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The phase transitions in Cs,CdBr, have been studied by means of Brillouin scattering and ultrasonic

measurements. The sequence Pnma = incommensurate o> P2,/n1l gives rise to significant
anomalies of both real and imaginary parts of the elastic constants. In the case of Cy, a strong asym-
metric broadening of the Brillouin lines was observed in the IC phase and several degrees above the
Pnma < IC transition. The differences between Brillouin and ultrasonic results concerning C,, and Cy,
suggest a strong frequency dependence of the process governing the above-mentioned sequence of phase
transitions. A low-temperature transition at 156 K has been studied; it presents a considerable softening
of shear stiffness constants. Selection rules for Brillouin scattering are greatly affected at the transitions
to monoclinic and triclinic phases, allowing to measure the shear stiffness constants with a good accura-
cy. A detailed discussion of the phenomena linked to the monoclinicity is provided. In addition, the ul-
trasonic experiments have confirmed the existence of a previously reported phase transition at 208 K.

I. INTRODUCTION

Cs,CdBry, is one of the 8-K,SO, family of crystals and,
like most of them, it shows an incommensurate phase:
together with Cs,HgBr,, it exhibits an interesting
behavior since the lock-in phase transition occurs at the
center of Brillouin zone. The space-group symmetry of
this compound was found to be Pnma at room tempera-
ture.! Below that temperature, it undergoes several phase
transitions. Five phase transitions have been reported up
to now: at T;=2522"7 T,=2372"7 T,,=208,%’
Tc=156,2%5"7 and T-=130 K.” However, the observa-
tions reported in the literature agree with each other only

in the sequence Pnma<>incommensurate<>com-
mensurate (referred to as the “incommensurate se-
quence” in the following). The transition at 156 K was
not observed by Maeda, Honda, and Yamada* (dielectric,
x-ray measurements). The two remaining phase transi-
tions, which apparently are not easily observable, have
been detected only by Zaretskii and Depmeier’ (both
transitions; x-ray measurements) and by Maeda, Honda,
and Yamada? (transition at 208 K only). In addition, the
existence of these two new phase transitions reveals some
contradictions concerning the symmetry of the low-
temperature phases. A careful study of the bibliography
shows the following picture:
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The incommensurate modulation appears along the a
axis and the modulation wave vector exhibits a slight
linear decrease with decreasing temperature, from §=0.2
at T; to §~0.15 at T;,.* The modulation of the structure
is characterlzcd by a rotation of the CdBr, tetrahedra
around a and by a slight translation of the caesium atoms
along b.% The first-order phase transition at 237 K lead-
ing to the pseudoproper ferroelastic phase is interpreted
as arising from a lock in at the " point. The existence of
two distinct domain systems*> explains the nearly ortho-
rhombic symmetry of the x-ray diffraction patterns in
this phase. A Raman study of Cs,CdBr, was performed
by Rodriguez et al.® An intense quasielastic scattering
was observed near the incommensurate sequence; on the
other hand, the spectra did not reveal any soft mode in
this temperature range. The authors conclude that this
sequence is governed by a dynamic order-disorder pro-
cess, the static disorder being excluded by nuclear-
quadrupole-resonance (NQR) measurements.” In con-
trast, the low-temperature transition III<-IV was found
to be driven by a soft mode with B,, symmeiry; its tem-
perature dependence is typical for a pseudoproper ferroe-
lastic transition. The authors observe a breaking of the
monoclinic selection rules just at this transition. This
effect, which will be discussed below together with our
Brillouin results, enables one to assume that the symme-
try group of phase IVa is P1. The optical birefringence
method was used to determine the pressure-temperature
phase diagram of the incommensurate sequence:’ a triple
point separating the paraelastic, ferroelastic, and incom-
mensurate phases was found for a hydrostatic pressure of
about 100 MPa. Above this critical pressure a direct
second-order transition Pnma<>P2;/nll was observed.
The elastic properties of Cs,CdBr, were studied by means
of ultrasonic-wave propagation.®!%!! The measurements
concerned the incommensurate phase and a small tem-
perature range above T; and below T, (all the diagonal
stiffness constants were measured in the range of 230 to
270 K). Significant anomalies were measured for C,, and
Cy;. Cyy shows a large hystere51s throughout the whole
range of existence of the incommensurate phase.'!

The present paper is mainly devoted to the experimen-
tal investigation of the elastic properties of Cs,CdBr,
near its phase transitions, derived from ultrasonic-
propagation and Brillouin-scattering measurements. The
results will be qualitatively compared with those expected

1 : 1 1 dQ,
FQ1=E‘11(T_T1)Q%+ZB1Q?+"'+_2_ o

C dx

[This simple description leads to ko=—C, /2D, for the
incommensurate wave vector ky (k,0,0).]

Our experimental data (see Fig. 5) clearly suggest that
the PT at T is driven by a I" mode Q, of By, (xy) sym-
metry. The corresponding part of the free energy has ob-
viously the form:

FQ?‘:%az(T_Tz)Q%'*'%Bng"I' °tt . (3)
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from a static Landau model; the appropriate form of the
corresponding free energy is introduced in Sec. II after a
brief justification. Section III deals with experimental de-
tails. In Sec. IV we present and discuss the Brillouin
spectra, while Sec. V is devoted to ultrasonic measure-
ments. Throughout the paper we shall analyze the points
of agreement and the discrepancies encountered when
comparing the results to the predictions of the above-
mentioned model, without going on to detailed calcula-
tions, which will be performed in the following paper (Pa-
per II). Theoretical improvements including dynamics of
the order parameter will be also presented in Paper II
and compared to the experiments.

II. SCENARIO OF THE PHASE TRANSITIONS

As previously pointed out, the origin of the phase tran-
sitions (PT’s) at T;, T, and T seems rather well under-
stood. The incommensurate (IC) phase is due (as in
NaNO, for example) to the pseudo-Lifshitz invariant,!?
which couples two one-component modes p and ¢ of
B3, (yz) and A,(xyz) symmetry, respectively:

_P___q_

2 dx -de

(We shall always use the system of coordinate axes x, y, z
parallel to the orthorhombic crystallographic axes a, b,
c.) Consequently, the harmonic part of the free energy Fy
corresponding to these two modes propagating in the k
(k,0,0) direction reads:'>

1 a b
Fk=5 ao+7k2 pkp;:'*'_ bo+5k2 qu;:

+io-Tk(pkq;—'p;:qk) a,b>0, bo>a0 . (1)

If the modes p; -, and g, —, are sufficiently close to each
other and if the cou?hng between them is strong enough
(more specifically if'? 202/a>b 0—ap), 2 minimum can
occur near the I' point on the lower-frequency mixed
branch. This branch will hereafter be denoted Q,(k).
Therefore the free-energy dens1ty describing the PT into
the IC phase can be written in the usual form:

az, |’
dx?

C, <0, D,>0. @)

Before discussing the origin of the PT’s at T, and T,
let us look for a simple argument explaining the simul-
taneous existence of two (at least) different low-frequency
modes. Very recently,' such an argument has been pro-
vided starting with the hexagonal prototype phase
P6y/mmc which is common for the materials of the
A,BX, type. From compatibility relations it follows that
an E,, mode splits in the direction [001] into X, and X,



branches; at the end of the Brillouin zone these branches
acquire M 2, and M, symmetry, respectively [the point M
is at (0,0,c*) where c is a lattice parameter in the ortho-
rhombic phase—see Ref. 15 for the relations between or-
thorhombic and hexagonal unit cells]. It can be shown'*
that these branches may consist of librational modes of
rigid CdBr, tetrahedra, which are the lowest-frequency
external modes in Cs,CdBr,. Let us denote the triply de-
generate M, modes at the M point as ¢;,9,,9;. The
mode ¢, is responsible for the virtual PT
P6;/mme(Z = 2)—+an11 (Z=4)" and becomes a T
mode of 4, (x 2 32 2z2) symmetry in the orthorhombic
phase while the M, mode transforms into a B;, mode
(px=o)- Thus, assuming that the doubly degenerate E,,
mode softens, one can explain the existence of two modes,
i.e., M, and B3, modes, on an equal footing as needed for
the PT’s into the orthorhombic and monoclinic phases.
We shall pursue this idea even further by noting that
there is also a low-frequency A4, mode (g —¢) needed for
explaining the IC phase since, in the orthorhombic phase,
E,, modes split into 4, and B;, (x) modes. The as-
sumed course of the dispersion branches relevant to the
PT’s is schematically plotted in Fig. 1 (branches which
are not coupled to relevant ones are omitted for simplici-

ty). It should be remembered that the branches should -

coalesce in pairs with nonzero slopes at the points 1a*
and 1c* (Lifshitz invariants exist there). To meet this
condition we need a low-frequency mode B, (xy)—Ilater
responsible for the PT at To—which combines at Ja*
with the 4, mode via the branches 2, and =, (see Fig. 1).
There are no direct experimental evidences so far
confirming this speculative scheme of dispersion branches
in CSZCdBr4.

We return now to the problem of what might be the
origin of the PT’s at T, and T¢.. Let us first assume that
these PT’s are equitranslational. Obviously, the possible
order parameters cannot belong to odd representations of
Pnma since a loss of the inversion center has never been
observed in Cs,CdBr,. Even representations B, and B,,
would induce pronounced anomalies of the elastic con-
stants Cg and Css, respectively, which have been ob-
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FIG. 1. Schematic picture of dispersion branches in the
[100] and [001] directions of the Brillouin zone in the ortho-
rhombic phase. The dashed lines correspond to the hexagonal
phase. Remember that in the hexagonal phase the 4, and B3,

modes degenerate into an £, mode.
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served neither near Ty, nor near T¢. Therefore we are
left with the totally symmetric representation A4,, which
would induce an isomorphous first-order PT. Experi-
mental results®’ suggest, however, that these PT’s are
rather continuous than discontinuous. Nonequitransla-
tional PT’s are more probable, simply because they have
already been observed in the isomorphous materials
Rb,ZnCl, and Cs,HgBr,.> It has been proved by neutron
inelastic scattering!® that the low-temperature PT from
the lock-in improper ferroelectric phase both in
Rb,ZnCl, and in K,ZnCl, is driven by the remaining soft
modes corresponding to the three-dimensional represen-
tation M, of the hexagonal prototype phase. These soft
modes ¢,,g; remain degenerate in the ferroelectric phase
and produce a doubling of the unit cell. By analogy we
believe, as do the authors of Ref. 14, that these modes
play some role in Cs,CdBry, too. First we note that, un-
like the situation in the ferroelectric phase (Rb,ZnCl,,
K,ZnCl,), the degeneracy of g, and ¢g; modes is lifted in
the ferroelastic lock-in phase P2,/n11 (Cs,CdBr,) due to
the coupling term mei(q3—q3), where the index s
denotes the spontaneous shear in the monoclinic phase.
Obviously, this term contributes to the softening of the g,
or g, mode depending on the sign of m. Now it is easy to
show that freezing of a g¢; mode would lead to a unit-cell
doubling (Z =8) only, but that the symmetry would
remain monoclinic P21/n11. Consequently, there is no
coupling like g¢e; (n= ; j=5,6; i =2,3) and
hence no pronounced anomahes in Cj; could be expected
near a PT induced by ¢g;. Therefore the g, mode, for ex-
ample, could be a candidate for the PT at T, around
which a small anomaly in C,, only has been observed (se¢
Fig. 11). Unfortunately, however, we need to explain two
PT’s, at T, and Te. It would seem quite natural to as-
sume that the PT at T is driven by the g3 mode, but this
would destroy the center of inversion, which apparently
does not occur. This fact leads us to the conclusion that
the PT’s at T} and T might be in fact transitions into
an IC phase followed by a corresponding lock-in PT due
to a soft mode g, near the M point of the hexagonal
prototype phase (the T point in the orthorhombic phase)
at k=pb*+1c* (u=1), as was observed in K,ZnCl,.'

The small elastic anomalies (see below) and the lack of
change in the Raman spectra®!* below T} are not con-
tradictory to- this hypothesis. On the other hand it
should be pointed out that the PT’s at T;. and T have
not been seen in sensitive NQR measurements.? It might
be possible that the existence of these two PT’s depends
on the sample preparation. Our hypothesis based ex-
clusively on an analogy with the isomorphous K,ZnCl,
seems to be the most simply way to explain the extra PT’s
observed by some authors (including us—see below) in
Cs,CdBr,. In between Ty, and T there is the PT at T¢

“driven by the soft B;, mode which reduces the symmetry

to P1. We propose to identify this soft mode with one
observed in the (xy) Raman spectrum.!* Note that this
mode is also observed in other spectra according to the
symmetry requirements for the selection rules®* [(xz) in
the monoclinic phase, any geometry in the triclinic one
below T¢]. In conclusion, if our hypothesis is correct,
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the sequence of low-temperature phases in Cs,CdBr,
would be:
T, T,
P2,/n1(Z =4)—>IC——->PT(ZV=4)
Ten
—>PUZ =8) .

Since, from the analysis of most experimental data, the
transitions at T;. and at T, only weakly affect the
structural arrangement and the physical properties of
Cs,CdBr,, and, more specifically, induce only small
anomalies in its elastic constants, we shall use, in order to
guide our interpretation, the previously proposed free-
energy density:®

F=Fy +Fg +F.+F,,, @
where F, is the elastic energy
1 & (o0 1 & (0.2
F5=E o C1j5i5j+—2'2 CiEf (5)
Lj=1 i=4

and where Fy . describes the coupling of the order pa-
rameters to the strains and is written as

3 )
Fp.=3 (F,Q1+H;Q3)e,+fQ1e,+80,0,e5+h Q56 .

i=1

. (6)
Notice that the symmetry of Q, is B, (xy) rather than
B,; (xz), and therefore the roles of €¢ and &5 are inter-
changed with respect to the original paper.® Indeed, the
chosen form (6) can only describe the incommensurate se-
quence followed by the III<IV transition at T.
Neglecting dynamics and fluctuations, one easily calcu-
lates the anomalies of the elastic constants deriving from
this model. The most pronounced features are believed
to arise from the bilinear terms (fQ,e,,80;Q,¢5,4Q,¢4),
which  deeply affect ‘the transverse constants
(C44,Cs5,Cg6). From the analysis of our experimental
data, it will be shown that improvements of this model
including dynamics have to be performed. This will be
the aim of Paper II.

III. EXPERIMENTAL DETAILS

Crystals of Cs,CdBr, were grown from the melt by the
Bridgman method. They show a good optical quality and
they easily cleave perpendicularly to the ¢ axis. They
were oriented with the aid of optical methods and con-
veniently cut. The refractive indices were measured at
room temperature: n,=1.699,n,=1.683,n,=1.675.

The Brillouin experiments were performed using a
five-pass Fabry-Pérot interferometer which was described
previously.!” The finesse of the instrument is about 50 for
the free spectral ranges used (between 10 and 30 GHz).
Thus, in backscattering experiments, where the results
are not influenced by geometrical broadening, the full
width at half maximum (FWHM) of a Brillouin line can
be reasonably evaluated if it exceeds about 150 MHz.
The 5145-A line of an argon single-mode laser was used.
The incident radiation power was taken as small as possi-
ble in order to avoid sample heating: it varied from a few
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tens of mW for scattering by longitudinal modes up to
300 mW when studying transverse modes, which have a
very weak intensity.

Ultrasonic measurements were made using two
different types of MATEC ultrasonic equipment. Abso-
lute sound velocities were determined by the pulse-echo
overlap method with a MATEC 6600 pulse generator.
The accuracy of the absolute values of the velocity can
reach 0.1%: however, there are often ambiguities con-
cerning the proper choice of the overlapping peaks; since,
throughout the study, we only focused on the tempera-
ture variations of the elastic constants, we did not at-
tempt to derive absolute values completely consistent
with the other experimental data (previously published
ultrasonic measurements®'® and our own Brillouin re-
sults). This explains some small differences far from the
PT, between ultrasonic and Brillouin values appearing in
the rest of this paper. Measurements of the temperature
dependence of the ultrasonic-pulse transit time and of its
attenuation were performed using a computerized
coherent phase system detecting transit-time changes
down to 1 part in 10°. The rate of temperature change
was about 0.05 K/min in the vicinity of the transition
temperatures and 0.1 K/min in the other temperature re-
gions. Coaxially gold-plated X- or Y-cut quartz trans-
ducers of fundamental frequency 10 MHz were used to
generate longitudinal and shear modes, respectively,
along the crystallographic directions. The transducers
were bonded to the crystal with bis-(2-ethylhexyl)-
sebacate.

IV. BRILLOUIN SCATTERING

All the elastic stiffnesses were calculated using the
room-temperature values of the refractive indices and of
the crystallographic data (to calculate the density), ignor-
ing their temperature dependence. The values of all the
orthorhombic elastic constants measured at room tem-
perature are reported in Table 1.

In Brillouin scattering we have observed three phase
transitions: I«+II at 252 K, II<1III at 235 K, and II[«<IV
at 156 K. Therefore the discussion of the Brillouin re-
sults will concern mainly these three transitions. Notice
that the temperature of the transition II<>III differs by 2
K from the data previously published (237 K), but agrees
with our ultrasonic results (see below).

In order to present the experimental results clearly, we
introduce the following notation: the elastic constant re-
lated to the acoustic phonons propagating in the direc-
tion e along one of the orthorhombic axes is written as
v;(e) [with y;(e)=C}; (j =1,...,6) in the orthorhombic
phase, e.g., y,b)=y,(c)=C, in the orthorhombic
phase]. For the longitudinal or quasilongitudinal modes,
the axis along which the phonons propagate is unambigu-
ously determined by the index j, so we can abbreviate:
v;le)=y; for j=1,2,3 (e.g., ¥,=C,, in the orthorhom-
bic phase).

A. Backscattering

The two lower transitions (235, 156 K) are clearly
marked in the low-symmetry phases by the occurrence of
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TABLE I. Values of elastic constants at 295 K. The experi-
mental error for all the values is 0.1 GPa.

N AN 6557

and scattered polarizations parallel to each other. In the
monoclinic phase, for light propagating along the a axis,
the two transverse modes remain forbidden, but the lon-

Elastic constants (GP2) gitudinal mode related to Cy; is also observed in crossed
Cu 22.0 polarizations along b and ¢. For propagation along the b
Cyp 14.6 (or ¢) axis there exists only one purely transverse mode,
Cy 14.7 Cgs (or Cs;), which is allowed when the incident and
Cn 7.6 scattered beams are polarized perpendicularly to each
Cis 1.7 other. The two remaining modes—quasilongitudinal and
Cas 6.6 quasitransverse—are related to ¥, (or ¥3) and y4(b) [or
Cu 2.85 X ;
Cos 415 '.)/4(9)], respectively, apd are allowed w1t}.1 parallel polar-
Ces 3.25 izations. The expressions for these elastic constants are

new spectral lines which are forbidden in the backscatter-
ing arrangement!® above the transition temperatures.
The observed selection rules in phase(s) III correspond to
the monoclinic spatial groups and the selection rules of
phase(s) IV correspond to the triclinic ones.

First, we analyze the monoclinicity effects observed in
the backscattering spectra below 235 K. Let us suppose
that the incident beam is polarized along one of the or-
thorhombic axes and propagates along another one. The
only allowed Brillouin lines in the orthorhombic phase
are related to the longitudinal modes and give access
through their velocities to the “longitudinal® elastic con-
stants C,;, C,,, or C33. They are observed with incident

-approximately given by

c? c?
72gczz+#, y4(b)§C44—¢ (7a)
Cpn—Cy Cp—Cy

for propagation along b; and by

2 2
Ch Ch

=, o)== Cy————
Cu—Cq’ #9547 ¢ "C,,

for propagation along c. In the above expressions, we
neglected all the higher-order terms in morphic elastic
constants: [4C,; /(C;—Cy)?<<1; i =2,3.

Figure 2 shows the measured relative intensities of the
lines between T; and T.. We have to mention that all
the predicted lines are observed; the ratios rg, and rg;

Y3=Cy+ (76)

TABLE II. Calculated approximate relative values of the intensities of Brillouin lines for back-
scattering in the monoclinic phase. I/#(e) stands for the intensity originating in the scattering on an
acoustic phonon, related to the elastic constant ¥;, which propagates in the direction e; the polariza-
tions of the incident and of the scattered beam are a and f3, respectively. An., is the difference be-
tween the principal values of the refractive indices in the (bc) plane for the monoclinic phase; the axes
of the indicatrix do not coincide with the crystallographic ones.

Term 1 Term 11 Term III ~
I$®) _ph ) )
IF(b)  ph
cc . 2
o — IF®) _ v2 | Ca Py 26 | 1, An,
U IFb)  y4b) Cp—Cy Py Pn | n® Pu | T
2
o — I3%(b) __ T | Cyp +£i 40
PUIEMm) 7)) | Cp—Cu  pi
2
IE(b) v, Dss 1 sin26 | 1 Angy
ro=———=—2 1|0 425 o8|,
7 I¥(Mb)  Ces ‘ P32 2 pyp |n? Pes
7@ _rh
Igb(c) P%s
I%(c) Y3 Cys P sin20 | 1 Angy
ri= = - +==- +—== |5~ .
“ I'fb(c) v4c) Cy3—Cy P D23 n? Pas
aa 2
o= I4 (C) - Y3 _ C43 +.1_Ji +0
® I%(c)  valc) Cy3—Cyu P13
IP(e) _ 73 Pes 1sin20 | 1 Angy
rs3= = 0 +—- =2
s Igb(c) Css P2 2 pau n? Pss
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FIG. 2. Measured intensity ratios of the Brillouin lines in the
monoclinic phase: Wrs,,Orl;,@rg, Xrs; (see Table II for the
significance of r); %, and r4; are smaller than 1%. Dotted and
dashed line: contributions of C,; and C,; (calculated from
p3—see text) to r5,,r%, and rby,rds, respectively. Solid lines:
fits neglecting terms other than II (see Table II). The variation
versus temperature of the squares of the morphic photoelastic
constants is supposed to be linear.

(notation defined in Table II) are smaller than 1% and
the intensities 75%(b) and I5°(c) are comparable with the
background and therefore cannot be studied quantitative-
ly. The calculated relative intensities of the allowed
modes in the monoclinic phase are presented in Table II.
Three terms appear in the expressions for the intensities
of the transverse and of the quasitransverse modes. The
first one (term I) is due to the obliquity of the mode polar-
ization (related to the nonzero values of C,; and C,3,
which vanish in the orthorhombic phase). The second
(term II) is due to the presence of morphic photoelastic
coefficients and the last term (term III) comes from the
rotation @ of the optical indicatrix. In order to simplify
the ex;l)ressions we took into account only the first-order
terms®! in morphic elastic and photoelastic constants and
in the refractive-index difference An_;. In addition, in
Cs,CdBr, one can neglect term III: the intensity ratio re-
lated to the second (static) part of term III is smaller than
0.005% (|An, .yl /n $0.01,|py] $0.06/ps,|, .. . ,); in or-
der to evaluate the first (dynamic)!® part of term III, it is
necessary to know the absolute values of ps, and of p,;.
Our experiments show that the intensities of longitudinal
modes in Cs,CdBr, are of the same order of magnitude as
those observed in %uartz. The photoelastic constants of
quartz are known:® p,, =p,;=p,; =0.25. Taking into
account the compared values of the elastic constants in
quartz and in Cs,CdBr,, the contribution of term III to
the intensity ratio is evaluated to be 0.1% at most and
cannot explain the measured ratios which reach several
percent. Term I is linked to the obliquity correction of
the y; constants (7a) and (7b); therefore we will discuss
the relative contributions of terms I and II after the pre-
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'“sentation of all the backscattering results.

We did not observe any change in the selection rules at
208 K. On the contrary, our measurements show that
the structure becomes triclinic below 156 K: we have ob-
served several quasitransverse Brillouin lines which are
forbidden in the monoclinic phase. Unfortunately, a
quantitative analysis of the intensities in the triclinic
phase is not very fruitful because all the acoustic phonons
become allowed as a rule: their intensities depend on
many morphic constants which in practice cannot be
unambiguously determined. Therefore we do not give
any analysis of the line intensities below 156 K.

The ¥, constant (C;, in the orthorhombic and in the
monoclinic phase) presents only very small anomalies
(Fig. 3). On the other hand, for propagation along a with
incident and  scattered beams  perpendicularly
polarized —geometry x(yz)¥-—an intense quasielastic
‘Scattering progressively appears in the Brillouin spectrum
at about 20 K above the PT into the IC phase and
reaches its maximum near T;. Its intensity slowly de-
creases between T; and 7 and abruptly disappears at T
(Fig. 4). The existence of a central peak in the x (yz)y Ra-
man spectrum has already been reported by Rodriguez
et al.® We attribute the quasielastic Brillouin feature to
this central peak which is related to an overdamped mode
(librations of CdBr, tetrahedra) of B;, (yz) symmetry; in
Paper Il we shall prove that this overdamped mode
behaves in practice as a pure relaxator, softening when
approaching the PT into the IC phase. This hypothesis is
also supported by our results for 90° scattering (see
below).

In Fig. 5 the results of backscattering along the b or-
thorhombic axis are presented. The anomalies observed
at T are typical for a pseudoproper ferroelastic second-
order phase transition governed by a soft mode at the I’
point with B, (xy) symmetry. The softening of y¢(b) is
then explained by the bilinear coupling between the shear
strain €4 and the order parameter Q, ([AQ,¢&,, see Eq. (6)].
The constant y, reveals two jumps (at T and 77 ) prob-

0% 235 -
24 |- x’o / ¢
— (- 5 . o. %oy
E %’ - 20 C .,
g Qco .
22 | © *
o
25 . -
i ° 220 240 260
] g
20 °
o
18 n ) 1 i 1 13 9
100 200 300 400 500
Temperature (K)

FIG. 3. Temperature dependence of ¥ (Cy, in the ortho-
rhombic and in the monoclinic phase) measured in backscatter-
ing along the a orthorhombic axis.
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T=288K T=269.5 K T=2525K

T=2335K
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Brillouin shift

FIG. 4. Evolution of the x(yz)X spectra with temperature.
Both vertical and horizontal scales are the same in all figures.

ably related to linear-quadratic couplings (F,Q%¢, and
H,Q2¢,). The behavior of v, is presented with an ex-
panded temperature scale in Fig. 6 in order to show the
incommensurate sequence with more detail. Notice that,
instead of a jump at T;, which would be expected (see Pa-
per II), we observe a progressive softening beginning al-
ready at 320 K (softening of the elastic constant with
respect to the regular linear behavior far above this tem-
~ perature). The abrupt jump (0.2 K) at T, is accompanied
by a broadening of the spectral line. This broadening is
slightly asymmetric as shown in Fig. 7.
The results of backscattering along the c¢ axis are
shown in Fig. 8. The behaviors of ¥, and ys(c) near T,

agree with the coupling to the B, soft mode (we give a _

more detailed discussion in Paper II).

Let us return to the monoclinicity effects. The temper-
ature variation of y; suffers an increase of slope at T,
while both y4(b) and y4(c) decrease in the monoclinic
phase, when the temperature is lowered. Notice that the
obliquity contribution [(7a) and (7b)] to ¥, is always posi-
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FIG. 5. Temperature dependence of ¥, (C,, in the ortho-
rhombic phase) (O), y4(b) (O), and y4(b) (Cys in the monoclin-
ic phase) (@), measured in backscattering along the b ortho-
rhombic axis. o
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FIG. 6. Temperature dependence of y,(®) and of the
FWHM of the related line (O) near the incommensurate se-
quence. Backscattering along the b orthorhombic axis.

tive and that the contributions to y4(b) and y4(c) are al-
ways negative. If we suppose that the increase of v, in
phase III with regard to its linear evolution in phase I is
only due to the obliquity, we can calculate the variations
of Cy,, Cuy, Cyy, and C,; in this phase. At first sight the
results are satisfactory: below T, one finds that the
slope of the variation of C,, versus temperature is nega-
tive [while for y4(b) and y,(c) the slopes are positive—
an analogous situation is found?' for example in
RbLiSO,] as expected for a bilinear coupling of the shear

(@

Intensity (arb.u.)

()

Intensity (arb.u.)

0 03 06
Brillouin shift {cm™)

FIG. 7. Spectra obtained by backscattering along the b or-
thorhombic axis (the polarizations of both incident and scat-
tered beams are parallel to the c orthorhombic axis) at 234.5 K
just below the lock-in PT. Brillouin frequency~0.40 cm™. (a)
Uncrossed Brillouin lines (free spectral range 1.0 cm™?); (b)
crossed Brillouin lines (free spectral range 0.65 cm™!). The
shape 'of the inelastic signal suggests a slightly asymmetric
broadening of lines below T7.
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strain g, to the order parameter (fQ,g,). On the other
hand, one can calculate the intensity ratios labeled in
Table II using the derived values of the elastic constants
and assuming that the contributions of the morphic pho-
toelastic constants (term II in Table II) are negligible.
The results are shown in Fig. 2 by the dotted and dashed
curves for r§,,r§, and for ri,ré;, respectively (indeed,
r¢; and rs3 vanish in this approximation): they overesti-
mate the experimentally observed ratios r§, and ri,.
Consequently, the morphic photoelastic constants
significantly contribute to these ratios, and/or the
anomalies observed in ¥, do not only derive from the oc-
currence of the morphic elastic constants: in this last
case, C4, and Cy3 would have to be reevaluated. The
morphic photoelastic constants are easily shown to be
proportional to the order parameter Q; between T, and
T¢: the variation of the ratios pgs/p,3 and psg/ps, can
be fitted directly from our experimental data concerning
re; and rs53 (as shown above, rg, and rg; are given by term
II only); this fit yields the variation of the order parame-
ter: a critical exponent around 0.5 (value expected using
a Landau model) gives a very good fit (Fig. 2). The calcu-
lated contributions of term II to 7Sy, 7%, #%;, and r%; in
order to fit experimental data using the above evaluated
Cy, and Cy; would lead to contradictions and unphysical
results. In contrast, if one neglects term I, a reasonably
good fit is obtained with morphic photoelastic constants
following the above-mentioned variation of Q. To sum-
marize, the oblicity calculated from the y; temperature
behavior looks to be significantly overestimated: |C,,]
and |Cy| have to be reduced. Consequently their tem-
perature variation cannot be determined from y; and
stays unknown. A simultaneous fit of elastic and photoe-
lastic effects could indeed be performed, but, due to ex-
perimental uncertainties, it would be very imprecise. In
our opinion one can conclude only that term I is smaller
than term IL.
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FIG. 9. Spectra measured in 90° scattering geometry at
different temperatures around the incommensurate sequence.
The scattering is related to y4(b).

B. 90° scattering

v4(b) was studied by means of 90° scattering near the
incommensurate sequence. The measured spectra are
given in Fig. 9. The corresponding spectral line, which is
well defined at room temperature, progressively broadens
on its low-frequency side when approaching the IC phase.
Several degrees above T; the scattering profile becomes
completely asymmetric and the maximum disappears. At
the lock-in PT a well-defined line is suddenly restored.
When the line is reasonably sharp the effective elastic
constant y,(b) is simply related to the frequency of this
maximum: in Fig. 10 we have reported the correspond-
ing temperature variation, derived from the shift of the
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FIG. 10. Temperature dependence of y,(b): ((0) Brillouin
scattering, (@) ultrasonic-wave propagation (heating).



maximum when it exists; but one has to keep in mind
that for large broadening, i.e., for T—T; 510 K, this cal-
culated value progressively loses its physical significance
and it becomes questionable to define an elastic constant
in this way. An attempt to analyze the corresponding
shape in terms of an overdamped Lorentzian profile prop-
erly convoluted with the instrumental function (which
can significantly shift the maximum in the case of strong
asymmetry) often allows the derivation of a characteristic
frequency and a damping constant; however, for the ob-
served spectra, it is not possible to obtain a satisfactory
fit. The measured spectra, which are related to the
Fourier transforms of the appropriate correlation func-
tions, among which appears the autocorrelation function
of the shear strain g,, will be interpreted in Paper II as re-
sulting from dynamic effects arising through the bilinear
coupling between €, and an overdamped soft mode.

V. ULTRASONIC MEASUREMENTS

The elastic stiffnesses were also calculated from ul-
trasonic experiments using sample lengths not corrected
from thermal expansion. We have observed four phase
transitions by means of ultrasound: at 252, at 235, at
208, and at 156 K. The behavior of y, is shown in Fig.
11. With regard to the Brillouin data one finds several
differences. Notice especially the anomaly at T;, which is
completely wiped out in our Brillouin results, probably

because of fluctuations of the order parameter. In addi- -

tion we observe a small anomaly which reveals the PT at
T;.. We can say globally that all the transitions are more
pronounced. The behavior of y,(b) (Fig. 10) agrees with
the previously reported ones!®!! including the hysteresis
effects in the IC phase. The other presented curves, ¥,
vs(c), v¢b) (Fig. 12), agree with our Brillouin results.
Here the transition at T7;. is not observed; it has to be
noted, however, that the damping of echoes related to
7¢b) progressively increases below T; and that the
echoes vanish just near 208 K. The attenuation of the ul-
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FIG. 11. Variation of y, versus temperature measured by
ultrasonic-wave propagation.
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FIG. 12. Variations versus temperature of (a) ¥, (b) ys(c),
and (c) y4(b) measured by ultrasonic-wave propagation.

trasonic waves was also measured: only very slight
anomalies were found at T}, while, for all the constants
related to the phonons propagating along the b axis
[¥2(b), 74(b), and y¢(b)] a strong attenuation was ob-
served within a very sharp temperature interval around
T; (=0.5 K), probably resulting from macroscopic dis-
placements accompanying the corresponding first-order
PT. This is illustrated in Fig. 13 as an example.

VI. CONCLUSION

The incommensurate sequence, as well as the III<>IV
phase transition, induces variations in the elastic proper-
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FIG. 13. Attenuation of the transverse mode related to y4(b)
measured by ultrasonic propagation.
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ties of Cs,CdBr, which have been experimentally studied
and detected both by ultrasonic and by Brillouin-
scattering measurements. Our ultrasonic investigations
extend down to temperatures lower than the previously
published ones and, therefore, they allow us to investigate
the transition at T¢; for higher temperatures our results
agree reasonably well with previous data. The previously
reported attempt® to give an interpretation of the elastic
anomalies observed by ultrasonic propagation used a stat-
ic model based on a Landau development of the free ener-
gy, including appropriate couplings to strains. In view of
the most probable scenario of the phase-transition mech-
anisms, we have justified the form of this development,
after slight modifications. In the following discussions,
we have examined the pertinence of such a static model
in order to interpret ultrasonic and Brillouin measure-
ments, at least qualitatively: it appears that the agree-
ment mainly concerns some aspects of the bilinear cou-
plings (fQ;¢€4,hQ;€4) or of the temperature-dependent bi-
linear coupling in the monoclinic phase (gQ3Q,es),
which lead to significant softenings of the transverse
shear elastic constants. However, in many other respects,
the agreement is poor. Brillouin and ultrasonic data
markedly differ from each other, mainly concerning the
elastic properties related to g, in the vicinity of the I«<II
phase transition around T;; obviously, this is related to
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dynamic effects, which give rise to very different
behaviors when studied through ultrasonic methods at a
given relatively small frequency (a few tens of megahertz)
and through Brillouin scattering at a given wave vector
and at significantly higher frequencies (a few tens of
gigahertz). In the following paper, after a detailed
analysis of the predictions of the static model which was
only schematically performed in the preceding sections,
we shall introduce the coupled dynamics of the order pa-
rameter and of the strains, mainly in order to give ac-
count of the experimental data related to ;. We shall
also comment on the role of fluctuations, principally in
order to explain the nearly vanishing effects of the phase
transition at T on the behavior of C,,.
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