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Defect modes caused by twinning in
one-dimensional photonic crystals
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Propagation of electromagnetic waves in a one-dimensional photonic crystal with a twin-defect—a periodicity
break where one half of the photonic structure is a mirror image of the other one—is studied using a transfer-
matrix method. This work is done in the general framework of photonic structures composed of isotropic ma-
terials exhibiting both dielectric and magnetic properties. Both polarizations of electromagnetic waves im-
pinging at oblique incidence on the structure are considered. We derive analytical expressions for the
frequency of defect modes and for the enhancement of the electromagnetic field inside the defect. In particu-
lar, we discuss possibilities of tuning of defect levels for a photonic crystal structure with a two-layer elemen-
tary cell. © 2004 Optical Society of America
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1. INTRODUCTION
Since the pioneering work of Yablonovitch,1 research in
photonic crystals (PCs) has known an impressive expan-
sion and covers a wide range of the electromagnetic spec-
trum from microwaves2 to the visible.3 Although many
applications and developments have already appeared,
some great challenges remain. Among them, the control
of defect modes is of major interest for filtering applica-
tions, signal demultiplexing, etc. Several papers that
treat either the microwave domain4,5 or the optical
domain6 have already been published on that subject.
However, the design of controllable defect modes in PCs
requires predictive formulas for the frequency depen-
dence of the defect modes on physical parameters of PCs.
Conducting even numerical studies still remains difficult
for two- and three-dimensional PCs,7,8 and one-
dimensional PCs are thus natural choices for analytical
investigations because of their simplicity. Most such
studies focus on several types of defect in PCs with unit
cells consisting of two layers only,9–11 and just a few deal
with defects in general PCs.12 Anyway, in all these stud-
ies the defect is vacancy, substitution, or interstitial.

In this paper we investigate another type of defect—
twinning—in a general PC, in which the twins can be
separated by any symmetrical structure. Unlike in most
previous studies, we also take into account the magnetic
properties of materials that have been demonstrated to be
the principal influence on the properties of the
0740-3224/2004/030548-06$15.00 ©
bandgap.13,14 We explain for what is to our knowledge
the first time the role of both refractive index and wave
impedance of constituent materials on the properties of
defect modes.

Our treatment is based on a transfer-matrix method.
We consider general conditions, which include nonabsorb-
ing isotropic materials with both dielectric and magnetic
properties, oblique angle of incidence, and both trans-
verse electric (TE) and transverse magnetic (TM) polar-
ization. This method is described in Section 2 below.
Section 3 is devoted to the derivation of analytical formu-
las for defect modes, for their tunability by thickness or
by refractive index, and for enhancement of the field in
the middle of the defect. The tuning capabilities with re-
spect to rotation angle, thickness, refractive index, and
impedance of the defect layer are discussed in Section 4.
We restrict this discussion only to twins with elementary
cells that consist of two homogeneous layers separated by
another single homogeneous layer. Finally, in Section 5
we summarize the results.

2. TRANSFER-MATRIX METHOD FOR
LAYERED DIELECTRIC STACKS
The transfer-matrix method has been widely used for the
description of layered dielectric stacks and is described,
e.g., in Ref. 15. However, as we deal with the less stud-
2004 Optical Society of America
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ied case of magnetic materials and with off-axis propaga-
tion, we briefly summarize our basic results here.

First, let us consider a stack of homogeneous nonab-
sorbing layers that have interfaces at positions zj (see Fig.
1). Transfer matrix Tj, j11 links the electric fields of
waves propagating forward (EF) and backward (EB) at
position zj with those at position zj11 (Fig. 1):

FEF~zj11!

EB~zj11!G 5 Tj, j11FEF~zj!

EB~zj!
G . (1)

This matrix can be written as

where kz, j 5 2pfnj cos uj /c is the z component of the
wave vector in the jth layer; dj and nj 5 (m j« j)

1/2 are, re-
spectively, its thickness and refractive index, u j is the
angle between the wave vector and the z axis, f represents
the frequency, and c is the speed of light in vacuum. The
parameters wj, j11 and xj, j11 differ for TE and TM polar-
ization:

TE polarization: wj, j11 5 1,

xj, j11 5
Zj11

Zj

cos u j

cos u j11
,

TM polarization: wj, j11 5
cos u j

cos u j11
,

xj, j11 5
Zj11

Zj

cos u j11

cos u j
.

(3)

Zj 5 (m j /« j)
1/2 stands for the wave impedance of the jth

layer. As we are dealing with nonabsorbing media, the
elements of matrix Tj, j11 satisfy the relations

T22 5 T11* , T12 5 T21* . (4)

These relations hold also for any stack of nonabsorbing
layers. For such a structure, characterized by transfer
matrix Q, we can write

Fig. 1. Schematic of parameters of the transfer matrix method.

Tj, j11 5 FT11 T12

T21 T22
G 5

wj, j11

2
F ~1 1 xj, j11!exp~2ikz, jdj!

~1 2 xj, j11!exp~2ikz, jdj!
S Ei

Er
D 5 FQ11 Q21*

Q21 Q11*
G S Et

0 D , (5)

where Ei , Er , and Et stand for incident, reflected, and
transmitted electric fields, respectively. It is then clear
that the elements 1/Q11 and Q21 /Q11 can be identified
with complex transmission and reflection coefficients (in
terms of electric field), respectively.

3. THEORETICAL DESCRIPTION OF ONE-
DIMENSIONAL PHOTONIC CRYSTAL
WITH A TWIN DEFECT
A schematic of the structure under investigation is shown
in Fig. 2. Transfer matrix M linking the fields in the
middle of the defect structure and in the outer medium is
given by

M 5 A – SN
• D, (6)

where S is the transfer matrix of a unit cell of the PC and
D is the transfer matrix of half of the defect structure (see
Fig. 2). Matrix A stands for the interface between the
outer medium and an infinitesimally thin layer L̃ (with
same wave impedance and refractive index as the last
layer L before the defect). This formal layer does not

change the physical properties of the structure, but it per-
mits clear separation of the properties of the PC (as de-
scribed by matrix SN) from the coupling to the outer me-
dium. The right-hand part of the structure is a mirror
image of the left-hand part. Hence it is necessary to take
opposite signs of all coordinates in Eq. (2), which is
equivalent to taking the complex conjugate of Eq. (2).
Transfer matrix P of the whole structure is thus

P 5 M • ~M* !21 5 A • SN
• D • ~D* !21

• ~S* !2N
• ~A* !21.

(7)

It is appropriate to express transfer matrix SN in terms of
complex transmission t exp(it) and reflection r exp(ir) co-
efficients of the PC without a twinning defect:

S Ei

Er
D 5 SNS Et

0 D ,

SN 5
1

t
F exp~2it! r exp@2i~r 2 t!#

r exp@i~r 2 t!# exp~it!
G ,

2 xj, j11!exp~1ikz, jdj!

1 xj, j11!exp~1ikz, jdj!
G , (2)
~1

~1
Fig. 2. Structure and corresponding transfer matrices: F...L,
arbitrary sequence of layers starting with F and ending with L.
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where r2 1 t2 5 1, as we do not consider absorbing me-
dia. Indeed, we can clearly see that the first element of
SN corresponds to the ratio Ei /Er of the incident and
transmitted electric fields, i.e., to the inverse of transmis-
sion coefficient t exp(it). Other matrix elements are de-
duced in the same way. We now restrict ourselves only to
frequencies for which the periodic structures on both
sides of the defect exhibit a photonic bandgap. The pres-
ence of the structural defect can lead to an emergence of
defect level(s) in the bandgap. The frequency of a defect
mode corresponds to a vanishing reflectivity (high trans-
missivity) of the whole structure, i.e., P21 /P11 5 0. In
the limit of a perfect PC (r → 1), a direct but lengthy cal-
culation shows that the numerator of P21 /P11 cancels out
when

@exp i~r 2 2t!# 5 2
D21 6 D11*

D11 6 D21*
. (9)

After simplification, it yields

2t 2 r [ 2 arg~D11 1 D21* ! 1 p@2p#, (10a)

[ 2 arg~D11 2 D21* !@2p#, (10b)

where arg(z) denotes the argument of complex number z
and where [2p] indicates that the result is congruent with
2p. Note that this expression does not depend on the
properties of outer medium A. In the limit of a perfect
PC, these defect modes coincide with the eigenmodes of

the structure. When the condition of Eq. (10a) holds, ma-
trix M applied to vector (1, 1) leads to a null vector (which
means that we deal with the standing modes of the struc-
ture). Hence Eq. (10a) describes even eigenmodes for the
electric field (odd modes for the magnetic field). Analo-
gously, odd eigenmodes are related to Eq. (10b): When
this condition holds, M applied to vector (1, 21) yields a
null vector. The defect modes described by Eq. (10) thus
coincide with the eigenmodes of the photonic structure.

If defect D is a homogeneous layer with thickness dD ,
substitution of Eq. (2) for D allows the results of Eqs. (10)
to be simplified to the single expression

kz,DdD 5 mp 1 2w, w 5 arctan~tan k/xD,L!,

k 5
r~ f ! 2 2t~ f ! 1 p

2
, (11)

where m is an integer. Even integers correspond to even
defect modes, and odd integers correspond to odd modes.
Owing to the frequency dependence of r and t, Eq. (11) is

E fwd 6 Ebck

E in
5

4

wL,At exp~2it!~D
a transcendent equation for the frequency of defect
modes. Nevertheless, the relative tunability of defect
modes by the relative variation of the defect thickness
yields

In fact, when the structure is irradiated at normal inci-
dence, replacing dD with nD on the left-hand side of Eq.
(12) leads to the relative tunability of defect modes by the
relative variation of refractive index nD .

Let us now focus on the enhancement of the electro-
magnetic field in the middle of the defect. For that pur-
pose we consider the electric fields that are propagating
forward (E fwd) and backward (Ebck) in the middle of the
defect. When the whole structure is irradiated only from
the left side by a wave with electric field E in , the sum and
the difference of E fwd and Ebck , which are respectively
proportional to the magnitudes of the electric field
(5E fwd 1 Ebck) and the magnetic induction @5(E fwd
2 Ebck)nD /c# in the middle of the defect, are given by

E fwd 6 Ebck 5
1

M11 6 M21*
E in (13)

Let us examine this expression for frequencies that cor-
respond to defect levels of a perfect PC [Eqs. (10)]. For
even defect modes and upper signs in Eq. (13) or for odd
defect modes and lower signs, the substitution for M from
Eq. (6) into Eq. (8) yields

When media A and L are the same (i.e., wL,A 5 1 and
xL,A 5 1), Eq. (14) is considerably simplified:

E fwd 6 Ebck

E in
5

2

t

exp~it!

D11 6 D21*
. (15)

For the opposite case (i.e., even parity and lower signs or
odd parity and upper signs), Eq. (13) vanishes in the limit
t → 0 (band gap of the PC), as it is directly proportional
to t. For a homogeneous defect layer the enhancement
factor in Eq. (15) reads as

1

D11 1 D21*
5

1

wD,L
S H 1

xD,L
J cos

kz,DdD

2

2 i H xD,L

1 J sin
kz,DdD

2 D 21

. (16)

Note that, for even modes, electric field E fwd 1 Ebck is en-

1

D21* !~1 1 xL,A! 1 exp~it!~D21 6 D11* !~1 2 xL,A!
. (14)
dD

f

df

ddD
5 2

1

1 1 $~cxD,L /pnDdD cos uD!@d~r 2 2t!/df #@1/(~xD,L
2 2 1 !cos~r 2 2t! 2 ~xD,L

2 1 1 !)#%
. (12)

11 6
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hanced, whereas it is the magnetic induction given by
(E fwd 2 Ebck)nD /c that is enhanced for odd modes.

4. DISCUSSION
From a general point of view, Eqs. (10) offer the possibil-
ity of determining the frequencies of defect levels as soon
as the parameters of the constitutent PCs are known.
For a single-layer defect [Eq. (11)] it is thus necessary to
know the physical properties of both defect and surround-
ing medium (layer L) and to determine either theoreti-
cally or experimentally16,17 the dependence on frequency
of phases r and t. Note that Eqs. (10) and (11) are gen-
eral and were derived with only the assumption of perfect
reflection of the structure surrounding the defect (r
→ 1). Hence a disordered PC can be described by these
equations as well.

From now on, we focus on periodic structures and
single-layer defects only, as depicted in Fig. 2. Indeed,
this configuration coincides with that of a Fabry–Perot
cavity (FPC) embedded in a complex material. Conse-
quently the term w that appears in Eq. (11) and that adds
an additional phase shift to a simple FPC accounts for the
distributed reflection of the electromagnetic wave on the
PC. Phase shifts r and t, induced by the reflection and
the transmission, respectively, of the PC, usually exhibit a
linear behavior over a wide range of frequencies in the
forbidden gap.16–18 Hence an expansion of Eqs. (10) to
the first order yields an explicit expression for the fre-
quencies of defect modes:

f 5 Fm 2
2 fc

pxD,L
k8~ fc!G c

2nDdD 2
2c

pxD,L
k8~ fc!

,

(17)

where k8 [ ]k/]f and where fc is a root of the function
tan k( f ) inside the photonic bandgap: k( fc) [ 0@p#.
We emphasize that this formula does not contain any
frequency-dependent term. Consequently, as soon as the
single parameter k8( fc) has been determined either theo-
retically or experimentally, it gives a good approximation
of the frequency of the defect modes over a wide range of
frequencies. The limited expansion into series leading to
Eq. (17) is valid only for frequencies that satisfy u f 2 fcu
! A3 min(1, xD,L)/uk8( fc)u; hence the domain of validity
of Eq. (17) becomes significantly narrower for small val-
ues of xD,L .

We now discuss a PC that has elementary cells that
consist of two layers of equal optical thickness. Here fc
5 c/(2ltot) (ltot is the optical thickness of a unit cell of the
PC) is the central frequency of the bandgap. Moreover,
such a structure provides the highest possible ratio of
bandgap width to central frequency fc .19 Following the
value of xD,L @ 5 ZL /ZD in the case of normal incidence;
see Eq. (3)], defect-level positions show a qualitatively dif-
ferent behavior, as can be seen from Fig. 3(a). For xD,L
@ 1, i.e., for impedance of the defect much lower than
that of the last layer, phase shift w becomes low and the
defect modes thus approach those of the well-known FPC
[dotted curves in Fig. 3(a)].
For the opposite ratio of impedances, the behavior is
more complicated: tan k crosses zero for f 5 fc ; i.e., the
defect levels coincide with FPC modes without an addi-
tional phase shift for this frequency [Fig. 3(a)]. However,
immediately as tan k becomes nonzero because of a small
frequency variation, phase shift w tends toward 6p/2 be-
cause the value of 1/xD,L is high [see Eq. (11)]. In other
words, it is necessary to introduce a large change in opti-
cal thickness nDdD of the defect to tune the defect-level
position in the vicinity of fc . For frequencies farther
apart from fc , the mth mode [dashed–dotted curves in
Fig. 3(a)] is attracted to the modes m 2 1 (for f . fc) and
m 1 1 (for f , fc) of a FPC without an additional phase
shift. There is thus a wide category of optical thick-
nesses of defects for which the tunability is practically ex-
cluded [Figs. 3(a) and 3(b)].

Indeed, as can easily be shown by Kramers–Kronig
analysis,20 the derivative of r 2 2t versus frequency is
always negative, and consequently the maximum relative
tunability by relative variation of optical thickness [Eq.

Fig. 3. (a) Dimensionless frequency [in units of c/(2l tot); ltot
5 nF dF 1 nLdL] of defect modes, (b) their relative tunability by
optical thickness, and (c) enhancement of the electric field in the
middle of the defect versus optical thickness of the defect.
Dashed lines in (a) indicate band edges; thicker curves, even-
parity modes; and thinner curves, odd-parity modes. The calcu-
lations were made with u 5 0° and ZD 5 0.0025 (dotted curves),
ZD 5 0.25 (solid curves), and ZD 5 25 (dashed–dotted curves).
Parameters of the PC are nFdF 5 nLdL 5 ltot/2, ZF 5 1/3.4, and
ZL 5 ZA 5 1. The number of periods in (c) is N 5 10. For
clarity, only modes with m 5 2 are plotted in (b) and (c).
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(12)] is limited by 21 [Fig. 3(b)]. Such a situation occurs
in two cases: xD,L → 0 (ZD → `) and xD,L → ` (ZD
→ 0). However, the latter situation seems to be prefer-
able, owing to the presence of fewer defect modes in the
bandgap. This reduction in the number of defect modes
with the decrease of ZD clearly appears in Figs. 3(a) and
4(a).

Enhancement of the electric field inside the defect is of
great interest in conjunction with nonlinear phenomena
in PCs.21,22 Because of the presence of the factor 1/t in
Eq. (15), the electric field enhancement is proportional to
the quality of the PC (e.g., it grows rapidly with the num-
ber of periods), whereas the factor 1/(D11 6 D21* ) stands
for the enhancement that is due to the properties of the
defect. For a single-layer defect [Eq. (16)] the magnitude
of the latter enhancement factor may vary from 1/wD,L to
1/(wD,LxD,L). The last term then causes an increase in
the maximum enhancement when the impedance of the
defect is larger than that of the last layer L [Fig. 3(c)]. In
contrast, for nDdD 5 mltot the enhancement factor does
not depend any more on impedance ZD at normal inci-
dence.

Let us now consider the tunability of defect modes di-
rectly by impedance. This is a fundamental mechanism
of tunability in microwave devices for which it is consid-
erably easier to vary the impedance than the refractive
index of a defect. As shown in Fig. 4, such tunability is
an order of magnitude lower than that by optical thick-
ness. Depending on the position in the bandgap with re-
spect to fc , the frequency of the defect modes either in-
creases with impedance ( f , fc) or decreases ( f . fc).
Indeed, the right-hand side of Eq. (11) is a monotonic
function of xD,L , increasing or decreasing according to the
sign of tan k and intersecting zero for f 5 fc . In the limit

Fig. 4. (a) Dimensionless frequency of defect modes and (b)
their relative tunability by impedance versus impedance of the
defect. Long-dashed lines-indicate band edges; Dashed–dotted
curve, middle of the gap; dotted curve, asymptotic limits of defect
levels when ZD → 0 (m 5 2) or ZD → ` (m 5 3). The cal-
culations were performed with nDdD 5 1.824ltot and u 5 0°;
other parameters are the same as in Fig. 3.
of high impedance, the frequency of the mth defect mode
reaches asymptotically either fc or mode m 2 1 (for f
. fc) or m 1 1 (for f , fc) of a FPC without an addi-
tional phase shift. Both limits can be clearly seen in Fig.
3(a) when the optical thickness is kept while the imped-
ance is varied. As shown in Fig. 4(a), new defect modes
arise in the bandgap with increasing impedance.

From a practical point of view, tunability of the defect
level could be simply achieved by rotation of the PC (Fig.
5). However, the tunability is low for both polarizations
at small angles of incidence. TM polarization offers
slightly better tunability at higher angles, but simulta-
neously with increasing angle the bandgap gets narrower.

5. SUMMARY
We have derived general analytical expressions for the
frequencies of defect modes for twinning in an arbitrary
structure that exhibits a forbidden gap. We focused on
the case of a PC with a two-layer elementary cell sur-
rounding a single homogeneous defect layer, and we ex-
plained the influence of impedance on the position and
tunability of defect modes as well as on the enhancement
of the electromagnetic field in the middle of the defect
layer. Tunability by variation of optical thickness, im-
pedance, and angle of incidence was also discussed.
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Fig. 5. Dimensionless frequency of a defect mode as a function
of angle of incidence u on the PC. Dashed curves, band edges;
dotted and solid curves, nDdD 5 0.735ltot and nDdD 5 ltot , re-
spectively. For both polarizations ZD 5 0.25 and nA 5 1.
Other parameters are the same as in Fig. 3.
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