wiv

T
i)K̃−1

i−1(I+viw
T
i)

iv. go to step 2a

3. Check on correct contact state on contact boundaries
(a) Remove all penalty constraint at Gauss points

(b) Set parameters: i = 0, KCS = 1

(c) Equilibrium check with previous converged solution uc:

IF (‖g(uc)‖ < RTOL‖g(0)‖) THEN equilibrium achieved → EXIT

(d) Re-initialize values: K̃0 = Kelastic,u0 = uc

(e) go to step 2

CHAPTER 9. SOLUTION OF NONLINEAR EQUILIBRIUM EQUATIONS – BFGS METHOD240

In fact, the box is virtually identical to the algorithm outlined in Template 48, which
is executed twice, firstly with KCS = 0 and then again with KCS = 1. The converged
solution of the first run uc serves as an approximation for the second one. The capability
of this procedure was confirmed in a number of problems [1, 2].

9.3.3 Example: Two cubes contact

Let us consider the two cubes shown in Fig. 9.4 subjected to uniformly distributed
pressure p, interacting over their common contact interface [5]. The pressure acting on
bottom face is replaced with the equivalent reactions introduced by appropriate boundary
conditions. The top cube is suspended on soft regularization springs of total stiffness k.

l

l

p

contact
interface

Figure 9.4: Two cubes subjected to uniformly distributed pressure p, interacting over
their common contact interface. Geometry: l = 1 [m]. Material properties: Young
modulus E = 2.1 × 105 [MPa], Poisson’s ratio ν = 0.3. Loading: p = 10 [MPa].

This example demonstrates a generalization of a simple one-dimensional spring model
described in Section 9.3.1. We investigated an accuracy of the numerical solution for
various values of the penalty parameter ξ and for different stiffnesses of the regularization
springs k. The stiffness k was by several orders of magnitude smaller than the stiffnesses
of the cubes so that the results were not significantly affected. The performance of both
linear and quadratic isoparametric elements was tested.

The results are summarized in Tab. 9.1, where relative displacement errors ǫ calcu-
lated as the magnitudes of penetrations related to the displacements of cubes and the
numbers of iterations NITER (linear elements/quadratic elements) are shown. The di-
vergence of calculation is denoted by symbol ‘***’, the results were obtained within one
load step.

Similarly, as in one dimensional example the initial rebound of the top cube arose.
Its amount, which was directly proportional to ξ and inversely proportional to k, was
enormous (e.g. for ξ = 1014 [N/m3] and k = 107 [N/m] the initial rebound was 107 [m]).

BIBLIOGRAPHY 241

ξ[N/m3]
k 1012 1013 1014 1015 1016

[N/m] NITER ǫ[%] NITER ǫ[%] NITER ǫ[%] NITER ǫ[%] NITER ǫ[%]

106 5/11 20 8/16 2 11/*** 0.2 ***/*** *** ***/*** ***
107 5/9 20 5/15 2 8/*** 0.2 11/*** 0.02 ***/*** ***
108 5/7 20 5/12 2 8/14 0.2 9/*** 0.02 9/*** 0.002
109 4/5 20 4/9 2 5/13 0.2 9/17 0.02 8/*** 0.002

Table 9.1: Relative displacement errors ǫ and numbers of iterations NITER.

Although it was reduced by the line search the nodal displacements were affected by
round-off errors leading to the distortion of the contact plane. This explains the increase
of number of iterations NITER or even the divergence of the calculation of normal vector
with increasing ξ or with decreasing k in Tab. 9.1. This effect is particularly apparent
for quadratic mesh since a larger distortion of contact plane occurs. Note that a number
of iterations is always greater than three in contrast to one dimensional spring model. It
is caused by the 3D effect when besides huge rebound large compression of the top cube
occurs due to presence of regularization springs.

Bibliography

[1] D. Gabriel. Numerical solution of large displacement contact problems by the finite
element method. CTU Reports, 7(3):1–75, 2003.

[2] Plešek J. Gabriel, D. and M. Ulbin. Symmetry preserving algorithm for large dis-
placement frictionless contact by the pre-discretization penalty method. Int. J. Num.
Met. Engng., 61(15):2615–2638, 2004.

[3] S.H. Lee. Rudimentary considerations for effective line search method in nonlinear
finite element analysis. Comput. Struct., 32(6):1287–1301, 1989.

[4] H. Matthies and G. Strang. The solution of nonlinear finite element equations. Int.
J. Num. Met. Engng., 14:1613–1626, 1979.

[5] J. Plešek and D. Gabriel. PMD example manual. Institute of Thermomechanics,
Academy of Sciences of the Czech Republic, 2000.

[6] J. Plešek. Solution of nonlinear equilibrium problems: The quasi-newton methods. In
M. Okrouhĺık, editor, Implementation of Nonlinear Continuum Mechanics in Finite
Element Codes, pages 216–226, 1995.

[7] VAMET/Institute of Thermomechanics. PMD version f77.9, 2003.

Chapter 10

The Frontal Solution Technique

This part was written and is maintained by Svatopluk Pták. More details about the
author can be found in the Chapter 16.7.

10.1 Introduction to the solution of algebraic sys-

tems

An algebraic system – regardless of being linear or not, and of producing one, many
or none solutions – can be generally written as

F (x, d) = 0 , (10.1)

where x and d are data sets and F is the functional relation between x and d. According
to the kind of problem, the variables x and d may be real numbers, vectors or functions.

The equation (10.1) can represent

• a direct problem if F and d are given and x is the unknown,

• an inverse problem if F and x are known and d is the unknown and

• an identification problem if x and d are given while the functional relation F is to
be sought (identification problems will not be dealt in the next text).

Problem (10.1) is well posed or stable if it admits to obtain a unique unknown data
set x (or d) which depends with continuity on given F and d (or F and x).
The problem which does not enjoy the property above is called ill posed or unstable and
before undertaking its numerical solution it has to be regularized, that is, it must be
suitably transformed into a well posed one [25]. Indeed, it is not appropriate to pretend
the numerical method can cure the the pathologies of an intrinsically ill-posed problem
[26].

Continuous dependence on the data means that small perturbations δd on the data
d yield small changes δx in the solution data x, i.e.

if F (x + δx, d + δd) = 0 , than

∀η > 0, ∃K(η, d) : ‖δd‖ < η ⇒ ‖δx‖ ≤ K(η, d) ‖δd‖ .
(10.2)

The norms used for x, d, etc may not coincide, whenever such variables represent quan-
tities of different physical kinds.

242

CHAPTER 10. THE FRONTAL SOLUTION TECHNIQUE 243

The system property to be well- or ill posed is measured by a condition number. This
tool quantifies this property either by means of the relative condition number c(d)

c(d) = sup
δd∈D

‖δd‖ ‖x‖
‖d‖ ‖δx‖ , (10.3)

or - if the norms of sets x or/and d are zeros - by the absolute condition number ca(d)

ca(d) = sup
δd∈D

‖δd‖
‖δx‖ ,

where D is a neighborhood of the origin and denotes the set of admissible perturbations
on the data for which the perturbed problem (10.2) still makes sense.

Problem (10.1) is called ill-conditioned if c(d) is ’big’ for any admissible data d. The
precise meaning of ’small’ and ’big’ will be added.

The property of a problem of being well-conditioned is independent of the numerical
method that is being used to solve it. In fact, it is possible to generate stable as well as
unstable numerical schemes for solving well-conditioned problems. For more interesting
details see [26].

10.1.1 Matrix forms of algebraic systems

In usual cases, the algebraic system can be written in matrix form

K x = f or K X = F , X = [x1,x2, ...,xk,] , F = [f1, f2, ..., fk,] , (10.4)

where
K stands for given regular (n×n) matrix, ie. rank(K) = n,
x, f for the (n×1) vectors collecting unknowns and given items, respectively, and
X,F for (n×k) matrices, if solutions for more than one given vector are needed.
Let us call (10.4) as the model system and note that this system has due to regularity of
K just the only solution.

Among different formulations of (10.4) let us mention the nullified form

r(x) = 0 or f − Kx = 0 , (10.5)

i.e. the true solution makes the residuum null, or many other modifications of (10.4) as
e.g.

P̂Kx = P̂ f , [P̂K Q̂] {Q̂x} = {P̂ f} , (10.6)

which could represent the suitably permuted (by the left- or both left and right permu-
tation matrices P̂ and Q̂, see Note 1) and symmetrized system

KT Kx = KT f , (10.7)

or as

PK x = Pf ; P = L LT , LT KL y = LT f , x = Ly , (10.8)

which could stand for the pre-conditioned and symmetrically pre-conditioned equation
system, respectively. These all systems are equivalent to (10.4) and therefore have the

CHAPTER 10. THE FRONTAL SOLUTION TECHNIQUE 244

same solution x – if only round-off errors would not exist. The mentioned modifications
(10.6), (10.7) and (10.8) enable us apply algorithms using of which would be unefficient
or impossible for the system in its original form (10.4).
While equations (10.6) represent some reordering of the original system leading especially
to reduction of computational and storage demands, to reduction of round-off error
propagation, the equations (10.7) and (10.8) transform the original system to suitable
reformulated, better conditioned algebraic systems.

Notes:
1) Permutation matrices are very special sparse matrices – identity matrices with re-
ordered rows or columns. They are frequently used in matrix computations to represent
the ordering of components in a vector or the rearrangement of rows and columns in
a matrix. An elementary permutation matrix P̂(i,j) results from identity matrix I by a
mutual replacement of two its rows i and j; the same holds for Q̂(i,j), of course. Any
permutation matrix P̂ – as a product of elementary permutation matrices – results from
identity matrix by more replacements of row- or column-pairs in I.
Hence all permutation matrices are regular, symmetric, their determinants are either +1
or -1 and any even power of given permutation matrix equals to identity matrix I while
any odd power of given permutation matrix only reproduces its copy, i.e. P̂even = I and
P̂odd = P̂. Moreover, as P̂P̂T = P̂TP̂ = I, i.e. P̂T = P̂−1, is any permutation matrix
orthogonal one and as K and P̂−1KP̂ are similar matrices, share the same spectrum and
the same characteristic polynomial.
Multiply (10.4) by the permutation matrix P̂ from the left then ordering of equations is
changed (destroying the possible symmetry of the system matrix); multiply x of (10.4)
by the permutation matrix Q̂ from the right then ordering of unknowns is changed.
The possible symmetry of original system matrix K will be retained if same permutation
matrices are applied from the left as well as from the right:

P̂K x = P̂ f , [P̂K Q̂] {Q̂ x} = P̂ f , Q̂ Q̂ = I . (10.9)

Performance of optimizer- and/or pivoting algorithms can be described using of permu-
tation matrices. Optimizers play the key role for systems with sparse matrices especially
if direct solvers are used, pivoting is necessary by solving of non-symmetric and/or ill-
conditioned systems. By means of permutation matrices are defined important terms of
reducibility and irreducibility.

2) A triangular- or, more general, a block-triangular matrix form of system Ax = f
allows the corresponding set of linear equations to be solved as a sequence of subproblems.
A matrix A which can be permuted to the block lower form (10.10)

P̂AQ̂ =




B11 · · · ·
B21 B22 · · ·
· · · · ·

BN1 BN2 · · BNN


 , (10.10)

(though with only minor modification the block upper triangular form could be obtained)
with N > 1 is said to be reducible. If no block triangular form other than the trivial
one (N = 1) can be found, the matrix is called irreducible. We expect each Bii to be
irreducible, for otherwise a finer decomposition is possible. The advantage of using block
triangular forms is that the original set of equations may be solved by a simple forward

CHAPTER 10. THE FRONTAL SOLUTION TECHNIQUE 245

substitution process [6]

Bii yi = {P̂ f}i −
i−1∑

j=1

Bij yj , i = 1, 2, ..., N (10.11)

(where the sum is zero for i = 1) and the permutation x = Q̂ y. We have to factorize only
the diagonal blocks Bii , i = 1, 2, ..., N . Notice in particular that all fill-in is confined to
the diagonal blocks. If row and column interchanges are performed within each diagonal
block for sake the stability and sparsity, this will not affect the block triangular structure.

3) As all the operations that have been introduced here can be extended to the case
of block-partitioned matrices and vectors, provided that size of each single block is such
that any single matrix operation is well-defined, we can present (10.4) in the form, e.g.

[
K11 K12

K21 K22

] {
x1

x2

}
=

{
f1
f2

}
. (10.12)

Partial Gaussian elimination of unknowns collected in x1 leads then to system
[

K11 K12

021 K22 − K21 K11
−1 K12

] {
x1

x2

}
=

{
f1

f2 − K21 K11
−1 f1

}
(10.13)

where the diagonal block K22 is transformed into the Schur-complement of K, i.e. SK

SK =
[
K22 − K21 K11

−1 K12

]
. (10.14)

If K is symmetric, is also SK symmetric because K21
T = K12. Between the condition

numbers (see [2] for the proof; also [3]) holds the relation

c(SK) ≤ c(K) .

By separation of n items of x into some groups x1,x2, ... as e.g.

• separation of the unknowns bounded by a priori linear relations, say x1, from the
others, say x2, among these non-linear relationships can occur,

• separation of the (sub)domain boundary unknowns, say x2, from the unknowns,
say x1, which are subsistent/corresponding of the (sub)domain interior,

• separation of so called master unknowns, say x2, from the slave ones, say x1,
through any nearer non-specified reason,

one can represent complex problem in a suitably structured form and many efficient
algorithms can be applied by using one or more of the following techniques, as e.g.

• substructure and superelement method (one or more levels of substructuring),

• Schwarz alternating methods (with overlapping sudomains), [27],

• multigrid methods (at least two grids of different densities model usually the whole
domain, i.e. grids overlap completely), see [17], [18]

• domain decomposition methods (usually non-overlapping sudomains), see e.g. [10],
[29], [30] and the Chapters 7 and 8.

CHAPTER 10. THE FRONTAL SOLUTION TECHNIQUE 246

10.1.2 Scalar forms of algebraic systems

Scalar formulations of an algebraic system use one of the three Schwarz error-
functions Fe r, Fr r, Fe e, [20] and the text below. It is not important if these functions
are or are not considered as pre-multiplied by some none-zero real factor. However, by
using of factor 1/2 we can easily explain physical meaning of Schwarz error-functions

Fe r =
1

2
eT r =

1

2
{x∗ − x}T{f − Kx}

=
1

2
xT Kx − xT 1

2
[KT + K]x∗ +

1

2
fTx∗

=
1

2
xT Kx − xT f +

1

2
fTx∗ ,

(10.15)

Fr r =
1

2
rT r =

1

2
{f − Kx}T{f − Kx} =

1

2
xT[KTK]x − xTKTf +

1

2
fTf , (10.16)

Fe e =
1

2
eT e =

1

2
{x∗ − x}T{x∗ − x} =

1

2
xT x − xT K−1f +

1

2
x∗Tx∗ . (10.17)

Here x∗ stands for the exact solution, x for its approximation, e and r for its absolute
error and residuum. We prefer definitions (compare (10.35), (10.36) and (10.18))

e = x∗ − x , r = f − Kx = Kx∗ − Kx = Ke (10.18)

for another legitimate possibilities (convergence is judged in norms ‖e‖ and ‖r‖)

ē = −e , r̄ = −r ; e , r̄ ; ē , r ,

because we intend

• take for the residuum as some right-hand-side vector or its increment and

• put e and r together by the relation of the same type as (10.4) and not as Ke = −r

By definitions (10.18) one can express the Schwarz functions (10.15) – (10.17) com-
pactly

Fe r =
1

2
eT Ke , Fr r =

1

2
eT KTKe , Fe e =

1

2
eT I e . (10.19)

Hence, for e = 0 are all error-functions equal to zero while for e 6= 0 these functions
can equal to any value in range (−∞, ∞), in dependence on their matrices K and KTK.
If the matrices K and KTK are positive definite then only positive values for error-
functions take into consideration

‖K‖ > 0 for Fe r and ‖KTK‖ > 0 for Fr r (10.20)

and for Schwarz error-functions hold

Fe r =
1

2
‖e‖2

K , Fe r ≥ 0 ∀ e , Fe r = 0 ⇔ e = 0 ,

Fr r =
1

2
‖e‖2

KK , Fr r ≥ 0 ∀ e , Fr r = 0 ⇔ e = 0 ,

Fe e =
1

2
‖e‖2

L2 , Fe e ≥ 0 ∀ e , Fe e = 0 ⇔ e = 0 .

(10.21)

CHAPTER 10. THE FRONTAL SOLUTION TECHNIQUE 247

The symbols ‖.‖L2, ‖.‖K and ‖.‖KK stand successively for the Euclidean- and both ener-
getic norms (induced by energetic products eT Ke and eT KTKe).
The zero gradient of each error-functions determines location of the stationary point x∗

i.e. solution of the equivalent system with (10.4) and (10.7)

∇Fe r = Kx − f = 0 → Kx∗ = f , (10.22)

∇Fr r = KTKx − KTf = 0 → KTKx∗ = KTf , (10.23)

∇Fe e = x − K−1f = 0 → x∗ = K−1f . (10.24)

The matrices of second derivatives of error-functions (i.e. their Hessians) are positive
definite

∂
2Fe r

∂x2
= K =

∂
2Fe r

∂e2
,

∂
2Fr r

∂x2
= KTK =

∂
2Fr r

∂e2
,

∂
2Fe e

∂x2
= I =

∂
2Fe e

∂e2
(10.25)

and does not depend on fact whether the independent variables of Schwarz error-functions
are x or e. The Schwarz error-functions are convex, take on in x∗ their minima – and if
items of K and KTK does not depend on x – quadratic functions of their n variables x.
Even though the most important properties of the Schwarz error-functions does not de-
pend on their absolute terms a(Fe r), a(Fr r) and a(Fe e), even these manifest significant
physical meaning:

a(Fe r) =
1

2
fTx∗ =

1

2
x∗TKTx∗ =

1

2
‖x∗‖2

K = −minLvar ,

a(Fr r) =
1

2
fTf =

1

2
‖f∗‖2

L2 =
1

2
‖x∗‖2

KK , a(Fe e) =
1

2
x∗Tx∗ =

1

2
‖x∗‖2

L2 ,
(10.26)

where Lvar stands for a discretized variational functional of the total potential energy,
so called Lagrangian, and minLvar for its minimum value

Lvar =
1

2
xT Kx − xT f = Fe r − 2 a(Fe r) = Fe r − ‖x∗‖2

K . (10.27)

Fig. 10.1 shows the distribution of Schwarz error-functions versus ‖e‖L2 according to
(10.19), while Fig. 10.2 shows how they are associated with Lagrangian Lvar, if these
functions according to (10.22) to (10.24) and (10.27) are dependent of ‖x‖L2.

10.1.3 Overdetermined and underdetermined linear systems

We know that the solution of the linear systems (10.4) – (10.8) exists and is unique if
the number of equations m (it is the number of right-hand-side vector items too) equals
to number of unknowns n and the system matrix K is regular. The algebraic system
is called overdetermined if m > n and underdetermined if m < n. For sake simplicity
and prevent possible confusion we will use for the rectangular, not square system matrix
symbol A instead of K.

The overdetermined system (10.28) does not have generally the exact solution x
for any vector f

Ax = f , A (m × n) , x (n × 1) , f (m × 1) , (10.28)

CHAPTER 10. THE FRONTAL SOLUTION TECHNIQUE 248

0 50
0

1

Absolute error norm

V
al

ue
s

of
 fu

nc
tio

ns

Fer

Frr

Fee

Figure 10.1: Schwarz error-functions versus ‖e‖L2

0 100

−2

0

2

4

Solution norm

V
al

ue
s

of
 fu

nc
tio

ns

Fer
Frr
Fee
Lvar

Figure 10.2: Schwarz error-functions and Lagrangian versus ‖x‖L2

because x and f have different dimensions n and m, i.e. are elements of different vector
spaces, say En and Em. In spite of it we anticipate that try for some approximative
solution x̃ is meaningful. According to (10.16), (10.23), and (10.25) one can see that the
system arising from nullified gradient of Schwarz function Fr r

∇Fr r = ATA x̃ − ATf = ATA x̃ − f̃ = 0 →
x̃ = [ATA]−1 ATf , f̃ = ATf , x̃ (n × 1) , f̃ (n × 1)

(10.29)

gives x̃ the exact solution of system (10.29) only if its system matrix (Hessian of Fr r)

G = ATA , G (n × n) (10.30)

is regular. Matrix G is the metric matrix of the n-dimensional vector space En spanned
by columns of A as basis vectors, so we refer En to column space of A. Such base vectors
are generally neither orthogonal nor normalized and so span non-cartesian linear vector
space.

The best approximation x∗ ∈ En of x is this one, for which exists the smallest distance
r ∈ Em between the vectors f̂ = Ax∗ and f , both elements of Em space, i.e. for which
holds the smallest residuum

r = f − f̂ = f − Ax∗ , r (m × 1) . (10.31)

This property has certainly the orthogonal projection of f ∈ Em into the column space of

CHAPTER 10. THE FRONTAL SOLUTION TECHNIQUE 249

A, i.e. f̂ ∈ En. Since solution x̃ of problem (10.29) nullifies the following inner product

f̂T r = x̃T AT {f − Ax̃} = x̃T AT {f − A {[ATA]−1 ATf}}
= x̃T AT f − x̃T AT f = 0 ,

(10.32)

it is simultaneously proven that x̃ = x∗, i.e. x̃ represents the best approximation, giving
for any f residuum r orthogonal to the column space of A. Indeed, it is objective
expressed by m equations

AT r = 0 . (10.33)

Moreover, if the actual right-hand-side f falls accidently into En, the null residuum is
obtained according to (10.31) and so x̃ presents the exact solution of original problem
(10.28).

Note, that the projection of right-hand-side vector f into the column space of A can
be – see (10.29) and (10.30) – written as

f̂ = Ax̃ = A {[ATA]−1 ATf} = [A G−1 AT] f = PG f , (10.34)

where PG represents the projector of elements of m-dimensional space Em into n-dimensional
space En. Residuum r lies in the orthogonal complement of En to Em, say in Em−n space,
and holds

r = [I − PG] f = PR f , (10.35)

where PR stands for the complementary projector, with PG + PR = I.

Exploitation of sparsity in the solution of (10.29) will often yield significant gains. A
related approach is to solve the (m + n) order system

[
I A

AT 0

] {
r
x

}
=

{
f
0

}
. (10.36)

The block rows of the last equation are

r = f − Ax , AT r = 0 , (10.37)

i.e. the block rows equal to (10.31) and (10.33). By substituting for r from the first
block row into the second one we obtain (10.29). Thus, solving (10.36) is an alternative
way of obtaining the solution to ATA x̃ = f̃ . If dense matrix methods are used then
the solution of (10.29) is less costly than the solution of (10.36). But if A is sparse and
sparse methods are used, the solution of equation (10.36) may be less costly than the
formation and solution of (10.29). Additionally, formulation (10.36) is better behaved
numerically since its solution is less sensitive to small changes in its data than the solu-
tion of (10.29) is to small changes in AT f .

The underdetermined system will be added later.

10.1.4 Condition number

From practical point of view, system (10.4) and/or (10.6) could be considered as a
disturbed one

[K + δK] {x + δx} = {f + δf} or K̃ x̃ = f̃ , (10.38)

CHAPTER 10. THE FRONTAL SOLUTION TECHNIQUE 250

because certain doubts relative to properties, geometry, boundary conditions, loads and
computational aspects always exist.
In this way, the validity of system (10.4), particularly its solution x, depends on only of
vague set differences between values of actual- and model- elements of involved matrices.
Thus, the assessment of system validity and selection of suitable solution method is a
great and ongoing challenge for specialists in the field.

Let us suppose the detailed knowledge of δK, δf and at the same time assume that
rank(K + δK) = n, i.e. the disturbed system matrix keeps regularity. Quality of the
computed solution x̃ of the disturbed system (10.38) is measured in practice via residual
r̃ indirectly (imbalance or defect of equilibrium)

r = f − K x or r̃ = f̃ − K̃ x̃ . (10.39)

An alternative quality measure of the computed solution – an absolute error e – is
of theoretical nature and it is usually unknown

ẽ = x̃ − x = δx , (10.40)

although e is for us of a primary interest.
A good insight in problem of (10.38) offers a computation using norms. An important

fact is that for the present none round-off errors are considered and we will suppose the
exactness of computations.

Right-hand-side disturbed

Let us begin with a simple case when only the right-hand-side is disturbed. Then it
holds consistently with (10.38)

K {x + δx} = {f + δf} → K {δx} = {δf} and Kx = f . (10.41)

By normalizing and using the Cauchy-Schwarz unequality

‖δx‖ = ‖K−1 δf‖ ≤ ‖K−1‖ ‖δf‖ and ‖f‖ ≤ ‖K‖ ‖x‖

and multiplying of both last relations we obtain the following unequality

‖δx‖
‖x‖ ≤ ‖K−1‖ ‖K‖‖δf‖‖f‖ = c(K)

‖δf‖
‖f‖ (10.42)

in which the relative disturbance norm of x is estimated from above as a product of the
condition number c(K) of the system matrix and the relative disturbance norm of f .

Now some questions come up: Is (10.42) only a very rough estimate or can it hold
with the sign equality? Has a big condition number of K so desolating influence on the
relative disturbance norm of x for any on the relative disturbance norm of f? Answers
on these questions offers the following paragraph.

In a simple case, if the matrix K of system (10.38) is positive definite, we can use
positive eigenvalues λi, i = 1, ..., n and corresponding normalized eigenvectors vi, i =
1, ..., n coming out from the standard eigenvalue problem solution

Kvi = λi vi → K

{
1

λi

vi

}
= vi , λ1 ≤ λ2 ≤ ... ≤ λn . (10.43)

CHAPTER 10. THE FRONTAL SOLUTION TECHNIQUE 251

Suppose firstly that the actual right-hand-side vector of (10.41) equals to the eigenvector
v1 corresponding to the smallest eigenvalue λ1 of problem (10.43) and denote this actual
vector as f1, so that holds f1 = v1. Suppose more that disturbance of f1 is given by a
simple combination of other remaining eigenvectors δf1 = ε(v2 + v3 + ... + vn) where
ε ∈ ℜ, so that for disturbed right-hand-side vector of (10.41) holds f̃1 = {f1 + δf1}.
Because of linearity, we have in accordance with (10.43) the disturbed solution

x̃1 =
1

λ1

v1 + ε

(
1

λ2

v2 +
1

λ3

v3 + ... +
1

λn

vn

)

= x1 +
ε

λ1

(
λ1

λ2

v2 + ...
λ1

λ3

v3 + ... +
λ1

λn

vn

)
= x1 + δx1.

(10.44)

As eigenvectors are normalized, the norms ratio for disturbed and actual right-hand-side
vectors comes to

‖δf1‖
‖f1‖

= ε
‖v2‖ + ‖v3‖ + ... + ‖vn‖

‖v1‖
= (n − 1) ε (10.45)

while the norms ratio for disturbed and non-disturbed solution vectors equals

‖δx1‖
‖x1‖

=
ε

λ1

(
λ1

λ2

‖v2‖ +
λ1

λ3

‖v3‖ + ... +
λ1

λn

‖vn‖
)

1

λ1

‖v1‖
=

(
λ1

λ2

+ ... +
λ1

λn

)
ε . (10.46)

Suppose vice versa that the actual right-hand-side vector equals fn = vn and that for
its disturbance holds δfn = ε(v1+v2+ ...+vn−1). Then we obtain, likewise as previously,
the disturbed right-hand-side vector of system (10.41) in the form f̃n = {δfn + fn}.
The disturbed solution in this case is, analogously to (10.43),

x̃n =
ε

λn

(
λn

λ1

v1 + ...
λn

λ2

v2 + ... +
λn

λn−1

vn−1

)
+

1

λn

vn = δxn + xn (10.47)

and the ratio of norms of disturbed and actual right-hand-side vectors and the ratio of
norms of disturbed and non-disturbed solution vectors are

‖δfn‖
‖fn‖

= (n − 1) ε ,
‖δxn‖
‖xn‖

=

(
λn

λ1

+ ... +
λn

λn−1

)
ε . (10.48)

Answers on two questions come out from comparing of equations (10.45), (10.46) and
(10.48) with (10.42). We will comment only both limiting cases here.

If f1 = v1 is affected only by a multiple of eigenvector vn responding to the greatest
eigenvalue λn, i.e. δf1 = εvn, it will be its normalized relative response (‖δx1‖/‖x1‖)
amplified minimally, because in accordance with (10.45) a (10.46) holds

‖δx1‖
‖x1‖

= ε
λ1

λn

,
‖δf1‖
‖f1‖

= ε → ‖δx1‖
‖x1‖

=
λ1

λn

‖δf1‖
‖f1‖

→ f1c(K) =
λ1

λn

<< 1 .

And vice versa, if fn = vn is affected only by an multiple of eigenvector v1 responding
to the smallest eigenvalue λ1, i.e. δfn = εv1, it will be its normalized relative response
(‖δxn‖/‖xn‖) amplified maximally, because in accordance with (10.48) we have

‖δxn‖
‖xn‖

= ε
λn

λ1

,
‖δfn‖
‖fn‖

= ε → ‖δxn‖
‖xn‖

=
λn

λ1

‖δfn‖
‖fn‖

→ fnc(K) =
λn

λ1

>> 1 .

CHAPTER 10. THE FRONTAL SOLUTION TECHNIQUE 252

Thus the unequality (10.42) represents at most pessimistic assessment only and the real
bounds of (‖δx‖/‖x‖) – the both attainable – are

1

c(K)

‖δf‖
‖f‖ ≤ ‖δx‖

‖x‖ ≤ c(K)
‖δf‖
‖f‖ . (10.49)

End of paragraph Right-hand-side disturbed ¤

Matrix and right-hand-side disturbed

Considerations complicate if also items of K matrix can be disturbed. Instead of
(10.42) for the condition number holds, see [26], [24], [13].

c∗(K) =
c(K)

1 − c(K)
‖δK‖
‖K‖

=
c(K)

1 − ‖K‖−1 ‖δK‖ (10.50)

and the real bounds of
‖δx‖
‖x‖ – the both attainable – are

1

c∗(K)

(‖δK‖
‖K‖ +

‖δf‖
‖f‖

)
≤ ‖δx‖

‖x‖ ≤ c∗(K)

(‖δK‖
‖K‖ +

‖δf‖
‖f‖

)
. (10.51)

An explanation (needs 2–3 pages) will be added later.

End of paragraph Matrix and right-hand-side disturbed ¤

10.1.5 Solution of linear algebraic systems

There are many methods for solving of algebraic systems (10.4). Usually, we refer to
direct-, iterate-, semiiterate-, combined- and statistical methods.

Direct methods

An algorithm of direct method gives solution x of a linear equation system in a
number of operations that is determined (or estimated from above) a priori by the size
(or by the size and the pattern of system matrix, if it is sparse) of the system.
In exact arithmetic, a direct method yields the true solution to the system. See [6].
Merits as well as disadvantages of direct methods are as follows:

Merits of direct methods

• Solution x of a system Kx = f is obtained in an a priori given or in an a
priori from above estimated number of arithmetic operations.

• Such as this estimate is known then it holds for any right-hand-side vector f
of F.

• Further, if any solution, say xi – corresponding to given right-hand-side vector
fi – is found, then each other solution corresponding to any k − 1 remaining
right-hand-side vectors can be reached considerably more effectively then it
was done for the first time.

CHAPTER 10. THE FRONTAL SOLUTION TECHNIQUE 253

• Realizing the fore-mentioned property in a great extent, one can construct the
inverse matrix K−1 when for the set of n right-hand-side vectors, collected
in F = I matrix, see (10.4, finds n corresponding solutions and sets those in
columns of matrix X = K−1.

• Moreover, if the algorithm, e.g. elimination or factorization, of the direct
method is carried out only partially (i.e., for example only for some set of
unknowns or for some ”vectors”), it can produce so-called Schur complement
SK of K matrix (ie. super-element or sub-structure matrix) and/or a certain
type of preconditioning-matrix PK (exploitable e.g. in the group of iterative
methods).

• Moreover, parallelization techniques can be also implemented, [7], [8].

• None starting approximations of x0 as well as none terminating criteria are
needed.

Disadvantages of direct methods

• If K is indefinite then the pivoting is needed. It means that in the course
of solution may be either order of equations or order of unknowns or both
changed. Hence pivoting modifies either K, f or K, x or all K, f , x. These
transformations disturb step by step the originally existing arrangement of
system, ie. the pattern of non-zero items of involved matrices.

• If K is sparse then during solution of an algebraic system so called fill-in
effect sets in and spreads out with growing intensity as the solution proceeds.
Fill-in consists in fact that originally zero items of K are replaced by non-
zeros. In particular, distinctly sparse systems – and it is just a case of FE
analysis – incline to this disease.

• For this reason, even relative small systems, say of order(n > 103), strongly
need an suitable optimizer for some restriction of storage demands, arith-
metic operations and fill-in manifestations.

• If pivoting is needed the possible positive effect of an optimizer – which is
always applied before start of an equation solver – can be wasted.

Individual pivoting steps can be performed as a multiplication of actual system by
elementary permutation matrices P̂(i,j) (multiplication from the left) or/and Q̂(k,l) (mul-
tiplication from the right).

Effects of individual optimizers on an original sparse equation system can be pre-
sented as multiplication of this system by a permutation matrix P̂ from the left and as
multiplication of vector x by a permutation matrix Q̂ from the left. Of cause, problems
of optimizers, data structures, data management and overheads are sophisticated and
intricate, but we have only mentioned their resulting ”trace” in a system to be solved.
There are various groups of optimizers today (the more apposite term for an optimizer
should be a reducer, but we will use next only the first one). We note in advance that
this art of optimization in essence means ’only’ improvement of topological properties
of the computational model (or its mesh). This optimization makes solution of (10.4)
more effective or sometimes at all accessible but it should not influence the quality of
computational models as well as their responses (with the exception of rounding errors).
Optimizers can be briefly divided according to target of intention into the band-, skyline,

CHAPTER 10. THE FRONTAL SOLUTION TECHNIQUE 254

front- and fill-in optimizer groups. There are some differences between the methods han-
dling with special systems (e.g. symmetric, antisymmetric) and the methods handling
with general non-symmetric systems. In the next text we will focus our attention to
symmetric systems.

The band optimizer aims at attainment of such a pattern of K matrix which would
place its non-zero items as nearly as possible about/along the main diagonal of K. The
maximum of distances, found successively between non-zero- and its diagonal items, is
called the bandwidth (for non-symmetric systems is the such defined value called as the
half bandwidth). The (n × n) matrix K is banded with the bandwidth b, if holds

b = max(bi) , bi = j − i + 1 , and ∀i K(i, bi) 6= 0 and K(i, j) = 0 ∀j > i + bi .

In context of the finite element method this process depends only on the numbering of
nodes, the ordering of elements is irrelevant. [4], [14], [23].

The skyline optimizer searches for such a pattern of K whose outline bounded by
non-zero matrix items – and by main diagonal matrix items if one deals with symmet-
ric problems – demarcates the smallest possible area. This area is called a profile and
therefore the skyline optimizer is sometimes known as the profile optimizer. Hence, when
renumbering process to the matrix K is completed, it is noted for a profile-pattern.
The outline is a borderline demarcated by items, positions of which manifests the maxi-
mum distance from the main diagonal of K, if it is ’column-wise measured’. In context of
the finite element method this process depends also only on the numbering of nodes, the
ordering of elements is irrelevant, [19], [11], [9]. Of course, the optimizer target function
here is different as it was for the bandwidth optimizer.

The front optimizer assumes connection to a special solver of algebraic systems so
called frontal solver. The frontal solver (see more in the next sections) does not use
any assembled equation system of an explicit type (10.4) but it assembles - successively
and step by step - only quasi-global system which represents - in a certain sense - a
relative small part of the global system (10.4). After each assemble step follows an
elimination step in which these unknowns, the rows and columns of which have been
yet completed/(assembled) in the preceding assembling step, are eliminated as soon as
possible.
The front optimizer aims at attainment of such ordering of finite elements so that for
the quasi-global system (i.e. for the front) as small as possible extent/dimension of
a triangular- or square matrix array (according to system manifest symmetry or not).
In context of the finite element method depends this process - contrary to the band
optimizer - only on the numbering of elements, the ordering of nodes is irrelevant, [28].
In practice, especially if nodes as well as elements are ordered in accordance, one can
also use band- and/or profile optimizer successfully, [14], [15], [16], [19].

The fill-in optimizers present the newest and also the most powerful tool of optimiza-
tion of meshes, see Chapter 11 and [31].

Iterative methods

An algorithm produces a sequence of approximations to the solution of a (linear)
system of equations; the length of the sequence is not given a priori. If is the algorithm
convergent, the longer one iterates, the closer one is able to get to the true solution.
There are reasons for it. For one thing, at that in exact arithmetic, successive iterations

CHAPTER 10. THE FRONTAL SOLUTION TECHNIQUE 255

of any convergent algorithm approaches generally the exact solution in a limit sense -
i.e. when number of iterations approaches infinity - and for another, their algorithms
require stoping criteria suitably set for ’reasonable’ termination of computation.

Merits as well as disadvantages are as follows:

Merits of iterative methods

• Simplicity of algorithms.

• Pattern of non-zero items of K matrix holds during the whole process, so the
fill-in phenomenon does not occur.

• Storage requirements remain constant during the solution process.

• Relative easy implementation of parallelization technology is possible

• For sparse matrices, common storage schemes avoid storing zero elements can
be used; as a result they involve indices, stored as integer data, that indicate
where the stored elements fit into the global matrix. Hence the simple band-
optimizer is sufficient so that no very sophisticated renumbering of nodes or
elements with the regard to fill-in effect reduction is needed, see Chapter 11.

• Assembling of resulting algebraic system is not always needed; an iterative
solver can work with individual element matrices and vectors or with individ-
ual equations; again, an easy implementation of parallelization technology is
possible.

Disadvantages of iterative methods

• A suitable preconditioning is practical necessary (which can bee a hard task).

• None estimate of number of arithmetic operations holds for computation of
xi corresponding to fi.

• Even if such a number were at hand for fi, another right-hand-side vector
fj would require widely different number of operations; departure from the
rule present right-hand-sides vectors which are each other sufficiently proxi-
mal so that solution corresponding to one right-hand-side vector serve as a
good approximation for the other (this feature can be attractive in non-linear
analyzes).

• Some initial guess x1, i.e. starting approximation of solution, is needed. Un-
fortunately, the computational costs can hard depend on the quality of this
initial guess.

• Stopping criterion or criteria are needed; since an iterative method computes
successive approximations to the solution, a practical test is needed to deter-
mine when to stop the iteration. Ideally this test would measure the distance
of the last iterate to the true solution, but this is not possible. Instead, various
other metrics are used, typically involving the residual.

• Neither matrix inversion K−1 or Schur complement SK of K matrix or any
multiplicative splits of K can be constructed.

CHAPTER 10. THE FRONTAL SOLUTION TECHNIQUE 256

Among the iterative methods belongs, e.g. Richardson-, Jacobi-, Relaxation- and
Gauss-Seidel method. Semi-iterative methods
Semi-iterative methods are of two-faces. They have a nature of direct ones if only none
rounding and cut off errors arise and propagate during the numerical process. But,
because it is not true, their iterative nature allow us via next iterations a successive
reduction of errors. The exact solution is reached - similarly to the iterative methods
- in a limit sense for infinite number of iterations and thus their algorithms need also
stoping criteria and initial guesses, i.e. starting iterations. A simple and robust estimate
of number of arithmetic operations is generally not possible. An explanation (needs 2–3
pages) will be added later. Among the semi-iterative methods belongs, e.g. the conju-
gated gradient- or the preconditioned gradient method.
Combined methods Combined methods are intricate and sophisticated. Name espe-
cially the hierarchical substructure method, domain decomposition methods and multi-
grid methods. Combined methods have a nature of direct or iterative procedures or – and
it is more usual case – they combine the advantageous properties both of fundamental
approaches. An explanation (needs 3–4 pages) will be added later.

10.2 The Frontal Solution Technique

The frontal solution technique, in its best known form, has originally been devised by
Bruce M. Irons and developed at the University College of Swansea by his coworkers who
pioneered the isoparametric approach to finite element method [22], [1]. Although more
general applications are possible, the frontal method can be considered as a particular
technique to assemble of FE-matrices and FE-vectors into global equation system and to
solve this system by means of Gaussian elimination and backsubstitution; it is designed
to minimize the core storage requirements, the arithmetic operations and the use of
peripheral equipment. Its efficiency and advantages over other methods such as the
band solution will be presented in next paragraphs.

The main idea of the frontal solution is to perform assembly, implementation of
boundary conditions and elimination of unknowns at the same time: as soon as the co-
efficients of an equation are completely summed, the corresponding unknown parameter
can be eliminated. The global matrices and global right-hand-side vectors are never
formed as such, they are immediately sent to the back-up storage under reduced form.

10.3 The basic, simplest version of frontal technique

This version is stemming from following assumptions about the algebraic system
Kx = f of n equations

• the local, element matrices Ke, e = 1, 2, ..., are symmetric and full

• the global, sparse structure matrix K is positive semi-definite (i.e. none boundary
conditions have to be respected)

• Gaussian elimination (factorization) without pivoting followed by backsubstitution
seems to be the most efficient solution process:

GKx = Ux = Gp → K = G−1U = LU .

CHAPTER 10. THE FRONTAL SOLUTION TECHNIQUE 257

Here U stands for the upper triangular matrix while

G = Gn−1Gn−2...G2G1

represents the lower triangular matrix of all needed elimination steps. Inverse of
G, named L, has also lower triangular form. Matrix product LU express one of
infinitely numerous multiplicative splits of matrix K, often called simple its fac-
torization.

The significant features of the system matrix, as its ’outline’ (e.g. banded or skyline
structure) and symmetry are retained during elimination process. Indeed, for example,
it holds after the first elimination step (if n = 4 and K is generally full)

G1 K =




1 0 0 0

−K12

K11

1 0 0

−K13

K11

0 1 0

−K14

K11

0 0 1







K11 K12 K13 K14

K12 K22 K23 K24

K13 K23 K33 K34

K14 K24 K34 K44


 =




K11 K12 K13 K14

0 K̃22 K̃23 K̃24

0 K̃23 K̃33 K̃34

0 K̃24 K̃34 K̃44


 ,

where the (3 × 3) submatrix K̃ formed by items signed by tilde

K̃ =




K̃22 K̃23 K̃24

K̃32 K̃33 K̃34

K̃42 K̃43 K̃44


 =




K22 −
K12

K11

K12 K23 −
K12

K11

K13 K24 −
K12

K11

K14

K32 −
K13

K11

K12 K33 −
K13

K11

K13 K34 −
K13

K11

K14

K42 −
K14

K11

K12 K43 −
K14

K11

K13 K44 −
K14

K11

K14




remains symmetric, if only K matrix had this property. The last equation also shows
that K̃ is the sum of two matrices: the former one is a restriction of K (or GK) while
the latter matrix is always of rank only one, because its every row is only some multiple
of an another one.
Further, it is well known that the addition of any row-multiple of K to any its row does
not change the det(K). Hence the product of all n eigenvalues of K – one of its invariants,
say

∏
(λi) = (λ1 · λ2 · . . . · λn), preserves its original value in the course of elimination

process.
The sum of all diagonal items or the sum of all n eigenvalues, say (λ1 + λ2 + . . . + λn)
represents an another of matrix invariants – trace(K). The last equation shows that the
trace(K) undergoes in the course of elimination certain changes. For this case holds

trace(K) − trace(G1K) = ((K12)
2 + (K13)

2 + (K14)
2)/K11

Hence, in the course of elimination process are condition numbers of matrices K, G1K,
G2G1K, ... , GK generally not equal.

What is present in core at any given time during the application of the frontal so-
lution is the upper triangular part of a square matrix and its relevant right-hand-side
vector containing the equations whose summation is in progress at that particular time.

CHAPTER 10. THE FRONTAL SOLUTION TECHNIQUE 258

These equations, corresponding nodes and their degrees of freedom are called the front.
The number of these equations – i.e. dimension of the upper triangular part of a square
matrix – is the frontwidth; it can be changing all the time; the program capacity is
generally conditioned by the maximum frontwidth. The variables, nodes and degrees
of freedom belonging to the front are called active; those which have not been consid-
ered yet are inactive; those which have gone through the front and have been reduced
or eliminated are deactivated.

In the frontal technique the FE elements are considered each in turn. Whenever a
new FE element is called in, its stiffness coefficients are computed and summed either
into existing equations if the nodes were active already or in new equations which have
to find place in the front if the nodes are activated for the first time. If some nodes are
appearing for the last time, the corresponding equations can be reduced and stored away
on back-up files; so doing they free space in the front; these nodes are deactivated. The
next element can then be considered.

The sequence of figures 10.3a to 10.3g shows that the procedure name can be justified
on military grounds [12]. During the assemblage and elimination phase, the front moves
forward like an advancing army. The front is the battleground separating conquered from
unconquered territory; it comprises all the border nodes before attacking a new element
and the border nodes plus the element nodes while the element is being conquered, i.e.
added to the global stiffness; after new territory has been conquered, the captured nodes
are sent to the rear, on the back-up storage.

At the end of elimination phase is all territory – i.e. the domain structured by its
computational mesh – conquered. But during the following back substitution phase will
be step by step all this territory lost.

10.3.1 The Prefront part of the program

Purpose of Prefront

To keep track of the multiple appearances of degrees of freedom, to predict their
last appearance and to decide where in the front the corresponding equations will be
assembled, an elaborate house keeping procedure is required. Partly because some of
it is necessary in advance and partly to avoid the uneconomic consequences of a failure
occuring after much time has already been spent in the frontal assemlage and reduction,
the housekeeping is prepared in the ”Prefront” part of the program. Prefront can be
considered as a separate module and will indeed be managed as a subroutine. It essen-
tially runs through a mock elimination process paving the way for the real one which
is going to take place slightly later. The example of Fig. 10.3 will be used to explain
Prefront. Note that the elements are numbered in a stupid order and that every node is
supposed to possess only one degree of freedom (one may consider the elements for anal-
ysis of scalar fields, e.g. temperature field or potential problems). The purpose of these
artificial characteristics is to demonstrate different features of the program while keeping
the explanations as short as possible. The Fig. 10.3a to Fig. 10.3g are accompanied by
arrays whose meaning and content will be described hereafter.

• number of nodes for each element is the same (here NNODE=3 was accepted),

• number of degrees of freedom per node NDOFN is the same for the whole FE-model,

CHAPTER 10. THE FRONTAL SOLUTION TECHNIQUE 259

• moreover, in the following paragraph we used NDOFN=1 (as corresponds to scalar
field analysis),

• only the simplest case of boundary condition was considered,

• only one right-hand-side vector was considered for the simultaneous processing,

• none strategy concerning of the external storage handling was studied.

Arrays used and created in Prefront

Most values, variables and arrays used in the program are defined in [12] but, for the
reader’s facility, the most important ones used in Prefront are already introduced below.
Their value in case of the example is given immediately after the definition whenever
this value should be known before entering Prefront.

Prefront input Text
parameters

MXEFW Maximum ’allowed’ frontwidth 103

MAXLI Maximum of the in core-space reserved by program; 106

this space can be expressed
by the length of an equivalent integer array.

MXDEQ Maximum ’expected’ requirement 109

for needed external storage capacity

Prefront outputs Text
MAXFW Maximum frontwidth; found for processed model 5

it must hold MAXFW ≤ MXEFW

LI In-core storage capacity requirement 100
it must hold LI ≤ MAXLI

LIDEQ External storage capacity requirement 5 × 102

it must hold LIDEQ ≤ MXDEQ

Value Text Taken in the example
NELEM Number of elements 3
NNOD Number of nodes 5
LSOL Length of solution vector 5

i.e. the total number of all unknown parameters
NDOFN Number degrees of freedom per a node 1

if only the same value of DOF holds for all nodes;
if it is not true, see the DOF-array in the table 3.

Variable Text Taken in the example
MFRON The actual frontwidth MFRON ≤ MAXFW

NNODE Number of nodes per element 3
generally, each element have a different NNODE;

NDOFE Number of DOFs per element 1
generally, each element have a different NDOFE;

CHAPTER 10. THE FRONTAL SOLUTION TECHNIQUE 260

Array Text Taken
in the example

INET(IELEM, INODE), List of node-numbers 4, 1, 2
IELEM = 1,.., NELEM for all finite-elements 3, 2, 5
INODE = 1,.., NNODE and all nodes of each finite-element 2, 3, 4
IELAS(INOD), Number of element containing the last
INOD = 1,.., NNOD appearance of INOD-th node 1, 3, 3, 3, 2

The last appearance can be recorded
with the minus sign into INET-array too:

INET(IELEM, INODE), List of node-numbers 4, -1, 2
IELEM = 1,.., NELEM for all finite-elements 3, 2, -5
INODE = 1,.., NNODE and all nodes of each finite-element -2, -3, -4
NDEST(IDOFE, IELEM), List of destination-numbers in the front see
IDOFE = 1,.., NDOFE for each of element-degrees-of-freedom NDEST array
IELEM = 1,.., NELEM and for each of finite elements; evolution

a last appearance can be recorded in Fig. 10.3
with the minus sign.

NACNO(MFRON) Number of active nodes in each of the MFRON

equations of the front; see
a zero indicates an available space; NACNO array
the content of the frontwidth and consequently evolution
the NACNO-vector is changing in Fig. 10.3
as the front is moving across the structure.

IELVA(IXFW, IC), Numbers relative to the eliminated variables see
IXFW = 1,.., MAXFW for each of element-degrees-of-freedom IELVA array
IC = 1,.., NC column numbers of IELVA matrix. evolution
IC = 1 contains the front number of the equation in Fig. 10.3

used for elimination
IC = 2 contains the global number of the node

to which the variable belongs
... eventually
IC = 3 contains the DOF number within the node
IC = 4 contains the imposed boundary condition number.

Tabulation of the last appearance for each node

This is realized by means of a node-DO-loop nested within an element-DO-loop. The
considered element number is stored in the components of IELAS corresponding to the
nodes which belong to this element. This has the effect of overwriting any previous
content of these locations in IELAS; since the elements are considered in increasing order,
the last recorded value will represent the last appearance of each node. The vector IELAS

has an ephemeral existence. It will be used shortly afterwards in Prefront to record a
node last appearance by a change of sign in the NDEST array; after that, it will not be
needed anymore. For the considered example, the final result is IELAS(NNODE) = 1, 3, 3,

3, 2 .

CHAPTER 10. THE FRONTAL SOLUTION TECHNIQUE 261

Figure 10.3: Frontal factorization process

Formation of the destination, active nodes and eliminated variables arrays

1. Before starting with the first finite element, NDEST, NACNO and IELVA are initialized
to zero, see Fig. 10.3a.

2. Element 1 is attacked. Nodes 4, 1 and 2 become active. The vector NACNO is searched
for available space; since nothing has been stored yet, the three NDOFE will be able
to occupy the first three equations of the front when the system will actually be
formed. The destinations 1, 2, 3 of the first element are recorded in NDEST; the
active nodes 4, 1, 2 from which the front-equations originate are recorded in NACNO,
see Fig. 10.3b.

3. Before going to element 2, a scanning of the components of IELAS corresponding to
the active nodes reveals that node 1 will never receive any contribution from the

CHAPTER 10. THE FRONTAL SOLUTION TECHNIQUE 262

further elements. Node 1 can therefore be deactivated. The destination number for
one degree of freedom (NDOFN = 1) at node 1 receives a minus sign to indicate that
the corresponding equation will be reduced and frozen in back-up storage when the
actual process takes place. The space occupied by this equation in the front will
be made available again; this is shown by a zero replacing number 1 in the array
of active nodes (NACNO(2) = 0). For back-substitution it must also be recorded that
the first variable eliminated comes from equation 2 of the front and belongs to
node 1; this is done in IELVA, see Fig. 10.3c.

4. Element 2 is attacked. Its nodes 3, 2, 5 are checked against the list of active nodes:
4, 1, 2. This reveals that node 2 is active already and the corresponding equation
will be third of the front; the contribution from node 2 will be added to it. Nodes
3 and 5 being active for the first time will be sent to rows 2 and 4 of the frontwidth
where zeros in NACNO indicated available space. The front will then contain the
upper triangular part of a 4 × 4 submatrix of the global stiffness, see Fig. 10.3d.

5. The array IELAS shows that node 5 can be deactivated; i.e. the fourth equation
of the front will by then have been summed up, it can be reduced and frozen.
Appropriate modifications are made to the destination and active nodes arrays:
NDEST(2,3) changes sign, NACNO(4) becomes zero. In IELVA the second row becomes
IELVA(2,1) = IELVA(2,2) to indicate that the second eliminated variable comes from
equation 4 of the front and belongs to node 5, see Fig. 10.3e.

6. Element 3 is attacked, its nodes 2, 3, 4 are already active, NACNO is not modified. All
contributions from element 3 will add up to existing equations 3, 2, 1 respectively,
see Fig. 10.3f.

7. No more contributions will ever be added. The remaining equations in the front
can be frozen away in reduced form while the corresponding remaining nodes are
deactivated in the order of their last appearance in element 3. The chosen order
of elimination, i.e. 3, 2, 1 for the equations in front and 2, 3, 4 for the nodes to
which they belong is recorded in rows 3, 4, 5 of IELVA. This completes the mock
elimination phase, see Fig. 10.3g.

Case of multiple DOF per nodes

When the elements possess more than one DOF per node (i.e. NDOFN > 1), a few more
inner DO loops have to be added in the formation of the destination, active nodes and
eliminated variables arrays.

1. NDEST must be enlarged because the number of columns is now superior to the
number of element nodes (i.e. NDOFE > NNODE); the extra columns are filled with
destination numbers of equations in front found during an inner DO loop over the
DOF at each node.

2. NACNO becomes longer because node numbers are repeated for each DOF which belongs
to them; in the original NACNO, no difference is made between first, second, ... nodal
DOF.

3. IELVA possesses a third column which, in regard to the node number, indicates
the DOF number from which the eliminated variable originates; this column is also

CHAPTER 10. THE FRONTAL SOLUTION TECHNIQUE 263

filled by means of an inner DO loop over nodal DOF. For some types of element the
number of nodal DOF is varying from node to node. In this case an integer array
might be specified with the element type (coded, say, by ITE-number) giving the
numbers of degrees of freedom DOF at the element nodes (i.e. numbers NDOFN(INE),

INE = 1,2,..., NNE) considered in a special order. This special order must be used
to inspect the element-node-list as they appear in one column of INET for each
element of this type.

10.3.2 The actual assemblage and elimination phase

Partial assembling

For each individual element, the assemblage of a system either with the symmetric
matrix or not proceeds much in the same way as the direct stiffness method.

• The rows of the global stiffness, GSTIF, and global load vectors, GLOAD, have been
initialized to zero or partially summed up depending on whether or not the nodes
are active for the first time.

• The element stiffness, ESTIF, and element load vector, ELOAD, are formed in the
element subroutine.

• A pair of nested DO loops is performed over the element degrees of freedom (i.e.
DO-loop-counters run over IDOFE = 1, 2, ... , NDOFE). So, the loop over rows IDOFE

and the loop over columns JDOFE run, to consider all components in ESTIF (or in its
half, if ESTIF is symmetric).

• By means of the destination array NDEST, one can find IG, and JG, which represent
the global row I and global column J corresponding to the local degree of freedom
IDOFE and JDOFE.

• The coefficients ESTIF(IDOFE, JDOFE) are added to GSTIF(IG, JG).

• The loads ELOAD(IDOFE) are added to GLOAD(IG).

It is well known that problems inducing symmetrical system matrices occur very
often. In those cases only one (upper or lower) triangle part of matrices ESTIF and GSTIF

can be used. To increase speed of computation, these matrices were usually considered
as one dimensional arrays in the seventieths. So, the only program peculiarity – today
rather of a historical nature – are transformations between indexes of two- and one
dimensional arrays, as show us formulas (10.52)

The conversion of a symmetric matrix K ≡ Kij, i, j = 1, 2, ..., n from its ”natural”
2D-array into the 1D-array, so called vector form of a matrix, K ≡ Kk, k = 1, 2, ..., N,
where N = n(n + 1)/2, is performed by means of two variants of function INDC:

k = INDC (i (i − 1)/2 + j) if i ≥ j , i, j ≤ n (store lower triangle)

k = INDC (j (j − 1)/2 + i) if i ≤ j , i, j ≤ n (store upper triangle)
(10.52)

Both functions give the same final vector starting from a symmetric matrix.

CHAPTER 10. THE FRONTAL SOLUTION TECHNIQUE 264

Elimination

In the ordinary Gaussian process, variables are eliminated in the order in which they
are met going down the matrix. In the frontal technique, the order of elimination is
different from the order of formation of the equations; and the order of formation is not
straightforward but is governed by the available space in front.

Which means that, quite often, one finds oneself in the position illustrated on the
4 × 4 example here below where one has to eliminate first the variable x3.




K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44








x1

x2

x3

x4





=





f1

f2

f3

f4





. (10.53)

The result is



K11 −
K13

K33

K31 K12 −
K13

K33

K32 0 K14 −
K13

K33

K34

K21 −
K23

K33

K31 K22 −
K23

K33

K32 0 K24 −
K23

K33

K34

K31 K32 K33 K34

K41 −
K43

K33

K31 K42 −
K43

K33

K32 0 K44 −
K43

K33

K34








x1

x2

x3

x4





=





f1 −
K13

K33

f3

f2 −
K23

K33

f3

f3

f4 −
K43

K33

f3





or using of substitutions K̃11 = K11 −
K13

K33

K31 , f̃1 = f1 −
K13

K33

f3, etc in a lucid form




K̃11 K̃12 K13 K̃14

K̃21 K̃22 K23 K̃24

K31 K32 K33 K34

K̃41 K̃42 K43 K̃44








x1

x2

x3

x4





=





f̃1

f̃2

f3

f̃4





. (10.54)

Outside of row and column 3, the symmetry is maintained: one can keep working on
the half upper triangle of front. But for back-substitution purposes, the whole equation
3 is necessary; left of diagonal terms K31 and K32 are fetched in the ’symmetric’ column
under the name K13 and K23 and the whole row is frozen away; immediately afterwards,
row 3 is reset to zero to prepare a free available space for summation of a new equation
which is going to come and occupy the available space. In the program column 3 is also
set to zero rather than computed and found equal to zero anyway.

To save time on peripheral operations row 3 is not immediately sent to back-up
storage; it is temporarily sent to a buffer array (matrix). When several variables have
been eliminated and the buffer matrix is full, its content is sent to back-up storage. Full
or not the last buffer needs not to be stored away; it is going to be used very soon for
back-substitution.

The actual frontwidth, monitored by NFRON, is updated during assemblage of each
element and again after all permissible eliminations accompanying this element have
been performed. It starts from zero before attacking the first element and comes back
to zero when the last elimination has been performed. Thanks to Prefront execution we
are now sure of validity of inequality MFRON ≤ MAXFW.

CHAPTER 10. THE FRONTAL SOLUTION TECHNIQUE 265

Case of prescribed displacements

When the elimination reaches a prescribed variable, the process becomes trivial. The
right-hand-sides of the system of equations are modified and the corresponding column
of the front matrix (outside the diagonal term) is set to zero. If, for instance, x3 is fixed
in the 4 × 4 example given above, the system becomes




K11 K12 0 K14

K21 K22 0 K24

K31 K32 K33 K34

K41 K42 0 K44








x1

x2

x3

x4





=





f1 − K13x3

f2 − K23x3

f3

f4 − K13x3





+





0
0
r3

0





. (10.55)

Again K43 has to be fetched under the name K34 since only the upper triangular part
of the matrix is retained in front. But the whole row 3 has to be sent into buffer matrix
and later to bach-up storage.

The nodal force f3 is the sum of contribution coming from all loaded elements to
which node 3 belongs. It is not the definitive nodal force; in addition to f3 there must be
a concentrated, but still unknown force r3 applied at this node to produce the prescribed
displacement; the value of r3 can only be found in the back-substitution phase.

The substantially more complex and more sophisticated approach has to be taken into
consideration when so called multipoint constraints (MPC) are applied. In such cases
no single degree of freedom (i.e. a single component of the vector x of ’unknowns’) but
a number of, say m, linear combinations among several – say 2, 9 or all n – components
of x, are prescribed. Let us express these conditions as reads

CT x = c , C(m × n) or




C1

C2

...
CM


 x =





c1

c2

...
cM





. (10.56)

For implementation of MPC into algebraic system (10.4), we can make use of methods
of the least squares (LS), Lagrangian multipliers (LM), orthogonal projections (OP) and
row-and-column-manipulations and reductions (MR). The methods LS and LM prove
their worth for the frontal method because they express any MPC-implementation by
means of sui generis finite-element-stiffness-matrices and their right-hand-sides. So the
basic algorithm of the frontal method is not affected by any MPC (and by any simple
condition as well).

If LS approach is used, the finite-element-stiffness-matrices KLS for implementation
of constraints (10.56)

KLS = CPCT , KLS(m × m) or Ki
LS = Ci Pi Ci

T , i = 1, ... M (10.57)

and their corresponding right-hand sides

fLS = CPc , fLS(m × 1) or fi
LS = Ci Pi ci , i = 1, ... M (10.58)

are arranged. Here P and Pi stands for the diagonal matrices of squared penalties pj, by
means of individual zeroed constraint-equations cj−

∑
Ck xk – i.e. residua of constraints

CHAPTER 10. THE FRONTAL SOLUTION TECHNIQUE 266

– see (10.16) and subsection Scalar forms of algebraic systems, are multiplied. Then these
new elements, as (10.57) and (10.58), are considered in the modified global system

[K + CPCT] x = { f + CPc } , (10.59)

whose matrix has order n regardless of the number m of limiting conditions (m < n).
If all m conditions are linearly independent then the MPC-matrix CPCT is positive
definite. If it does not hold true, the MPC-matrix is only positive semi-definite – see
(10.29) and subsection Overdetermined and underdetermined linear systems. It is inter-
esting that assuming regularity of resulting global matrix, system (10.59) gives solution
x without pivoting.

If LM approach is used, the finite-element-stiffness-matrices KLM for implementation
of constraints (10.56)

KLM =

[
0n −C

−CT 0m

]
, KLM ((n + m) × (n + m)) or

Ki
LM =

[
0ni −Ci

−Ci
T 0mi

]
, i = 1, ... M

(10.60)

and their corresponding right-hand sides

fLM =

{
0
−c

}
, fLM ((n + m) × 1) or

fi
LM =

{
0i

−ci

}
, i = 1, ... M

(10.61)

are arranged. Then these new elements, as (10.60) and (10.61), are considered in the
modified global system

[
K −C

−CT 0m

] {
x
λ

}
=

{
f
−c

}
, (10.62)

whose matrix is of order n+m, so that this order reflects number of limiting conditions m.
Assuming regularity of resulting indefinite global matrix, system (10.62) gives generally
solution {xT, λT} only with pivoting. In spite of it, the frontal algorithm permits
bypass this obstacle by special choice of elimination order (Lagrangian multipliers are
eliminated among unknowns which they bound as the last ones) and so we can circumvent
pivoting. By contrast to LS-method, all m conditions have to be linearly independent.
This property, of course, is also a common requirement in other, here not discussed,
approaches as orthogonal projections or row-and-column-manipulations and reductions.

10.3.3 Back-substitution phase

Back-substitution and output of results

The back-substitution can be understood as a frontal process applied backwards.
All lost territory is reconquered as the front moves back through all elements taken in
reverse order. It is better explained again by means of the example shown on Fig. 10.3a
to Fig. 10.3g.

CHAPTER 10. THE FRONTAL SOLUTION TECHNIQUE 267

1. Element 3 is reconquered. By counting the negative signs for element 3 in the
destination array NDEST, one knows that the three variables which were formed in
rows 1, 2 and 3 of the front can be recovered. The eliminated variables array IELVA

shows that these rows were reduced in the order 3, 2, 1 and that these variables
correspond to nodes 2, 3, 4 which are precisely the node of element 3, see Fig. 10.3g.
Therefore, one keeps recalling buffer matrices and back-substituting from the last
equation upwards until these three displacements have been found.

2. The displacements for element 3 are gathered in the vector of element displacements
DISPE and printed. A call can then be made to the element stress subroutine, see
Fig. 10.3f.

3. Element 2 is reconquered. The arrays NDEST and IELVA show that one variable can be
recovered: the one which was originally in equation 2 of front, which was second to
be eliminated and which originated from node 5, see Fig. 10.3e. Back-substitution
eventually requires recalling another buffer matrix.

4. Other nodal displacements for element 2 have already been calculated and still
in the front vector GLOAD; all element 2 displacements are gathered in DISPE and
printed; they can be immediately used for computing the stress, see Fig. 10.3d.

5. Element 1 is reconquered, the variable originally stored in equation 2 of front, the
first to be eliminated and originating from node 1 can be recovered, see Fig. 10.3c.

6. Element 1 displacements are gathered, printed and used to compute stresses. See
Fig. 10.3b.

Although the elimination has been performed in a nontraditional way, the reduced
matrix which is sent on backup storage via buffer matrices finally can be treated in
the usual way for back-substitution. Going upwards from the last one coefficient - one
unknown equation, every new line offers only one new unknown quantity.
When an element has been reconquered, all its nodal displacements are known. For,
either they have appeared for the last time with this element in the assemblage process,
have received a minus sign on their destination and are recovered while the element is
being reconquered, or they have appeared later in the assemblage process and have been
recovered already when the elements are taken in reverse order for back-substitution.
Not only are all element displacements known but, because they belong to nodes which
are necessarily active while the element is being considered, all their values are presently
in the front vector GLOAD ready to be picked up for gathering of the element-displacement-
vector DISPE.

Case of prescribed displacements

Where the nodal displacement is imposed, one would like to know the magnitude of
the concentrated load which must be applied at this node to resist the forces coming
from the neighbouring loaded elements and to produce the imposed displacement.
One takes again the 4 × 4 example used in (10.53). Its reduced form is




K31 K32 K33 K34

K11 K12 0 K14

0 K̃22 0 K̃24

0 0 0 K̃44








x1

x2

x3

x4





=





f3 + r3

f1

f̃2

f̃3





. (10.63)

CHAPTER 10. THE FRONTAL SOLUTION TECHNIQUE 268

where:

• The equations appear in a different order because of the elimination process;

• the primes denote coefficients modified for reduction purposes either in (10.55) or
immediately afterwards;

• the displacement x3 is imposed.

Because of the back-substitution organization all other relevant variables are known
already and are still available in the frontal part of GLOAD. When it comes to determining
the unknown associated with equation 3, one can therefore write

−r3 = f3 − K31 x1 − K32 x2 − K33 x3 − K34 x4 . (10.64)

This looks very much like an ordinary back-substitution except that the diagonal term,
which is usually skipped, is also included in the summation on the right. r3 is the
required reaction force complementing equilibrium in (10.64).

10.3.4 Discussion of the frontal technique

The front solution is a very efficient direct solution. Its main attraction is that
variables are seized up later and eliminated earlier than in most methods. The active
life of a node spans from the element in which it first appears to the element in which it
last appears. This has the following consequences.
1) In the frontal technique, the ordering of elements is crucial and the ordering of nodal
numbers is irrelevant: the opposite requirement to which governs a banded solution and
one easier to satisfy because, usually, there are fewer elements than nodes, especially in
three-dimensional problems. Further, if a mesh is found too coarse in some region, it
does not necessitate extensive renumbering of the nodes.
2) The storage requirements are at most the same as with a banded Gaussian solution,
generally less. This is especially true for structures analyzed by means of elements with
midside nodes, which give ”re-entrant band” in classical schemes. Several justificative
examples can be found in [1] a [5]. One of the most striking shows (10.65). An ordinary
banded solver leads to the total number of equations as the half-band width; this is
reduced to two by the frontal technique.




◦ ◦
◦ ◦

◦ ◦
◦ ◦

◦ ◦
◦ ◦

◦ ◦
◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦




(10.65)

3) Because of the compactness of the front and because variables are eliminated as soon
as possible, the zero coefficients are minimized and the total arithmetical operations are
fewer then with other methods.
4) Because the new equations occupy the first available lines in the front, there is no need

BIBLIOGRAPHY 269

for a bodily shift of the in-core band as in many other large capacity equation solvers.
5) When a front program is used there is no need to send the element stiffness on back-
up storage and recover them for assembly; they are assembled as soon as formed; the
displacements are also used at the element level as soon as they are obtained by back-
substitution. One can therefore save on peripheral operations. But this advantage will
disappear when the frontal technique is incorporated as a solution routine in an existing
program.
6) An inconvenient is the cumbersome bookkeeping which is required. Since it is entirely
performed with integer variables however, it uses little space and computer time.

10.4 Concluding remarks

The simplest version of the frontal algorithm was presented in detail. This version
can handle only very simple computational models for which are true the following facts:
- number of nodes for each element is the same (here NNODE=3 was accepted), - number
of degrees of freedom per node NDOFN is the same for the whole FE-model, - moreover,
we used NDOFN=1 (as corresponds to scalar field analysis), - only the simplest case of
boundary condition was considered, - only one right-hand-side vector was considered for
the simultaneous processing, - none strategy concerning of the external storage handling
was studied.

Absence of any just mentioned simplifications complicates the described algorithm
version. However, any solver for professional use needs to works with different element
types, unequal DOF-numbers for nodes, with boundary and/or sophisticated additional
conditions expressed in the forms of linear combinations among unknown parameters,
etc. See e.g. non-symmetr. frontal [21], [5]. See e.g. multifrontal [7], [8].

Bibliography

[1] D.G. Ashwell and R.H. Gallagher. Finite Elements for Thin Shells and Curved
Members, chapter The Semiloof Shell Element. John Wiley and Sons, New York,
1976.

[2] O. Axelsson. Iterative Solution Methods. Cambridge University Press, New York,
1994.

[3] T. Chan and T. Mathew. Domain decomposition algorithms. Acta Numerica, pages
61–143, 1944.

[4] E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices. In
Proceedings 24th National Conference of the Association for Computing Machinery,
pages 157–172. Brandon Press, New Jersey, 1969.

[5] I.S. Duff. Design features of a frontal code for solving sparse unsymmetric linear
systems out-of-core. SIAM J. Sci. Stat. Comput., 5:270–280, 1984.

[6] I.S. Duff, A.M. Erisman, and J.K. Reid. Direct Methods for Sparse Matrices. Claren-
don Press, Oxford, 1986.

BIBLIOGRAPHY 270

[7] I.S. Duff and J.K. Reid. The multifrontal solution of indefinite sparse symmetric
linear systems. ACM Trans. Math. Softw., 9:302–325, 1983.

[8] I.S. Duff and J.K. Reid. The multifrontal solution of unsymmetric sets of linear
systems. SIAM J. Sci. Stat. Comput., 5:633–641, 1984.

[9] A.M. Erisman, R.G. Grimes, J.G. Lewis, and W.G.Jr. Poole. A structuraly stable
modification of hellerman-rarick’s p4 algorithm for reordering unsymmetric sparse
matrices. SIAM J. Numer. Anal., 22:369–385, 1985.

[10] C. Farhat and F.-X. Roux. A method of finite element tearing and interconnecting
and its parallel solution algorithm. Int. J. Num. Meth. in Engng., 32(12):1205–1227,
1991.

[11] C.A. Felippa. Solution of linear equations with skyline-stored symmetric matrix.
Computers and Structures, 5:13–29, 1975.

[12] G.A. Fonder. The frontal solution technique: Principles, examples and programs.
Technical report, Department of Civil Engineering, University of Liège, Belgium,
1974.

[13] L. Gastinel. Linear Numerical Analysis. Kershaw Publishing, London, 1983.

[14] A. George. Computer implementation of the finite-element method. PhD thesis,
Department of Computer Science, Stanford University, Stanford, California, 1971.
Report STAN CS-71-208, Ph.D Thesis.

[15] A. George. Nested dissection of a regular finite-element mesh. SIAM J. Numer.
Anal., 10:345–363, 1973.

[16] A. George. An automatic one-way dissection algorithm for irregular finite-element
problems. SIAM J. Numer. Anal., 17:740–751, 1980.

[17] W. Hackbusch. Multi-Grid Methods and Applications. Springer, Berlin, New-York,
1985.

[18] W. Hackbusch. Iterative Solution of Large Sparse Systems of Equations. Springer,
New-York, 1994.

[19] E. Hellerman and D.C. Rarick. Reinversion with the preassigned pivot procedure.
Math. Programming, 1:195–216, 1971.

[20] M. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear sys-
tems. J. Res. Nat. Bur. Stand., 49(12):409–436, 1952.

[21] P. Hood. Frontal solution program for unsymmetric matrices. Int. J. Num. Meth.
in Engng., 10:379–400, 1976.

[22] B.M. Irons. A frontal solution program for finite element analysis. Int. J. Num.
Meth. in Engng., 2(1):5–32, 1970.

[23] A. Jennings. Matrix computation for engineers and scientists. John Wiley and Sons,
Chichester, New-York, Brisbane and Toronto, 1977.

BIBLIOGRAPHY 271

[24] W. Kahan. Numerical linear algebra. Canadian Math. Bull., 9:757–801, 1966.

[25] V. Morozov. Methods for Solving Incorrectly Posed Problems. Springer-Verlag, New
York, 1984.

[26] A. Quarteroni, R. Sacco, and F. Saleri. Numerical Mathematics. Texts in Applied
Mathematics, 37. Springer-Verlag, New York, 2000.

[27] H.A. Schwarz. Über einen grenzübergang durch alternierendes verfahren. Viertel-
jahrsschrift der Naturforschenden Gesellschaft in Zürich, 15:272–286, 1870.

[28] S.W. Sloan and M.F. Randolph. Automatic element reordering for finite-element
analysis with frontal schemes. Int. J. Num. Meth. in Engng., 19:1153–1181, 1983.

[29] B. Smith, P. Bjørstad, and W. Gropp. Domain Decomposition. Cambridge Univer-
sity Press, 1996.

[30] A. Toselli and O. Widlund. Domain Decomposition Methods – Algorithms and
Theory. Springer-Verlag, Berlin, Heidelberg, New York, 2005.

[31] C.W. Ueberhuber. Numerical Computation. Springer, Berlin, 1994.

Chapter 11

Sparse Storage Schemes

This part was written and is maintained by Petr Pař́ık. More details about the author
can be found in the Chapter 16.6.

In mechanics of solids, mathematical models are usually described by a system of
ordinary or partial differential equations. Discretization of these equations results in
linearized matrix-vector equations, which are suitable for a numerical solution on a com-
puter. Although there can be a large number of equations (variables) to describe the
problem, each equation usually contains only a few variables due to the local dependen-
cies between the variable and its derivative at a certain discretization point. This results
in a coefficient matrix with a majority of elements zero; matrices of this structure are
said to be sparse. Typically, the discretized system consists of n = 103 to 105 equations.
A full (dense) coefficient matrix requires n2 elements to be stored, which in the case
of higher dimensions quickly overflows the capacity of any computer. However, if the
sparse structure of the coefficient matrix is exploited and a suitable storage scheme is
used, even a very large problems can be solved.

The various storage schemes for both dense and sparse matrices are described in
sections 11.1 and 11.2.

The choice of a proper storage scheme for a particular algorithm is not a trivial task,
as it has direct impact on the total time and space required by the solution method.
Both direct and iterative methods have different demands the matrix storage scheme,
and are discussed in sections 11.3 and 11.4.

11.1 Storage Schemes for Dense Matrices

Dense matrices have all or most of the elements non-zero, therefore no reduction of
the storage space is possible as all elements need to be stored. For practical purposes,
only very small matrices (n ≤ 10) are stored as dense matrices, because dense matrices
of higher dimensions have excessive storage requirements. Moreover, solution algorithms
on large dense matrices are generally very slow, because mathematic operations have to
be carried out for each and every single matrix element, even if it is zero. Dense storage
schemes are however very useful for storing submatrices of block sparse matrices, which
are discussed in the next section.

272

CHAPTER 11. SPARSE STORAGE SCHEMES 273

11.1.1 Full Storage

The full storage format is the simplest approach to store dense matrices: all matrix
elements are stored in an array of floating-point values, either in a row-wise or column-
wise fashion. There is no algorithmical overhead as all matrix elements can be accessed
directly. Storage requirements are n2 floating-point values. Example: Matrix

A =




a11 a12 a13

a21 a22 a23

a31 a32 a33




can be stored in an array val in the full storage format by rows

i 1 2 3 4 5 6 7 8 9
val(i) a11 a12 a13 a21 a22 a23 a31 a32 a33

or by columns

i 1 2 3 4 5 6 7 8 9
val(i) a11 a21 a31 a12 a22 a32 a13 a23 a33

In FORTRAN, the latter (column) version is used internally to store multi-dimensional
arrays.

11.1.2 Triangular Storage

The triangular storage format is useful for storing symmetric or triangular matrices.
It is similar to the full storage format, however only the upper—or lower—triangular part
of the matrix is stored in an array of floating-point values. Matrix elements are accessed
directly with an additional simple logical test to determine in which part of the matrix
the element is. For matrix elements which are not stored, the value of the symmetric
element (i.e. element with swapped row and column indices) is returned in the case of a
symmetric matrix, or zero in the case of a triangular matrix. Storage requirements are
n(n + 1)/2 floating-point values. Example: Matrix

A =




a11 a12 a13

a12 a22 a23

a13 a23 a33




can be stored in an array val in the triangular storage format by columns (upper triangle)
or by rows (lower triangle)

i 1 2 3 4 5 6
val(i) a11 a12 a22 a13 a23 a33

or by rows (upper triangle) or by columns (lower triangle):

i 1 2 3 4 5 6
val(i) a11 a12 a13 a22 a23 a33

CHAPTER 11. SPARSE STORAGE SCHEMES 274

11.2 Storage Schemes for Sparse Matrices

Sparse matrices have a large percentage of zero elements, i.e. the number of non-zero
elements m on any row is much lower that the number of elements on a row (m ≪ n).
Reduction of storage space is possible by storing only the non-zero elements, but because
the non-zero elements can generally reside at arbitrary locations in the matrix, these lo-
cations, or coordinates (i.e. row and column indices), generally need to be stored along
with the element values. Although this increases the storage requirements, it is not an
issue except for very small matrices or matrices with a very small percentage of non-zero
elements. In those cases, a dense storage scheme is usually more suitable. If a sparse
matrix is symmetric, it is possible to reduce the storage space to approximately one half
by storing only one triangular part of the matrix.
Band matrices and skyline matrices can be considered a special case of sparse matrices.
Their structure can be exploited in storage schemes that have less space requirements
and are less complex than storage schemes for sparse matrices with a general structure.

In the description of the different storage schemes, A ∈ Rn×n denotes the sparse
matrix, n denotes the dimension of the matrix (the number of rows and columns of the
matrix), and nnz denotes the number of non-zero elements in the matrix.

More information about sparse matrix storage schemes can be found for example in
[3] and [1].

11.2.1 Coordinate Storage

The coordinate storage format is the simplest approach to store sparse matrices: the
values of the non-zero elements are stored along with their coordinates (i.e. row and
column indices) within three separate arrays val, row_idx and col_idx, all of the length
nnz. For any element value val(k), the row and column indices can be retrieved from
row_idx(k) and col_idx(k), and vice versa. The order of elements in the array val is
irrelevant, which makes this scheme not very efficient for traversing the matrix by rows
or columns. Also, storage requirements of nnz floating point values and 2× nnz integer
values are higher than other sparse storage schemes.

Example: Matrix

A =




a11 a12 0 a14 0
0 a22 a23 a24 0
0 0 a33 0 a35

a41 0 0 a44 a45

0 a52 0 0 a55




can be stored using the coordinate format (elements are intentionally in an unsorted
order):

i 1 2 3 4 5 6 7 8 9 10 11 12 13
val(i) a41 a35 a33 a52 a11 a23 a55 a24 a12 a44 a14 a45 a22

row_idx(i) 4 3 3 5 1 2 5 2 1 4 1 4 2
col_idx(i) 1 5 3 2 1 3 5 4 2 4 4 5 2

CHAPTER 11. SPARSE STORAGE SCHEMES 275

11.2.2 Compressed Row Storage

The compressed row storage format puts subsequent non-zero elements of the matrix
in contiguous array locations, allowing for a more efficient storage of element coordinates.
The values of the non-zero elements are stored in the floating-point array val as they
are traversed in a row-wise fashion. The integer array col_idx contains the column
indices of elements as in the coordinate storage format. However, instead of storing
nnz row indices, only pointers to the beginning of each row are stored in the integer
array row_ptr of length n + 1. By convention, row_ptr(n+1)=nnz+1. For any element value
val(k), the column index j can be retrieved from j=col_idx(k) and row index i from
row_ptr(i)<=k<row_ptr(i+1), and vice versa. Storage requirements are nnz floating-point
values and nnz + n + 1 integer values.

Example: Matrix

A =




a11 a12 0 a14 0
0 a22 a23 a24 0
0 0 a33 0 a35

a41 0 0 a44 a45

0 a52 0 0 a55




can be stored using the compressed row storage format

i 1 2 3 4 5 6 7 8 9 10 11 12 13
val(i) a11 a12 a14 a22 a23 a24 a33 a35 a41 a44 a45 a52 a55

col_idx(i) 1 2 4 2 3 4 3 5 1 4 5 2 5

j 1 2 3 4 5 6
row_ptr(j) 1 4 7 9 12 14

11.2.3 Compressed Column Storage

The compressed column storage format (CRS) is identical to the compressed row
storage format (CRS), except that columns are traversed instead of rows. In other
words, the CCS format for A is the CRS format for AT.

11.2.4 Block Compressed Row Storage

If a sparse matrix is composed of square dense blocks of non-zero elements in a
regular pattern, the compressed row storage (or compressed column storage) format
can be modified to exploit such block structure. In this storage format, the matrix is
partitioned into small blocks with an equal size, and each block is treated as a dense
matrix, even though it may have some zero elements. If nb is the size of each block and
nnzb is the number of non-zero blocks in the n × n matrix A, then the storage needed
for the non-zero blocks is nnzb × n2

b floating-point values. The block dimension N of A
is defined by N = n/nb.

Similar to the compressed row storage format, three arrays are needed to store the
matrix: a three-dimensional floating-point array val(1:nnzb,1:nb,1:nb), which stores the
non-zero blocks in a row-wise fashion, an integer array col_idx(1:nnzb), which stores

CHAPTER 11. SPARSE STORAGE SCHEMES 276

the original matrix column indices of the (1,1) element of the non-zero blocks, and an
integer array row_ptr(1:N+1), which stores pointers to the beginning of each block row in
val and col_idx. Storage requirements for indexing arrays are nnzb+N+1 integer values.
The savings in storage space and reduction in time spent doing indirect addressing for
block compressed row storage format over plain compressed row storage format can be
significant for matrices with a large nb.

11.2.5 Block Compressed Column Storage

The block compressed column storage format (BCCS) is identical to the block com-
pressed row storage format (BCRS), except that columns are traversed instead of rows.
In other words, the BCCS format for A is the BCRS format for AT.

11.2.6 Compressed Diagonal Storage

The compressed diagonal storage format is useful for storing band matrices.
In this storage format, only the main diagonal and subdiagonals containing non-zero

elements are stored. The n× n band matrix with left bandwidth p and right bandwidth
q is stored in a two-dimensional floating-point array val(1:n,-p:q). It involves storing
some zero elements, because some array elements do not correspond to actual matrix
elements. Because the element coordinates are given implicitly by p and q, no additional
indexing arrays are needed. Storage requirements are (p+q+1)×n floating-point values.

Example: Matrix

A =




a11 a12 0 0 0
0 a22 a23 a24 0
0 a32 a33 0 a35

0 0 0 a44 a45

0 0 0 0 a55




can be stored using the compressed diagonal storage format (array entries which do not
correspond to matrix elements are denoted by —)

i 1 2 3 4 5
val(i,-1) — 0 a32 0 0
val(i,0) a11 a22 a33 a44 a55

val(i,1) a12 a23 0 a45 —
val(i,2) 0 a24 a35 — —

11.2.7 Jagged Diagonal Storage

The jagged diagonal storage format is useful for storing band matrices, especially in
iterative solution methods on parallel and vector processors. It is more complex than
the compressed diagonal storage format, but has less space requirements.

It the simplified version, all non-zero elements are shifted left and the rows are padded
with zeros to give them equal length. The elements of the ‘shifted’ matrix are then stored
in a column-wise fashion in the floating-point array val similarly to the compressed

CHAPTER 11. SPARSE STORAGE SCHEMES 277

diagonal storage format. Column indices of the elements are stored in the integer array
col_idx. Row indices are not stored as they can be determined implicitly.

The simplified jagged diagonal storage format is also called Purdue storage. Storage
requirements are n × nnzrm floating-point values and n × nnzrm integer values, where
nnzrm is the maximum number of non-zeros per row.

Example: Matrix

A =




a11 a12 0 a14 0 0
0 a22 a23 0 0 0

a31 0 a33 a34 0 0
0 a42 0 a44 a45 a46

0 0 0 0 a55 a56

0 0 0 0 a65 a66




→




a11 a12 a14 0
a22 a23 0 0
a31 a33 a34 0
a42 a44 a45 a46

a55 a56 0 0
a65 a66 0 0




can be stored using the simplified jagged diagonal storage format

i 1 2 3 4 5 6
val(i,1) a11 a22 a31 a42 a55 a65

val(i,2) a12 a23 a33 a44 a56 a66

val(i,3) a14 0 a34 a45 0 0
val(i,4) 0 0 0 a46 0 0

i 1 2 3 4 5 6
col_idx(i) 1 2 1 2 5 5
col_idx(i) 2 3 3 4 6 6
col_idx(i) 4 0 4 5 0 0
col_idx(i) 0 0 0 6 0 0

The jagged diagonal storage format uses row compression to remove the disadvantage
of storing padded zeros, which can be quite inefficient if the bandwidth varies greatly. In
this storage format, rows are reordered descendingly according to the number of non-zero
elements per row, and stored in the compressed row storage format in the floating-point
array val. Column indices are stored in the integer array col_idx, row (jagged diagonal)
pointers in the integer array jd_ptr and row permutation (reordering) in the integer array
perm.

11.2.8 Skyline Storage

The skyline storage format is useful for storing skyline matrices (also called variable
band matrices or profile matrices), especially in direct solution methods.

In this storage format, matrix elements are stored in the floating-point array val in a
column-wise fashion, each column beginning with the first non-zero element and ending
with the diagonal element. Corresponding column pointers are stored in the integer
array col_ptr. Row indices are not stored as they can be determined implicitly.

In the case of a non-symmetric matrix, row-oriented version of skyline storage format
is used to store the lower triangular part of the matrix; there is a number of ways to link
the two parts together.

CHAPTER 11. SPARSE STORAGE SCHEMES 278

Because any zeros after the first non-zero element in a column have to be stored,
the skyline storage format is most effective when non-zero elements are tightly packed
around the main diagonal. Storage requirements are nnz floating-point values and n+1
integer values.

Example: Matrix

A =




a11 0 a13 0 0
0 a22 0 a24 0

a13 0 a33 a34 0
0 a24 a34 a44 a45

0 0 0 a45 a55




can be stored using the column-oriented skyline storage format

i 1 2 3 4 5 6 7 8 9 10
val(i) a11 a22 a13 0 a33 a24 a34 a44 a45 a55

j 1 2 3 4 5 6
col_ptr(j) 1 2 3 6 9 11

11.3 Storage Schemes for Iterative Methods

For iterative solvers, any sparse matrix storage scheme presented in the previous
section can be used as described. Iterative methods are based on the matrix-vector
multiplication and do not suffer from fill-in (explained in the next section), i.e. the
storage requirements remain constant during the solution process.

The choice of a suitable storage scheme for an iterative method depends on the type
of the method as well as the type of the problem. Often a certain storage scheme can
be chosen in a natural way according to the distinctive features of the problem.

11.4 Storage Schemes for Direct Methods

The major drawback of direct solution methods is the fill-in—a process where an
initially zero element of the matrix becomes non-zero during the elimination. This
increases the storage requirements, and, in some cases, might even make the solution
impossible because of insufficient storage space due to excessive fill-in. Direct solvers
should therefore incorporate some method of minimizing the fill-in to avoid running out
of memory. There are several approaches to adjust matrix storage schemes to make the
fill-in possible, some of which are discussed below.

11.4.1 Fill-in analysis

A relatively simple way to implement the fill-in is to include corresponding (initially
zero) entries in the matrix structure. The exact entries to be included must be identified
by analyzing the fill-in, usually by some kind of a ‘symbolic’ elimination. Any presented
matrix storage scheme can be used this way without modification, however it must be
pointed out that the fill-in analysis requires an additional time and space to proceed.

CHAPTER 11. SPARSE STORAGE SCHEMES 279

11.4.2 Linked Lists

The compressed row (or column) storage format (or its block version) can be modified
to implement the fill-in using linked lists. Newly added elements can only be appended
at the end of the val array, so an additional information about the order of elements on
matrix rows and/or columns need to be stored. For each element value val(i), the array
row_lst(i) contains the pointer to the next element in the same row, or zero pointer if
there are no more elements on the row. A second array col_lst can be used analogically
for storing the sequences of elements on matrix columns, to speed up the access to the
elements in the same row. When the fill-in is added, the arrays row_lst and/or col_lst are
modified to include the new element at the correct location of the corresponding matrix
row and column. This modification of the compressed row storage format requires a
lot of additional storage space as redundant information about the element indices are
stored.

Example: Matrix

A =




a11 a12 0 a14 0
0 a22 a23 a24 0
0 0 a33 0 a35

a41 0 0 a44 a45

0 a52 0 0 a55




is stored using the compressed row storage format. When a single fill-in (say element
a34) is added, the storage structure changes as follows

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
val(i) a11 a12 a14 a22 a23 a24 a33 a35 a41 a44 a45 a52 a55 a34

col_idx(i) 1 2 4 2 3 4 3 5 1 4 5 2 5 4
row_lst(i) 2 3 0 5 6 0 14 0 10 11 0 13 0 8
col_lst(i) 9 4 6 12 7 14 0 11 0 0 13 0 0 10

j 1 2 3 4 5 6
row_ptr(j) 1 4 7 9 12 15

11.4.3 Cyclically Linked Lists

Cyclically linked lists greatly reduce the overhead information needed to insert the
fill-in when using the compressed row storage format (see previous subsection). The
non-zero elements of the matrix are stored in the floating-point array val skipping the
first n positions, so the array has the length of n + nnz. An integer array row is used
to store either a pointer to the next non-zero element in the row, or if it was the last
element, the index of the row itself. Another integer array col can be used analogically
to store column indices to speed up the access to the elements by columns. New elements
can be appended to the end of the val array and the row and col arrays can be modified
without much effort.

Example: Matrix

CHAPTER 11. SPARSE STORAGE SCHEMES 280

Figure 11.1: Block structure of the symmetric dynamic block storage format

A =




a11 a12 0 a14 0
0 a22 a23 a24 0
0 0 a33 0 a35

a41 0 0 a44 a45

0 a52 0 0 a55




can be stored using cyclically linked lists (the elements are deliberately disordered)

i 1 2 3 4 5 6 7 8 9 10
val(i) 0 0 0 0 0 a41 a35 a33 a52 a11

row(i) 10 18 8 6 9 15 0 7 12 14
col(i) 10 14 11 16 7 0 17 0 0 6

i 11 12 13 14 15 16 17 18
val(i) a23 a55 a24 a12 a44 a14 a45 a22

row(i) 13 0 0 16 17 0 0 11
col(i) 8 0 15 18 0 13 12 9

11.4.4 Dynamically Allocated Blocks

Modern programming languages support structured data types and dynamic memory
allocation, concepts which were not available in the time of FORTRAN 77 or concurrent
languages. These two features can be used to construct an advanced matrix storage
scheme ([4], [2]) that is somewhat similar to the block compressed row (column) storage
format.

The idea of this storage scheme is based on a simple structure called a ‘block’, which
contains both the submatrix data and its indices. The blocks are stored by rows using
linked lists, but can be also stored by columns, or both. Both symmetric and unsym-
metric matrices can be stored; in the case of a symmetric matrix, the blocks are usually
stored beginning with a diagonal block.

The storage space is not allocated all at once, but gradually, using memory allocation
functions, one block at a time. That means it is not necessary to know or to guess
the exact storage requirements beforehand like in all the previous storage schemes. In
the most conservative version, the dynamic block storage format has the same storage
requirements as the block compressed row storage format.

BIBLIOGRAPHY 281

Bibliography

[1] M. Okrouhĺık and et al. Mechanika poddajných těles, numerická matematika a su-
perpoč́ıtače. Institute of Thermomechanics AS CR, Prague, 1997.

[2] P. Pař́ık. Implementation of sparse matrix storage schemes for direct solution meth-
ods. In Book of Extended Abstracts, Computational Mechanics 2008, Nectiny, 2008.

[3] C. W. Ueberhuber. Numerical Computation. Springer, Berlin, 1994.

[4] V. Vondrák. Description of the k3 sparse matrix storage system. In unpublished,
Technical University, Ostrava, 2000.

Chapter 12

Object oriented approach to FEA

This part was written and is maintained by Vı́tězslav Štembera. More details about
the author can be found in Chapter 16.8.

Abstract

We describe an object oriented programming approach to the finite element method
for solving a pressure load problem for an elastic isotropic body. Large deformations and
large displacements are considered, as well as a full three-dimensional case. We are going
to solve the steady-state problem – the response of a body to surface pressure forces.
The forthcoming text contains the theoretical background including numerical methods,
two test examples, and the fully commented code in C# language.

12.1 Basics of continuum mechanics

The continuum mechanics theory in this section is taken from Holzapfel [1].

12.1.1 Basic tensor definition

Consider a continuum body which is embedded in three-dimensional Euclidian space
at time t. Let us introduce an undeformed configuration of the body at time t = 0,
denoted by V0 (reference configuration), and a deformed configuration V at time t > 0
(also called spatial configuration). Each point X ∈ V0 is mapped to the new position
x ∈ V by the so-called deformation mapping

x(t) = x(X, t). (12.1)

Let us introduce a deformation tensor

F =
∂x(X, t)

∂X
. (12.2)

The left and right Cauchy-Green tensors (left or right means the position of the tensor
F) are defined as

b = FFT,C = FTF. (12.3)

282

CHAPTER 12. OBJECT ORIENTED APPROACH TO FEA 283

Note that tensor b is defined in the spatial configuration, whereas tensor C is defined in
the reference configuration. Moreover, let us define the displacement field in the reference
configuration

U(X, t) = x(X, t) − X, (12.4)

and the same in the spatial configuration

u(x, t) = x − X(x, t). (12.5)

The Euler-Lagrange strain tensor in the reference configuration is defined as

G =
1

2

(
FTF − I

)
, (12.6)

and the same in the spatial configuration

g =
1

2

(
I − F−TF−1

)
, (12.7)

between which the following relation holds 1

g = F−TGF−1. (12.8)

The Cauchy (true) stress tensor, defined in the spatial configuration, is denoted by σ.

The so-called second Piola-Kirchhoff stress tensor S, defined in the reference configura-
tion, takes the form

S = JF−1
σF−T, J = detF. (12.9)

12.1.2 Deformation problem definition

Suppose that the surface of the deformed body has two distinct parts

∂V = ∂Vu ∪ ∂Vt, ∂Vu ∩ ∂Vt = ∅. (12.10)

The initial-boundary value problem (in the strong form) for unknown displacement u,
where no volume forces are assumed, takes the form

divσ = 0 in V,

u = ū on ∂Vu, (12.11)

σn = t̄ on ∂Vt.

where ū is the given surface displacement, n is the outward unit normal to ∂Vt and
t̄ = −pn, and p is the outside pressure. In the weak form the problem transforms to 2

∫

V

σ : grad ϕ dV =

∫

∂Vt

t̄ · ϕ dS ∀ϕ ∈ W (V), (12.12)

where W (V) is the given set of test functions defined in V for which ϕ = 0 on ∂Vu. We
suppose that all functions in equation (12.12) are sufficiently smooth.

1Tensors G,g are also denoted by E, e in some books.
2A : B =

∑
i,j AijBij , (divA)i =

∂Aij

∂xj
, (gradv)ij = ∂vi

∂xj
.

CHAPTER 12. OBJECT ORIENTED APPROACH TO FEA 284

12.1.3 Virtual displacement, first variation

The virtual displacement field δu is the difference between two neighboring displace-
ment fields

δu = ū − u. (12.13)

The virtual displacement contains no derivatives, therefore it can be expressed in both
coordinates as δu = δU. Thus, we do not distinguish between them and use only δu
in the forthcoming text. The first variation of smooth (scalar, vector, tensor) function
F(U) in the material coordinates is defined as

δF(U) = DδuF(U) =
d

dε
F (U + εδu)

∣∣∣
ε=0

. (12.14)

which is nothing else than its directional derivative in the direction of δu. Let us compute
two useful variations 3

δF = δ(I + GradU) = δGradU
(12.14)

= Gradδu,

δG
(12.6)

=
1

2
δ
(
FTF

)
=

1

2

[(
δFT

)
F + FTδF

]
=

1

2

[(
FTGradδu

)T
+ FTGradδu

]
.

(12.15)

In the spatial coordinates, the first variation is defined as the push-forward of the vari-
ation in the material coordinates (the push-forward of the Green-Lagrange tensor was
given already in (12.8)) 4

δg = χ∗(δG)
(12.8)

= F−TδGF−1 (12.15)
=

1

2
F−T

[(
FTGradδu

)T
+ FTGradδu

]
F−1 =

=
1

2

[(
GradδuF−1

)T
+ GradδuF−1

]
=

1

2

[
gradTδu + gradδu

]
. (12.16)

12.1.4 Principle of virtual work

In the following section we describe the steady-state principle in which the displace-
ment vector u is the only unknown field. As the test function in (12.12) let us take the
virtual (unreal) infitesimal displacement δu

∫

V

σ : grad δu dV =

∫

∂Vt

t̄ · δu dS, (12.17)

We recompute the integral on the left-hand side
∫

V

σ : grad δu dV
definition of :

=

∫

V

σ :
1

2

(
gradδu + gradTδu

)
︸ ︷︷ ︸

δg

dV
(12.16)

=

=

∫

V

σ : F−TδGF−1 dV =

∫

V0

Jσ : F−TδGF−1 d0V
(12.9)

=

∫

V0

S : δG d0V.

(12.18)

3Note definitions Grad :=
∑

i
∂

∂Xi
, grad :=

∑
i

∂
∂xi

.
4Using the definiton symA = 1

2 (AT + A) we can also write δG = sym(FTGradδu), δg =
sym(gradδu).

CHAPTER 12. OBJECT ORIENTED APPROACH TO FEA 285

In the last step we have used the indentity A : BC = BTA : C = ACT : B. The balance
law (12.17) transforms to

∫

V0

S : δG d0V =

∫

∂Vt

t̄ · δu dS, (12.19)

which is called the principle of virtual work and constitutes the starting point for the
finite element formulation.

12.2 Finite element method formulation

The text in this section is based on Okrouhĺık [2]. The method presented here is the
total lagrangian formulation. Let us suppose that we know a body’s configuration at
time t, denoted tC, and we look for its new configuration at time t+△t, denoted t+△tC.
This one step procedure will allow us to solve any steady-state problem, which is our
aim in this text. By derivation of formula (12.4) with respect to X we get a new tensor
Z

Z =
∂U

∂X
= F − I. (12.20)

The Green-Lagrange deformation tensor can be rewritten as

G =
1

2

(
ZTZ + ZT + Z

)
. (12.21)

We define the increments

△G = Gt+△t − Gt, △S = St+△t − St, (12.22)

where S is the second Piola-Kirchhoff stress tensor. To keep the notation simple, we omit
in the forthcoming text the upper index t denoting the former time level (for example G
instead of Gt). Let us continue in the index form. The deformation tensor in the new
configuration is

△Gij = Gt+△t
ij − Gij =

1

2

[
∂ (Ui + △Ui)

∂Xj

+
∂ (Uj + △Uj)

∂Xi

+
∂ (Uk + △Uk)

∂Xi

∂ (Uk + △Uk)

∂Xj

]
−

−1

2

[
∂Ui

∂Xj

+
∂Uj

∂Xi

+
∂Uk

∂Xi

∂Uk

∂Xj

]
=

1

2

[
∂△Ui

∂Xj

+
∂△Uj

∂Xi

+
∂△Uk

∂Xi

Zkj + Zki
∂△Uk

∂Xj

]

︸ ︷︷ ︸
△GL

ij

+

+
1

2

∂△Uk

∂Xi

∂△Uk

∂Xj︸ ︷︷ ︸
△GN

ij

i, j = 1, 2, 3.

Summing over two same indices is considered. The second Piola-Kirchhoff stress tensor
is computed via increments with the use of the Hooke law

△Sij = Cijkl△GL
kl i, j = 1, 2, 3. (12.23)

CHAPTER 12. OBJECT ORIENTED APPROACH TO FEA 286

Integral (12.18) can be rewritten as

∫

V0

St+△t
ij δGt+△t

ij d0V =

∫

V0

(Sij + △Sij) δ(Gij + △GL
ij + △GN

ij) d0V

=

∫

V0

(Sij + △Sij)(δ△GL
ij + δ△GN

ij) d0V

≈
∫

V0

Sijδ△GL
ij d0V

︸ ︷︷ ︸
δU1

+

∫

V0

Sijδ△GN
ij d0V

︸ ︷︷ ︸
δU2

+

∫

V0

△Sijδ△GL
ij d0V

︸ ︷︷ ︸
δU3

.

In the third row, one of the terms is neglected because it is by one order smaller than all
other terms. In the forthcoming sections we transform terms δU1, δU2, δU3 into matrix
forms, which are more suitable for computer implementation.

12.2.1 Transformation of term δU1

Let us define the vectors

△gL =
(
△GL

11,△GL
22,△GL

33, 2△GL
12, 2△GL

23, 2△GL
31

)T
,

s = (S11, S22, S33, S12, S23, S31)
T , (12.24)

which immediately yields

∫

V0

Sij δ△GL
ij d0V =

∫

V0

(
δ△gL

)T
s d0V. (12.25)

12.2.2 Transformation of term δU2

The nonlinear part of the Green-Lagrange deformation tensor equals to

△GN
ij =

1

2

∂△Uk

∂Xi

∂△Uk

∂Xj

(12.26)

We rewrite the last equation (note that tensor S is symmetric)

Siiδ△GN
ii =

Sii

2
δ

(
∂△Uk

∂Xi

)2

= Sii
∂△Uk

∂Xi

δ
∂△Uk

∂Xi

, i = 1, 2, 3,

Sijδ△GN
ij + Sjiδ△GN

ji = Sij

(
∂△Uk

∂Xj

δ
∂△Uk

∂Xi

+
∂△Uk

∂Xi

δ
∂△Uk

∂Xj

)
, i, j = 1, 2, 3, i 6= j.

For simplification purposes, we define

△gN =

(
∂△U1

∂X1

,
∂△U1

∂X2

,
∂△U1

∂X3

,
∂△U2

∂X1

,
∂△U2

∂X2

,
∂△U2

∂X3

,
∂△U3

∂X1

,
∂△U3

∂X2

,
∂△U3

∂X3

)T

,

(12.27)

CHAPTER 12. OBJECT ORIENTED APPROACH TO FEA 287

and the tensor

S̃ =




S11 S12 S31

S12 S22 S23 0 0
S31 S23 S33

S11 S12 S31

0 S12 S22 S23 0
S31 S23 S33

S11 S12 S31

0 0 S12 S22 S23

S31 S23 S33




9×9

. (12.28)

In this notation the matrix form is as follows

δU2 =

∫

V0

Sijδ△GN
ij d0V =

∫

V0

(
δ△gN

)T
S̃ △gN d0V. (12.29)

12.2.3 Transformation of term δU3

The matrix form of equation (12.23) is

△s = D△gL,

D =
E

(1 + σ)(1 − 2σ)




1 − σ σ σ
σ 1 − σ σ 0
σ σ 1 − σ

1−2σ
2

0 0
0 0 1−2σ

2
0

0 0 1−2σ
2




6×6

. (12.30)

where E is the Young modulus and σ is the Poisson ratio. Finally, we obtain
∫

V0

△Sijδ△GL
ij d0V =

∫

V0

(
δ△gL

)T △s d0V =

∫

V0

(
δ△gL

)T
D △gL d0V. (12.31)

12.2.4 Transformation to a particular element

The principle of virtual work has now the form
∫

V0

(
δ△gL

)T
s d0V +

∫

V0

(
δ△gN

)T
S̃ △gN d0V +

∫

V0

(
δ△gL

)T
D △gL d0V

=

∫

∂Vt

t̄ · δu dS. (12.32)

Now the particular finite element comes into play. We consider a three-dimensional
element with eight vertices and twenty-four unknown displacements (located in vertices)

q =
(
q1, . . . , q24

)T
, (12.33)

where the first eight components are displacemets along axis X1, the second eight com-
ponents are displacemets along axis X2, and the last eight components are displacemets

CHAPTER 12. OBJECT ORIENTED APPROACH TO FEA 288

Figure 12.1: Finite element

along axis X3. An analogous notation is used for displacement increments between the
former configuration tC and the the new configuration t+△tC

△q =
(
△q1, . . . ,△q24

)T
. (12.34)

Displacement increments △U(X) = (△U1(X),△U2(X),△U3(X)), X = (X1, X2, X3),
considered as continuous space functions, are connected to vertex displacement incre-
ments △q by

△Ui(X) =
8∑

s=1

as(X)△qs+8(i−1), i = 1, 2, 3, (12.35)

where ai(X), i = 1, .., 8 are the element base functions. If we denote the element
vertices by Pi, i = 1, .., 8, then these functions satisfy ai (Pj) = δij; i, j = 1, .., 8. For
more information about the element base functions and the associated algebra see section
12.4. By linearization we can get a relation between vectors gL,gN and vertex increments
△q

△gL(X) = BL(X)△q, (12.36)

△gN(X) = BN(X)△q. (12.37)

Matrix BL is of type 6× 24, matrix BN is of type 9× 24. For the exact form of matrices
BL and BN see sections 12.2.5 and 12.2.6. Using formulae (12.36) and (12.37) we rewrite
the integrals as

δU1 = (δ△q)T
[∫

V0

(
BL

)T
s d0V

]
, (12.38)

δU2 = (δ△q)T
[∫

V0

(
BN

)T
S̃ BN d0V

]
△q, (12.39)

δU3 = (δ△q)T
[∫

V0

(
BL

)T
D BL d0V

]
△q. (12.40)

The integral in formula (12.38) yields a 24 × 1 type of vector, the integrals in formulae
(12.39) and (12.40) yield a 24 × 24 type of matrices. The right hand side of equation

CHAPTER 12. OBJECT ORIENTED APPROACH TO FEA 289

(12.32), representing the virtual work of external pressure forces, can be approximated
by the sum of work in all nodes

∫

∂Vt

t̄ · δu dS ≈ (δ△q)T · r(△q). (12.41)

In our test example 1 (see section 12.3.3) the approximative force r(△q) is supposed to
be non-zero only on the upper surface of the loaded beam (in the direction of axis x3)

5

r =

(
0, 0, 0, 0,

F1

4
,
F1

4
,
F1

4
,
F1

4
, 0, 0, 0, 0,

F2

4
,
F2

4
,
F2

4
,
F2

4
, 0, 0, 0, 0,

F3

4
,
F3

4
,
F3

4
,
F3

4

)
,

F = −p · (l1 × l2) .

Finally using (12.38)-(12.41), after having cancelled out term (δ△q)T, we get a system
of twenty-four equations (for each element)

[∫

V0

(
BL

)T
D BL d0V +

∫

V0

(
BN

)T
S̃ BN d0V

]
△q = −

∫

V0

(
BL

)T
s d0V + r(△q),

(12.42)

which can be written in the simpler form

Klocal(△q)△q = f local(△q). (12.43)

Creating such a local system for each element, we create a global system of equations

K(△q)△q = f(△q), (12.44)

which is computed iteratively as a sequence of linear problems, until the right hand side
comes to zero in an appropriate norm. Then solution addition △q also comes to zero.

Figure 12.2: Deformed grid

12.2.5 Components of matrix BL

We have

△GL
ij =

1

2

[
∂△Ui

∂Xj

+
∂△Uj

∂Xi

+
∂△Uk

∂Xi

Zkj + Zki
∂△Uk

∂Xj

]
, i, j = 1, 2, 3,

5l1 = (q6 + △q6, q14 + △q14, q22 + △q22) − (q5 −△q5, q13 + △q13, q21 + △q21) ,

l2 = (q8 + △q8, q16 + △q16, q24 + △q24) − (q5 −△q5, q13 + △q13, q21 + △q21) .

CHAPTER 12. OBJECT ORIENTED APPROACH TO FEA 290

where we denoted Zij = ∂Ui

∂Xj
; i, j = 1, 2, 3, which is known from the previous iteration.

Let us compute some terms with the help of equation (12.35) (other terms are computed
analogously)

△GL
11 =

∂△U1

∂X1

+ Zk1
∂△Uk

∂X1

= (1 + Z11)
∂as

∂X1

△qs + Z21
∂as

∂X1

△qs+8 + Z31
∂as

∂X1

△qs+16,

2△GL
12 =

∂△U1

∂X2

+
∂△U2

∂X1

+ Zk2
∂△Uk

∂X1

+ Zk1
∂△Uk

∂X2

=

[
Z12

∂as

∂X1

+ (1 + Z11)
∂as

∂X2

]
△qs+

[
(1 + Z22)

∂as

∂X1

+ Z21
∂as

∂X2

]
△qs+8 +

[
Z32

∂as

∂X1

+ Z31
∂as

∂X2

]
△qs+16.

Summing over s and k is supposed. The matrix BL then has the form

BL =




(1 + Z11)
∂as

∂X1
Z21

∂as

∂X1
Z31

∂as

∂X1

s=1,. . . ,8 s=1,. . . ,8 s=1,. . . ,8

Z12
∂as

∂X2
(1 + Z22)

∂as

∂X2
Z32

∂as

∂X2

s=1,. . . ,8 s=1,. . . ,8 s=1,. . . ,8

Z13
∂as

∂X3
Z23

∂as

∂X3
(1 + Z33)

∂as

∂X3

s=1,. . . ,8 s=1,. . . ,8 s=1,. . . ,8

Z12
∂as

∂X1
+ (1 + Z11)

∂as

∂X2
(1 + Z22)

∂as

∂X1
+ Z21

∂as

∂X2
Z32

∂as

∂X1
+ Z31

∂as

∂X2

s=1,. . . ,8 s=1,. . . ,8 s=1,. . . ,8

Z13
∂as

∂X2
+ Z12

∂as

∂X3
Z23

∂as

∂X2
+ (1 + Z22)

∂as

∂X3
(1 + Z33)

∂as

∂X2
+ Z32

∂as

∂X3

s=1,. . . ,8 s=1,. . . ,8 s=1,. . . ,8

Z13
∂as

∂X1
+ (1 + Z11)

∂as

∂X3
Z23

∂as

∂X1
+ Z21

∂as

∂X3
(1 + Z33)

∂as

∂X1
+ Z31

∂as

∂X3

s=1,. . . ,8 s=1,. . . ,8 s=1,. . . ,8




6×24

.

(12.45)

12.2.6 Components of matrix BN

From (12.27) and (12.36) we immediately get

BN =




∂a1

∂X1
. . . ∂a8

∂X1
0 0

∂a1

∂X2
. . . ∂a8

∂X2
0 0

∂a1

∂X3
. . . ∂a8

∂X3
0 0

0 ∂a1

∂X1
. . . ∂a8

∂X1
0

0 ∂a1

∂X2
. . . ∂a8

∂X2
0

0 ∂a1

∂X3
. . . ∂a8

∂X3
0

0 0 ∂a1

∂X1
. . . ∂a8

∂X1

0 0 ∂a1

∂X2
. . . ∂a8

∂X2

0 0 ∂a1

∂X3
. . . ∂a8

∂X3




9×24

. (12.46)

CHAPTER 12. OBJECT ORIENTED APPROACH TO FEA 291

The term
(
BN

)T
S̃ BN has the form

(
BN

)T
S̃ BN =




A
A

A




24×24

, Aij = Skl
∂ai

∂Xk

∂aj

∂Xl

, i, j = 1, .., 8. (12.47)

12.2.7 Small deformations

Small deformations means that

△GL
ij =

1

2

[
∂△Ui

∂Xj

+
∂△Uj

∂Xi

]
,

△GN
ij = 0. (12.48)

Integrand
∫

V0

(
BN

)T
S̃ BN d0V diminishes. The matrix BL has the form

BL =




∂a1

∂X1
. . . ∂a8

∂X1
0 0

0 ∂a1

∂X2
. . . ∂a8

∂X2
0

0 0 ∂a1

∂X3
. . . ∂a8

∂X3
∂a1

∂X2
. . . ∂a8

∂X2

∂a1

∂X1
. . . ∂a8

∂X1
0

0 ∂a1

∂X3
. . . ∂a8

∂X3

∂a1

∂X2
. . . ∂a8

∂X2
∂a1

∂X3
. . . ∂a8

∂X3
0 ∂a1

∂X1
. . . ∂a8

∂X1




6×24

.

and because it is a constant matrix, it can be precomputed. The resulting problem is,
of course, linear.

12.3 Numerics

12.3.1 Numerical integration

The integrals in equation (12.42) need to be evaluated numerically. First of all, we
map the undeformed element to the reference element < −1, 1 > × < −1, 1 > × <
−1, 1 > by

Ψ : R3 → R3, (r, s, t) → (X1(r, s, t), X2(r, s, t), X3(r, s, t)). (12.49)

Let us denote the Jacobian matrix of mapping Ψ by J. For derivation of this mapping
see section 12.4. The integration of all integrals is done by means of the n-point Gauss
quadrature (n = 2, 3). The Gauss quadrature is often used in one dimension according

to formula
∫ 1

−1
f(x)dx ≈ ∑n

i=1 wif(xi), where weights wi and points xi are given in the
following table

Number of points Points Weights

2 x1 = − 1√
3
, x2 = + 1√

3
w1 = 1, w2 = 1

3 x1 = −
√

3
5
, x2 = 0, x3 = +

√
3
5

w1 = 5
9
, w2 = 8

9
, w3 = 5

9

The n-point Gauss quadrature gives an exact result for polynomials of degree 2n − 1 or
less. In three dimensions we extend the results from one dimension—we get n3 points

CHAPTER 12. OBJECT ORIENTED APPROACH TO FEA 292

given by Pijk = [xi, xj, xk] with weights wijk = wiwjwk; i, j, k = 1, . . . , n. Integration
then equals to

∫

V0

f(X) d0V =

∫ 1

−1

∫ 1

−1

∫ 1

−1

f(r, s, t) detJ(r, s, t) dr ds dt
.
=

n∑

i=1

n∑

j=1

n∑

k=1

wijkf(Pijk) detJ(Pijk).

In practical computations we used the two point Gauss quadrature because the difference
to the three point Gauss quadrature was negligible.

12.3.2 Iterative procedure

The main computational algorithm consists of the following steps:

1. Fill matrix D according to (12.30).

2. For all Gauss points within each element compute ∂ai

∂Xj
, i = 1, . . . , 8, j = 1, 2, 3, and detJ.

3. Set n = 0 (iteration number).

4. Null the global matrix and the global right hand side (RHS). Increment n by one.

5. For all elements do the following:

(a) Null the local matrix and the local RHS.

(b) If n = 1 then set qn = 0 else set qn = qn−1 + △qn−1.

(c) Update boundary pressure forces rn(△qn).

(d) At each Gauss point within the element do the following:

i. If n = 1 then set sn = 0 else compute sn = sn−1 + △s,
△s = D△gL = DBL△qn.

ii. Compute tensor Z: Zij = ∂Ui

∂Xj
= ∂as

∂xj
qn
s+8(i−1), i, j = 1, 2, 3.

iii. Compute tensor BL(Z) using (12.45).

iv. Update the local matrix by products
(
BL

)T
DBL.

v. Update the local matrix by products
(
BN

)T
S̃BN according to (12.47).

vi. Update the local RHS by product
(
BL

)T
sn.

(e) Copy the local matrix and the local RHS to the global matrix and the global
RHS.

6. Invert the global matrix in order to obtain new solution increment △qn.

7. If n = 1 go to step 4.

8. If ||△qn||max < ε then stop, otherwise go to step 4. (Ussually ε = 10−9.)

In the programming code step 2. is realized by method Element.Initialize() and
step 5. by method Element.Do(). For more details see the source code on page 300.

CHAPTER 12. OBJECT ORIENTED APPROACH TO FEA 293

12.3.3 Test example 1 - loaded beam

As a test example we consider a pressure loaded beam fully fixed at x1 = 0 and x1 = l
(see Figure 12.3). The pressure exerted on the beam from above is p = 50 Pa. Other
parameters are

l = 0.11 m, z0 = 0.00275 m, E = 10 MPa, σ = 0.25,

where l is the beam length, z0 is the beam width and depth, E is the Young modulus
and σ is the Poisson ratio. The example is solvable with the help of linear theory, using
the Euler-Bernoulli beam equation, which gives the result

umiddle =
1

384

ql4

EJ
, (12.50)

where q is the load density given by q = pz0 and J is the second moment of area given

by J = z4
o

12
. Finally we have

umiddle =
1

32

pz0

E

(
l

z0

)4

= 0.0011 m. (12.51)

The results were also compared with the results computed in ANSYS v.11. The own
code is called FELIB (see Section 12.4). The following table shows the numerical results

Program Maximal displacement Relative error Number of Note

umiddle comparing to (12.51) elements

ANSYS 0.001104 m 0.36 % 200 × 5 × 5 Elements:

ANSYS 0.001104 m 0.36 % 320 × 8 × 8 SOLID45

FELIB 0.001079 m 1.9 % 200 × 5 × 5 -

FELIB 0.001093 m 0.64 % 320 × 8 × 8 -

FELIB 0.001096 m 0.36 % 800 × 5 × 5 -

We verified that for an increasing number of elements the results given by FELIB con-
verge to the value (12.51).

Figure 12.3: Pressure loaded beam, fully fixed at x1 = 0 and x1 = l.

CHAPTER 12. OBJECT ORIENTED APPROACH TO FEA 294

Figure 12.4: Test example 1 in ANSYS v.11

Figure 12.5: Test example 1 in FELIB.

12.3.4 Test example 2 - pressed beam

As another test example we consider a beam pressed against a wall by pressure p.
We consider two cases: small deformations (loading pressure p = 104 Pa) and finite
deformations (loading pressure p = 106 Pa). The beam has the length l0 = 0.11 m,
width and depth z0 = 0.00275 m, and material constants E = 10 MPa, σ = 0.25.
The loading pressure acts in the direction opposite to axis x1. The next table shows the

Figure 12.6: Beam pressed in direction oposite to axis x1.

small deformation case, where pressure was p = 104 Pa. In this case the Hooke law gives
relative displacement ε = △l

l0
= l0−l

l0
= p

E
= 0.001. The table shows not only convergence

CHAPTER 12. OBJECT ORIENTED APPROACH TO FEA 295

but also a perfect coincidence with the linear theory.

Relative displacement ε Difference to the previous Number of Number of

[−] line multiplied by × 109 elements unknowns

0.00100 0028 - 40 × 1 × 1 480

0.00100 0605 577 80 × 2 × 2 2160

0.00100 0768 163 120 × 3 × 3 5760

0.00100 0842 74 160 × 4 × 4 12000

0.00100 0883 41 200 × 5 × 5 21600

0.00100 0909 26 240 × 6 × 6 35280

The next table shows the finite deformation case where pressure was p = 106 Pa. In this
case the Hooke law gives relative displacement ε = △l

l0
= p

E
= 0.1. We observe difference

based on the fact that the Hooke law is valid only for small deformations.

Relative displacement ε Difference to the previous Number of Number of

[−] line multiplied by × 107 elements unknowns

0.123 2484 - 40 × 1 × 1 480

0.123 3394 910 80 × 2 × 2 2160

0.123 3662 268 120 × 3 × 3 5760

0.123 3785 123 160 × 4 × 4 12000

0.123 3855 70 200 × 5 × 5 21600

0.123 3899 4 240 × 6 × 6 35280

CHAPTER 12. OBJECT ORIENTED APPROACH TO FEA 296

12.4 Integration on reference element

We consider a reference element < −1, 1 > × < −1, 1 > × < −1, 1 > where we
integrate all integrands. We define mapping

Ψ : R3 → R3, (r, s, t) → (X1(r, s, t), X2(r, s, t), X3(r, s, t)), (12.52)

which mapps the reference element to the particular undeformed element. We force the
mapping to be a linear combination of eight polynomials (1, r, s, t, rs, st, tr, rst)




X1

X2

X3


 =




1 r s t rs st tr rst︸ ︷︷ ︸
Φ

1 r s t rs st tr rst
1 r s t rs st tr rst







c1
...
c8

c9
...

c16

c17
...

c24




.

(12.53)

Let us denote vertices of the undeformed element as P1, P2, . . . , P8. Let us define the
vector of vertex-coordinates as follows

p =
(

p1, . . . , p8︸ ︷︷ ︸
X1−components

, p9, . . . , p16︸ ︷︷ ︸
X2−components

, p17, . . . , p24︸ ︷︷ ︸
X3−components

)T

. (12.54)

i.e. P1 = [p1, p9, p17], P2 = [p2, p10, p18] etc. We relate, using equation (12.53), all eight
vertices to the vertices of the reference element which allows us to compute constants
c1, . . . , c24




p1
...
p8

p9
...

p16

p17
...

p24




=




S
S

S







c1
...
c8

c9
...

c16

c17
...

c24




, S =




1 −1 −1 −1 1 1 1 −1
1 1 −1 −1 −1 1 −1 1
1 1 1 −1 1 −1 −1 −1
1 −1 1 −1 −1 −1 1 1
1 −1 −1 1 1 −1 −1 1
1 1 −1 1 −1 −1 1 −1
1 1 1 1 1 1 1 1
1 −1 1 1 −1 1 −1 −1




.

CHAPTER 12. OBJECT ORIENTED APPROACH TO FEA 297

Figure 12.7: The reference, undeformed and deformed element.

By inversion we get




c1
...
c8

c9
...

c16

c17
...

c24




=




S−1

S−1

S−1







p1
...
p8

p9
...

p16

p17
...

p24




,S−1 =
1

8




1 1 1 1 1 1 1 1
−1 1 1 −1 −1 1 1 −1
−1 −1 1 1 −1 −1 1 1
−1 −1 −1 −1 1 1 1 1

1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

−1 1 −1 1 1 −1 1 −1




.

CHAPTER 12. OBJECT ORIENTED APPROACH TO FEA 298

Equations (12.53) can be now rewritten as




X1

X2

X3


 =




Φ
Φ

Φ







S−1

S−1

S−1







p1
...
p8

p9
...

p16

p17
...

p24




=

=




a1(r, s, t), . . . , a8(r, s, t)
a1(r, s, t), . . . , a8(r, s, t)

a1(r, s, t), . . . , a8(r, s, t)







p1
...
p8

p9
...

p16

p17
...

p24




,

a1 =
1

8
(1 − r)(1 − s)(1 − t), a5 =

1

8
(1 − r)(1 − s)(1 + t),

a2 =
1

8
(1 + r)(1 − s)(1 − t), a6 =

1

8
(1 + r)(1 − s)(1 + t),

a3 =
1

8
(1 + r)(1 + s)(1 − t), a7 =

1

8
(1 + r)(1 + s)(1 + t),

a4 =
1

8
(1 − r)(1 + s)(1 − t), a8 =

1

8
(1 − r)(1 + s)(1 + t),

or in the non-vector form

X1 =
8∑

i=1

ai(r, s, t)pi, X2 =
8∑

i=1

ai(r, s, t)pi+8, X3 =
8∑

i=1

ai(r, s, t)pi+16. (12.55)

The displacements are defined in vertices of the undeformed element. Let us define vector
of all displacement components

q =
(

q1, . . . , q8︸ ︷︷ ︸
X1−components

, q9, . . . , q16︸ ︷︷ ︸
X2−components

, q17, . . . , q24︸ ︷︷ ︸
X3−components

)T

. (12.56)

The displacement u = (u1, u2, u3)(r, s, t), considered as a continuous function, is approx-
imated analogously to formula (12.55) (the element is isoparametric)

u1 =
8∑

i=1

ai(r, s, t)qi, u2 =
8∑

i=1

ai(r, s, t)qi+8, u3 =
8∑

i=1

ai(r, s, t)qi+16. (12.57)

BIBLIOGRAPHY 299

Note that in the finite element method the equation (12.57) is often used for displacement
increments instead of displacements, i.e.

△u1 =
8∑

i=1

ai(r, s, t)△qi, △u2 =
8∑

i=1

ai(r, s, t)△qi+8, △u3 =
8∑

i=1

ai(r, s, t)△qi+16.

(12.58)

We can easily compute the Jacobian determinant of mapping Ψ

detJ =

∣∣∣∣∣∣

∂X1

∂r
∂X2

∂r
∂X3

∂r
∂X1

∂s
∂X2

∂s
∂X3

∂s
∂X1

∂t
∂X2

∂t
∂X3

∂t

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∑8
i=1

∂ai

∂r
pi

∑8
i=1

∂ai

∂r
pi+8

∑8
i=1

∂ai

∂r
pi+16∑8

i=1
∂ai

∂s
pi

∑8
i=1

∂ai

∂s
pi+8

∑8
i=1

∂ai

∂s
pi+16∑8

i=1
∂ai

∂t
pi

∑8
i=1

∂ai

∂t
pi+8

∑8
i=1

∂ai

∂t
pi+16

∣∣∣∣∣∣
. (12.59)

In order to compute values of ∂ai

∂Xj
i = 1, . . . , 8, j = 1, . . . , 3 we obtain relation




∂ai

∂r
∂ai

∂s
∂ai

∂t


 =




∂X1

∂r
∂X2

∂r
∂X3

∂r
∂X1

∂s
∂X2

∂s
∂X3

∂s
∂X1

∂t
∂X2

∂t
∂X3

∂t




︸ ︷︷ ︸
J




∂ai

∂X1
∂ai

∂X2
∂ai

∂X3


 =⇒




∂ai

∂X1
∂ai

∂X2
∂ai

∂X3


 = J−1




∂ai

∂r
∂ai

∂s
∂ai

∂t


 . (12.60)

where derivatives ∂ai

∂r
, ∂ai

∂s
, ∂ai

∂t
i = 1, . . . , 8, j = 1, . . . , 3 are given by

∂ai

∂r
∂ai

∂s
∂ai

∂t

i = 1 −1
8
(1 − s)(1 − t) −1

8
(1 − r)(1 − t) −1

8
(1 − r)(1 − s)

i = 2 1
8
(1 − s)(1 − t) −1

8
(1 + r)(1 − t) −1

8
(1 + r)(1 − s)

i = 3 1
8
(1 + s)(1 − t) 1

8
(1 + r)(1 − t) −1

8
(1 + r)(1 + s)

i = 4 −1
8
(1 + s)(1 − t) 1

8
(1 − r)(1 − t) −1

8
(1 − r)(1 + s)

i = 5 −1
8
(1 − s)(1 + t) −1

8
(1 − r)(1 + t) 1

8
(1 − r)(1 − s)

i = 6 1
8
(1 − s)(1 + t) −1

8
(1 + r)(1 + t) 1

8
(1 + r)(1 − s)

i = 7 1
8
(1 + s)(1 + t) 1

8
(1 + r)(1 + t) 1

8
(1 + r)(1 + s)

i = 8 −1
8
(1 + s)(1 + t) 1

8
(1 − r)(1 + t) 1

8
(1 − r)(1 + s)

Bibliography

[1] H.A. Gerhard. Nonlinear Solid Mechanics – A continuum approach for engineering.
John Wiley & Sons Ltd, Chichester England, 2001.

[2] M. Okrouhĺık and S. Pták. Poč́ıtačová Mechanika I – Základy nelineárńı mechaniky
kontinua. ČVUT, Prague, 2006.

BIBLIOGRAPHY 300

Appendix - Source code

The program is written in C# language and has two parts: the numerical library,
providing a basic linear algebra (MATHLIB), and the finite element library (FELIB).

12.4.1 MATHLIB

First of all we represent the MATHLIB library. It contains the following structures
and classes:

• Vector (class representing a real vector)

• ThreeVectorStruct (structure representing a vector with three real components;
more efficient then Vector.)

• ThreeLongVectorStruct (structure representing a vector with three integer com-
ponents)

• FullMatrix (class representing a non-sparse matrix)

• LinearSystemSolver (class representing a linear system which includes the sparse
matrix, the right hand side vector and the solution vector)

//**

// Vector - represents vector

//**

public class Vector

{

long n;

double[] p;

public long N { get { return n; } }

public Vector(long n)

{

p = new double[this.n = n];

}

public Vector(double x1, double x2, double x3)

{

p = new double[this.n = 3];

p[0] = x1;

p[1] = x2;

p[2] = x3;

}

public Vector(Vector x)

{

p = new double[n = x.N];

for (int i = 0; i <= n - 1; i++) p[i] = x.p[i];

}

public double this[long i]

{

get

{

if ((i < 1) || (i > n))

{

throw new Exception("Vector.operator[i]: (i < 1) || (i > n)");

}

return p[i - 1];

}

set

{

if ((i < 1) || (i > n))

{

throw new Exception("Vector.operator[i]: (i < 1) || (i > n)");

}

BIBLIOGRAPHY 301

p[i - 1] = value;

}

}

public static Vector operator +(Vector l, Vector r)

{

if (l.n != r.n) throw new Exception("Vector operator + : l.n != r.n");

Vector x = new Vector(l);

for (int i = 1; i <= x.n; i++) x.p[i - 1] += r.p[i - 1];

return x;

}

public static Vector operator -(Vector l, Vector r)

{

if (l.n != r.n) throw new Exception("Vector operator - : l.n != r.n");

Vector x = new Vector(l);

for (int i = 1; i <= x.n; i++) x.p[i - 1] -= r.p[i - 1];

return x;

}

public static Vector operator *(Vector l, double r)

{

Vector x = new Vector(l);

for (int i = 1; i <= x.n; i++) x.p[i - 1] *= r;

return x;

}

public static Vector operator *(double l, Vector r)

{

Vector x = new Vector(r);

for (int i = 1; i <= x.n; i++) x.p[i - 1] *= l;

return x;

}

public double GetL1() //Get L1 norm

{

double x = 0.0;

for (int i = 1; i <= n; i++) x += Math.Abs(p[i - 1]);

return x;

}

public double GetMaxNorm() //Get max norm

{

double max = Math.Abs(p[0]);

for (int i = 2; i <= n; i++)

{

if (max < Math.Abs(p[i - 1]))

{

max = Math.Abs(p[i - 1]);

}

}

return max;

}

public void Add(Vector x)

{

for (int i = 1; i <= n; i++)

{

p[i - 1] += x[i];

}

}

}

//**

// ThreeVectorStruct - represents vector with 3 components, more

// efficient then class Vector

//**

public struct ThreeVectorStruct

{

double x, y, z;

public ThreeVectorStruct(double x, double y, double z)

{

this.x = x;

this.y = y;

this.z = z;

}

public ThreeVectorStruct(ThreeVectorStruct p)

{

x = p[1];

y = p[2];

BIBLIOGRAPHY 302

z = p[3];

}

public double this[long i]

{

get

{

switch (i)

{

case (1): return x;

case (2): return y;

case (3): return z;

default: throw new Exception("ThreeVectorStruct.operator[i]. i<1 || i>3 !");

}

}

set

{

switch (i)

{

case (1): x = value; break;

case (2): y = value; break;

case (3): z = value; break;

default: throw new Exception("ThreeVectorStruct.operator[i]. i<1 || i>3 !");

}

}

}

public static ThreeVectorStruct operator *(double l, ThreeVectorStruct r)

{

ThreeVectorStruct xv = new ThreeVectorStruct(l * r[1], l * r[2], l * r[3]);

return xv;

}

public ThreeVectorStruct VectorMultiplication(ThreeVectorStruct x)

{

return new ThreeVectorStruct(this[2] * x[3] - this[3] * x[2],

this[3] * x[1] - this[1] * x[3], this[1] * x[2] - this[2] * x[1]);

}

public ThreeVectorStruct NormalizedVectorMultiplication(ThreeVectorStruct x)

{

ThreeVectorStruct data = new ThreeVectorStruct(this[2] * x[3] - this[3] * x[2],

this[3] * x[1] - this[1] * x[3], this[1] * x[2] - this[2] * x[1]);

double norm = Math.Sqrt(data[1] * data[1] + data[2] * data[2] + data[3] * data[3]);

return (1.0 / norm) * data;

}

public static ThreeVectorStruct operator +(ThreeVectorStruct l, ThreeVectorStruct r)

{

return new ThreeVectorStruct(l[1] + r[1], l[2] + r[2], l[3] + r[3]);

}

public static ThreeVectorStruct operator -(ThreeVectorStruct l, ThreeVectorStruct r)

{

return new ThreeVectorStruct(l[1] - r[1], l[2] - r[2], l[3] - r[3]);

}

}

//**

// ThreeLongVectorStruct - represents integer vector with 3 components

//**

public struct ThreeLongVectorStruct

{

private long x, y, z;

public ThreeLongVectorStruct(long x, long y, long z)

{

this.x = x;

this.y = y;

this.z = z;

}

public ThreeLongVectorStruct(ThreeLongVectorStruct p)

{

x = p[1];

y = p[2];

z = p[3];

}

public long this[long i]

{

BIBLIOGRAPHY 303

get

{

switch (i)

{

case (1): return x;

case (2): return y;

case (3): return z;

default: throw new Exception("ThreeLongVectorStruct.operator[i]. i<1 || i>3 !");

}

}

set

{

switch (i)

{

case (1): x = value; break;

case (2): y = value; break;

case (3): z = value; break;

default: throw new Exception("ThreeLongVectorStruct.operator[i]. i<1 || i>3 !");

}

}

}

}

//**

// FullMatrix - represents a full rectangle matrix

// (all components are stored in memory)

//**

public class FullMatrix

{

private int n, m;

private double[,] p;

private void ConstructorFullMatrix(int n, int m)

{

if (n < 1)

throw new Exception("FullMatrix.Constructor: n < 1! ");

if (m < 1)

throw new Exception("FullMatrix.Constructor: m < 1! ");

this.n = n;

this.m = m;

try

{

p = new double[n, m];

}

catch (Exception)

{

throw new Exception("FullMatrix.Constructor: Out of memory exception.");

}

Null();

}

//Initialization to 0.0

public void Null()

{

for (int i = 1; i <= n; i++)

{

for (int j = 1; j <= m; j++)

{

p[i - 1, j - 1] = 0.0;

}

}

}

public FullMatrix(int n)

{

ConstructorFullMatrix(n, n);

}

public FullMatrix(int n, int m)

{

ConstructorFullMatrix(n, m);

}

public int N { get { return n; } }

BIBLIOGRAPHY 304

public int Getm() { return m; }

public static FullMatrix operator *(FullMatrix l, double r)

{

FullMatrix x = new FullMatrix(l.N);

for (int i = 0; i <= x.N - 1; i++)

{

for (int j = 0; j <= x.Getm() - 1; j++)

{

x.p[i, j] = l.Get(i + 1, j + 1) * r;

}

}

return x;

}

public static Vector operator *(FullMatrix l, Vector r)

{

if (l.Getm() != r.N)

{

throw new Exception("Vector operator * (l, r) : l and r have different dimensions!");

}

Vector y = new Vector(l.N);

for (int i = 1; i <= y.N; i++)

{

y[i] = 0.0;

for (int j = 1; j <= l.Getm(); j++)

{

y[i] += l.Get(i, j) * r[j];

}

}

return y;

}

//Multiplication L^T * R

public static FullMatrix operator %(FullMatrix l, FullMatrix r)

{

int n = l.N;

if (n != r.N)

{

throw new Exception("Vector operator % (l, r) : l and r have different dimensions!");

}

int m1 = l.Getm();

int m2 = r.Getm();

//n x m1 n x m2 => m1 x m2

FullMatrix y = new FullMatrix(m1, m2);

double x;

for (int i = 1; i <= m1; i++)

{

for (int j = 1; j <= m2; j++)

{

x = 0.0;

for (int k = 1; k <= n; k++)

{

x += l.Get(k, i) * r.Get(k, j);

}

y.Set(i, j, x);

}

}

return y;

}

//Multiplication L^T * R

public static Vector operator %(FullMatrix l, Vector r)

{

int n = l.N;

if (n != r.N)

{

throw new Exception("Vector.operator(l, r) %: l and r have different dimensions!");

BIBLIOGRAPHY 305

}

int m = l.Getm();

//n x m n => m

Vector y = new Vector(m);

double x;

for (int i = 1; i <= m; i++)

{

x = 0.0;

for (int k = 1; k <= n; k++)

{

x += l.Get(k, i) * r[k];

}

y[i] = x;

}

return y;

}

public static FullMatrix operator *(FullMatrix l, FullMatrix r)

{

if (l.Getm() != r.N)

{

throw new Exception("Vector.operator(l, r) *: l and r have different dimensions!");

}

FullMatrix y = new FullMatrix(l.N, r.Getm());

double x;

for (int i = 1; i <= y.N; i++)

{

for (int j = 1; j <= y.Getm(); j++)

{

x = 0.0;

for (int k = 1; k <= l.Getm(); k++)

{

x += l.Get(i, k) * r.Get(k, j);

}

y.Set(i, j, x);

}

}

return y;

}

public double Get(int i, int j)

{

VALIDATE(i, j);

return p[i - 1, j - 1];

}

public void Set(int i, int j, double val)

{

VALIDATE(i, j);

p[i - 1, j - 1] = val;

}

public void SetSymmetric(int i, int j, double val)

{

if (n != m)

{

throw new Exception("FullMatrix.SetSymmetric(i, j, val): n != m !");

}

VALIDATE(i, j);

p[i - 1, j - 1] = p[j - 1, i - 1] = val;

}

public Vector GAUSS(Vector b) //note that it destroys matrix p!

{

double multiplier, exchanger;

Vector b_ = new Vector(b);

// 0. Control - if matrix has same type as right_side

if (b_.N != n)

{

throw new Exception("FullMatrix.GAUSS(): b_.N != n !");

}

double bL1 = b.GetL1();

if (bL1 == 0.0)

BIBLIOGRAPHY 306

{

throw new Exception("FullMatrix.GAUSS(): b.GetL1 == 0.0");

}

//1. Make upper triangle matrix

//1.1 From the first to the (last - 1)th column

for (int j = 1; j <= n - 1; j++)

{

//1.2 If the diagonal element is zero

if (Get(j, j) == 0.0)

{

for (int h = j + 1; h <= n; h++)

{

if (Get(h, j) != 0.0)

{

//1.1.1 Change of rows j and h

for (int t = j; t <= n; t++)

{

exchanger = Get(j, t);

Set(j, t, Get(h, t));

Set(h, t, exchanger);

}

exchanger = b_[j];

b_[j] = b_[h];

b_[h] = exchanger;

// end of change rows j and h

break;

}

if (h == n) goto End_of_cycle;

//all numbers under diagonal are zero, so there’s nothing to eliminate

}

}

//1.2 Only if there is some rows to null do this

for (int i = j + 1; i <= n; i++)

{

//If this line has zero don‘t do it

if (Get(i, j) != 0.0)

{

multiplier = Get(i, j) / Get(j, j);

for (int r = j + 1; r <= n; r++)

{

Add(i, r, -multiplier * Get(j, r));

}

b_[i] -= multiplier * b_[j];

}

}

End_of_cycle: ;

}

//2. Look if matrix is regular - look for zero’s on the diagonal

for (int k = 1; k <= n; k++)

{

if (Get(k, k) == 0.0) { throw new Exception("FullMatrix.GAUSS: matrix is singular!"); }

}

//3.Back process of the Gauss elimination

Vector Solution = new Vector(n);

for (int i = n; i >= 1; i--)

{

for (int j = i + 1; j <= n; j++)

{

b_[i] -= Get(i, j) * Solution[j];

}

Solution[i] = b_[i] / Get(i, i);

}

return Solution;

}

public FullMatrix Inverse() //note that it destroys matrix p!

BIBLIOGRAPHY 307

{

if (n != m)

{

throw new Exception("FullMatrix.Inverse(): n != m!");

}

//Solution method is based on solving the system A * AINV = I

FullMatrix X = new FullMatrix(n * n);

Vector b = new Vector(n * n);

//1.0 Fill b

for (int i = 1; i <= n; i++)

{

for (int j = 1; j <= n; j++)

{

if (i == j)

{

b[(j - 1) * n + i] = 1.0;

}

else

{

b[(j - 1) * n + i] = 0.0;

}

}

}

//2.0 Fill X

for (int k = 1; k <= n; k++) //k times A

{

for (int i = 1; i <= n; i++)

for (int j = 1; j <= n; j++)

{

X.Set((k - 1) * n + i, (k - 1) * n + j, Get(i, j));

}

}

//3.0 Solve

b = X.GAUSS(b);

//4.0 Fill AINV

FullMatrix AINV = new FullMatrix(n);

for (int i = 1; i <= n; i++)

{

for (int j = 1; j <= n; j++)

{

AINV.Set(i, j, b[(j - 1) * n + i]);

}

}

return AINV;

}

public static double GetDet(FullMatrix A) //only for 3x3 matrix

{

if ((A.N == 3) && (A.Getm() == 3))

{

return

A.Get(1, 1) * (A.Get(2, 2) * A.Get(3, 3) - A.Get(2, 3) * A.Get(3, 2))

- A.Get(1, 2) * (A.Get(2, 1) * A.Get(3, 3) - A.Get(2, 3) * A.Get(3, 1))

+ A.Get(1, 3) * (A.Get(2, 1) * A.Get(3, 2) - A.Get(2, 2) * A.Get(3, 1));

}

else

{

throw new Exception("FullMatrix.GetDet(): it requires matrix of type 3x3!");

}

}

public void Add(int i, int j, double val)

{

VALIDATE(i, j);

p[i - 1, j - 1] += val;

}

//Add Matrix

public void Add(FullMatrix a)

{

if ((n != a.N) || (m != a.Getm()))

BIBLIOGRAPHY 308

{

throw new Exception("FullMatrix.Add(a): different n or m!");

}

for (int i = 1; i <= n; i++)

{

for (int j = 1; j <= m; j++)

{

p[i - 1, j - 1] += a.Get(i, j);

}

}

}

private void VALIDATE(int i, int j)

{

if ((i < 1) || (i > n))

throw new Exception("FullMatrix.VALIDATE(i, j): (i < 1) || (i > n)");

if ((j < 1) || (j > m))

throw new Exception("FullMatrix.VALIDATE(i, j): (j < 1) || (j > m)");

}

}

//**

// LinearSystemSolver - represents the direct Gauss solver

// Note that:

// 1.No pivoting (less memory allocated)

// 2.Solution vector included.

// 3.Right hand side (b vector) is in 0-column index of p array

// 4.Rows indexed from 0!

//**

public class LinearSystemSolver

{

private long n, s;

private double[,] p;

private Vector solution;

public Vector Solution { get { return solution; } }

private void Constructor(long n, long s)

{

if ((n < 1) || (s < 0))

throw new Exception("LinearSystemSolver: n < 1 || s < 0 ! ");

if (s > n - 1) s = n - 1;

this.n = n;

this.s = s;

try

{

p = new double[n, 2 * s + 2];

solution = new Vector(n);

}

catch (Exception)

{

throw new Exception("LinearSystemSolver: Operator new failed: Out of memory.");

}

Null();

}

public void Null() //Initialization to 0.0

{

for (long i = 1; i <= n; i++)

{

for (long k = 0; k <= 2 * s + 1; k++)

{

p[-1 + i, k] = 0.0;

}

}

}

public LinearSystemSolver(long n, long s)

{

Constructor(n, s);

}

//Matrix is stored in array p[i, j], where i = 1,..,n are rows and j columns:

// 1 <= j <= s - left band

// j = s+1 - diagonal

// s+2 <= j <= 2s+1 - right band

BIBLIOGRAPHY 309

public void AddValue(long i, long j, double val)

{

p[-1 + i, j - i + s + 1] += val;

}

public void AddValue(long i, double val)

{

p[-1 + i, 0] += val;

}

public void Solve()

{

double multiplier;

//1. Make upper triangle matrix

//1.1 From the first to the last - 1 column

for (long k = 1; k <= n - 1; k++)

{

// I will null rows, but at the end of matrix I have less and less rows to null!!

for (long h = 1; h <= Math.Min(s, n - k); h++)

{

//If this line has zero don‘t do it

if (p[-1 + k + h, s + 1 - h] != 0.0)

{

multiplier = p[-1 + k + h, s + 1 - h] / p[-1 + k, s + 1];

// It now subtracts 2 * s elements

for (long j = 2; j <= s + 1; j++)

{

p[-1 + k + h, s + j - h] -= multiplier * p[-1 + k, s + j];

}

p[-1 + k + h, 0] -= multiplier * p[-1 + k, 0];

}

}

}

//3.Backward process of the Gauss elimination

// k means rows (k = 1 is the last one), j means distance from the diagonal

for (long k = 1; k <= n; k++)

{

for (long j = 1; j <= Math.Min(k - 1, s); j++)

{

p[-1 + n - k + 1, 0] -= p[-1 + n - k + 1, s + 1 + j] * solution[n - k + 1 + j];

}

solution[n - k + 1] = p[-1 + n - k + 1, 0] / p[-1 + n - k + 1, s + 1];

}

}

}

BIBLIOGRAPHY 310

12.4.2 FELIB

The second part consists of the library (FELIB) designed to solve the finite element
problem (FEP). The class diagram of FELIB is depicted in Figure 12.8.

Figure 12.8: UML diagram showing the class structure of FELIB. The all public members
(the middle part of each box) and public methods (the lower part of each box) are shown.

Let us briefly describe the code structure. Nodes are represented by the structure
Node and elements are represented by the class Element. There are two more classes
defined: NodeArray, representing the array of nodes, and ElementArray representing
the array of elements. It is obvious that some information, describing the FEP belongs
to a node (for example initial positions or boundary conditions) and some belongs to an
element (for example local matrices). Therefore, all information on the problem is stored
either in NodeArray or ElementArray classes, depending on a particular convenience.

BIBLIOGRAPHY 311

The class Container is superordinate to all other classes, but it does not contain the
definition of our particular test problem – a loaded beam. This definition is present in
the Beam class, which is inherited from Container and it is the class used from outside
(for example from main()). The way it is used is as follows:

1. Create an instance of Beam class (let us denote it by beam).

2. Call beam.Initialize. This method internally calls beam.SetInitialLocation

and
beam.SetZeroBoundaryCondition methods to insert information about the initial
shape of the body and appropriate boundary conditions. These two methods in-
ternally call the methods NodeArray.SetInitialLocation and
NodeArray.SetZeroBoundaryCondition. Finally the beam.Initialize method
calls the Element.Initialize method for all elements which allocate their local
matrices and vectors and also precompute some data (for example detJ).

3. Call beam.Solve FEM, which is the main method solving the FEP. The method
contains the main convergence loop. Internally it calls Element.Do method for each
element to calculate its local vectors and matrices and fills its part in the global
matrix. Then the global matrix is inverted (method LinearSystemSolver.Solve)
and the solution increments are inserted back into all elements to update their
local vectors and matrices (method Container.SolverResultToElementArray).
This step is repeated a couple of times, until the convergence criterion is satisfied.

4. Call beam.GetGraphicalOutput, which returns the computed results in an appro-
priate form to be displayed.

5. Call beam.GetActualViewSolution, which returns the computed results in an
appropriate form to be saved to a file.

There are two more classes to be mentioned:

• The class Parameters containing all problem parameters.

• The classes GaussQuadraturePoint and GaussQuadraturePoints, which wrap the
table of Gauss points in a convenient way.

In the FELIB code there are also some classes that are not connected directly with
the FEP. Let us briefly summarize them:

• Class X3D 3D represents the graphical 3D object which can be displayed on the
screen.

• Class ViewSolution represents computed data which can be saved to a file.

• Class Roller represents the message log window.

• Class Exception is the standard .NET class representing exceptions.

The classes X3D 3D, ViewSolution, and Roller are not listed in this text. If you
comment all their occurrences in the code, you can run all earlier presented computations.
For the complete solution project for MS Visual Studio contact me via my email address.

BIBLIOGRAPHY 312

//**

//Gauss integration points

//Example:

//Parameter.GQorder = FEM_GaussQuadratureOrder.TwoPoints;

//GaussQuadraturePoints x = new GaussQuadraturePoints();

//for (int i = 1; i <= x.N; i++)

//{

// x[i][1]; //... X1 component of the quadrature point

// x[i][2]; //... X2 component of the quadrature point

// x[i][3]; //... X3 component of the quadrature point

// x[i].weight; //... weight of the point

//}

//**

public class GaussQuadraturePoints

{

public class GaussQuadraturePoint

{

public Vector p; //point location

public double weight; //point weight

public GaussQuadraturePoint()

{

p = new Vector(3);

}

}

private GaussQuadraturePoint[] p; //array

private int n;

public GaussQuadraturePoints(FEM_GaussQuadratureOrder GQorder)

{

if (GQorder == FEM_GaussQuadratureOrder.TwoPoints)

{

n = 2 * 2 * 2;

}

else

{

n = 3 * 3 * 3;

}

p = new GaussQuadraturePoint[n]; //0..7/0..26

for (int i = 0; i <= n - 1; i++)

{

p[i] = new GaussQuadraturePoint();

}

int I = 0;

if (GQorder == FEM_GaussQuadratureOrder.TwoPoints)

{

Vector point = new Vector(2);

point[1] = -1.0 / Math.Sqrt(3.0);

point[2] = 1.0 / Math.Sqrt(3.0);

for (int i = 1; i <= 2; i++)

{

for (int j = 1; j <= 2; j++)

{

for (int k = 1; k <= 2; k++)

{

I = 4 * (i - 1) + 2 * (j - 1) + k - 1; //range 0..7

p[I].p[1] = point[i];

p[I].p[2] = point[j];

p[I].p[3] = point[k];

p[I].weight = 1.0;

}

}

}

}

else

{

Vector point = new Vector(-Math.Sqrt(0.6), 0.0, Math.Sqrt(0.6));

Vector weight = new Vector(5.0 / 9.0, 8.0 / 9.0, 5.0 / 9.0);

for (int i = 1; i <= 3; i++)

{

BIBLIOGRAPHY 313

for (int j = 1; j <= 3; j++)

{

for (int k = 1; k <= 3; k++)

{

I = 9 * (i - 1) + 3 * (j - 1) + k - 1; //range 0..26

p[I].p[1] = point[i];

p[I].p[2] = point[j];

p[I].p[3] = point[k];

p[I].weight = weight[i] * weight[j] * weight[k];

}

}

}

}

}

public int N { get{ return n;} }

public GaussQuadraturePoint this[int i] //0...GQP.N

{

get

{

return p[i - 1];

}

}

}

//**

// GaussQuadratureOrder

//**

public enum FEM_GaussQuadratureOrder

{

TwoPoints, ThreePoints

}

//**

// Parameters

//**

public class Parameters

{

public int ni = 200; //number of elements in X1 direction

public int nj = 5; //number of elements in X2 direction

public int nk = 5; //number of elements in X3 direction

public double l = 0.11; //beam length

public double beam_width = 0.00275; //beam_width = beam depth

public double length_i, length_j, length_k;//element length in X1/X2/X3 direction

public double p_up = 50.0; //pressure on the upper plane

public int N_FEM_iterations = 10; //Newton-Ralphston iterations

public int s_opt = 131; //width of global matrix band

public double convergence_epsilon = Math.Pow(10.0, -9.0);

public double E = Math.Pow(10.0, 7.0); //Young modulus

public double poisson = 0.25; //Poisson ratio

public FullMatrix C = new FullMatrix(6);

public bool large_deformations = true; //switch large/small deformations

public FEM_GaussQuadratureOrder GQorder = FEM_GaussQuadratureOrder.TwoPoints;

public Parameters()

{

length_i = l / (double)ni;

length_j = beam_width / (double)nj;

length_k = beam_width / (double)nk;

double C0 = E / (1.0 + poisson) / (1.0 - 2.0 * poisson);

for (int i = 1; i <= 3; i++)

{

C.Set(i, i, C0 * (1.0 - poisson));

C.Set(i + 3, i + 3, C0 * (0.5 - poisson));

}

C.SetSymmetric(1, 2, C0 * poisson);

C.SetSymmetric(1, 3, C0 * poisson);

C.SetSymmetric(2, 3, C0 * poisson);

}

}

//**

// Node - represents a node (vertex)

//**

BIBLIOGRAPHY 314

public struct Node

{

public ThreeVectorStruct xyz_init; //initial position in x/y/z direction

public ThreeVectorStruct xyz; //deformed position in x/y/z direction

public ThreeLongVectorStruct global_index; //matrix global index (value -1 means B.C.)

}

//**

// NodeArray - represents a structural array of nodes

//**

public class NodeArray

{

public Node[, ,] nodes;

public long N = 0;

private Parameters par;

public NodeArray(Parameters par)

{

this.par = par;

nodes = new Node[par.ni + 1, par.nj + 1, par.nk + 1]; //indexed from 0 !!

}

public void FillGlobalIndexes()

{

N = 0;

for (int i = 0; i <= par.ni; i++)

{

for (int j = 0; j <= par.nj; j++)

{

for (int k = 0; k <= par.nk; k++)

{

for (int I = 1; I <= 3; I++)

{

if (nodes[i, j, k].global_index[I] != -1)

{

nodes[i, j, k].global_index[I] = ++N;

}

}

}

}

}

}

public void SetInitialLocation(int i, int j, int k, double x, double y, double z)

{

VALIDATE(i, j, k);

nodes[i, j, k].xyz_init[1] = nodes[i, j, k].xyz[1] = x;

nodes[i, j, k].xyz_init[2] = nodes[i, j, k].xyz[2] = y;

nodes[i, j, k].xyz_init[3] = nodes[i, j, k].xyz[3] = z;

}

public void SetZeroBoundaryCondition(int i, int j, int k)

{

VALIDATE(i, j, k);

nodes[i, j, k].global_index[1] = -1;

nodes[i, j, k].global_index[2] = -1;

nodes[i, j, k].global_index[3] = -1;

}

private void VALIDATE(int i, int j, int k)

{

if ((i < 0) || (j < 0) || (k < 0))

{

throw new Exception("NodeArray.VALIDATE: (i < 0) || (j < 0) || (k < 0)");

}

if ((i > par.ni) || (j > par.nj) || (k > par.nk))

{

throw new Exception("NodeArray.VALIDATE: i > par.ni || j > par.nj || k > par.nk");

}

}

}

//**

// Element

//**

public class Element

{

private GaussQuadraturePoints GQ; //Gauss Quadrature reference

private NodeArray nodearray; //NodeArray reference

BIBLIOGRAPHY 315

private Parameters par; //Parameters reference

private int local_i, local_j, local_k; //location in the Container

private bool first_method_call;

//for every Gauss point - initialized once

private double[] detJ;

private Vector[,] DaDX123; //[point 1-8 , a_i (1-8)][derivated by 1-3]

//this array plays the role of BN also

//for every Gauss point - updated at every iteration step

private Vector q; //displacement 24x1

private Vector dq; //delta displacement 24x1 - one iteration

private FullMatrix[] BL;

private Vector[] s; //2nd Piola Kirchoff 6x1

//public properties

public Vector Dq { get{ return dq; } }

//Legend:

//* 0 * 1 * ni-1 * elements

//0 1 2 ni nodes

public Element(Parameters par, NodeArray nodearray, GaussQuadraturePoints GQ, int local_i, int local_j, int local_k)

{

this.par = par;

this.nodearray = nodearray;

this.GQ = GQ;

q = new Vector(24); //displacement 24x1 -- "input"

dq = new Vector(24); //delta displacement 24x1 - one iteration

detJ = new double[GQ.N];

DaDX123 = new Vector[GQ.N, 8];

s = new Vector[GQ.N]; //2nd Piola Kirchoff 6x1

BL = new FullMatrix[GQ.N];

for (int k = 0; k <= GQ.N - 1; k++)

{

BL[k] = new FullMatrix(6, 24);

for (int i = 1; i <= 8; i++)

{

DaDX123[k, i - 1] = new Vector(3);

}

s[k] = new Vector(6);

}

first_method_call = true;

this.local_i = local_i;

this.local_j = local_j;

this.local_k = local_k;

}

public void Initialize()

{

FullMatrix J_inv = new FullMatrix(3);

Vector DaDrst = new Vector(3);

for (int k = 1; k <= GQ.N; k++) //Gauss points

{

J_inv.Null();

//1.0 Jinv a detJ

for (int i = 1; i <= 8; i++)

{

J_inv.Add(1, 1, GetDaDr(i, GQ[k].p) * GetInitialPoisition(i, 1));

J_inv.Add(2, 1, GetDaDs(i, GQ[k].p) * GetInitialPoisition(i, 1));

J_inv.Add(3, 1, GetDaDt(i, GQ[k].p) * GetInitialPoisition(i, 1));

J_inv.Add(1, 2, GetDaDr(i, GQ[k].p) * GetInitialPoisition(i, 2));

J_inv.Add(2, 2, GetDaDs(i, GQ[k].p) * GetInitialPoisition(i, 2));

J_inv.Add(3, 2, GetDaDt(i, GQ[k].p) * GetInitialPoisition(i, 2));

J_inv.Add(1, 3, GetDaDr(i, GQ[k].p) * GetInitialPoisition(i, 3));

J_inv.Add(2, 3, GetDaDs(i, GQ[k].p) * GetInitialPoisition(i, 3));

J_inv.Add(3, 3, GetDaDt(i, GQ[k].p) * GetInitialPoisition(i, 3));

}

detJ[k - 1] = FullMatrix.GetDet(J_inv);

J_inv = J_inv.Inverse();

//2.0 DaDxyz[i] (lokalni)

for (int i = 1; i <= 8; i++)

{

BIBLIOGRAPHY 316

DaDrst[1] = GetDaDr(i, GQ[k].p);

DaDrst[2] = GetDaDs(i, GQ[k].p);

DaDrst[3] = GetDaDt(i, GQ[k].p);

DaDX123[k - 1, i - 1] = J_inv * DaDrst;

}

}

first_method_call = true;

}

public void Do(LinearSystemSolver linsolver)

{

FullMatrix Klocal = new FullMatrix(24); //local matrix 24x24

Vector flocal = new Vector(24); //local RHS 24x1

FullMatrix Z = new FullMatrix(3, 3);

double val, integration_coefficient;

//1.0 Update q

if (!first_method_call) { q += dq; }

// 2.0 Update r

if (local_k == par.nk - 1)

{

ThreeVectorStruct u1 = GetDeformedPoint(6) - GetDeformedPoint(5);

ThreeVectorStruct u2 = GetDeformedPoint(8) - GetDeformedPoint(5);

ThreeVectorStruct n = -0.25 * par.p_up * u1.VectorMultiplication(u2);

for (int K = 1; K <= 3; K++)

{

//left points with respect to i

flocal[5 + 8 * (K - 1)] = n[K];

flocal[8 + 8 * (K - 1)] = n[K];

//right points with respect to i

flocal[6 + 8 * (K - 1)] = n[K];

flocal[7 + 8 * (K - 1)] = n[K];

}

}

for (int k = 1; k <= GQ.N; k++) //Gauss points (GQ.N = 8 or 27)

{

// 3.0 Update s

if (!first_method_call)

{

s[k - 1] = s[k - 1] + par.C * BL[k - 1] * dq;

}

// 4.0 Compute Z, update BL

if (par.large_deformations)

{

for (int i = 1; i <= 3; i++)

{

for (int j = 1; j <= 3; j++)

{

val = 0.0;

for (int s = 1; s <= 8; s++)

{

val += DaDX123[k - 1, s - 1][j] * q[s + 8 * (i - 1)];

}

Z.Set(i, j, val);

}

}

}

BL[k - 1].Null();

Vector Da;

for (int s = 1; s <= 8; s++)

{

Da = DaDX123[k - 1, s - 1];

BL[k - 1].Add(1, s, (1.0 + Z.Get(1, 1)) * Da[1]);

BL[k - 1].Add(1, 8 + s, Z.Get(2, 1) * Da[1]);

BL[k - 1].Add(1, 16 + s, Z.Get(3, 1) * Da[1]);

BL[k - 1].Add(2, s, Z.Get(1, 2) * Da[2]);

BL[k - 1].Add(2, 8 + s, (1.0 + Z.Get(2, 2)) * Da[2]);

BL[k - 1].Add(2, 16 + s, Z.Get(3, 2) * Da[2]);

BL[k - 1].Add(3, s, Z.Get(1, 3) * Da[3]);

BL[k - 1].Add(3, 8 + s, Z.Get(2, 3) * Da[3]);

BIBLIOGRAPHY 317

BL[k - 1].Add(3, 16 + s, (1.0 + Z.Get(3, 3)) * Da[3]);

BL[k - 1].Add(4, s, Z.Get(1, 2) * Da[1] + (1.0 + Z.Get(1, 1)) * Da[2]);

BL[k - 1].Add(4, 8 + s, (1.0 + Z.Get(2, 2)) * Da[1] + Z.Get(2, 1) * Da[2]);

BL[k - 1].Add(4, 16 + s, Z.Get(3, 2) * Da[1] + Z.Get(3, 1) * Da[2]);

BL[k - 1].Add(5, s, Z.Get(1, 3) * Da[2] + Z.Get(1, 2) * Da[3]);

BL[k - 1].Add(5, 8 + s, Z.Get(2, 3) * Da[2] + (1.0 + Z.Get(2, 2)) * Da[3]);

BL[k - 1].Add(5, 16 + s, (1.0 + Z.Get(3, 3)) * Da[2] + Z.Get(3, 2) * Da[3]);

BL[k - 1].Add(6, s, Z.Get(1, 3) * Da[1] + (1.0 + Z.Get(1, 1)) * Da[3]);

BL[k - 1].Add(6, 8 + s, Z.Get(2, 3) * Da[1] + Z.Get(2, 1) * Da[3]);

BL[k - 1].Add(6, 16 + s, (1.0 + Z.Get(3, 3)) * Da[1] + Z.Get(3, 1) * Da[3]);

}

// 5.0 Add all to Klocal, flocal

//5.1 (BN^T)S(BN)

integration_coefficient = GQ[k].weight * detJ[k - 1];

if (!first_method_call)

{

if (par.large_deformations)

{

for (int i = 1; i <= 8; i++)

{

for (int j = 1; j <= 8; j++)

{

val = s[k - 1][1] * DaDX123[k - 1, i - 1][1] * DaDX123[k - 1, j - 1][1] +

s[k - 1][2] * DaDX123[k - 1, i - 1][2] * DaDX123[k - 1, j - 1][2] +

s[k - 1][3] * DaDX123[k - 1, i - 1][3] * DaDX123[k - 1, j - 1][3] +

s[k - 1][4] * (DaDX123[k - 1, i - 1][1] * DaDX123[k - 1, j - 1][2] +

DaDX123[k - 1, i - 1][2] * DaDX123[k - 1, j - 1][1]) +

s[k - 1][5] * (DaDX123[k - 1, i - 1][2] * DaDX123[k - 1, j - 1][3] +

DaDX123[k - 1, i - 1][3] * DaDX123[k - 1, j - 1][2]) +

s[k - 1][6] * (DaDX123[k - 1, i - 1][3] * DaDX123[k - 1, j - 1][1] +

DaDX123[k - 1, i - 1][1] * DaDX123[k - 1, j - 1][3]);

Klocal.Add(i, j, val);

Klocal.Add(i + 8, j + 8, val);

Klocal.Add(i + 16, j + 16, val);

}

}

}

flocal.Add((BL[k - 1] % s[k - 1]) * -integration_coefficient);

}

Klocal.Add(((BL[k - 1] % par.C) * BL[k - 1]) * integration_coefficient);

}

//6.0 Add to solver

int index1, index2;

for (int r = 1; r <= 24; r++)

{

index1 = (int)GetGlobalIndex(r);

if (index1 > -1)

{

val = flocal[r];

if (val != 0.0)

{

linsolver.AddValue(index1, val);

}

//Klocal

for (int s = 1; s <= 24; s++)

{

index2 = (int)GetGlobalIndex(s);

if (index2 > -1)

{

val = Klocal.Get(r, s);

if (val != 0.0)

{

linsolver.AddValue(index1, index2, val);

}

}

}

}

}

first_method_call = false;

}

BIBLIOGRAPHY 318

private Node GetNode(int i_from_1_to_8)

{

switch (i_from_1_to_8)

{

case 1: return nodearray.nodes[local_i, local_j, local_k];

case 2: return nodearray.nodes[local_i + 1, local_j, local_k];

case 3: return nodearray.nodes[local_i + 1, local_j + 1, local_k];

case 4: return nodearray.nodes[local_i, local_j + 1, local_k];

case 5: return nodearray.nodes[local_i, local_j, local_k + 1];

case 6: return nodearray.nodes[local_i + 1, local_j, local_k + 1];

case 7: return nodearray.nodes[local_i + 1, local_j + 1, local_k + 1];

default: return nodearray.nodes[local_i, local_j + 1, local_k + 1];

}

}

private double GetInitialPoisition(int i_from_1_to_8, int xyz_123)

{

return GetNode(i_from_1_to_8).xyz_init[xyz_123];

}

public double GetGlobalIndex(int i_from_1_to_24)

{

int xyz_123 = (i_from_1_to_24 - 1) / 8 + 1; //1..3

int i_from_1_to_8 = i_from_1_to_24 - (xyz_123 - 1) * 8; //1..8

return GetNode(i_from_1_to_8).global_index[xyz_123];

}

public ThreeVectorStruct GetDeformedPoint(int i_from_1_to_8)

{

Node node = GetNode(i_from_1_to_8);

return new ThreeVectorStruct(node.xyz_init[1] + q[i_from_1_to_8],

node.xyz_init[2] + q[i_from_1_to_8 + 8], node.xyz_init[3] + q[i_from_1_to_8 + 16]);

}

private static double GetDaDr(int i_from_1_to_8, Vector rst)

{

switch (i_from_1_to_8)

{

case 1: return -(1.0 - rst[2]) * (1.0 - rst[3]) / 8.0;

case 2: return +(1.0 - rst[2]) * (1.0 - rst[3]) / 8.0;

case 3: return +(1.0 + rst[2]) * (1.0 - rst[3]) / 8.0;

case 4: return -(1.0 + rst[2]) * (1.0 - rst[3]) / 8.0;

case 5: return -(1.0 - rst[2]) * (1.0 + rst[3]) / 8.0;

case 6: return +(1.0 - rst[2]) * (1.0 + rst[3]) / 8.0;

case 7: return +(1.0 + rst[2]) * (1.0 + rst[3]) / 8.0;

case 8: return -(1.0 + rst[2]) * (1.0 + rst[3]) / 8.0;

}

throw new Exception("GetDaDr(int i_from_1_to_8, Vector rst): wrong value of i_from_1_to_8");

}

private static double GetDaDs(int i_from_1_to_8, Vector rst)

{

switch (i_from_1_to_8)

{

case 1: return -(1.0 - rst[1]) * (1.0 - rst[3]) / 8.0;

case 2: return -(1.0 + rst[1]) * (1.0 - rst[3]) / 8.0;

case 3: return +(1.0 + rst[1]) * (1.0 - rst[3]) / 8.0;

case 4: return +(1.0 - rst[1]) * (1.0 - rst[3]) / 8.0;

case 5: return -(1.0 - rst[1]) * (1.0 + rst[3]) / 8.0;

case 6: return -(1.0 + rst[1]) * (1.0 + rst[3]) / 8.0;

case 7: return +(1.0 + rst[1]) * (1.0 + rst[3]) / 8.0;

case 8: return +(1.0 - rst[1]) * (1.0 + rst[3]) / 8.0;

}

throw new Exception("GetDaDs(int i_from_1_to_8, Vector rst): wrong value of i_from_1_to_8");

}

private static double GetDaDt(int i_from_1_to_8, Vector rst)

{

switch (i_from_1_to_8)

{

case 1: return -(1.0 - rst[1]) * (1.0 - rst[2]) / 8.0;

case 2: return -(1.0 + rst[1]) * (1.0 - rst[2]) / 8.0;

case 3: return -(1.0 + rst[1]) * (1.0 + rst[2]) / 8.0;

case 4: return -(1.0 - rst[1]) * (1.0 + rst[2]) / 8.0;

case 5: return +(1.0 - rst[1]) * (1.0 - rst[2]) / 8.0;

case 6: return +(1.0 + rst[1]) * (1.0 - rst[2]) / 8.0;

case 7: return +(1.0 + rst[1]) * (1.0 + rst[2]) / 8.0;

case 8: return +(1.0 - rst[1]) * (1.0 + rst[2]) / 8.0;

BIBLIOGRAPHY 319

}

throw new Exception("GetDaDt(int i_from_1_to_8, Vector rst): wrong value of i_from_1_to_8");

}

}

//**

// ElementArray - represents a structural array of elements

//**

public class ElementArray

{

private Parameters par;

private GaussQuadraturePoints GQ;

private Element[, ,] elems;

public Element[, ,] Elems

{

get

{

return elems;

}

}

public ElementArray(Parameters par, NodeArray nodearray)

{

this.par = par;

GQ = new GaussQuadraturePoints(par.GQorder);

elems = new Element[par.ni, par.nj, par.nk]; //indexed from 0 !!

for (int i = 0; i <= par.ni - 1; i++)

{

for (int j = 0; j <= par.nj - 1; j++)

{

for (int k = 0; k <= par.nk - 1; k++)

{

elems[i, j, k] = new Element(par, nodearray, GQ, i, j, k);

}

}

}

}

public void InitializeAllElements()

{

for (int i = 0; i <= par.ni - 1; i++)

{

for (int j = 0; j <= par.nj - 1; j++)

{

for (int k = 0; k <= par.nk - 1; k++)

{

elems[i, j, k].Initialize();

}

}

}

}

public void DoAllElements(LinearSystemSolver linsolver)

{

for (int i = 0; i <= par.ni - 1; i++)

{

for (int j = 0; j <= par.nj - 1; j++)

{

for (int k = 0; k <= par.nk - 1; k++)

{

elems[i, j, k].Do(linsolver);

}

}

}

}

public void InsertDataToNodeArray(NodeArray nodearray)

{

for (int i = 0; i <= par.ni; i++) //for each node...

{

for (int j = 0; j <= par.nj; j++)

{

for (int k = 0; k <= par.nk; k++)

{

nodearray.nodes[i, j, k].xyz = GetDeformedPoint(i, j, k);

}

}

BIBLIOGRAPHY 320

}

}

//Get local node number 1..8 from 3 boolean information. See numbering vertexes

private int GetLocalNodeNumber(bool i_left_point, bool j_left_point, bool k_left_point)

{

if (i_left_point)

{

if (j_left_point)

{

if (k_left_point) { return 1; } else { return 5; }

}

else

{

if (k_left_point) { return 4; } else { return 8; }

}

}

else

{

if (j_left_point)

{

if (k_left_point) { return 2; } else { return 6; }

}

else

{

if (k_left_point) { return 3; } else { return 7; }

}

}

}

//Get deformed position for any vertex

private ThreeVectorStruct GetDeformedPoint(int i_0_ni, int j_0_nj, int k_0_nk)

{

bool i_left_point, j_left_point, k_left_point;

int i_elem, j_elem, k_elem;

int local_index; //1,..,8

//1.0 For each node find an appropriate element (there are more possibilities).

if (i_0_ni == 0)

{

i_left_point = true;

i_elem = i_0_ni;

}

else

{

i_left_point = false;

i_elem = i_0_ni - 1;

}

if (j_0_nj == 0)

{

j_left_point = true;

j_elem = j_0_nj;

}

else

{

j_left_point = false;

j_elem = j_0_nj - 1;

}

if (k_0_nk == 0)

{

k_left_point = true;

k_elem = k_0_nk;

}

else

{

k_left_point = false;

k_elem = k_0_nk - 1;

}

//2.0 local node number

local_index = GetLocalNodeNumber(i_left_point, j_left_point, k_left_point);

return Elems[i_elem, j_elem, k_elem].GetDeformedPoint(local_index);

}

}

//**

BIBLIOGRAPHY 321

// Container - This is the main class. Note, it does not implement

// the concrete geometry (look to Beam class)!!

//**

public class Container

{

private NodeArray nodearray;

private ElementArray elementarray;

public Parameters par;

private LinearSystemSolver linsolver;

public Container()

{

par = new Parameters();

nodearray = new NodeArray(par);

elementarray = new ElementArray(par, nodearray);

}

public void Initialize()

{

nodearray.FillGlobalIndexes();

linsolver = new LinearSystemSolver((int)nodearray.N, par.s_opt);

elementarray.InitializeAllElements();

}

public void SetInitialLocation(int i, int j, int k, double x, double y, double z)

{

nodearray.SetInitialLocation(i, j, k, x, y, z);

}

public void SetZeroBoundaryCondition(int i, int j, int k)

{

nodearray.SetZeroBoundaryCondition(i, j, k);

}

private void SolverResultToElementArray()

{

Element local_element;

int index;

double val;

for (int i = 0; i <= par.ni - 1; i++) //for all elems

{

for (int j = 0; j <= par.nj - 1; j++)

{

for (int k = 0; k <= par.nk - 1; k++)

{

local_element = elementarray.Elems[i, j, k];

for (int r = 1; r <= 24; r++)

{

index = (int)local_element.GetGlobalIndex(r);

if (index > -1)

{

val = linsolver.Solution[index];

local_element.Dq[r] = val;

}

}

}

}

}

}

//get |u_middle|

private double GetConvergenceCriterion()

{

Element element = elementarray.Elems[par.ni / 2, 0, 0];

ThreeVectorStruct TP = element.GetDeformedPoint(3);

return Math.Abs(TP[3]);

}

//The main method - solve method depends also on computed shape

//which is defined in Beam class

public virtual void Solve_FEM()

{

//Run Initialize ahead!

double max_decay, deltaqmax;

for (int k = 1; k <= par.N_FEM_iterations; k++)

{

linsolver.Null();

elementarray.DoAllElements(linsolver);

linsolver.Solve();

BIBLIOGRAPHY 322

SolverResultToElementArray();

deltaqmax = linsolver.Solution.GetMaxNorm();

max_decay = GetConvergenceCriterion();

Roller.Stringroller.PutAndPrint(" " + k.ToString() + ". dqmax = " + deltaqmax.ToString()

+ ", max_decay = " + max_decay.ToString());

if ((max_decay < 0.0) || (max_decay > 2.0))

{

throw new Exception("Solution diverged, i.e. max_decay = " + max_decay.ToString());

}

if ((Math.Abs(deltaqmax) < par.convergence_epsilon) && (k > 1))

{

Roller.Stringroller.PutAndPrint("Solve stopped due to: max.decay < epsilon.");

break;

}

}

//The following command returns solved displacements from ElementArray

//where they are stored during computation to NodeArray.

//The reason is that in fact all displacements are connected to nodes not elemets.

elementarray.InsertDataToNodeArray(nodearray);

}

//post-processor output

public ViewSolution GetActualViewSolution()

{

ViewSolution vs = new ViewSolution(par);

for (int i = 0; i <= par.ni; i++)

{

for (int j = 0; j <= par.nj; j++)

{

for (int k = 0; k <= par.nk; k++)

{

vs.r_q[i, j, k] = nodearray.nodes[i, j, k].xyz;

}

}

}

return vs;

}

public XMath.X3D_3D GetGraphicalOutput(bool initial_positions)

{

XMath.X3D_3D p = new XMath.X3D_3D();

p.Create(par.ni + 1, par.nj + 1, par.nk + 1);

Node local_node;

for (int i = 0; i <= par.ni; i++)

{

for (int j = 0; j <= par.nj; j++)

{

for (int k = 0; k <= par.nk; k++)

{

local_node = nodearray.nodes[i, j, k];

if (initial_positions)

{

p.Put(local_node.xyz_init[1], local_node.xyz_init[2],

local_node.xyz_init[3], i + 1, j + 1, k + 1);

}

else

{

p.Put(local_node.xyz[1], local_node.xyz[2], local_node.xyz[3], i + 1, j + 1, k + 1);

}

}

}

}

return p;

}

}

//**

// Beam - represents our test case - loaded beam

//**

public class Beam : Container

{

public Beam(Parameters par) : base()

{

BIBLIOGRAPHY 323

this.par = par;

}

public new void Initialize() //contains initial location + B.C.

{

//B.C. + initial location

for (int j = 0; j <= par.nj; j++)

{

for (int k = 0; k <= par.nk; k++)

{

for (int i = 0; i <= par.ni; i++)

{

SetInitialLocation(i, j, k, (double)i * par.length_i,

(double)j * par.length_j, (double)k * par.length_k - 1.0); //-1.0 : shift of results in z

}

SetZeroBoundaryCondition(0, j, k);

SetZeroBoundaryCondition(par.ni, j, k);

}

}

base.Initialize();

}

}

The typical example how FELIB library can be used is as follows

Beam beam = new Beam();

beam.Initialize();

beam.Solve_FEM();

X3D_3D result = beam.GetGraphicalOutput(true); //further post-processing

Chapter 13

ALE approach to fluid-solid
interaction

This part was written and is maintained by Alexandr Damašek. More details about
the author can be found in the Chapter 16.2.

13.1 Introduction

First, we study the general problem of fluid-solid interaction. We consider viscous
incompressible fluid described by Navier-Stokes equations and large displacements of
an elastic body. For the description of fluid on moving domain, Arbitrary Lagrangian-
Eulerian (ALE) method is used [1], [4] and [5].

After deriving general formulation, we deal with numerical solution, when both elastic
structure and fluid are discretized using finite elements. For numerical solution of the
coupled problem, domain decomposition algorithm in each time step is applied.

13.2 Transport equation

Let domain Ω ⊂ IR3 contain moving continuum, described by general equations, inde-
pendently, if it is a structure (solid) or fluid. Let us describe its motion.

Lagrangian approach: Let us consider a particle at time t0 and located at point X
[2]. Its location x = at time t will depend on the point X and time. Let us use the
following notation x = ϕ(X, t). Velocity of the particle is then defined as

U(X, t) =
∂ϕ
∂t

(X, t).

Euler approach: Let x be an arbitrary, but fixed point in the domain Ω. We consider
fluid particles passing through point x at time t. Denote by u(x, t) velocity of the fluid
particle, passing through point x at time t, i.e.

u(x, t) = U(X, t) =
∂ϕ
∂t

(X, t), where x = ϕ(X, t).

For each time t, u represents vector field defined on Ω.

324

CHAPTER 13. ALE APPROACH TO FLUID-SOLID INTERACTION 325

We consider fluid particles, contained in domain Ω(t0) at time t0 and these particles
move into domain Ω(t) at time t. We assume, that the mapping

ϕ : Ω(t0) → Ω(t)

X → x = ϕ(X, t)

is a dipheomorphism of Ω(t0) onto Ω(t) and Jϕ(X, t) > 0 in Ω(t0) (see Fig. 13.1), where
the Jacobian Jϕ is

Jϕ =

∣∣∣∣∣∣∣∣∣

∂ϕ
1

∂X1

∂ϕ
2

∂X1

∂ϕ
3

∂X1

∂ϕ
1

∂X2

∂ϕ
2

∂X2

∂ϕ
3

∂X2

∂ϕ
1

∂X3

∂ϕ
2

∂X3

∂ϕ
3

∂X3

∣∣∣∣∣∣∣∣∣
.

Figure 13.1: Referential configuration Ω0 = Ω(t0) and actual configuration Ω(t)

We show, that following lemma holds:
Lemma:

∂Jϕ(X, t)

∂t
= Jϕ(X, t) divx u(x, t), where x = ϕ(X, t).

Proof: Let us write for components ϕ = (ϕ1(X, t), ϕ2(X, t), ϕ3(X, t)) . According to the
definition of fluid velocity field

∂

∂t
ϕ(X, t) = u(ϕ(X, t), t).

The matrix determinant is multilinear in columns (and also in rows). If X is hold fixed,
then

∂Jϕ
∂t

=

∣∣∣∣∣∣∣∣∣

∂

∂t

∂ϕ
1

∂X1

∂ϕ
2

∂X1

∂ϕ
3

∂X1

∂

∂t

∂ϕ
1

∂X2

∂ϕ
2

∂X2

∂ϕ
3

∂X2

∂

∂t

∂ϕ
1

∂X3

∂ϕ
2

∂X3

∂ϕ
3

∂X3

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣

∂ϕ
1

∂X1

∂

∂t

∂ϕ
2

∂X1

∂ϕ
3

∂X1

∂ϕ
1

∂X2

∂

∂t

∂ϕ
2

∂X2

∂ϕ
3

∂X2

∂ϕ
1

∂X3

∂

∂t

∂ϕ
2

∂X3

∂ϕ
3

∂X3

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣

∂ϕ
1

∂X1

∂ϕ
2

∂X1

∂

∂t

∂ϕ
3

∂X1

∂ϕ
1

∂X2

∂ϕ
2

∂X2

∂

∂t

∂ϕ
3

∂X2

∂ϕ
1

∂X3

∂ϕ
2

∂X3

∂

∂t

∂ϕ
3

∂X3

∣∣∣∣∣∣∣∣∣

CHAPTER 13. ALE APPROACH TO FLUID-SOLID INTERACTION 326

Because of the continuity of second derivatives of the mapping ϕ, we can write

∂

∂t

∂ϕ
1

∂X1
= ∂

∂X1

∂ϕ
1

∂t
= ∂u1

∂X1
,

∂

∂t

∂ϕ
1

∂X2
= ∂

∂X2

∂ϕ
1

∂t
= ∂u1

∂X2
,

...
...

∂

∂t

∂ϕ
3

∂X3
= ∂

∂X3

∂ϕ
3

∂t
= ∂u3

∂X3
.

Components u1,u2,u3 of velocity u in this expression are functions of X1, X2, X3 by
means of ϕ(X, t), thus

∂u1

∂X1
= ∂u1

∂x1

∂ϕ
1

∂X1
+ ∂u1

∂x2

∂ϕ
2

∂X1
+ ∂u1

∂x3

∂ϕ
3

∂X1
,

∂u1

∂X2
= ∂u1

∂x1

∂ϕ
1

∂X2
+ ∂u1

∂x2

∂ϕ
2

∂X2
+ ∂u1

∂x3

∂ϕ
3

∂X2
,

...
...

∂u3

∂X3
= ∂u3

∂x1

∂ϕ
1

∂X3
+ ∂u3

∂x2

∂ϕ
2

∂X3
+ ∂u3

∂x3

∂ϕ
3

∂X3
.

After substitution of these formulas into an expression for ∂J

∂t
we get

∂u1

∂x1

Jϕ(X, t) +
∂u2

∂x2

Jϕ(X, t) +
∂u3

∂x3

Jϕ(X, t) = divxu · Jϕ(X, t),

because remaining determinants are zero due to linearly dependent columns.
In the next steps, the following transport equation is important. Let F be a scalar

function. The amount of a quantity in volume Ω(t) is represented by G =
∫
Ω(t)

F (x, t)dx.

Let us deal with rate of change of the quantity G, i.e. with the expression

dG

dt
=

d

dt

∫

Ω(t)

F (x, t)dx.

Transport equation
Let the mapping

ϕ : X → x = ϕ(X, t)

of the domain Ω(t0) on Ω(t) be a dipheomorphism and Jϕ(X, t) > 0 on Ω(t0) and let

u(ϕ(X, t), t) =
∂ϕ
∂t

(X, t) pro X ∈ Ω(t0), t ∈ [t0, T].

Let F be a real function with continuous partial derivatives of the first order for x ∈ Ω(t),
t ∈ [t0, T]. Then

d
dt

∫
Ω(t)

F (x, t)dx =
∫

Ω(t)

[
∂F

∂t
(x, t) + u(x, t) · ∇xF (x, t) + F (x, t)divxu(x, t)

]
dx. (13.1)

Proof: According to the substitution theorem (A3) in Appendix we transform the integral

CHAPTER 13. ALE APPROACH TO FLUID-SOLID INTERACTION 327

to an integration over a fixed domain

∫

Ω(t)

F (x, t) dx =

∫

Ω(t0)

F (ϕ(X, t), t)Jϕ(X, t) dX.

Because the domain of integration is fixed, theorem about the derivative of a parameter-
dependent integral can be used (Theorem (A5) in Appendix)

d
dt

∫
Ω(t)

F (x, t) dx =
∫

Ω0
[

(
∂F (ϕ(X,t),t)

∂t
+

∂F (ϕ(X,t),t)

∂xi

∂ϕ
i
(X,t)

∂t

)
· Jϕ(X, t)

+ F (ϕ(X, t), t)
∂Jϕ
∂t

(X, t)] dX.

If we substitute for
∂Jϕ
∂t

(X, t) from the previous lemma and for
∂ϕ
∂t

(X, t), we get

d
dt

∫
Ω(t)

F (x, t) dx =
∫

Ω0
[
∂F (ϕ(X,t),t)

∂t
+

∂F (ϕ(X,t),t)

∂xi

ui(ϕ(X, t), t)

+ F (ϕ(X, t), t) divxu(ϕ(X, t), t)]Jϕ(X, t) dX.

Now we use the substitution theorem again and transform the integration to the domain
Ω(t), from which the required relation (13.1) is obtained.

13.3 Derivation of the ALE-method

Let Ω(t) = Ωs(t) ∪ Ωf (t) be a connected domain, where symbol s stands for solids,
symbol f for fluids. For general continuum, which is characterized by the velocity of
particles u(x, t), density ρ(x, t), stress σ(x, t) and volumetric load f(x, t) acts on it, we
formulate according to [5] in integral form

1. mass conservation

2. conservation of momentum.

After that, we introduce special expression for stress tensor on each domain Ωf (t),
Ωs(t) respectively.

13.3.1 Mass conservation

Mass conservation Let at time t0 particles of the fluid occupy a domain Ω(t0),
at time t occupy Ω(t). Mass of the part of the fluid contained in domain Ω(t) does not
depend on time, i.e.

dm(Ω(t))

dt
= 0.

CHAPTER 13. ALE APPROACH TO FLUID-SOLID INTERACTION 328

Assume, that there exists density, i.e. a function ρ(x, t) such, as for an arbitrary Ω(t)

m(Ω(t)) =

∫

Ω(t)

ρ(x, t)dx.

Applying transport equation to the function F = ρ we obtain

∫

Ω(t)

[
∂ρ(x, t)

∂t
+ ui(x, t) · ∂ρ(x, t)

∂xi

+ ρ(x, t)divxu(x, t)

]
dx = 0, t ∈ [t0, T].

Because the equation is valid for an arbitrary volume W ⊂ Ω(t), it is possible to consider
an arbitrary fixed point x0, x0 ∈ W for different W. Passing to the limit for µ(W) → 0,
x0 ∈ W under the assumption of continuity of integrated function we get the equation

∂ρ

∂t
+ div(ρu) = 0

satisfied in an arbitrary point (x0, t). Multiplying this equation by a test function q̂ and
integrating over an arbitrary volume Ω(t) we get the formulation of mass conservation
in continuum Ω(t)

∫
Ω(t)

(
∂ρ

∂t
|x + divx(ρu)

)
q̂ = 0,

where q̂ is arbitrary, q̂ : Ω(t) −→ IR.

13.3.2 Conservation of momentum

Conservation of momentum There act surface and volumetric loads on contin-
uum. Let T (x, t, n(x)) represent stress vector at point x in direction of outward unit
normal n(x) to the boundary ∂Ω(t). Volumetric loads are then given by the relation
FV =

∫
Ω(t)

ρ(x, t)f(x, t)dx, surface loads by FS =
∫
∂Ω(t)

T (x, t, n(x))dS. Momentum
is given

HΩ(t) =

∫

Ω(t)

ρ(x, t)u(x, t)dx,

for total load we have

FΩ(t) =

∫

Ω(t)

ρ(x, t)f(x, t)dx +

∫

∂Ω(t)

T (x, t, n(x))dS.

Change of momentum in a given fixed volume of continuum occupied by identical parti-
cles, which are contained in domain Ω(t) at time t, equals to the load, acting on Ω(t),
i.e.

dHΩ(t)

dt
= FΩ(t)

CHAPTER 13. ALE APPROACH TO FLUID-SOLID INTERACTION 329

After substituting into this relation, using transport equation for ρui, we get subsequently

d

dt

∫

Ω(t)

ρ(x, t)ui(x, t)dx =

∫

Ω(t)

[
∂

∂t
(ρ(x, t)ui(x, t)) + divx (ρ(x, t)ui(x, t)u(x, t))

]
dx.

Thus
∫

Ω(t)

[
∂

∂t
(ρ(x, t)ui(x, t)) + divx (ρuiu)

]
dx =

∫

Ω(t)

ρ(x, t)fi(x, t)dx +

∫

∂Ω(t)

Ti(x, t, n(x))dS.

After substituting the relation Ti(x, t, n(x)) = σij(x, t)nj(x) according to Green’s formula
(theorem (A1) in Appendix) we get the following equation
∫

Ω(t)

[
∂

∂t
(ρ(x, t)ui(x, t)) + divx (ρuiu)

]
dx =

∫

Ω(t)

ρ(x, t)fi(x, t)dx +

∫

Ω(t)

∂σij

∂xj

dx,

which leads to the classical equation

∂

∂t
(ρ(x, t)ui(x, t)) + divx (ρuiu) = ρ(x, t)fi(x, t) +

∂σij

∂xj

,

which can be written in the weak sense as
∫

Ω(t)

[
∂

∂t
(ρ(x, t)ui(x, t)) Ûi + divx (ρuiu) Ûi

]
dx =

∫

Ω(t)

ρ(x, t)fi(x, t)Ûidx +

∫

Ω(t)

∂σij

∂xj

Ûidx.

Reusing Green’s formula we have

∫
Ω(t)

[
∂

∂t
(ρ(x, t)ui(x, t)) Ûi + divx (ρuiu) Ûi

]
dx

=
∫
Ω(t)

ρ(x, t)fi(x, t)Ûidx −
∫

Ω(t)
σij

∂Ûi

∂xj

dx +
∫
∂Ω(t)

σijnjÛidS,

where Û is arbitrary, Û : Ω(t) −→ IR3.

13.4 Geometry of the deformation

The problem of nonlinear elasticity is to find an equilibrium position of an elastic
body occupying referential configuration Ω, when external forces do not act on it, where
Ω is a bounded open connected subset IR3 with Lipschitzian boundary. If there act ex-
ternal forces on the body, body occupies deformed configuration ϕ(Ω), characterized by
the mapping ϕ : Ω → IR3 which does not change orientation and must be one-to-one on
Ω. Such mappings ϕ are called deformations. Concerning their geometrical properties,
it can be shown, that change of volumes, surfaces and lengths of corresponding deforma-
tions ϕ are given subsequently by scalar det∇ϕ, matrix Cof∇ϕ, and right Cauchy-Green
deformation tensor C = ∇ϕT∇ϕ. Here ∇ϕ stands for Jacobi matrix

∇ϕ =




∂ϕ
1

∂X1

∂ϕ
1

∂X2

∂ϕ
1

∂X3

∂ϕ
2

∂X1

∂ϕ
2

∂X2

∂ϕ
2

∂X3

∂ϕ
3

∂X1

∂ϕ
3

∂X2

∂ϕ
3

∂X3


 .

CHAPTER 13. ALE APPROACH TO FLUID-SOLID INTERACTION 330

Further, it can be shown, that Green-St Venant deformation tensor E = 1
2
(C − I)

asociated with the deformation ϕ measures discrepancy between ϕ and deformation of
solid (which corresponds C = I), see [3].

Let A be a matrix of order n. For each pair (i, j) of indices let A′
ij be a matrix of

order (n − 1) obtained by deleting of i−th row and j−th column of matrix A. Scalar

dij := (−1)i+jdetA′
ij

is called (i, j)-th coffactor of matrix A and matrix

CofA := (dij)

coffactor matrix of matrix A.
Well-known formulas for determinant expansion are equivalent to the relations

A(CofA)T = (CofA)TA = (detA)I.

If matrix A is invertible,

CofA = (detA)A−T,

where A−T = (A−1)T. Alternatively, in case n = 3

CofA =




a22a33 − a23a32 a23a31 − a21a33 a21a32 − a22a31

a32a13 − a33a12 a33a11 − a31a13 a31a12 − a32a11

a12a23 − a13a22 a13a21 − a11a23 a11a22 − a12a21




or equally

(CofA)ij =
1

2
εmniεpqjampanq,

where the summation is over indices appearing twice.

13.5 Piola transform

Assume ϕ is a deformation, which is one-to-one on Ω, i.e. the matrix ∇ϕ is invertible
at each point of its referential configuration (see Fig. 13.2). If Tϕ is a tensor defined
at point x = Xϕ = ϕ(X) of the deformed configuration, we then assign to the tensor
Tϕ(Xϕ) a tensor T(X) defined at point X of the referential configuration according to
the relation

T(X) := (det∇ϕ(X))Tϕ(Xϕ)∇ϕ(X)−T = Tϕ(Xϕ)Cofϕ(X), x = Xϕ = ϕ(X).

Theorem: (properties of the Piola transform)
Let T : Ω → MI3 be Piola transform Tϕ : Ωϕ → MI3, where MI3 denotes regular

matrices of order 3. Then

divT(X) = (det∇ϕ(X))divϕTϕ(Xϕ) for all Xϕ = ϕ(X), X ∈ Ω.

Proof: Key step is to prove the Piola identity

div
(
(det∇ϕ)∇ϕ−T

)
= divCof∇ϕ = 0,

CHAPTER 13. ALE APPROACH TO FLUID-SOLID INTERACTION 331

Figure 13.2: Piola transform of a tensor from the deformed configuration to the referential

which will be shown first. Considering indices over modulo 3, the matrix Cof∇ϕ is given

(Cof∇ϕ)ij = ∂j+1ϕi+1∂j+2ϕi+2 − ∂j+2ϕi+1∂j+1ϕi+2 (no summation).

Direct calculation gives

∂j

(
(det∇ϕ)∇ϕ−T

)
ij

= ∂j(Cof∇ϕ)ij

=
3∑

j=1

[(
∂

2ϕi+1

∂Xj∂Xj+1

∂j+2ϕi+2 −
∂

2ϕi+1

∂Xj∂Xj+2

∂j+1ϕi+2

)

+

(
∂j+1ϕi+1

∂
2ϕi+2

∂Xj∂Xj+2

− ∂j+2ϕi+1

∂
2ϕi+2

∂Xj∂Xj+1

)]
= 0.

Then from the formulas

Tij(X) = (det∇ϕ(X))T
ϕ
ik(X

ϕ)(∇ϕ(X)−T)kj

follows

∂jTij(X) = (det∇ϕ(X))∂jT
ϕ
ik (Xϕ)(∇ϕ(X)−T)kj + T

ϕ
ik (Xϕ)∂j

(
(det∇ϕ(X))∇ϕ(X)−T

)
kj

= (det∇ϕ(X))∂jT
ϕ
ik (Xϕ)(∇ϕ(X)−T)kj

because second term equals zero as a consequence of the Piola identity. Further, accord-
ing to the chain rule (Theorem (A2) in the Appendix)

∂jT
ϕ
ik(X) = ∂

ϕ
l T

ϕ
ik(ϕ(X))∂jϕl(X) = ∂

ϕ
l T

ϕ
ik(X

ϕ)(∇ϕ(X))lj,

and relation between divT(X) and divϕTϕ(Xϕ) follows from the fact, that

(∇ϕ(X))li(∇ϕ(X)−T)ki = δlk,

CHAPTER 13. ALE APPROACH TO FLUID-SOLID INTERACTION 332

i.e.

∂jTij(X) = (det∇ϕ(X))∂
ϕ
l T

ϕ
ik(X

ϕ)(∇ϕ(X))lj(∇ϕ(X)−T)kj = (det∇ϕ(X))∂
ϕ
k T

ϕ
ik(X

ϕ).

Similar formula can be derived, if T = Ai is a vector

∂jAj(X) = (det∇ϕ(X))∂
ϕ
k A

ϕ
k (Xϕ), (13.2)

where

Aj(X) = (det∇ϕ(X))A
ϕ
k (Xϕ)∇ϕ(X)−T

kj .

13.6 Application to the equations of conservation

First, we derive formulas for transporting of equations of conservation laws to the
referential configuration Ω0.

We introduce a few new notations. Function q̂, Û defined in Ω(t) can be transported
to Ω0 using the following formula. Define the functions

q̂ϕ : Ω0 −→ IR, q̂ϕ(X) : = q̂ ◦ ϕ(X)

Ûϕ : Ω0 −→ IR3, Ûϕ(X) : = Û ◦ ϕ(X).

For simplicity we write q̂ and Û instead of q̂ϕ(X) and Ûϕ(X). Again, for simplicity we
write X −→ x(X, t) instead of X −→ ϕ(X, t).

Choice of the configuration Ω0 and a mapping ϕ can be arbitrary, from what comes
the name Arbitrary Lagrangian-Eulerian method for the resulting equations. In order to
simplify following computations, we choose for the structural part material configuration
as referential. In other words, the point x(X, t) in structure Ωs corresponds to the current
position of a material point, which was located at point X at time t0. From that then
follows, that velocity of the configuration (or velocity of the grid)

uG(x) :=
∂x

∂t
(X, t)

is always equal to the velocity of the structure at an arbitrary point x ∈ Ωs.
Next, we denote

Jϕ = det (∇ϕ(X)) ,

(∇ϕ)−T = (∇ϕ(X))−T ,

ρ0 = ρ · Jϕ.

According to the chain rule and substitution theorem

∫

Ω(t)

σij(x)
∂Ûi(x, t)

∂xj

dx =

∫

Ω0

σij(X)
∂Ûi(x(X, t), t)

∂Xk

· ∂Xk

∂xj

(det∇ϕ(X))dX.

According to the theorem on local dipheomorphism (Theorem (A4) in the Appendix)
∇ϕ(X) · (∇ϕ(X))−T = I, we can write this relation

∫
Ω(t)

σij(x)∂Ûi(x,t)

∂xj

dx =
∫

Ω0
σij(X)∂Ûi(x(X,t),t)

∂Xk

· (∇ϕ)−T Jϕ(X)dX. (13.3)

CHAPTER 13. ALE APPROACH TO FLUID-SOLID INTERACTION 333

Next, using substitution theorem and Piola relation according to (13.2) (when Ω(t) =
ϕ(Ω0), x = ϕ(X, t), t is now a fixed parameter)

∫

Ω(t)

∂A
ϕ
i

∂X
ϕ
i

(Xϕ)q̂(Xϕ)dXϕ =

∫

Ω0

∂A
ϕ
i

∂X
ϕ
i

(ϕ(X))(det∇ϕ(X))q̂(X)dX =

∫

Ω0

divX

(
(det∇ϕ(X))Aϕ(Xϕ)(∇ϕ(X))−T

)
q̂(X)dX,

which, in a more simple way written for Ai := Aiu, gives

∫
Ω(t)

divx(Aiu(x, t)) · q̂(x)dx =
∫

Ω0
divX

(
JϕAiu(X, t)(∇ϕ)−T

)
· q̂(X)dX. (13.4)

Because

divx (F · u) (x, t) =
∂

∂xi

(F · ui(x, t))

= ui(x, t)
∂F

∂xi

(x, t) + F (x, t)
∂ui

∂xi

(x, t)

= u(x, t) · ∇xF (x, t) + F (x, t)divxu(x, t),

classical transport equation can be also written in the form

d

dt

∫

Ω(t)

F (x, t)dx =

∫

Ω(t)

[
∂F

∂t
(x, t) + divx (F · u) (x, t)

]
dx.

For the case of a vector function, by putting Fi(x, t) = Ai(x, t)q̂(x), we have
∫

Ω(t)

[
∂Ai(x, t)

∂t
+ divx (Ai(x, t)u(x, t))

]
q̂(x)dx =

d

dt

∫

Ω(t)

Ai(x, t)q̂(x)dx.

After modification
∫

Ω(t)

∂Ai(x, t)

∂t
q̂(x)dx +

∫

Ω(t)

divx (Aiu(x, t)) q̂(x)dx =
d

dt

∫

Ω0

AiJϕ(X, t)q̂(X)dX.

According to (13.4) the second term equals
∫

Ω(t)

divx (Aiu(x, t)) q̂(x)dx =

∫

Ω0

divX

(
JϕAiu(X, t)(∇ϕ)−T

)
q̂(X)dΩ0,

from where

∫

Ω(t)

∂Ai(x, t)

∂t
q̂(x)dΩ =

∫

Ω0

[
∂

(
AiJϕ(X, t)

)

∂t
|X − divX

(
JϕAiu(X, t)(∇ϕ)−T

)
]

q̂(X)dΩ0,

where u(X, t) = uG (the grid velocity), then

∫
Ω(t)

∂Ai(x,t)

∂t
q̂(x)dΩ =

∫
Ω0

[
∂

(
AiJϕ(X,t)

)

∂t
|X − divX

(
JϕAiuG(∇ϕ)−T

)
]

q̂(X)dΩ0.(13.5)

CHAPTER 13. ALE APPROACH TO FLUID-SOLID INTERACTION 334

Applying of equations (13.3 - 13.5) to conservation of mass and momentum enables
us to transport these relations to the fixed configuration Ω0. using equations (13.4) and
(13.5) for Ai = ρ we get

∫
Ω0

(
∂ρ0

∂t
|X + divX(ρ0(u − uG) · (∇ϕ)−T

)
q̂ = 0, ∀q̂ ∈ Q, (mass).

From equations (13.3), (13.4) and (13.5) follows for Ai = ρui

∫
Ω0

(
∂ρ0ui

∂t
|X + divX(ρ0ui(u − uG) · (∇ϕ)−T)

)
ÛidX +

∫
Ω0

(Jϕ · σ · (∇ϕ)−T)ij
∂Ûi

∂Xj

dX

=
∫
Ω(t)

f · Ûdx +
∫
∂Ω(t)

g · Ûdx, ∀Û ∈ V, (momentum).

Up to now we considered all functions sufficiently smooth; in this weak formulation we
define now these spaces of test functions

Q = {q̂ : Ω0 −→ IR, q̂ ∈ L2(Ω0)},
V = {Û : Ω0 −→ IR3, Û ∈ H1(Ω0, IR

3)}.

13.7 Decomposition of fluid and structure

We have to add constitutive equations for the dependence of stresses on deformations
to the equations of conservation. Now, it is necessary to distinguish between fluid and
structure. For doing this, we decompose spaces of test functions into ’fluid’ test functions,
acting in the fluid domain and ’structural’ – acting on the complement – structure

V = V s ⊕ V f , Q = Qs ⊕ Qf .

Spaces of functions for fluid and structure are defined as follows

V f = {Û ∈ H1(Ω0, IR
3), Û|Ωs

0
= 0},

Qf = {q̂ ∈ L2(Ω0), q̂|Ωs
0

= 0},
V s = {Û ∈ H1(Ω0, IR

3)},
Qs = {q̂ ∈ L2(Ω0), q̂|Ωf

0
= 0}.

In this construction, ’fluid’ test functions are zero on the interface. In the opposite,
’structural’ test functions are nonzero on the interface and prolongate continuously to
the fluid.

13.7.1 Fluid problem

We obtain the fluid problem by restricting conservation laws to the test functions
from Qf and V f only. As this functions are zero in Ωs

0, we get
∫

Ωf
0

(
∂ρ0

∂t
|X + divX(ρ0(u − uf

G) · ∇ϕ−T)

)
q̂dX = 0, ∀q̂ : Ωf

0 −→ IR,

CHAPTER 13. ALE APPROACH TO FLUID-SOLID INTERACTION 335

∫

Ωf
0

(
∂(ρ0ui)

∂t
|X + divXρ0ui(u − uf

G) · ∇ϕ−T)

)
ÛidX +

∫

Ωf
0

(Jϕ σ · ∇ϕ−T)ij
∂Ûi

∂Xj

dX

=

∫

Ωf
0

f · ÛdX +

∫

∂Ωf
0−ΓI0

g · ÛdX, ∀Û ∈ V f

It is easier to compute time derivatives in these integrals on a fixed configuration Ω0,
and convective terms in actual configuration Ω(t). It is therefore necessary to transport
convective terms, and the terms containing stress, back to the actual configuration and
use the relations for transport from the previous chapter. Considering viscous incom-
pressible fluid, where the dependence of fluid stress on deformation velocity tensor is
given by σf

ij = −pI + µ(∂jui + ∂iuj), and relation ∇ϕ(∇ϕ)−T = I, we get

∫

Ωf (t)

(
1

Jϕ
∂(Jϕρ)

∂t
|X + divx(ρ(u − uf

G))

)
q̂dx = 0, ∀q̂ : Ωf

0 −→ IR, (13.6)

∫

Ωf (t)

(
1

Jϕ
∂(Jϕρui)

∂t
|X + divx(ρui(u − uf

G))

)
Ûidx(13.7)

+

∫

Ωf (t)

(−pI + µ(∂jui + ∂iuj))
∂Ûi

∂xj

dx =

∫

Ωf (t)

f · Ûdx +

∫

∂Ωf (t)

g · Ûdx, ∀Û ∈ V f

In this formulation we recognize description of the ALE (Arbitrary Lagrangian-Eulerian)
method for Navier-Stokes equations. These equations are completely determining com-
pletely the state of fluid, when appropriate boundary conditions, on the exterior part
∂Ωf (t)−ΓI(t) and on the interface ΓI(t), are given. As test functions for the fluid vanish
on the interface, velocity of the fluid can be prescribed independently on conservation
laws by prescribing the kinematic continuity condition

uf
ΓI

= us
ΓI

, (13.8)

where the equation is considered in the sense of traces.
We remark, that in ALE formulation of fluid problem (13.6) and (13.7) the grid

velocity appears

uf
G =

∂x

∂t |X
,

and so computation of the mapping x(X, t) : Ωf
0 → Ωf (t) is required. Moreover, x(X, t)

must be identical to the position xs of a material point X of the structure.

13.7.2 Structural problem

Structural problem is obtained by restricting the conservation laws to test functions
in Qs and V s. As functions in Qs are zero in Ωf and configuration Ωs

0 is a material
configuration – x(X, t) on the structure corresponds to the position of a material point,
which was located at point X at referential time t0, so u = us

G, remains

∂ρ0

∂t
= 0 na Ωs

0,

CHAPTER 13. ALE APPROACH TO FLUID-SOLID INTERACTION 336

∫

Ωs
0

(
ρ0u̇i · Ûi + (Jϕ σ · (∇ϕ)−T)ij

∂Ûi

∂Xj

)
dX

=

∫

Ωs
0

f0 · ÛdX +

∫

∂Ωs
0−ΓI0

g0 · ÛdX + Linterface(Û), ∀Û ∈ V f

Here Linterface represents an impact of fluid forces on the structure and is obtained by
choosing structural test functions, which are nonzero on the interface

Linterface(Û) =

∫

Ωf (t)

f · Ûdx +

∫

∂Ωf (t)−ΓI(t)

g · Ûdx (13.9)

−
∫

Ωf (t)

(
1

Jϕ
∂(Jϕρui)

∂t
|X + divx(ρui(u − uf

G))

)
Ûidx −

∫

Ωf (t)

σij
∂Ûi

∂xj

dx.

This formulation represents abstract Lagrangian formulation of structural problem. It
is necessary to be completed with the constitutive equation of depence of stresses and
with boundary conditions, given on the structural surface. For hyperelastic structure,
when first Piola-Kirchhoff stress tensor equals to the derivative of the density of elastic
energy, we have

T (X) := Jϕ · σ · (∇ϕ)−T (X) =
∂

∂(∇ϕ)
Ψ(X,∇ϕ).

Then the structural problem converts to the classical form [3]

ms(ẍs, Û) + as(xs, Û) = Linterface(Û), ∀Û ∈ V s, (13.10)

where we denoted

ẍs = U̇ s =
∂

2xs

∂t2|X
,

ms(ẍs, Û) =

∫

Ωs
0

ρ0ẍ
s · Û ,

as(xs, Û) =

∫

Ωs
0

∂

∂(∇ϕ)
Ψ(X,∇ϕ) · ∂Û

∂X
.

13.7.3 Global coupled problem

Because each test function decomposes by construction into a sum of a structural
test function and a fluid test function, global conservation laws are equivalent to the sys-
tem, obtained by satisfying its fluid component (fluid problem without condition on the
boundary) and its structural component (structural problem) together. Global coupled
problem, which is obtained by prescribing the mapping x(X, t), kinematic conditions on
the boundary and global equilibrium equations is finally transformed to this three-field
system:

1. calculate velocity field uf in the fluid domain by solving fluid problem (13.6), (13.7)
with Dirichlet conditions (13.8) on the interface [5];

2. calculate structural position xs by solving the structural problem (13.10);

3. construct a mapping x from Ω0 to Ω(t) such, that

x|Ωs
0

= xs.

CHAPTER 13. ALE APPROACH TO FLUID-SOLID INTERACTION 337

13.8 Numerical solution

Possible scheme, applicable to computation of the new configuration is the trapezoidal
formula , i.e.

xn+1 = xn +
∆t

2
(un+1 + un).

Schemes of Euler type are not used too frequently in structural dynamics, because
they are too dissipative. It is recommended to use linear conservative schemes similar
to the class of Newmark schemes or central differences, which guarantee conservation of
mechanical energy in linear elasticity. We use subsequent formula:

xn+1 = xn +
3∆t

2
un − ∆t

2
un−1.

Proof:

We consider points located this way:

using Lagrange interpolation theorem applied to the function u(x) and points xn and
xn+1 we can write

u(x) = un−1 x − xn

xn−1 − xn
+ un x − xn−1

xn − xn−1
.

We set here now x = xn+ 1
2 . Then

un+ 1
2 = −1

2
un−1 +

3

2
un

Substituting in this formula from the relation for central difference

un+ 1
2 =

xn+1 − xn

∆t

we have

xn+1 − xn

∆t
= −1

2
un−1 +

3

2
un,

from which the required relation follows

xn+1 = xn +
3∆t

2
un − ∆t

2
un−1.

CHAPTER 13. ALE APPROACH TO FLUID-SOLID INTERACTION 338

Figure 13.3: Migration from interface position Γn
I = x(X, tn) |ΓI

at time tn to the new
position Γn+1

I = x(X, tn+1) |ΓI
at time tn+1

13.9 Basic algorithm

Disadvantage of the implicit scheme introduced in previous chapter is algebraic cou-
pling of fluid and structural problem. By introducing relaxation algorithms of the fixed
point type it is possible to separate the solution of these problems. Suppose, that the
problem is solved at time t = tn (see Fig. 13.3).
Procedure for migration of the interface position at time step tn to the position of the
interface at time step tn+1 is as follows:
Template 50, interface migration algorithm I

CHAPTER 13. ALE APPROACH TO FLUID-SOLID INTERACTION 339

• aproximate X =
(
xs
|ΓI

)n+1

the interface position by an explicit choice

X =
(
xs
|ΓI

)n
+

3∆t

2
(us

|ΓI
)n − ∆t

2
(us

|ΓI
)n−1;

• Now follow spatial iterations 1 - 6 until the required accuracy is reached

1. calculation of fluid velocities on the interface

u =
X −

(
xs
|ΓI

)n

∆t
= un+1

G |ΓI0
;

2. actualization of fluid configuration (fluid grid) x(X, tn+1) in Ωf
0 when re-

specting the material condition

x(X, tn+1)|ΓI0
= X ;

3. solution of the fluid problem on the actualized configuration

∫

Ωf
0

Jn+1
ϕ ρn+1 − Jn

ϕρn

∆t
q̂dX +

∫

Ωf (t)

divx(ρ
n+1(un+1 − un+1

G))q̂dx = 0,

∫

Ωf
0

Jn+1
ϕ ρn+1un+1 − Jn

ϕρnun

∆t
· ÛdX +

+

∫

Ωf (t)

divx(ρ
n+1un+1

i (un+1 − un+1
G)) · Ûdx +

+

∫

Ωf (t)

(−pn+1I + µ(∂iu
n+1
j + ∂ju

n+1
i))

∂Ûi

∂xj

dx =

=

∫

Ωf (t)

f · Ûdx +

∫

∂Ωf (t)−ΓI(t)

g · ÛdS,

∀ q̂ : Ωf
0 −→ IR, ∀ Û ∈ V f , (un+1 − u) ∈ V f ;

CHAPTER 13. ALE APPROACH TO FLUID-SOLID INTERACTION 340

Template 51, interface migration algorithm II

4 computation of interface loads

Ln+1
interface(Û) =

∫

Ωf (t)

f · Ûdx +

∫

∂Ωf (t)−ΓI(t)

g · ÛdS −

−
∫

Ωf
0

Jn+1
ϕ ρn+1un+1 − Jn

ϕρnun

∆t
· ÛdX −

−
∫

Ωf (t)

divx(ρ
n+1un+1

i (un+1 − un+1
G)) · Ûdx −

−
∫

Ωf (t)

(−pn+1I + µ(∂iu
n+1
j + ∂ju

n+1
i))

∂Ûi

∂xj

dx;

5 solution of the structural problem for xs

ms((ẍs)n+1, Û) + as((xs)n+1, Û) = Ln+1
interface(Û), ∀Û ∈ V s, (xs)n+1 ∈ V s;

6 actualize new position by relaxation (ωn ∈ (0, 1])

X = (1 − ωn)X + ωn(xs
|ΓI

)n+1;

and goto 1.

Appendix

A1. Green theorem

Let Ω ⊂ IRn be a bounded domain with Lipschitzian boundary. Let n(x) be a unit
vector of outward normal to the boundary ∂Ω. Let u, v be Lipschitzian functions from
Ω̄ to IR. Then

∫

Ω

∂u

∂xi

v dx =

∫

∂Ω

u v ni dS −
∫

Ω

u
∂v

∂xi

dx.

Especially, setting u = ui, vi = 1 and summing up the equations over i, we get the
theorem on the divergence of a vector field

∫

Ω

∂ui

∂xi

dx =

∫

∂Ω

u · n dS.

A2. Chain rule theorem

Let G : IRn → IRk, t0 ∈ IRn, and let exists total differential G′(t0). Denote x0 =
G(t0), let F : IRk → IRs and exists F′(x0). Then there exists total differential (F◦G)′(t0)
and the following holds

(F ◦ G)′(t0) = F′(x0) · G′(t0).

CHAPTER 13. ALE APPROACH TO FLUID-SOLID INTERACTION 341

If

G′(t0) =




∂g1

∂t1
(t0), . . . , ∂g1

∂tn
(t0)

...
...

∂gk

∂t1
(t0), . . . , ∂gk

∂tn
(t0)


 a F′(x0) =




∂f1

∂x1
(x0), . . . , ∂f1

∂xk

(x0)
...

...
∂fs

∂x1
(x0), . . . , ∂fs

∂xk

(x0)




then the derivative of a compose mapping represents composition of linear forms

(F ◦ G)′(t0) =




∂f1

∂x1
(x0), . . . , ∂f1

∂xk

(x0)
...

...
∂fs

∂x1
(x0), . . . , ∂fs

∂xk

(x0)


 ·




∂g1

∂t1
(t0), . . . , ∂g1

∂tn
(t0)

...
...

∂gk

∂t1
(t0), . . . , ∂gk

∂tn
(t0)


 .

Regular mapping Let F be a mapping of an open set G ⊂ IRn on IRn. Mapping F is
called regular on G, if

1. function F is continuously differentiable in G

2. Jacobian JF(x) 6= 0 at each point x ∈ G.

A3. Substitution theorem

Let Φ be a mapping of an open set P ⊂ IRn on Q ⊂ IRn. Let Φ be regular and
injective in P , with its determinant JΦ. Let M ⊂ Q and let F be an arbitrary real
function. Then (we consider Lebesgue integrals)

∫

M

F (x)dx =

∫

Φ−1(M)

F (Φ(t))|JΦ(t)|dt,

as soon as one of the integrals exists.
A4. Local dipheomorphism theorem

Let mapping F from G ⊂ IRn on IRn be regular. Then

1. For each point x0 ∈ G there exists neighborhood u(x0) such, that mapping F|u(x0)

is injection

2. Image F(u(x0)) is an open set

3. If F is injective, then mapping F−1 has continuous derivatives of first order in
F(u(x0)).

A5. Derivative of parameter-dependent integral

Let G ⊂ IRn, f(x, t) be a real function of n + 1 variables, x ∈ G, t ∈ (a, b) ⊂ IR.
Suppose it is satisfied

1. Integral F (t) =
∫

G
f(x, t) dx converges at least for one t ∈ (a, b).

2. For each t ∈ [a, b] is a function t → f(x, t) is measurable in G.

3. There exists a set N ⊂ G of zero measure such, that for each x ∈ G−̇N and

t ∈ (a, b) finite ∂f(x,t)

∂t
exists.

BIBLIOGRAPHY 342

4. There exists a function g(x), with finite
∫

G
g(x)dx such, that for each x ∈ G−̇N

and t ∈ (a, b) is |∂f(x,t)

∂t
| ≤ g(x).

Then it holds: For each t ∈ (a, b) is

F ′(t) =

∫

G

∂f(x, t)

∂t
dx.

Bibliography

[1] J. Boujot. Mathematical formulation of fluid-structure interaction problems. Model.
Math. Anal. Numer., 21:239–260, 1987.

[2] J. Chorin and E. Marsden. A mathematical introduction to fluid mechanics. Springer,
1993.

[3] P.G. Ciarlet. Mathematical elasticity, Vol. 1 - Three-dimensional elasticity. North-
Holland, 1988.

[4] T.J.R. Hughes, W.K. Liu, and T.K. Zimmerman. Lagrangian-eulerian finite ele-
ment formulation for incompressible viscous flows. Comput. Meth. Appl. Mech. Eng.,
29:329–349, 1981.

[5] P. Le Tallec and J. Mouro. Fluid structure interaction with large structural displace-
ments. In Proceedings of the 4-th European CFD conference, Athens, 1998.

Chapter 14

FE analysis in a nutshell

This part was written and is maintained by M. Okrouhĺık. More details about the
author can be found in the Chapter 16.5.

14.1 Introduction

To elucidate the programming steps required when an efficient matrix storage mode
is employed a few simple programs allowing to do the FE analysis almost by hand are
presented in this chapter. The finite element method could be applied to various physical
problems. Probably the most frequent use in mechanical engineering is that based on
equilibrium conditions and on the Newton’s second law.

The solution of linear finite element tasks in solid mechanics (by the deformation1

variant of the finite element method) could be broadly classified as static, transient and
steady state. In the deformation variant the displacements are considered to be primary
unknowns – the strains, stresses and forces are calculated from displacements later.

• Statics. Solving statics problems leads to the solution of the system of linear
algebraic equations, having the form

Kq = P. (14.1)

For a given loading P, one has to find the the displacements q of a body (structure),
whose stiffness and boundary conditions are defined by the K matrix.

• Transient. Solving the transient response of a body (structure) to an impact load-
ing, one has to solve the system of ordinary differential equations of the second
order.

Mq̈ + Cq̇ + Kq = P(t). (14.2)

For a given loading, prescribed as a function of time P(t), one is to find the motion
of a body (structure) in time and space.

• Steady state. Solving an undamped steady state vibration problems requires to
solve the generalized eigenvalue problem

(K − λM) q̄ = 0. (14.3)

1By displacements we usually understand the displacements themselves or the rotations (as in the
beam theory) using sometimes a generic term generalized displacements. Similarly for forces and gen-
eralized forces.

343

CHAPTER 14. FE ANALYSIS IN A NUTSHELL 344

Knowing the mass and stiffness distribution of a body (structure) one is able to find
its eigenvalues (eigenfrequencies) and eigenmodes (natural modes of vibration).

In mechanical engineering the physical meanings of variables appearing in the above
equations are usually as follows

q displacements,
q̇ velocities,
q̈ accelerations,
q̄ amplitudes,
M mass matrix,
C damping matrix,
K stiffness matrix,
P static loading,
P(t) loading as a function of time.

Efficient implementation of the finite element method requires to consistently employ
the special matrix properties as their symmetry, bandedness, positive definiteness, etc.
A possible approach is sketched in the following paragraph.

14.2 Rectangular band storage

One can save a considerable amount of memory space by storing a symmetric banded
matrix, say R, in a rectangular array, say A, as schematically shown in (14.4) and (14.5).

R =




⋆ ⋆ ⋆ ⋆ · · · · · ·
· ⋆ ⋆ ⋆ ⋆ · · · · ·
· · ⋆ ⋆ ⋆ ⋆ · · · ·
· · · ⋆ ⋆ ⋆ ⋆ · · ·
· · · · ⋆ ⋆ Rij ⋆ · ·
· · · · · ⋆ ⋆ ⋆ ⋆ ·
· · · · · · ⋆ ⋆ ⋆ ⋆
· · · · · · · ⋆ ⋆ ⋆
· · · · · · · · ⋆ ⋆
· · · · · · · · · ⋆



N×N

(14.4)

A =




⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆
⋆ ⋆ Akl ⋆
⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ·
⋆ ⋆ · ·
⋆ · · ·



N×NBAND

(14.5)

The variable NBAND is a measure of the half-band width. The index function, relating
the indices I,J of a standardly stored element of R array to indices K,L of the equivalent

CHAPTER 14. FE ANALYSIS IN A NUTSHELL 345

element in rectangular array A, is given by

K = I

L = J - I + 1.
(14.6)

So the A array could be created from the R array by a few lines of code, say

DO 40 I = 1,N

JM = I + NBAND - 1

IF (JM .GT. N) JM = N

DO 40 J = I,JM

L = J - I + 1

A(I,L) = R(I,J)

40 CONTINUE

Of course, nobody would proceed this way. The big matrix, not fitting the computer
RAM memory, is usually stored in our minds only. We usually address the element of
a standardly stored matrix by indices (obtained from (14.6)) pointing to its location in
the rectangular array.

14.3 Solution of the system of equations

Classical Gauss elimination method is used. It is assumed that the matrix is sym-
metric and banded and that is stored in the rectangular array as shown above. The
matrix is also assumed to be positive definite, so no pivoting is carried out. In statics
the stiffness matrix is positive definite, if the studied body (structure) has no rigid-body
degrees of freedom. This could be used a suitable check.

Solution of Ax = b is carried out in two steps.

• Triangular decomposition is formally described as follows.

A → LDLT → LU,

where

A matrix of the system,
L lower triangular matrix,
D diagonal matrix,
LT lower triangular matrix transposed,
U upper triangular matrix containing the triangular decomposition of A.

• Reduction of the right hand side and the backsubstitution are formally
described by following relations.

LUx = b,

Ux = L−1 b,

x = U−1 L−1 b.

(14.7)

CHAPTER 14. FE ANALYSIS IN A NUTSHELL 346

The above matrix formulation of the Gauss elimination could be used for the imple-
mentation of actual equation solution. It would, however, be very inefficient, in practice
the row modifications – similar to those carried out by hand computations, explained in
the Paragraph 5.2 – are used, as it will be shown in the text to follow.

The indicated decomposition of the Gauss process allows for the efficient treatment
of a system of equations having more right hand sides. This way the elimination process
is carried out only once, while the second part of the process – reduction of the right
hand side and the backsubstitution, which is substantially cheaper in terms of required
floating point operations – could be repeated as often as needed.

The actual solution of the system of algebraic equations is carried out by the DGRE

subroutine which has to be called twice. It is assumed that the matrix is efficiently stored
in a rectangular array. At first, with KEY = 1, for the matrix triangularization, then, with
KEY = 2, for the reduction of the right hand side and for the back substitution.

KEY = 1

CALL DGRE(A,B,X, ... KEY, ...)

KEY = 2

CALL DGRE(A,B,X, ... KEY, ...)

The elimination process is carried out ’in place’. From it follows that the original input
matrix is destroyed – overwritten by elements of the upper triangular part of the trian-
gularized matrix. The DGRE subroutine listing is in the Program 44.

Program 44
SUBROUTINE DGRE(A,B,Q,N,NDIM,NBAND,DET,EPS,IER,KEY,KERPIV)

DIMENSION A(NDIM,NBAND),B(N),Q(N)

DOUBLE PRECISION SUM,A,B,Q,AKK,AKI,AIJ,AKJ,ANN,T,AL1,AL2,AII

1 ,DET,EPS

C

C *** Solution of [R]{Q} = {B}

C *** by Gauss elimination (no pivoting)

C *** for a symmetric, banded, positive definite matrix [R]

C

C It is assumed that the upper triangular part

C of the band [R] is stored in a rectangular array A(NBAND,N)

C Parameters

C A on input contains the upper triangular band of [R] matrix

C on output triangularized part of [R]

C

C B RHS vector

C Q result vector

C N number of unknowns

C NDIM row dimension of A array declared in main

C NBAND half bandwidth (including diagonal)

C DET matrix determinant

C EPS smallest acceptable pivit value

C IER error parameter

C = 0 ... O.K.

C = -1 matrix is singular or not positive definite

C computation is interupted

C

C KEY key of the solution

C = 1 ... triangularization of the input matrix

C = 2 ... RHS reduction and back substitution

CHAPTER 14. FE ANALYSIS IN A NUTSHELL 347

C KERPIV the row number where the solution failed

C

NM1=N-1

IER=0

II=KEY

GO TO (1000,2000), II

C

C Triangularization

C

1000 DET=1.

IRED=0

DO 9 K=1,NM1

AKK=A(K,1)

KERPIV=K

IMAX=K+NBAND-1

IF(IMAX .GT. N) IMAX=N

JMAX=IMAX

IF(AKK .GT. EPS) GO TO 5

IER=-1

RETURN

C DET=DET*AKK

5 CONTINUE

KP1=K+1

DO 9 I=KP1,IMAX

AKI=A(K,I-K+1)

IF(ABS(AKI) .LT. EPS) GO TO 9

T=AKI/AKK

DO 8 J=I,JMAX

AIJ=A(I,J-I+1)

AKJ=A(K,J-K+1)

8 A(I,J-I+1)=AIJ-AKJ*T

9 CONTINUE

ANN=A(N,1)

DET=DET*ANN

C

C Triangularization successfully finished

C

IRED=1

RETURN

C

C Reduction of the RHS vector

C

2000 DO 90 K=1,NM1

KP1=K+1

AKK=A(K,1)

IMAX=K+NBAND-1

IF(IMAX .GT. N) IMAX=N

DO 90 I=KP1,IMAX

AKI=A(K,I-K+1)

T=AKI/AKK

90 B(I)=B(I)-T*B(K)

C

C Back substitution

C

Q(N)=B(N)/A(N,1)

AL1=A(N-1,2)

AL2=A(N-1,1)

CHAPTER 14. FE ANALYSIS IN A NUTSHELL 348

Q(N-1)=(B(N-1)-AL1*Q(N))/AL2

DO 10 IL=3,N

I=N-IL+1

AII=A(I,1)

SUM=0.D0

J1=I+1

JMAX=MIN0(I+NBAND-1,N)

DO 20 J=J1,JMAX

AIJ=A(I,J-I+1)

20 SUM=SUM+AIJ*Q(J)

10 Q(I)=(B(I)-SUM)/AII

RETURN

END

End of Program 44. ¤

The disk oriented version of the above procedure, suitable for large matrices not
fitting the internal memory, is called DBANGZ and is listed as the Program 25.

14.4 Solution of the system of ordinary differential

equations

The system of ordinary differential equations of the second order, Eq. (14.2), de-
scribes the behavior of a mechanical system (body, structure) characterized by its mass,
damping and stiffness properties, i.e. by mass M, C and K matrices respectively. Solv-
ing the equations, for given initial conditions and for prescribed loading forces in time,
we get the spatial and temporal response of the structure in terms of displacements,
velocities and accelerations.

The solution could be obtained by plethora of approaches – here we show the treat-
ment of ordinary differential equations by the Newmark method and by the method of
central differences. In more detail the methods are described in the Chapter 3.

CHAPTER 14. FE ANALYSIS IN A NUTSHELL 349

14.4.1 The Newmark method

The Newmark method might be implemented as a two part process, as indicated in
Templates 52 and 53.

Template 52, Get ready for the Newmark method

1. Assemble mass, damping and stiffness matrices, i.e. M, C and K and store
their upper bands (including diagonals) in rectangular arrays as shown above.

2. Make a copy of the mass matrix Mcopy ← M.

3. Prescribe the time distribution of the loading P(t).

4. Set the initial conditions, i.e. the displacements and velocities q0 and q̇0 at time
t = 0.

5. Compute initial accelerations from Mq̈ = Q, where Q = P0 − Kq0 using DGRE

subroutine twice. Since the input matrix is destroyed during the triangulariza-
tion process we should work with a copy M. The original mass matrix will be
needed again.

CALL DGRE (Mcopy, Q, q̈0, ... 1)
CALL DGRE (Mcopy, Q, q̈0, ... 2)

6. Set the step of integration H.

7. Set the Newmark parameter GAMMA. If GAMMA = 0.5 there is no algorithmic damp-
ing. If GAMMA > 0.5 the frequencies of the upper part of the spectrum are filtered-
out.

8. Compute the second Newmark parameter from BETA = 0.25*(0.5 + GAMMA)**2.

9. Compute the constants A1 = 1./(BETA*H*H) and A1D = GAMMA/(BETA*H).

10. Compute the effective stiffness matrix Keff = K + A1 ∗ M + A1D ∗ C,

11. Triangularize the effective stiffness matrix by

CALL DGRE (Keff , ... 1) ... the Keff matrix is triangularized in place.

CHAPTER 14. FE ANALYSIS IN A NUTSHELL 350

Template 53, Newmark itself

The integration process itself is secured by the repeated invocation of the NEWMD sub-
routine as follows

T = 0.D0

TMAX = ...

10 CALL NEWMD(BETA, GAMMA, q, q̇, q̈,P,M,Keff , · · ·)

T = T + H

IF(T .LE. TMAX) GOTO 10

Notice that the input parameter Keff is the triangularized effective stiffness matrix,
not the effective stiffnes matrix. The NEWMD subroutine is listed in the Program 5. The
Matlab implementation of the Newmark algorithm is in the Program 4. The vectors
q, q̇, q̈ are being constatly rewritten – on input they contain the old values, on output
the new ones at time increased by the time step.

Notes to the Newmark method

• On input the arrays corresponding to q, q̇, q̈ contain the values at time T, on output
those at time T + H.

• The triangular decomposition of the effective stiffness matrix is carried out only
once, before the time integration process has started.

• The NEWMD subroutine calls two other procedures, namely DGRE and DMAVB.

• The Newmark procedure is unconditionally stable. Using an unreasonably high
integration steps leads to wrong results, but the user is not warned by ’explosion’
of results as it is when conditionally stable methods are used. How to set a ’correct’
step of integration is sketched in the Template 56.

CHAPTER 14. FE ANALYSIS IN A NUTSHELL 351

14.4.2 The central difference method

The method of central differences might be implemented as a two part process, see
Templates 54 and 55.

Template 54, Get ready for the central difference method

1 - 4. The first four items are identical with those of the Template 52.

5. Make a copy of the mass matrix Mcopy ← M.

6. Set the step of integration H.

7. Calculate constants A0=1./(H*H), A1=1./(2.*H), A2=2.*A0, A3=1./A2.

8. Compute the effective mass matrix Meff = A0 ∗ M.

9. Triangularize the effective mass matrix by

CALL DGRE (Meff , ... 1) ... the Meff matrix is triangularized in place.

10. Evaluate displacements at time T - H, i.e. q-H = q − H ∗ q̇0 + A3 ∗ q̈0.

Template 55, The central difference method itself

T = 0.D0

TMAX = ...

10 CALL CEDIF (M, Meff , K, qT-H, qT,qT+H, q̇, q̈, P, · · ·)
T = T + H

IF(T .LE. TMAX) GOTO 10

The subroutine CEDIF is listed in the Program 45. The Matlab implementation of
the central difference method – not observing any saving considerations – is in the
Program 3.

Notes to the central difference method

• The subroutine, as it is conceived, is suitable for the consistent mass matrix. It
could be used for the diagonal one as it stands, but the computation process – in
terms of the required floating point operations – would be highly inefficient. For
the diagonal mass matrix the procedure should be completely rewritten.

• The method is conditionally stable. It explodes if the time step is greater than the
critical stel.

• The global mass matrix has to positive definite.

• The CEDIDF subroutine calls two other procedures, namely DGRE and MAVBA.

CHAPTER 14. FE ANALYSIS IN A NUTSHELL 352

Program listing for the central difference method is in the Program 45.

Program 45
SUBROUTINE CEDIF(XM,XM1,XK,DISS,DIS,DISN,VEL,ACC,P,R,

1 IMAX,NBAND,NDIM,H,EPS,IER,A0,A1,A2,A3,IMORE)

C : : : : : : :

DIMENSION XM(NDIM,NBAND),XM1(NDIM,NBAND),XK(NDIM,NBAND),

1 DISS(IMAX),DIS(IMAX),DISN(IMAX),VEL(IMAX),ACC(IMAX),

2 P(IMAX),R(IMAX)

C

C *** Time integration by the central difference method ***

C

C Equations of motion are

C [M]{ACC}+[K]{DIS}={P} (no damping)

C The mass matrix (assumed to be symmetric, banded, positive definite) and

C the stiffness matrix (assumed to be symmetric, banded but need not be positive definite)

C are efficiently stored in

C rectangular arrays XM, XK with dimensions NDIM*NBAND.

C The same storage mode is required for the effective mass matrix XM1

C Only the upper part of the band (including diagonal) is stored.

C

C Required subroutines

C MAVBA ... matrix vector multiplication for the rectangular storage mode

C GRE ... solution of algebraic equations by Gauss elimination

C for the rectangular storage mode

C

C Parameters

C

C XM(NDIM,NBAND) upper band part of the mass matrix

C XM1(NDIM,NBAND) upper band part of the triangularized effective mass matrix

C XK(NDIM,NBAND) upper band part of the stiffness matrix

C DISS(IMAX) displacements at time T-H

C DIS (IMAX) displacements at time T

C DISN(IMAX) displacements at time T+H

C VEL(IMAX) velocities at time T

C ACC(IMAX) accelerations at time T

C P(IMAX) vector of loading forces at time T

C R(IMAX) vector of effective loading forces at time T

C IMAX number of unknowns

C NBAND half-band width (including diagonal)

C NDIM Row dimension of all matrices in main

C H Step of integration

C EPS Tolerance for the GRE subroutine

C IER Error parameter - see GRE

C A0,A1,A2,A3 Constants

C IMORE = 0 only new displacements, at time T+H, are computed

C = any other value means that

C velocities and accelerations at time T+H are evaluated as well

C

C **

C

C The vector of effective loading forces at time T

C {R}={P}-[K]{DIS}+A2*[M]{DIS}-A0*[M]{DISS}

C

CALL MAVBA(XK,DIS,VEL,IMAX,NDIM,NBAND)

CALL MAVBA(XM,DIS,ACC,IMAX,NDIM,NBAND)

CALL MAVBA(XM,DISS, R,IMAX,NDIM,NBAND)

CHAPTER 14. FE ANALYSIS IN A NUTSHELL 353

C

DO 10 I=1,IMAX

10 R(I)=P(I)-VEL(I)+A2*ACC(I)-A0*R(I)

C

C displacements at time T+H

C

CALL GRE(XM1,R,DISN,IMAX,NDIM,NBAND,DET,EPS,IER,2)

C

IF(IMORE .EQ. 0) GO TO 30

C

C Evaluate velocities and acceleration as well

C

DO 20 I=1,IMAX

VEL(I)=A1*(-DISS(I)+DISN(I))

20 ACC(I)=A0*(DISS(I)-2.*DIS(I)+DISN(I))

C

30 DO 40 I=1,IMAX

DISS(I)=DIS(I)

40 DIS(I)=DISN(I)

RETURN

END

¤ End of Program 45.

Instructions how to set the ’correct’ step of time integration are in the Template 56.

Template 56, How to set the integration step value

lmin length of the smallest element

c wave speed

tmin = lmin/c time needed for the wave passage through

the smallest element

hmts how many time steps are needed to go

through the smallest element

**

H = tmin/hmts a suitable time step *

**

hmts < 1 high frequency components are filtered out --

applicable only for implicit methods

hmts = 1 stability limit for explicit methods

approximately equals to 2/omegamax,

where omegamax = max(eig(M,K))

hmts = 2 my choice

hmts > 2 the high frequency components, which

-- due to the time and space dispersion effects --

are physically wrong, are integrated ’correctly’

CHAPTER 14. FE ANALYSIS IN A NUTSHELL 354

14.5 Assembling global mass and stiffness matrices

Let’s have a mechanical structure with imax global displacements and with kmax ele-
ments – each having lmax local displacements (local degrees of freedom).

To simplify the explication of the assembly process, we assume that all the elements
are of the same type and have the same number of degrees of freedom, i.e. lmax.

Assume that we have already created the procedure CODE(k,ic), that – when called
– fills the array ic(lmax) by proper code numbers of the k-th element. Also, we already
have procedures RIG(k,xke) and MAS(k,xme), that provide the local stiffness and mass
matrices of the k-th element, i.e. xke(lmax, lmax) and xme(lmax, lmax).

If the standard storage scheme is assumed then the global stiffness and mass matrices
could be assembled as shown in the Program 46. Notice that each matrix element of each
local element matrix has to be ’touched’. This is what we call a low level programming.

Program 46
C Loop on elements

DO 10 k = 1,kmax

C Code numbers of the k-th element

CALL CODE(k, ic)

C Local matrices of the k-th element

CALL RIG(k, xke)

CALL MAS(k, xme)

C Loop on elements of local matrices

DO 20 k1 = 1,lmax

DO 20 k2 = 1,lmax

C Pointers to locations in global matrices (standard storage)

i1 = ic(k1)

j1 = ic(k2)

xk(i1,j1) = xke(k1,k2) + xk(i1,j1)

xm(i1,j1) = xke(k1,k2) + xm(i1,j1)

20 CONTINUE

10 CONTINUE

End of Program 46. ¤

The resulting global matrices xk and xm assembled this way bear no information about
prescribed boundary conditions. But this is another story to be treated elsewhere.

In Matlab, where we could use the array of pointers in the pointer position, the as-
sembly process could be formally simplified as shown in the Template 47.

Program 47
% Loop on elements

for k = 1:kmax

% code numbers of the k-th element

ic = code(k);

% Local matrices for the k-th element

xke = rig(k); xme = mas(k);

% assembling itself

xm(ic,ic) = xm(ic,ic) + xme;

xk(ic,ic) = xk(ic,ic) + xke;

end

End of Program 47. ¤

CHAPTER 14. FE ANALYSIS IN A NUTSHELL 355

This is nice, elegant and simple. The advantages of high level programming has to
be regretfully abandoned if an efficient matrix storage scheme is employed. We could
proceed as indicated in the Template 48.

Program 48

SUBROUTINE GLOB1(NDIM,IMAX,KMAX,LMAX,XK,XM,XKE,XME,IC,NBAND)

C

C This procedure create global stiffness (XK) and mass (XM) matrices.

C Both matrices are assumed to be symmetric and banded and

C efficiently stored in a rectangular array.

C Procedure GLOB1 calls CODE, RIG, MAS and CHANGE procedures.

C

C NDIM Row dimension of XK and XM in main

C IMAX Number of (generalized) displacements

C KMAX Number of elements

C LMAX Number of dof’s of an element (all of the same type)

C XK(IMAX,NBAND) .. Efficiently stored stiffness matrix

C XM(IMAX,NBAND) .. Efficiently stored mass matrix

C XKE(LMAX,LMAX) .. Local stiffness matrix

C XME(LMAX,LMAX) .. Local mass matrix

C IC(LMAX) Code numbers of an element

C NBAND Half-band width (including diagonal)

C

DIMENSION XK(NDIM,NBAND), XM(NDIM,NBAND), XKE(LMAX,LMAX),

1 XME(LMAX,LMAX), IC(LMAX)

C

C Insert zeros into the arrays

C

DO 5 I = 1,IMAX

DO 5 J = 1,NBAND

XK(I,J) = 0.

XM(I,J) = 0.

5 CONTINUE

C

C Loop on elements

C

DO 10 K = 1,KMAX

C

C Compute the stiffness and mass matrices of the k-th element

C

CALL RIG(K,XKE)

CALL MAS(K,XME)

C

C Compute the code numbers of the k-th element

C

CALL CODE(K,IC)

C

C Loop on the upper triangular parts of local matrices

C

DO 20 K1 = 1,LMAX

DO 20 K2 = K1,LMAX

C In a standard storage mode we have

I1 = IC(K1)

J1 = IC(K2)

C In case we try to address under-diagonal elements exchange indices

IF(I1 .GT. J1) CALL CHANGE(I1,J1)

CHAPTER 14. FE ANALYSIS IN A NUTSHELL 356

C Calculate the equivalent pointers in the rectangular storage mode

C (I1 is not changed)

JL = J1 - I1 + 1

XK(I1,JL) = XKE(K1,K2) + XK(I1,JL)

XM(I1,JL) = XME(K1,K2) + XM(I1,JL)

20 CONTINUE

10 CONTINUE

RETURN

END

End of Program 48. ¤

Chapter 15

Recommended website reading

• This is an interesting paper about intricacies of a seemingly uncomplicated sub-
ject as the matrix multiplication titled Toward an Optimal Algorithm for Matrix
Multiplication written by Sara Robinson.

http://www.siam.org/pdf/news/174.pdf

local address ...

• This is the technical report titled An extended set of FORTRAN basic linear alge-
bra subprograms written by Jack. J. Dongarra and his colleagues.

www.netlib.org/blas/blas2-paper.ps

local address ...

• This is the extended report (315 pages) titled Basic Linear Algebra Subrograms
Technical (BLAST) Forum Standard from August 2001.

http://www.netlib.org/blas/blast-forum/

local address ...

• This a collection of Fortran90 procedures for mathematical computation based
on the procedures from the famous book Computer Methods for Mathematical
Computations, by George E. Forsythe, Michael A. Malcolm and Cleve B. Moler.
Prentice-Hall, 1977.

www.pdas.com/programs/fmm.f90

local address ...

• The Ben Crowell’s book (794 pages) titled A first course on linear algebra could
be freely downloaded from

http://linear.ups.edu/purchase.html local address ...

357

http://www.siam.org/pdf/news/174.pdf
www.netlib.org/blas/blas2-paper.ps
http://www.netlib.org/blas/blast-forum/
www.pdas.com/programs/fmm.f90
http://linear.ups.edu/purchase.html

CHAPTER 15. RECOMMENDED WEBSITE READING 358

• Prof. W. Kahan’s paper (56 pages) titled How Futile are Mindless Assessments of
Roundoff in Floating-Point Computations

http://www.cs.berkeley.edu/~wkahan/Mindless.pdf local address ...

• This is the output of the EU Leonardo project titled Mechanics with Matlab pre-
pared by authors from Czech technical University of Prague, Institute of Thermo-
mechanics of the Czech Academy of Sciences, University of Stuttgart – Germany,
Université Polytechnique Mons – Belgium and University of Uppsala – Sweden.

http://www.fs.cvut.cz/en/U2052/node2.html

local address ...

• This is a nice gentle introduction to Matlab titled Numerical Computing with MAT-
LAB written by one of the Matlab founding fathers C. Moler.

www.mathworks.com/moler

local address ...

• Lecture Notes on the Status of IEEE Standard 754 for Binary Floating-Point Arith-
metic by Prof. W. Kahan provide a tour of some under-appreciated features of
IEEE 754 and includes many examples where they clarify numerical algorithms.

http://grouper.ieee.org/groups/754/

local address ...

• A Multigrid Tutorial (119 pages) by Brigs is presented in hypertext form.

http://computation.llnl.gov/casc/people/henson/mgtut/welcome.html

local address ...

• This is a clearly written report titled An Introduction to Conjugate Gradient
Method without Agonizing Pain by J. R. Shewchuck.

http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf

local address ...

• This publication titled Templates for the Solution of Linear System: Building
Blocks for Iterative Methods is written by R. Barrett and his colleagues.

netlib2.es.utk.eduinlinalg/templates

local address ...

• Here you can find Matlab programs to R. Barrett’s templates mentioned above.

http://www.cs.berkeley.edu/~wkahan/Mindless.pdf
http://www.fs.cvut.cz/en/U2052/node2.html
www.mathworks.com/moler
http://grouper.ieee.org/groups/754/
http://computation.llnl.gov/casc/people/henson/mgtut/welcome.html
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
netlib2.es.utk.edu in linalg/templates

CHAPTER 15. RECOMMENDED WEBSITE READING 359

www.netlib.org/templates/

local address ...

• This document titled What Every Computer Scientists Should Know About Floating-
Point Arithmetics (94 pages) is written by David Goldberg.

http://www.physics.ohio-state.edu/~dws/grouplinks/floating_point_math.pdf

local address ...

www.netlib.org/templates/
http://www.physics.ohio-state.edu/~dws/grouplinks/floating_point_math.pdf

Chapter 16

About authors

16.1 Mrs. Marta Čert́ıková

is the author of the Chapter 7.

• First name, Family name: Marta Čert́ıková

• Titles: RNDr

• Affiliation: Lecturer at Department of Technical Mathematics Faculty of Me-
chanical Engineering Czech Technical University Karlovo náměst́ı 13 121 35 Praha
2 Czech Republic

• Field of expertise: Numerical Analysis and Algorithms, Finite Element Method,
Domain Decomposition, Databases, Programming

• Selected publications:

Certikova, M.: Parallel Implementation and Optimization of

Balancing Domain Decomposition in Elasticity, Science and

Supercomputing in Europe, report 2006, CINECA, Bologna, Italy,

2006.

Burda, P., Certikova, M., Novotny, J. and Sistek, J.: BDDC method

with simplified coarse problem and its parallel implementation,

Proceedings of MIS 2007, Josefuv Dul, Czech Republic, Matfyzpress,

Praha, 2007.

Sistek, J., Novotny, J., Mandel, J., Certikova, M. and Burda, P.:

BDDC by a frontal solver and stress computation in a hip joint

replacement. Math. and Comp. Simulation (Elsevier), spec. issue

devoted to Computational Biomechanics and Biology, to appear in

2009.

• Email address: marta.certikova@fs.cvut.cz

360

CHAPTER 16. ABOUT AUTHORS 361

16.2 Alexandr Damašek

is the author of Chapter 13.

• First name, Family name: Alexandr Damašek

• Titles: Ing., Ph.D.

• Affiliation: Institute of Thermomechanics, Academy of Sciences of the Czech
Republic, 182 00 Prague, Doleǰskova 5, the Czech Republic

• Field of expertise: Fluid dynamics, Elasticity of deformable bodies, Fluid-
structure interaction

• Selected publications:

Damasek, A., Burda, P.: Numerical Solution of the Navier-Stokes

Equations for Large Reynolds Numbers using SUPG Method.

In: Proceedings Interactions and Feedbacks ’01, Institute of

Thermomechanics, Academy of Sciences of the Czech

Republic, Prague, (in czech), 2001

Damasek, A., Burda, P.: SUPG Method for Solution of Unsteady

Fluid Flow for Large Reynolds Numbers, Seminar Topical

Problems of Fluid Mechanics 2002, Prague, (in czech), 2002

Damasek, A., Burda, P.: Solution of Higher Reynolds Flow along

Profile using Finite Element Method, Interaction and

Feedbacks 2002, Prague, (in czech), 2002

Damasek, A., Burda, P.: Finite Element Modelling of Viscous

Incompressible Fluid Flow in Glottis, Engineering Mechanics

2003, Svratka, (in czech), 2003

Damasek, A., Burda, P., Novotny, J.: Interaction of Viscous

Incompressible Fluid and Elastically Mounted Body when

Considering Finite Deformations}, Computational Mechanics 2004,

Nectiny, (in czech), 2004

Damasek, A., Burda, P.: Solution of Interaction of Viscous

Incompressible Fluid and Elastically Mounted Body using

ALE-method}, DTDT 2006, Usti nad Labem, (in czech)

20.09.2006-21.09.2006

• Email address: damasek@it.cas.cz

CHAPTER 16. ABOUT AUTHORS 362

16.3 Jǐŕı Dobiáš

is the author of Chapter 8.

• First name, Family name: Jǐŕı Dobiáš

• Titles: Ing., Ph.D.

• Affiliation: Institute of Thermomechanics, Academy of Sciences of the Czech
Republic, 182 00 Prague, Doleǰskova 5, the Czech Republic

• Field of expertise: Non-linear problems of continuum mechanics with special em-
phasis to contact/impact, finite element method, domain decomposition methods
and parallel algorithms. The chief investigator of three grant projects supported
by the Grant Agency of the Czech Republic.

• Selected publications:

Dostal Z., Horak D., Kucera R., Vondrak V., Haslinger J., Dobias

J., Ptak S.: FETI based algorithms for contact problems:

scalability, large displacements and 3D Coulomb friction, Computer

Meth. in Appl. Mech. and Engineering, 194 (2005), pp. 395-409.

Dobias J., Ptak S., Dostal Z., Vondrak V.: Total FETI based

algorithm for contact problems with additional non-linearities,

Advances in Eng. Software, to be published.

Dobias J., Ptak S., Dostal Z., Vondrak V.: Scalable Algorithms for

Contact Problems with Additional Nonlinearities, Proceedings of

the Fifth International Conference on Engineering Computational

Technology, Las Palmas, Spain, Sept. 2006, Editors: Topping,

Montero, Montenegro, Civil-Comp Press, Scotland, paper No. 105,

ISBN 1-905088-10-8

Vondrak V., Dostal Z., Dobias J., Ptak S.: A FETI domain

decomposition method to solution of contact problems with large

displacements. Domain Decomposition Methods in Science and

Engineering XVI, Editors Olof Widlund and David Keyes, Volume 55

of Lecture Notes in Computational Science and Engineering.

Springer, 2007, pp. 771-778, ISSN 1439-7358

Vondrak V., Dostal Z., Dobias J., Ptak S.: Primal and Dual Penalty

Methods for Contact Problems with Geometrical Non-linearities,

Proc. Appl. Math. Mech. 5(2005), pp. 449-450

Dobias J.: Comparative Analysis of Penalty Method and Kinematic

Constraint Method in Impact Treatment, Proceedings of the Fifth

World Congress on Computational Mechanics, July 7-12, 2002,

Vienna, Austria, Editors: Mang H.A., Rammerstorfer F.G.,

Eberhardsteiner J., Publisher: Vienna University of Technology,

CHAPTER 16. ABOUT AUTHORS 363

Austria, ISBN 3-9501554-0-6.

• Email address: jdobias@it.cas.cz

CHAPTER 16. ABOUT AUTHORS 364

16.4 Dušan Gabriel

is the author of Chapter 9.

• First name, Family name: Dušan Gabriel

• Titles: Ing., Ph.D.

• Affiliation: Institute of Thermomechanics, Academy of Sciences of the Czech
Republic, 182 00 Prague, Doleǰskova 5, the Czech Republic

• Field of expertise: Research in the fields of computational mechanics, numeri-
cal methods, continuum mechanics, development of the finite element code PMD,
stress analyses. Teaching course ‘Theory of Elasticity’ at CTU.

• Selected publications:

D. Gabriel, J. Plesek, R. Kolman, F. Vales. Dispersion of elastic

waves in the contact-impact problem of a long

cylinder. In: Proceedings of the 8th International Conference on

Mathematical and Numerical Aspects of Waves, N. Biggs

et al (eds.), 334--336, University of Reading, 2007.

D. Gabriel, J. Plesek, F. Vales, F. Okrouhlik. Symmetry preserving

algorithm for a dynamic contact-impact problem. In:

Book of Abstract of the III European Conference on Computational

Mechanics, C.A. Mota Soarez et al (eds.), Springer,

pp.318, CD-ROM 1-8, 2006.

I. Hlavacek, J. Plesek, D. Gabriel. Validation and sensitivity study

of an elastoplastic problem using the Worst

Scenario Method. Comp. Meths. Appl. Mech. Engng., 195, 736-774, 2006.

D. Gabriel, J. Plesek. Implementation of the pre-discretization

penalty method in contact problems. In: Computational

Plasticity VIII, D.R.J. Owen, E. Onate, B. Suarez (eds.), Barcelona,

Spain, 839-842, 2005.

J. Plesek, I. Hlavacek, D. Gabriel. Using the Worst Scenario Method

for error and scatter estimation in elasto-plastic

analysis. In: Computational Plasticity VIII, D.R.J. Owen, E. Onate,

B. Suarez (eds.), Barcelona, Spain, 1134-1137, 2005

D. Gabriel, J. Plesek, M. Ulbin. Symmetry preserving algorithm for

large displacement frictionless contact by the

pre-discretization penalty method. Int. J. for Num. Meth. in Engng.,

61, 2615-2638, 2004.

D. Gabriel. Numerical solution of large displacement contact problems

by the finite element method. CTU Reports, 7(3),

CHAPTER 16. ABOUT AUTHORS 365

2003.

E. Hirsch, J. Plesek, D. Gabriel. How the liner material metallurgical

texture affects the shaped charge jet break-up

time. J. Phys.IV, 110, 723-727, 2003.

• Email address: gabriel@it.cas.cz

CHAPTER 16. ABOUT AUTHORS 366

16.5 Miloslav Okrouhĺık

is the editor of this e-book and the author of chapters 1, 2, 4, 5, 6 and 15. His
personal whereabout are as follows:

• First name, Family name: Miloslav Okrouhĺık

• Titles: Prof., Ing., CSc.

• Affiliation: Institute of Thermomechanics, Academy of Sciences of the Czech
Republic, 182 00 Prague, Doleǰskova 5, the Czech Republic

• Field of expertise: Computational mechanics. Stress wave propagation. Proper-
ties of finite element method in nonstationary dynamics. Finite element technology.

• Selected publications:

LANSKY, M. OKROUHLIK, M. NOVOTNY, J.: Supercomputer NEC SX-4

Employed for Scientific and Technical Computations. Engineering

Mechanics, Vol. 7, No. 5, pp. 341-352, 2000.

LUNDBERG, B. OKROUHLIK, M.: Influence of 3D effects on the

efficiency of percussive rock drilling. International Journal of

Impact Eng. Vol. 25, pp.345 360, 2001.

OKROUHLIK M.: Computational Aspects of Stress Waves Problems in

Solids 2nd European Conference on Computational Mechanics,

Abstracts Vol. 1, pp. 1 30, ISBN 83-85688-68-4, Fundacja Zdrovia

publicznego Vesalius, Cracow, Poland 2001.

STEJSKAL, V. OKROUHLIK M.: Vibration with Matlab (In Czech:

Kmitn s Matlabem), ISBN 80-01-02435-0, Vydavatelstv CVUT, pp.

376, Praha 2002.

OKROUHLIK, M. LUNDBERG, B.: Assessment of Rock Drilling

Efficiency Based on Theoretical and Numerical Stress Wave

Considerations, Proceedings of the Second International Conference

on Advances in Structural Engineering and Mechanics, Session W4A,

p. 34, ISBN 89-89693-05-5 93530, Busan, Korea, August 21 23,

2002

LUNDBERG, B. OKROUHLIK, M.: Approximate Transmission Equivalence

of Elastic Bar Transitions Under 3-D Conditions, Journal of Sound

and Vibration, Vol. 256, No. 5, pp. 941-954, 2002

OKROUHLIK, M. PTAK S.: Pollution-Free Energy Production by a

Proper Misuse of Finite Element Analysis, Engineering

Computations, Vol. 20, No. 5/6, pp.601 610, 2003

CHAPTER 16. ABOUT AUTHORS 367

OKROUHLIK, M. PTAK S.: Numerical Modeling of Axially Impacted

Rod with a Spiral Groove, Engineering Mechanics, Vol. 10, No. 5,

pp. 359 374, 2003.

HOSCHL, C. OKROUHLIK, M.: Solution of Systems of Nonlinear

Equations, Strojncky casopis, Vol. 54, No. 4, pp. 197 227,

2003.

OKROUHLIK, M. PTAK, S.: Assessment of experiment by finite

element analysis: Comparison, self-check and remedy, Strojncky

casopis, Vol. 56, 2005, No. 1.

LUNDBERG, B. OKROUHLIK, M.: Efficiency of percussive rock

drilling with consideration of wave energy radiation into the

rock. Int. Journal of Impact Engineering. 32 (2006) 1573 - 1583.

OKROUHLIK, M., PTAK, S., LUNDBERG, B.: Wave Energy Transfer in

Percussive Rock Drilling. 6th European Solid Mechanics Conference,

Budapest, 28 August to 1 September 2006.

OKROUHLIK, M.: Computational limits of FE transient analysis, The

Seventh International Conference on Vibration Problems ICOVP 2005,

Springer Proceedings in Physics, Turkey, Istanbul, 05 -09

September 2005, pp. 357 369.

OKROUHLIK, M.: When a ’good agreement’ is not enough. In: Sbornik

prednasek z V. mezinarodni konference Dynamika tuhych a

deformovatelnych teles. Univerzita Jana Evangelisty Purkyne v Usti

nad Labem. 3. 4. rijna 2007. ISBN 80-7044-914-1.

GABRIEL, D. - PLESEK, J. - VALES, F. - OKROUHLIK, M.: Symmetry

preserving algorithm for a dynamic contact-impact problem., III

European Conference on Computational Mechanics. Dordrecht :

Springer, 2006, Lisabon, s. 1-7. ISBN 1-4020-4994-3.

OKROUHLIK, M. - PTAK, S.: Torsional and bending waves in an

axially impacted rod with a spiral groove. Euromech solid

mechanics /5./ : Book of abstracts. Thessaloniki: Aristotle

university of Thessaloniki, 2003 - s. 145-145.

PTAK, S. - TRNKA, J.- OKROUHLIK, M. - VESELY, E. - DVORAKOV, P.:

Comparison of numerically modelled and measured responses of a

hollow cylinder under impact loads. Euromech solid mechanics

conference: book of abstracts. Thessaloniki : Aristotle University

of Thessaloniki, 2003 - s. 144-144

OKROUHLIK, M.: From the Gauss elimination, via GRID, to kvantum

computers. Seminar of Parallel programming 2: Abstracts. Praha,

CHAPTER 16. ABOUT AUTHORS 368

Ustav termomechaniky AV CR, 2002. s. 1-2.

OKROUHLIK, M.: Limits of computability within the scope of

computational mechanics. Vydavatelstvi CVUT, ISBN

978-80-01-03898-7, 2007.

OKROUHLIK, M., PTAK, S., VALDEK,U.: Self-assessment of Finite

Element Solutions Applied to Transient Phenomena in Solid

Continuum Mechanics, To be published in Engineering Mechanics,

• E-mail address: ok@it.cas.cz

CHAPTER 16. ABOUT AUTHORS 369

16.6 Petr Pař́ık

is the author of Chapter 11.

• First name, Family name: Petr Pař́ık

• Titles: Ing. (M.Sc.)

• Affiliation: Institute of Thermomechanics, Academy of Sciences of the Czech
Republic, 182 00 Prague, Doleǰskova 5, the Czech Republic

• Field of expertise: Finite Element Method, Continuum Mechanics.

• E-mail address: petr.parik@seznam.cz

CHAPTER 16. ABOUT AUTHORS 370

16.7 Svatopluk Pták

is the author of Chapter 10.

• First name, Family name: Svatopluk Pták

• Titles: Ing. CSc.

• Affiliation: Institute of Thermomechanics, Academy of Sciences of the Czech
Republic, 182 00 Prague, Doleǰskova 5, the Czech Republic

• Field of expertise: Finite element method, Computational mechanics, Mechanics
of solids

• Selected publications:

Dobias, J., Ptak, S., Dostal, Z., Vondrak, V.: Total FETI Based

Algorithm for Contact Problems with Additional Nonlinearities,

Advances in Engineering Software

Dobias, J., Ptak, S., Dostal, Z., Vondrak V.: Domain Decomposition

Based Contact Solver Proceedings of the Eight International

Conference on Computer Methods and Experimental Measurements for

Surface Effects and Contact Mechanics, (Editors: Hosson, Brebbia,

Nishida), New Forest, UK, 16-18 May, 2007, pp 207-216 WIT Press,

UK.

Dobias, J., Ptak, S., Dostal, Z., Vondrak, V.: Dynamic Nonlinear

TFETI Domain Decomposition Based Solver Proceedings of the 11th

International Conference on Civil, Structural and Environmental

Engineering Computing, (Editor: Topping) St. Julians, Malta,

18-21. Sept. 2007, Paper No. 20, pp 1-12 Civil-Comp Press, UK.

ISBN 978-1-905088-16-4

Vondrak, V., Dostal, Z., Dobias, J., Ptak, S.: A FETI Domain

Decomposition Method Applied to Contact Problems with

Large Displacements, in: Widlund, Keyes (eds.): Lecture

Notes in Computational Science and Engineering, Vol. 55, Domain

Decomposition Methods in Science and Engineering XVI, pp 771-778,

Springer-Verlag, Heidelberg, 2007. ISBN

987-3540-34468-1

Okrouhlik, M., Ptak, S., Lundberg, B.: Wave Energy Transfer

in Percussive Rock Drilling 6th European Solid Mechanics

Conference, Budapest, 28 August - 1 September 2006.

Okrouhlik, M., Ptak, S.: Assessment of experiment by finite

element analysis: Comparison, self-check and remedy Journal of

Mechanical Engineering (2005), Vol. 56, No. 1, pp 18-39 Strojnicky

casopis

CHAPTER 16. ABOUT AUTHORS 371

Okrouhlik, M., Ptak, S.: Numerical modelling of axially impacted

rod with a spiral groove Engineering Mechanics (2003), Vol. 10,

No. 5, pp 359-374 Inzenyrska mechanika

Okrouhlik, M., Ptak, S.: Pollution-free energy production by means

of a proper misuse of finite element analysis Engineering

Computations (2003), Vol. 20, No. 5, pp 601-610

• Email address: svata@it.cas.cz

CHAPTER 16. ABOUT AUTHORS 372

16.8 Vı́tězslav Štembera

is the author of Chapter 12.

• First name, Family name: Vı́tězslav Štembera

• Titles: Mgr.

• Affiliation: Mathematical Institute of the Charles University, Sokolovská 83,
Prague 8, the Czech Republic

• Field of expertise: Computer Modeling, Fluid Mechanics, Numerical Mathe-
matics

• Selected publications:

Stembera V., Marsik F., Chlup H.: One-Dimensional Mathematical

Model of the Flow Through a Collapsible Tube with

Applications to Blood Flow Through Human Vessels,

Conference Engineering Mechanics 2005, ISBN 80-85918-93-5

• Email address: vitastembera@hotmail.com

Index

2D Poisson equation, 166

actual configuration, 306
additive method, 169
additive overlapping Schwarz method, 170
algebraic equation, 12

back substitution, 74, 77, 248
badly conditioned, 90
band matrices, 255
bandedness, 55
BDDC, 190
BFGS algorithm for constrained nonlin-

ear system, 220
BFGS method, 212, 213, 215
block compressed column storage format,

257
block compressed row storage, 256

case of prescribed displacements, 246, 249
Cauchy-Green deformation tensor, 310
Cholesky decomposition, 25, 112
column vector, 13
compressed column storage, 256
compressed diagonal storage format, 257
compressed row storage format, 256
condition number, 71, 92, 165, 224, 231
conjugate gradient method, 28, 51, 163
conservation of momentum, 309
contact problem of two cylinders, 208
convergence criteria for iterative meth-

ods, 30
coordinate storage format, 255
cross product, 19
cyclically linked lists, 260

decomposition of the Schur complement,
180

dense matrices, 253
determinant search method, 35
diadic product, 20
diagonal matrices, 13

direct methods, 23, 165, 233
direct problem, 223
Dirichlet boundary condition, 168
disk band algorithm, 130
disk storage modes, 60
domain decomposition method, 166, 202,

226
dot product, 19
dual methods, 186
dynamically allocated blocks, 261

elimination, 72, 245
error estimation, 87
Euler approach, 305
explicit time integration algorithms, 39
exploitation of sparsity, 230

FETI method, 203
FETI method basic mathematics, 204
FETI-DP, 190, 193
fill-in, 259
fill-in analysis, 259
fill-in problem, 60
finite element, 263
floating point arithmetics, 86
fluid-solid interaction, 305
forward and inverse power methods, 34
frontal method, 64, 223
frontwidth, 239
full pivoting, 81
full storage format, 254

Gauss elimination, 23
Gauss elimination by hand, 72
Gauss elimination with a matrix stored

by means of skyline scheme, 108
Gauss elimination with a symmetric ma-

trix, 101
Gauss elimination with a symmetric, banded

matrix, 103
Gauss elimination with a tri-diagonal ma-

trix, 109

373

INDEX 374

Gauss-Jordan elimination method, 25
Gauss-Seidel method, 27, 28, 68, 125
generalized eigenvalue problem, 12, 32

Hess matrix, 148
hypermatrix algorithm, 64

identification problem, 223
ill posed, 223
ill-conditioned systems, 165
implicit time integration algorithms, 40
incomplete Cholesky elimination, 29
inverse problem, 223
inversion of a matrix in place, 66
irreducible, 225
iterative methods, 114, 236
iterative nonstationary methods, 28
iterative solvers, 165
iterative stationary methods, 27

Jacobi iteration method, 67
Jacobi method, 27, 120, 147, 310
Jacobian, 147, 306
jagged diagonal storage format, 257

Lagrange multipliers, 168
Lagrangian approach, 305
large deformations, 263
large displacements, 263
line search, 213
linked lists, 260
lower triangular matrix, 14

machine epsilon, 31, 86
mass conservation, 308
matrix addition, 15
matrix algebra notation, 13
matrix determinant, 14
matrix inversion, 12, 20
matrix is singular, 71
matrix multiplication, 16
matrix transposition, 15
maximum frontwidth, 239
method of the steepest descent, 50
method of the steepest gradient, 158
Minimization of a scalar function of a

vector variable, 146
modified BFGS algorithm, 218
modified Newton-Raphson method, 156

multigrid method, 30, 226
multiplication of a matrix by a column

vector from the right, 18
multiplication of a matrix by a vector

from the left, 19
multiplicative method, 169
multiplicative overlapping Schwarz method,

173

Newton-like methods, 48
Newton-Raphson method, 150, 212
nonoverlapping methods, 166, 176
nullity of a stiffness matrix, 71
nullity of the matrix, 14
number of rigid-mode degrees of freedom,

71
numbers of the real type, 86
numerical solution of systems of nonlin-

ear real algebraic equations, 146

object oriented programming, 263
ordinary differential equation, 12
Overdetermined linear systems, 229
overlapping methods, 166, 168

partial differential equations, 166
partial pivoting, 81
partial pivoting example, 95
partitioning of a domain, 166
permutation matrices, 225
pivot, 79
pivoting algorithms, 225
positive definiteness, 55
pre-conditioned, 224
preconditioners, 29, 166
primal methods, 183
programming Gauss elimination, 78
Purdue storage, 258

quasi-Newton methods, 50, 213

rank of the matrix, 14
real numbers, 86
rectangular storage mode, 57
reducible, 225
reduction of the right hand side vector,

75
referential configuration, 306, 310
row vector, 13

INDEX 375

scalar matrix multiplication, 16
Schur complement system, 176, 226
Schwarz error-functions, 227
Schwarz alternating methods, 226
semi-iterative methods, 237
simple (successive substitution) iteration

method, 115
skyline matrices, 255
skyline storage format, 258
skyline storage mode, 59
solution of algebraic equations, 22
solution of large systems, 129
solution of nonlinear tasks, 47
solution of ordinary differential equations,

38
solving Ax = b by inversion, 65
sparse, 253
sparse unstructured linear systems, 165
sparseness, 55
standard eigenvalue problem, 12
storage modes, 55
storage schemes for sparse matrices, 255
substructuring, 166
successive over overrelaxation, 27, 28, 69,

128
successive substitution, 27
symmetric matrix storage mode, 57
symmetrically pre-conditioned, 224
symmetry of A matrix, 55

the BFGS method for a constrained sys-
tem, 216

the frontal solution technique, 237
the pin-in-hole contact problem, 209
trace, 15
transformation methods, 32
transport equation, 307
triangular storage format, 254
triangularization of the matrix, 75
two cubes contact–example, 221

underdetermined linear systems, 229
unit matrices, 13
unit round-off error, 31, 86
upper triangular matrix, 14
using Gauss elimination for the inverse

matrix computation, 111

well conditioned, 90

well posed, 223

	Introduction
	Matrix algebra background
	Preliminary notes
	Matrix algebra notation
	Matrix operands and operations

	Review of numerical methods in mechanics of solids
	Introduction
	Solution of algebraic equations
	Direct methods
	Gauss elimination
	Gauss-Jordan elimination method
	Cholesky decomposition

	Iterative stationary methods
	Iterative nonstationary methods
	Conjugate gradient (CG) method
	Multigrid method

	Convergence criteria for iterative methods
	Precision, or do we believe in our results?
	Finite versus iterative solvers

	Generalized eigenvalue problem
	Transformation methods
	Jacobi method
	The Givens method
	Left-right transformation
	QR transformation
	QL method

	Forward and inverse power methods
	Forward iteration method
	Inverse iteration method
	The shifted inverse power method
	The block power method
	The block inverse power method
	Subspace iteration method

	Determinant search method
	Lanczos method

	Solution of ordinary differential equations
	Explicit time integration algorithms
	Implicit time integration algorithms

	Solution of nonlinear tasks
	Newton-like methods
	Quasi-Newton methods
	The method of the steepest descent
	The conjugate gradient method
	Tracing equilibrium paths methods

	Conclusions

	Implementation remarks to equation solvers
	Storage modes
	Symmetric matrix storage mode
	Rectangular storage mode -- symmetric banded matrices
	Skyline storage mode

	Fill-in problem
	Disk storage modes -- out-of-core solvers
	Frontal method
	Solving Ax = b by inversion
	Jacobi iteration method
	Gauss-Seidel method
	Successive overrelaxation method (SOR)

	How to dirty your hands
	Gauss elimination method
	Gauss elimination by hand
	Programming Gauss elimination
	Error estimation for Ax = b
	Condition number computation
	Other ways to estimate the condition number
	Another partial pivoting example
	Gauss elimination with a symmetric matrix
	Gauss elimination with a symmetric, banded matrix
	Gauss elimination with a matrix stored by means of skyline scheme
	Gauss elimination with a tri-diagonal matrix
	Using Gauss elimination for the inverse matrix computation
	Cholesky decomposition
	Iterative methods
	Simple (successive substitution) iteration method
	Jacobi method
	Gauss-Seidel method
	Successive overrelaxation (SOR) method

	Solution of large systems
	Disk band algorithm
	Block Gauss elimination

	Solution of overdetermined systems
	Solution with some of unknowns prescribed

	Implementation remarks to nonlinear tasks
	Preliminaries, terminology and notation
	Newton-Raphson method
	Modified Newton-Raphson method
	Method of the steepest gradient
	Conjugate gradient method

	Domain decomposition methods
	List of abbreviations
	Introduction
	Problem to be solved
	Overlapping methods
	Division of a discretized domain into overlapping subdomains
	Additive overlapping Schwarz method
	Multiplicative overlapping Schwarz method

	Nonoverlapping methods
	Interface and interior
	Schur complement system for interface nodes
	Decomposition of the Schur complement problem
	Primal and Dual methods
	Primal methods
	Dual methods

	BDDC and FETI-DP
	BDDC method
	FETI-DP method
	Coarse space and coarse problem

	DD methods as preconditioners
	DD Appendix - Matlab programs
	Examples of the input data
	Script listings

	FETI Based Domain Decompositions
	Introduction
	The FETI method
	FETI method principle
	FETI method basic mathematics

	Numerical Experiments
	The Contact Problem of Two Cylinders
	The Pin-in-Hole Contact Problem

	Solution of nonlinear equilibrium equations -- BFGS method
	Line search
	BFGS method
	The BFGS method for a constrained system
	A simple model problem
	The modified BFGS algorithm
	Example: Two cubes contact

	The Frontal Solution Technique
	Introduction to the solution of algebraic systems
	Matrix forms of algebraic systems
	Scalar forms of algebraic systems
	Overdetermined and underdetermined linear systems
	Condition number
	Solution of linear algebraic systems

	The Frontal Solution Technique
	The basic, simplest version of frontal technique
	The Prefront part of the program
	The actual assemblage and elimination phase
	Back-substitution phase
	Discussion of the frontal technique

	Concluding remarks

	Sparse Storage Schemes
	Storage Schemes for Dense Matrices
	Full Storage
	Triangular Storage

	Storage Schemes for Sparse Matrices
	Coordinate Storage
	Compressed Row Storage
	Compressed Column Storage
	Block Compressed Row Storage
	Block Compressed Column Storage
	Compressed Diagonal Storage
	Jagged Diagonal Storage
	Skyline Storage

	Storage Schemes for Iterative Methods
	Storage Schemes for Direct Methods
	Fill-in analysis
	Linked Lists
	Cyclically Linked Lists
	Dynamically Allocated Blocks

	Object oriented approach to FEA
	Basics of continuum mechanics
	Basic tensor definition
	Deformation problem definition
	Virtual displacement, first variation
	Principle of virtual work

	Finite element method formulation
	Transformation of term U1
	Transformation of term U2
	Transformation of term U3
	Transformation to a particular element
	Components of matrix BL
	Components of matrix BN
	Small deformations

	Numerics
	Numerical integration
	Iterative procedure
	Test example 1 - loaded beam
	Test example 2 - pressed beam

	Integration on reference element
	Appendix - Source code
	MATHLIB
	FELIB

	ALE approach to fluid-solid interaction
	Introduction
	Transport equation
	Derivation of the ALE-method
	Mass conservation
	Conservation of momentum

	Geometry of the deformation
	Piola transform
	Application to the equations of conservation
	Decomposition of fluid and structure
	Fluid problem
	Structural problem
	Global coupled problem

	Numerical solution
	Basic algorithm

	FE analysis in a nutshell
	Introduction
	Rectangular band storage
	Solution of the system of equations
	Solution of the system of ordinary differential equations
	The Newmark method
	The central difference method

	Assembling global mass and stiffness matrices

	Recommended website reading
	About authors
	Mrs. Marta Certíková
	Alexandr Damašek
	Jirí Dobiáš
	Dušan Gabriel
	Miloslav Okrouhlík
	Petr Parík
	Svatopluk Pták
	Vítezslav Štembera

