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This work concerns the study of collective modes in a smectic liquid crystal in the hypersonic frequency
range. Special attention is paid to the determination of the significant anisotropy of the quasilongitudinal mode
and to its temperature dependence, namely, near the isotropic–smectic-A phase transition. The interpretation is
provided in terms of the pseudocrystalline model by means of effective stiffness and viscosity tensors. A weak
quasitransverse mode has been detected: the angular variations of its frequency and of its intensity are in
good agreement with the predictions of our model. We confirm a universal behavior for nematic and smectic
phases at high frequencies: in the hypersonic regime the orientational order of the molecules seems to play a
more important role than the smectic ordering. A quantitative analysis of the angular and temperature depen-
dence of the inelastically scattered intensity is done: the observed intensity anomalies are well described by
our model. The smectic-C* –smectic-A phase transition is investigated by means of Brillouin scattering: only
very small anomalies are found.@S1063-651X~96!01512-7#

PACS number~s!: 64.70.Md, 78.35.1c, 62.20.Dc, 77.84.Nh

I. INTRODUCTION

Up to now the elastic properties of liquid crystals are not
completely understood and the strong frequency dependen-
cies are explained only qualitatively. Generally, two ap-
proaches can be used: the first one is based on a hydrody-
namic treatment generalizing the hydrodynamics of isotropic
fluids by introducing suitable additional variables respon-
sible for the anisotropy@1–3#: such a model can be devel-
oped for smectic and nematic liquid crystals but does not
predict any changes in elastic properties of nematic phases
with regard to the isotropic phase@4#. The second approach
is a phenomenological pseudocrystalline model using an
elastic stiffness tensor appropriate to the symmetry and tak-
ing into account the vanishing of some shear constants of the
studied liquid crystalline phase. It should be noted that for
smectics the use of a phenomenological elastic stiffness ten-
sor is completely justified by a hydrodynamic calculation
that allows one to evaluate the elastic stiffness components
@4#.

However, the experimental results are less convincing
since, in the hypersonic regime, which is studied by means
of Brillouin scattering, smectic and nematic liquid crystals
show nearly the same elastic properties@5,6#. This fact sup-
ports the hypothesis that the hydrodynamic approach is not
valid here and that a universal interpretation, which presently
is still lacking, should exist for both types of liquid crystals.
On the other hand, the problem of the existence of a shear-
like acoustic mode is not yet completely resolved. It has been

experimentally observed once in smectics@7# but, in spite of
considerable effort, it has not been detected in nematics up to
now @5#.

The results found in the ultrasonic regime depend on the
material used and on the frequency range studied. Fre-
quently, the nematic liquid crystals show, at low ultrasonic
frequencies, an anisotropy of the damping while the propa-
gating velocity remains isotropic@for example, this is the
case of p-azoxyanisol ~PAA! at 10 MHz @8# or of
p-methoxybenzylidenep-~n-butylaniline! ~MBBA ! at 23
MHz @9##. In contrast, the nematic phase of
terephthal-bis-p-p8-butylaniline ~TBBA! at 2 MHz behaves
practically like an isotropic liquid@10#. For nematic MBBA
and CBOOA @11,12#, the studies of the anisotropies in a
broad frequency range reveal the existence of at least one
relaxation process that causes an increase of the elastic stiff-
ness anisotropy at high frequency. Concerning the smectic
phases, a significant anisotropy of the elastic properties is
always observed by means of ultrasounds@10,13–15#.

Most of the published Brillouin studies@5,11# concern
liquid crystals showing a isotropic↔nematic phase transition
~in some cases followed by a nematic↔smectic one!. We
found it interesting to compare this case to the situation
where the studied compound directly undergoes a
isotropic↔smectic transition. Only a very few Brillouin ex-
periments have been performed concerning transitions be-
tween distinct smectic or smectic-hexatic phases. Our com-
pound shows a smectic-A↔smectic-C* transition. In this
paper we discuss the Brillouin spectra of a smectic liquid
crystal and we derive conclusions about its elastic properties
and about their anomalies in the vicinity of its phase transi-
tions.

II. EXPERIMENTAL DETAILS

In our experiments we used the 4-n-octyloxy benzoic acid
48-@~2-methyl butyloxy! carbonyl# phenyl ester:
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which exhibits the following phase transitions@16#:

isotropic——→
TLA556 °C

smectic A ——→
TAC532 °C

smectic C* ——→
&26 °C

solid.

It should be noted that we observed the isotropic–smectic-A
phase transition at slightly lower temperature~54-55 °C!
than that previously reported.

The studied samples filled the space between two glass
plates~separated by 25mm! with indium-tin oxide electrodes
on the inner surface. The glass electrodes were previously
coated with a polyimide layer conveniently rubbed with a
velvet cloth to favor the planar alignment. By applying an ac
electric field ~1–10 Hz, 100 V! near the
smectic-C* –smectic-A transition temperature during a pe-
riod of several hours the alignment was improved, resulting
in parallel smectic layers perpendicular to the glass plates.
The alignment was controlled during the scattering measure-
ments by checking the diffraction pattern~which forms a
well-defined stripe in the aligned state! of the transmitted
laser beam.

A home-made furnace allowing rotations around the axis
normal to the films was used: the temperature of the scat-
tering volume was determined with a precision of 1 °C. It
was possible to apply a dc or an ac electric field during the
Brillouin measurements.

The chosen 90° geometrical arrangement with plates bi-
secting the angle between the incident and the scattered
beam~Fig. 1! provides complete anisotropy measurements.
The resulting phonon frequencies are practically independent
of the refractive indices@17,18# at least in the case of an
axial symmetry around thez axis normal to the smectic lay-
ers ~smectic-A phase!.

The Brillouin experiments were performed using a 233
passes tandem Fabry-Pe´rot interferometer. The samples were
illuminated by a single-mode argon ion laser at a wavelength
of 5145 Å, using powers not exceeding 35 mW in order to
avoid damage of the sample caused by laser-induced flows of
matter. We checked that the lowering of the laser power
down to a few mW had no influence on the measured spec-
tra. We encountered some difficulties when measuring the
spectra just below the isotropic–smectic-A transition ~52–
55 °C! where the electrical field of the laser beam causes
flows of matter that become apparent through fast chaotic
changes in the diffraction pattern and that can destroy the
molecular alignment or result in a damage of the sample.
Consequently, there is a large scattering of the experimental
points in this temperature range. The full width at half maxi-
mum~FWHM! of the instrumental function was of about 110
MHz for the free spectral range used~for most experiments
the frequency distance between the central line and the first
maximum ghost was about 0.27 cm21, e.g., 8.2 GHz! and it
was very small compared to the width of the observed Bril-

louin lines~between 700 and 1100 MHz, depending upon the
temperature and the propagation direction!. This free spectral
range was found to be the most convenient for the study of
both quasilongitudinal ~QL! and quasitransverse~QT!
modes: we lose the finesse and the signal when lowering it
significantly.

III. RESULTS AND DISCUSSION

A. Theoretical background–phenomenological treatment

Our theoretical description is based on a formalism that is
conventionally employed in the discussion of elastic proper-
ties of crystals. We suppose that the coupling of the acoustic
modes to other vibrational and relaxational modes is well
described by a renormalization of the effective stiffness and
viscosity coefficients as is most frequently the case@11#. If
this condition is not valid it is necessary to write down ex-
plicitly the coupled equations and calculate the spectral den-
sity that can differ significantly from the harmonic oscillator
spectral function@19#.

The sound propagation in solids can be described by a
displacement vectoruW that satisfies the equation of motion:

r0üi5Ci jkl

]2uk
]xj]xl

2h i jkl

]2u̇k
]xj]xl

, ~1!

where the symmetry properties of the viscosity tensorhi jkl
and of the elastic stiffness tensorCi jkl are the same as fol-
lows from the Onsager theorem, and wherer0 is the mass
density. By analogy, we shall use the same equation of mo-
tion for the phenomenological description of the acoustic
modes in liquid crystals. We are aware that the three-
component displacement vectoruW is only a hypothetical pa-
rameter in liquid crystalline phases and that it does not have
a clear physical meaning. However, one can define it for-
mally through the implicit relationv i5]ui /]t, wherev i is a

FIG. 1. Schematic view of the scattering geometry.
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component of the flow velocity. It is then possible to solve
Eq. ~1! for the formal variableuW or to rewrite this equation
for the flow velocityvW .

In the smectic-A phase there are five independent viscos-
ity coefficients,h11~5h22!, h33, h13~5h23!, h55~5h44!, and
h66 ~h125h1122h66!, in comparison with the two indepen-
dent coefficients of the isotropic liquid phase~h11 andh66!.
Assuming that the shear stiffness coefficients vanish, there
are three independent stiffness constants in the smectic
phases,C11(5C225C12), C13(5C23), andC33, to compare
to the single one in the isotropic liquid phase. In the case of
small viscosities, the dispersion relations do not depend upon
h up to second order and one finds two propagation modes
~1 and2! with frequenciesv65kAC6 /r0 where

C65 1
2 @C11sin

2w1C33cos
2w

6A~C11sin
2w2C33cos

2w!21C13
2 sin22w#. ~2!

In expression~2!, w is the angle between the wave vectorkW
and thez axis. Assuming thatC11, C13, andC33 are not
extremely different the ‘‘1’’ mode is quasilongitudinally po-
larized while the ‘‘2’’ mode is quasitransversally polarized.
We introduce a parametera which expresses the degree of
the longitudinality of the quasitransverse mode:

ui
1

u'
1 52

u'
2

ui
2 5

1

a
, ~3!

whereui is the projection of the displacement vectoruW on the
wave-vector directionkW /k; uW'5uW 2uW i . One finds

a5
C13cos

2w2~C12C11sin
2w!

C13sin
2w1~C12C11sin

2w!

sinw

cosw
. ~4!

The Brillouin intensity of an observed mode is propor-
tional to the imaginary part of the elastic susceptibility and
can be fitted by the damped harmonic-oscillator spectral
function:

S~v6!}
1

~v22v6
2 !21v2g6

2 , ~5!

whereg65k2h6/r0 represents the FWHM of the Brillouin
lines. As follows from the solution of Eq.~1!:

h15h33cos
4w1h11sin

4w12~2h551h13!sin
2w cos2w,

~6a!

h25h551~h111h3322h1324h55!sin
2w cos2w. ~6b!

The k value is fixed by the experimental setup~k5&v i /c,
wherevi is the radial frequency of the incident light; in our
casek51.733105 cm21!. Expressions~5! and ~6a and 6b!
are strictly valid only ifv6

2 @g6
2 ; in general, they can be

used even whenv6*3g6 .
Note thatv6 andh6 do not vary in the same way versus

w. From thew dependence ofv1 or v2 it is possible to
deriveC11, C13, andC33. From the variation ofg1 or g2

versusw it is then possible to determineh11, h33, and
~h1312h55!.

In order to evaluate the intensity one can use a phenom-
enological pseudocrystalline model by introducing a four-

rank photoelastic tensorpi j ~in Voigt notation! appropriate to
the axial symmetry, equivalent to the hexagonal one, with
p445p555p6650. The intensity of the scattered light is then
given by @20,21#

Imm8~kW !}Fem, jem8,i
8 e i i 8e j j 8pi 8 j 8 lm

8 ulkm

v G2, ~7!

eW , eW8 are the unit polarization vectors of the incident and
scattered light, respectively. The indicesm andm8 refer to
the beam polarization~ordinary or extraordinary!. ei j is the
high-frequency dielectric permittivity tensor,ul are the com-
ponents of the displacement vector obtained from Eq.~1!,
kW is the phonon wave vector andv is its propagation velocity
given through Eq.~2!.

In our experiments, the scattered light was not polarized
and the polarization of the incident beam was held fixed in
the laboratory frame: it means that it turned in the sample
frame ~cf. Fig. 1!. Taking into account the geometry of the
experiment and ignoring nearly negligible birefringence ef-
fects, it follows from expression~7! that the light intensity
scattered from the QL and QT mode is proportional to

I6~w!}
1

C6~w! Fsin2w~p33u3
6k31p31u1

6k1!
2

1cos2w~p11u1
6k11p13u3

6k3!
22

1

2n2

3 @~p332p13!u3
6k31~p312p13!u1

6k1#
2

3sin2w cos2w, ~8!

where n is the mean refractive index. We recall that the
indexes 1 and 2 are strictly equivalent. If the coefficientspi j
are close to each other, the third term of expression~8! is
negligible with regard to the sum of the first and second
ones. Notice that in the liquid isotropic phase all thepi j are
identical for i<3 and j<3. In this case expression~8! is w
independent as expected.

Formula~8! is rather complicated and the intensity anisot-
ropy depends on three unknown variables~ratios of pi j !.
Analytical investigation of its behavior is thus very difficult.
In addition, Brillouin scattering experiments using a piezo-
scanned interferometer do not allow very precise measure-
ments of the intensities of acoustic phonons, especially
when, as in our case, the orientation of the sample has to be
modified between two consecutive measurements and when
the scattered intensity is low. With careful experiments the
precision does not exceed 20%–30%. It follows that the
complete set of the photoelastic coefficients cannot be ex-
perimentally obtained with sufficient accuracy. In solid crys-
tals, the values of the implied photoelastic coefficients do not
usually markedly differ from each other and a good qualita-
tive picture is obtained supposingp13'p11 and p31'p33.
Although we cannota priori justify this approximation in the
case of liquid crystals, we use it. We show below that it
gives a good account of the intensity anisotropy of the QL
mode and predicts qualitatively the behavior of the QT
mode. The improvement of the model obtained when slightly
modifying p11 andp33 is considered. The problem is revis-
ited in the discussion.
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Taking into account these simplifying equalities and using
the conditiona2!1 ~see above and the inset in Fig. 2!, one
finds for the intensities of the QL and of the QT mode:

I1}
1

C1
S p132 cos2w1p31

2 sin2w

2
1

2n2
~p312p13!

2sin2w cos2w D , ~9a!

I2}
a2

C2
S p132 cos2w1p31

2 sin2w

2
1

2n2
~p312p13!

2sin2w cos2w D , ~9b!

and, consequently

I2

I1
5a2

v1
2

v2
2 . ~10!

This means that only the longitudinal part of the mode vibra-
tions contributes to the scattered intensity.a and v2 are
stronglyw dependent whilev1 only weakly varies uponw
@cf, Eqs.~2! and ~4!# and, due to the large experimental er-
rors in the intensity measurements, can be often considered
as constant. Sincea remains small compared to 1 and even
to v2

2 /v1
2 , I2 is expected to be significantly smaller thanI1 .

The QT mode becomes purely transverse~a50! for an
anglewL defined by the equation

tanwL5SC332C13

C112C13
D 1/2; ~11!

for this angle the intensityI2 defined by formula~9b! van-
ishes. Generally, in liquid crystals one experimentally finds
that C33.C11 and consequentlywL.45°. This fact is the
starting point of our interpretation of the rather surprising
intensity variation of the QT mode intensity.

Figure 2 shows clearly the meaning of all the nonzero
photoelastic coefficients: the ratiop31/p13 is set to a value
typical for our sample and we study the changes in the an-
gular intensity variation whenp11 and p33 are modified by
about 10%. The value of the QL intensity depends practi-
cally only uponp13 andp31: the changes introduced by the
simultaneous or separate modifications ofp11 and p33 are
very small and cannot be detected by means of Brillouin
scattering. The curves corresponding to the intensity varia-
tion of the QT mode show a minimum nearwL . The value of
the coefficientp11 influences only the left part of the curve
~w,wL! while the coefficientp33 modifies only the right part
of the curve~w.wL!. It should be noticed that the predictions
of our model relative to the QT mode are not valid for angles
close to 0 orp/2: either the mode becomes overdamped
and the approach based on expression~7! cannot be applied
~v2,g2! or there is some small but nonzero value ofC44
that can originate from a small imaginary part of the viscos-
ity and that leads to a zero value ofI2 for w50 andp/2.

B. Analysis of the experimental results

1. Quasilongitudinal mode

We first discuss the results relative to the quasilongitudi-
nal ~QL! mode. The obtained spectra are well fitted with a

FIG. 2. Simulation of the intensity variation of the QL and QT
modes based on expression~8!. Inset: angular variation of the
parametera defined by expressions~3! and ~4!. The values ofCi j

are given in the legend of Fig. 9. Parameters:p31/p1351.4 ~typi-
cal value for our sample!. ~—! p115p13, p335p31 @in this case the
expression~8! can be simplified and replaced by~9!#; ~xxx!
p1151.15p13, p335p31; ~---! p115p13, p3351.1p31; ~•••!
p1151.15p13, p3351.1p31.

FIG. 3. Angular variation of the propagating velocity~left col-
umn! and of the width of the Brillouin lines~right column! relative
to the quasilongitudinal mode for three different temperatures.~a!
Just above the isotropic–smectic-A transition~T555 °C!; ~b! near
below this transition~T550 °C!; ~c! deep in the smectic phase~T
533 °C!. The solid curves are fits with the expressions~2! and~6a!;
in the isotropic phase the horizontal straight line represents the
mean value.
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sum of a zerocentered Lorentzian function and a harmonic-
oscillator spectral function~5! ~see Fig. 8a below!. We have
measured the temperature dependence of the angular varia-
tion of the propagation velocity and of the damping. It is
interesting to compare the results obtained in the smectic
phase well below and near below the smectic-isotropic tran-
sition atTLA with the data relative to the isotropic phase just
above this transition~Fig. 3!. In the smectic phase the results
are well fitted with the theoretical expressions~2! and ~6a!;
they provide the values of the three independent components
of the elastic stiffness tensor~C11, C13, andC33! and of three
independent viscosity coefficients~h11, h33, andh1312h55!.
As shown in Fig. 4, the anisotropy of the stiffness constants
vanishes atTLA and continuously develops when lowering
the temperature. In contrast, the viscosity shows a marked
discontinuity inh33 at TLA ~Fig. 5!.

Finally, we have measured the variation of the QL-mode
intensity. Figure 6 shows the difference between the angular
variation of the intensity in the isotropic and the smectic-A

phase very close to the transition temperature. The experi-
mental points in the smectic phase are fitted with the func-
tion given in Eq.~9a!. As shown in this figure, in the smectic
phase the intensity exhibits a rather strong anisotropy leading
to a value ofp 31

2 /p 13
2 significantly larger than 1, which is the

value in the isotropic phase. The ratiop 31
2 /p 13

2 ranges be-
tween 2 and 3 in both smectic phases~see Fig. 7!.

2. Quasitransverse mode

Deep in the smectic phases~about 20 °C or more below
TLA! a shoulder is observed on the wing of the quasielastic
peak forw ranging from about 20° to 50°, as shown in Fig.
8~a!. We interpret this feature as a weak quasitransverse
~QT! mode. The spectral characteristics of this mode can be
obtained by subtracting the background from the measured
spectra. We proceed as follows~see Fig. 8!: First, we per-
form a simultaneous fit of the QL and elastic lines forw50°
~the same fit as described at the beginning of Sec. III B 1!.
The elastic peak is much more intense than the QL line and
the points corresponding to intensities largely beyond the
shown vertical range are not available~protection of the pho-
tomultiplier!; thus no quantitative information about the cen-
tral line can be obtained from the fit. However, it is notewor-
thy that the value of its FWHM resulting from our fit is very
close to the FWHM of the instrumental function. The ob-
tained FWHM value of the elastic line is then fixed and used
for fitting all the spectra measured at other angles. In Fig.
8~a! we show the fits forw520°, 30°, and 45°. In the regions

FIG. 4. Variation of the stiffness constants versus
temperature: (3) C0 in the isotropic phase,~d! C11, ~j! C33,
and~s! C13. The plotted values were calculated using a mass den-
sity of 1000 kg/m3, which certainly does not differ much from the
actual value ofr0 ~nonmeasured!.

FIG. 5. Variation of the viscosity components versus tempera-
ture: (3) viscosity in the isotropic phase,~d! h11, ~j! h33, and
~s! h1312h55. The plotted values were calculated using a mass
density of 1000 kg/m3.

FIG. 6. Angular variation of the scattered intensity of the longi-
tudinal mode in the isotropic phase at 55 °C~j!, and of the quasi-
longitudinal mode in the smectic-A phase at 50 °C~s!. Solid
line: fit with expression~9a!.

FIG. 7. Temperature dependence of the ratio of the photoelastic
coefficientsp 31

2 /p 13
2 .
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where the intensity of the QT line is clearly nonzero the
experimental points are not taken into account during the
fitting procedure@open points in Fig. 8~a!#. The QT lines are
then obtained by subtracting the fitted lines from the mea-
sured spectra. A very small asymmetry of the central line is
found in some spectra~20°, 45°! yielding the fit less precise
and resulting in a large difference between the intensities of
the Stokes and anti-Stokes QT lines. The computed spectra
of the QT mode are shown in Fig. 8~b! together with the
values of the frequency used for the calculation of the propa-
gation velocity ~Fig. 9!. However, the results of the fits
should not be overestimated: the subtracted background
varies very rapidly, its intensity is comparable or even supe-
rior to that of the QT line and, in addition, the instrumental
function is slightly asymmetric for some spectra. In our opin-
ion the fit yields a relatively good value for the propagation
velocity, a rough estimate for the intensity variation and the
order of magnitude for the FWHM.

Due to the limited angular interval and to the rather large
uncertainty of the frequency determination, one cannot pre-
cisely evaluateC11, C13, andC33 from the measured spectra.
However, as shown in Fig. 9, the QT velocities calculated
from the stiffness constants derived using the QL-mode Bril-

louin data satisfactorily fit the experimental values. We recall
that there is no extra fitting parameter and that the QT-mode
propagation velocity is fully determined by the angular
variation of the QL-mode frequency. This agreement justifies
the theoretical treatment used in terms of elasticity tensors
@Eq. ~2!#. The FWHM of the QT mode has the expected
order of magnitude and it seems to grow when 45° is ap-
proached as predicted by Eq.~6b!, but it is not possible to
derive quantitative conclusions about the behavior.

As expected, the scattered intensity is significantly
smaller for the QT mode than for the QL mode. We recall
that the QT mode becomes purely transverse forw5wL : wL
slightly depends upon the temperature and ranges between
50° and 55°. The measured intensity of the QT mode
strongly depends ofw: it diminishes whenw increases from
20° to 50° and the spectral line is not observed forw.wL
@Figs. 8~b! and 10~b!#. This evolution is qualitatively de-
scribed by Eq.~9b!. However, in order to obtain a quantita-
tive agreement one has to take into account simultaneously
the intensity variation of both modes. Figure 10 shows the
intensity data obtained at 33 °C. The results relative to the
QL mode@Fig. 10~a!# are fitted with the function~9a!. The fit
yields the values ofp13 andp31. Assuming that the simpli-
fied model is valid~p115p13, p335p31!, one can predict the
w dependence of the ratioI1/I2 . However, this prediction
underestimates the measured values@cf., Fig. 10~b!#. The
agreement can be significantly improved through an en-
hancement ofp11 by about 25%: thew dependence ofI1

changes only very slightly whileI2/I1 is significantly in-
creased forw,wL .

However, our aim was not to quantitatively determine all
the photoelastic coefficients. The experimental data do not
allow it with a sufficient precision: the large error bars in
Fig. 10~b! are related to the fact that one cannot exclude a
systematic error in the QT intensity determination in spite of
a careful fitting procedure. Our aim was to explain the rather
surprisingw interval where the QT mode is observed: for
w&20° the QT-mode frequency is very low and the line is
merged in the quasielastic peak; assuming thatp33 does not
much exceedp31, the intensity of the QT mode predicted by
our model becomes very low forw*50°. To our knowledge,
this QT mode has been observed only once@7# in a classical

FIG. 8. ~a! Examples of spectra at 33 °C for different anglesw
between the direction of propagation and the normal to the layers.
The shoulder on the wing of the quasielastic peak is assigned to the
quasitransverse mode. Closed symbols: experimental data taken
into account for the fit; open symbols: experimental data excluded
for the fit; solid line: simultaneous fit of the central line and QL
mode~see text!. ~b! Spectra of the QT mode obtained by a subtrac-
tion of the fit from the experimental data. Vertical solid and dotted
lines correspond, respectively, to the values of the propagation ve-
locity and to the error bars shown in Fig. 9.

FIG. 9. Angular variation of the propagation velocity of the
quasitransverse mode forT533 °C. The solid line is obtained using
the results of the fit of the QL-mode anisotropy at the same tem-
perature @cf. Fig. 3~c!#: C11/r052.613106 m2s22; C33/r0
52.893106 m2s22; C13/r052.163106 m2s22.
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smectic structure, also in a restrictedw interval: we think
that our interpretation of this narrow allowed interval of ob-
servation is more convincing than the previously reported
one @22# based on an anomalous anisotropy of damping of
the QT mode due to a coupling with a soft tilt-angle mode.

3. The smectic-C* phase
and the smectic-C* –smectic-A transition

The Brillouin spectra do not show significant differences
between the smectic-C* and the smectic-A phases: the po-
larization selection rules are not modified and both QL and
QT modes are observed with intensities comparable with
those obtained in theA phase. A more careful investigation
indicates a reproducible small anomaly inC33 near the
smectic-C* –smectic-A transition atTAC ~Fig. 4!. A similar
very weak anomaly forC11 seems to be present but, due to
the experimental errors, it is doubtful. It should be noted that
the evaluation ofC13 is possible only from complete anisot-
ropy measurements~like those presented in Fig. 3! while the
values ofC11 or C33 can be obtained by a direct measure-
ment forw590° or w50° and all their temperature depen-
dence can be measured in a single pass without moving the
sample. Thus the accuracy of the determination of the rela-
tive variation forC11 andC33 is much better than that for
C13. Therefore we cannot conclude whether the small in-
crease observed forC13 nearTAC is due to transition effects
or that it is only an artifact.

The tilt angleu between thez axis and the director is the
order parameter for this second-order phase transition: one
expects a coupling betweenu2 and the longitudinal strains,

giving rise to steplike anomalies in the stiffness constants
C11 andC33. Most probably this anomaly is smeared at the
hypersonic Brillouin regime: the frequency of the ampli-
tude mode related to the fluctuations of the tilt angleu is
much lower~of the order of 105 Hz!.

Finally some spectra were recorded using an applied dc
electric field in order to unwind the helical structure of the
C* ferroelectric phase. The observed changes aroundTAC
are extremely small and the experimental uncertainties do
not allow one to make conclusions about the influence of the
dc field.

C. Discussion

Let us analyze briefly the hydrodynamic approach that
was used previously to discuss the results in smectic-A
phases@23,24#. As mentioned in the Introduction, for the
smectic crystals the hydrodynamic approach@1,4# allows us
to justify the phenomenological analysis used in Sec. III B.
The classical equations of motion found for an isotropic liq-
uid are modified by introducing an additional variableu that
describes the layer displacement and provides the following
contribution to the free energy:

Fu5
1

2
F3S ]u

]zD
2

1
1

2
F1S ]2u

]x2
1

]2u

]y2D
2

1
1

r0
srr

]u

]z

1
1

T0
sTT

]u

]z
, ~12!

wherer andT stand for density and temperature fluctuations
andr0 andT0 for their equilibrium values, respectively. The
dynamics are described by six linearized equations of mo-
tion:

ṙ52r0] in i ,

T0ṡ5k i j ] i j T1m]z js jz ,

u̇5nz1
m

T0
]zT1j] js jz ,

r0ṅ i52] i p1d iz] js jz1h i jkl ] j lnk , ~13!

sjz is a mechanical stress associated with the derivatives of
the displacementu, s is the density of entropy,ni are the
components of the velocity,hi jkl are the coefficients of the
viscosity tensor with appropriate symmetry~cf. above!, ki j
are the components of the thermal conductivity tensor, and
m, j are other phenomenological coefficients. Replacings,
sjz , and the hydrostatic pressurep by linear combinations of
T, r, and derivatives ofu @3#, one finds, in addition to dif-
fusive solutions, the propagating modes phenomenologically
described in Sec. III B 1 with the following stiffness con-
stants:

C115C0

5r0S ]p

]r D : value obtained for the isotropic liquid,

~14!

C135C02sr ,

FIG. 10. ~a! Angular variation of the intensity of the QL mode.
~b! Angular variation of the intensity ratioI2/I1 of the QL and QT
modes. Temperature: 33 °C; symbols: experimental values;
solid line: simulation using Eq.~9! with p3151.33p13; dotted line:
simulation based on Eq.~8! and with p335p3151.33p13,
p1151.25p13.
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C335C022sr1F3 .

Assuming that the hydrodynamic model is valid, one can
calculatesr andF3 @cf. Eq. ~14!# from the Brillouin experi-
mental data as it was done in several papers@23,24#. In our
casesr andF3 would be found to have the same order of
magnitude and would tend continuously to zero when the
isotropic phase is approached. However, this interpretation is
not satisfactory taking into account the Brillouin data in both
nematics and smectics. In the nematic phase there is no hy-
drodynamic contribution to the elastic anisotropy in contra-
diction with various experimental results@5,11#. Our experi-
mental results are very close to the previously reported ones
concerning nematic liquid crystals. The anisotropy of the
stiffness constants in our material only very slightly exceeds
the values in nematic 4-cyano-4-n-alkylbiphenyles~nCB!,
MBBA, and PAA. For example, 15 °C below the isotropic-
mesophase transition, the value of~y32y1!/y1 is 5.5% of our
sample, while most of the previously studied nematic com-
pounds show an anisotropy between 3% and 4%@5#. In our
sample the anisotropy of the viscosity coefficients
~h332h11!/h11 ~35%! is of the same order of magnitude as,
for instance, in MBBA or PAA~about 30%!. Moreover, in
the temperature range neighboring the isotropic-smectic
phase transition the behavior of the QL propagation mode is
analogous to that observed in the vicinity of the isotropic-
nematic transition regarding both the continuous increase of
the velocity anisotropy and the abrupt jump of the viscosity.
In the isotropic-nematic phase transition the viscosity also
seems to be the most affected quantity as in the isotropic-
smectic transition. The common property of the smectic and
nematic phases is the orientational order of the molecules.
Thus, the viscosity looks to be very sensitive to the orienta-
tions of molecules and not to the layer structure. On the other
hand, differences between nematics and smectics have been
detected in the ultrasonic regime where the reported elastic
stiffness anisotropy is very weak in nematics, while it is
generally clearly present in smectic structures.

The hydrodynamic theory fails when an additional low-
frequency quantity~for example, some slow relaxational
mechanism! couples to the hydrodynamic variables. The cor-
responding equation of motion has to be incorporated to the
system of Eqs.~13! and the dynamics ofr and u can be
strongly modified. Consequently, the values ofCi j from Eq.
~14! are renormalized. Relaxation phenomena due to in-
tramolecular degrees of freedom were observed in many or-
ganic liquids@25#. In nematic liquid crystals@26# a single
relaxation process~with a relaxation frequency in the MHz
range! was attributed to thetrans-gaucherotation isomerism
of the molecule end chains. A high-frequency relaxation be-
havior ~in the GHz range! was also revealed in nematic liq-
uid crystals@11#. A relaxation in a similar frequency region
~called b relaxation! was observed in ferroelectric liquid
crystals@27,28# by dielectric spectroscopy and was assigned
to the libration~hindered rotation! of the molecule around its
long axis. It has to be pointed out that the two latest relax-
ation mechanisms show the same frequency range and very
small temperature dependence.

It then seems that a general relaxation mechanism is
present in both smectic and nematic liquid crystals giving a
significant contribution to the elastic anisotropy. The effect

of the hydrodynamic terms@Eq. ~14!# gives account, at least
partially, for the ultrasonic anisotropy@14#. However, in the
hypersonic range, the hydrodynamic contribution is probably
smaller than~or at most comparable to! that related to the
above-mentioned relaxation mechanism. In order to evaluate
the hydrodynamic terms, it would be necessary to perform an
experimental study within a broad frequency range for the
same smectic liquid crystal.

As to the intensity interpretation, one can suppose that
this additional relaxational process only weakly affects the
coupling betweenr and u on one hand and the high-
frequency permittivity fluctuations on the other hand. This
means that it is possible to analyze the photoelastic coeffi-
cients in terms of the hydrodynamic theory. When deriving
the expression for the scattered intensity, one has to realize
that the density fluctuations correspond to the volume
changes, i.e.,e111e221e33 in terms of deformations and that
the derivative of the displacement]u/]z can be assigned to
e33. Then, we can write the change of the free energy related
to the high-frequency permittivity modulation in terms of
only two independent strains (e111e221e33) ande33:

DF5@~E1
21E2

2!p1r1E3
2p3r#~e111e221e33!

1@~E1
21E2

2!p1u1E3
2p3u#e33,

whereEi are the components of the electric field andpir , piu
are appropriate photoelastic coefficients which form the non-
zero part of the matrixpi j :

pi j5S p1r

p1r

p3r

p1r

p1r

p3r

p1r1p1u
p1r1p1u
p3r1p3u

D .
Thus, our supposition thatp13'p11 and p31'p33 means, in
the language of hydrodynamics, that the contribution ofu to
the scattered intensity is much smaller than the contribution
of r. This hypothesis is justified by the fact thatu is a mor-
phic variable in the smectic-A phase. Experimentally, we
found thatp11 is slightly larger thanp13 and smaller than
p31; p1u andp1r then show opposite signs withup1uu!up1ru.
From the experimental values obtained at 33 °C one can es-
timate

p1r /p3r'0.95,

p1u /p1r'20.2.

This means thatp1r and p3r, which are identical in
the isotropic phase, stay close to each other in the smectic
phases. The morphic coefficientp1u is smaller. If the
second morphic coefficientp3u behaves analogously,
which means p1u'p3u, one obtains the following
inequality: p13,p33,p31. Due to the decrease ofp33, the
right part ~w.wL! of the QT-intensity curve@Figs. 2 and
10~b!# is further reduced and the influence ofp11 on the
QL-intensity curve is compensated. Unfortunately, we can-
not compare our results with other liquid crystals because
there are no experimental data in the literature concerning
the Brillouin scattering intensities in such compounds.

Considerable effort was made to detect the QT mode in
classical nematics@5#, but the corresponding Brillouin line
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was not experimentally found. It has been suggested that this
mode should be overdamped in such structures. In our opin-
ion, it is possible to envisage also another explanation of the
experimental results reported in@5#: the frequency and the
intensity of the QT mode are probably very low. It follows
from our study that the QT mode is not easily resolved for
45° ~angle used in@5#!: its intensity is already very low. It
is not clear whether one can introduce, even in nematics,
some coefficients analogous top1u and p3u and, in such a
hypothesis, what are their magnitudes. However, the impor-
tance ofp1u is clear: without its small contribution the in-
tensity of the QT mode in our sample would be two or three
times lower@cf. Fig. 10~b!#. In addition, the velocity of the
QT mode~;300 m/s! in the studied nematic materials~nCB!
is lower than that in our sample~;500 m/s!. It then follows
that the QT mode can be undetectable by means of scattering
experiments in these materials. We believe that the results of
the pseudocrystalline model are applicable to both QL and
QT modes in the smectics as well as in the nematics.

IV. CONCLUSION

In this paper we reported a complete set of Brillouin data
in smectic-A and smectic-C* phases. A weak quasitrans-

verse mode was observed in a limited angular range well
below the isotropic–smectic-A phase transition.

The results were interpreted in the frame of a phenomeno-
logical model that is usually used for the description of elas-
tic properties in solid crystals. We extended the model by
applying it equally to the calculations of the scattered inten-
sity. The results experimentally obtained for the QL and the
QT modes are coherent with the predictions of the model.
Using the data relative to the QL mode the model success-
fully fits the characteristics of the QT mode. Thus we
showed that the model is fully applicable to liquid crystals.

The behavior of the real and imaginary part of the stiff-
ness tensor in the smectic phases is similar to that found in
nematics and is probably related to a general relaxation
mechanism in the GHz frequency range. The anomalies
found at the smectic-A–smectic-C* phase transition are very
weak: the frequency of the soft mode is too low to be de-
tected by our technique.
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