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Abstract

In this paper we investigate the band structure of guided modes in a segmented planar waveguide for the terahertz range. The dis-
persion curves are obtained using two different methods. The first approach is based on a close relationship between the band structure
and narrow resonances in transmission spectra: transmission spectra are therefore calculated using a transfer matrix method and com-
pared to the experimental ones. The second technique involves a modal analysis approach of diffraction gratings and it is used for direct
calculation of the band structure. Propagation of THz guided waves along the grating considered as a segmented dielectric waveguide is
also investigated using a bi-directional mode expansion and propagation method. All approaches are compared to each other and
discussed.
� 2006 Elsevier B.V. All rights reserved.
1. Introduction

Waveguiding structures with in-plane periodic pattern
show very rich dispersion features: this is true namely for
the probing frequencies for which the Bragg diffraction
condition is close to be satisfied. The usefulness of such
structures has already been demonstrated in integrated
optics namely as stop-band filters, Bragg mirrors, input
and output couplers and signal multiplexers [1–3] or in
nonlinear optics for achieving quasi-phase-matching condi-
tion for second harmonic generation [4,5]. The most
remarkable dispersion properties are observed in the cases
when the dielectric constant along the waveguide direction
exhibits a large contrast of periodic modulation. This
occurs e.g., in deep waveguide gratings or in segmented
waveguides, which consist of rectangular stripes of high
index material separated by air or embedded in a low-index
host material. Such structures have been extensively stud-
ied, mostly in the optical domain: starting by pioneering
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works of Nevière [6] and Peng [7] on grating couplers
and periodic waveguides, theoretical studies were subse-
quently performed on shallow gratings or gratings with
weak permittivity modulation [8], on deeply etched wave-
guide gratings [9], on infinitely thick gratings [10,11], or
on general segmented gratings [12,13] where, however, only
narrow frequency range has been usually considered. More
recently, based on a modal analysis, smart filtering proper-
ties of such segmented waveguides have been proposed and
demonstrated in the THz range [14,15]. The analysis of the
band structure of these modulated waveguides is impor-
tant, among others, for understanding out-of-plane radia-
tion losses of two-dimensional photonic crystals in
dielectric membranes and planar waveguides [16,17].

This paper focuses on the terahertz (THz) spectral range
(1 THz corresponds to a wavelength of 300 lm). This part
of the electromagnetic spectrum became recently very easily
accessible using the so called opto-electronic approach [18].
The technique enables fast, broadband and phase-sensitive
measurements of transmission and/or reflection spectra of
various materials and structures, e.g., characterization of
the electromagnetic response of mock-ups with much larger
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or smaller sizes than those used in optical or radio-fre-
quency devices [19]. Indeed, the THz range is of particular
interest regarding the design, characterization and applica-
tion of photonic bandgap structures: the appropriate struc-
tures have submillimeter lattice period and their fabrication
by mechanical micromachining [20] or photolithography
and ion etching [21] is easier than that of actual micrometer
or sub-micrometer sized optical devices. At the same time,
due to the applicability of the scaling laws [22], the impor-
tant conclusions of both theoretical and experimental inves-
tigations in the THz range can be extended both to optical
and radio-frequency regions (taking properly the dispersion
properties of materials into account).

Recently, THz data have been published for a segmented
silicon grating structure exhibiting a large number of both
sharp and broad spectral features [19]. In the current paper,
we provide an interpretation of these measurements. In
order to explain the experimental data we first apply a
transfer matrix method [23] to calculate the transmittance
spectra of the structure. Based on these spectra, the recon-
struction of the band structure of guided and leaky modes
is tentatively performed. Next, we apply a rigorous modal
approach [7] as a tool for the direct calculation of the band
structure. Both kinds of theoretical results are compared
with each other and with experiments and discussed.

2. Description of models

The investigated structure is shown in Fig. 1. Following
Ref. [19] we assume in our calculations the following geo-
metrical characteristics of the structure: grating thickness
d = 210 lm, period L = 385 lm, filling factor (ratio
between the integrated areas of silicon and the total grating
area) n = 0.455. The dielectric constant of high-resistivity
silicon is eSi = 11.68 and its absorption coefficient is small
(of the order 1 dB/cm or less at sub-THz frequencies).
We assume that the structure is infinite along the y-direc-
tion and that the plane of incidence of electromagnetic
radiation is perpendicular to the grooves. For this geome-
try the Maxwell equations split into two independent sys-
tems describing separately the TE and TM polarizations.
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Fig. 1. Scheme of the investigated segmented grating and notation. Dark
parts are made of high-resistivity silicon, white parts represent the
vacuum. Three regions are defined: upper vacuum space (u), lower vacuum
space (l), and grating region (g).
As the experiment in Ref. [19] has been carried out for
TE polarization (electric field parallel with the grooves),
we restrict the calculations to this case.

Note that models described in Section 2.1 and 2.2
assume an infinite number of grating periods in the x-direc-
tion while the numerical calculation presented in Section
2.3 introduces a finite number N of grating segments.

If a grating is illuminated by a plane wave under an
angle of incidence h, a guided mode propagating along
the grating may be excited when the wave vector compo-
nent parallel with the grating surface kkin is conserved:

kjjin � k0 sin h ¼ bþ Gm; ð1Þ
where k0 ¼ x=c is the wave vector of a plane wave in vac-
uum, b is the wave vector of the guided mode (restricted to
the first Brillouin zone, i.e. jbj < p=LÞ, and Gm ¼ 2pm=L is
the reciprocal vector of the grating (m is an integer
number).

Guided modes can couple into other propagative modes:
A part of the energy of the guided mode is carried out of
the structure by waves which contribute to the total trans-
mitted, reflected or diffracted field (see Fig. 1). This cou-
pling is at the origin of narrow features in the
transmittance or reflectance spectra [24,25].

The frequencies xi of these spectral features can be
learned from the experimental and/or theoretical transmis-
sion spectra for a number of incidence angles h. Provided
the angular dependences xiðhÞ of these features are
obtained, a part of the band structure xiðbÞ of the seg-
mented grating can be reconstructed from these results
using Eq. (1). The band structure of guided modes
describes the Bloch modes which are allowed to travel
inside the waveguide along the x-direction with real or
complex b. Note that since jsin hj 6 1, the transmission
or reflections experiments (calculations) provide no infor-
mation about the modes below the vacuum line, for which
x=c < jbj: we call such modes true guided modes since they
propagate without radiation loss. The modes characterized
by a complex b with non-vanishing imaginary part are
referred to as leaky modes [7].

2.1. Transfer matrix method

The transfer matrix method (TMM) for calculation of
transmittance and reflectance spectra of two- and three-
dimensional periodic structures has been developed and
described in detail by Pendry et al. [23,26,27]. In brief,
the investigated structure is divided into several planar
slices. Transfer matrices then relate the electromagnetic
field distributions at the input and output planes of these
slices. Matrix elements of the transfer matrix of the entire
structure are straightforwardly connected to transmittance,
reflectance and diffraction spectra of the entire structure. In
these simulations we assumed a small non-vanishing imag-
inary part of the dielectric constant of the silicon
ðe ¼ 11:68þ i0:008Þ: these losses are introduced to account
for absorption especially at higher frequencies.
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The calculated complex transmission spectra are com-
pared with the experimental ones in Fig. 2 (the amplitude
of the experimental results is taken from Ref. [19]). The
agreement between these spectra is very good in the entire
frequency range studied. For frequencies below 500 GHz
the spectra in Fig. 2 are dominated by wide oscillations.
The wavelength of the radiation in this spectral range
(k > 0.6 mm) exceeds the grating period: in these conditions
the structure can be approximately regarded as a homoge-
neous slab with a dielectric function obeying effective-med-
ium response law. The observed oscillations are then
interpreted as a signature of the Fabry–Pérot effect in such
a slab. More quantitatively, the effective medium theory
defining the refractive index as neff ¼ ðeSinþ 1� nÞ1=2 pre-
dicts the lowest Fabry–Pérot maximum at 294 GHz which
is to be compared to about 275 GHz deduced from the
measured spectra. For frequencies above 300 GHz a series
of narrow resonances superposed onto the Fabry–Pérot
9
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Fig. 2. Transmittance (amplitude and phase) of the segmented grating versus
simulation; points: experimental results (from Ref. [19]). For clarity vertical shi
angle of incidence is increased.
fringes develops. It is natural to assume that these reso-
nances are caused by excitation of guided modes: this state-
ment will be shown more in details below with the help of
the modal approach. Notice that the Rayleigh anomalies
corresponding to the passing off of a diffraction order do
not produce narrow lines but broader features [28].

In order to draw the band structure of guided waves, the
frequencies of the resonances should be determined. We
expect that the resonant frequencies can be sufficiently
accurately approximated by positions of dips in the trans-
mittance spectra. The band structure obtained from the
pointing of the transmittance spectra is shown in Fig. 3:
both experimental and theoretical spectra were used and
are shown in the plot for the comparison. In the figure
we can infer on existence of forbidden bands which usually
appear in modulated structures. Note, however, that the
shape of the transmittance curves becomes very compli-
cated when modes with similar frequencies simultaneously
0. 8 1 1. 2
Hz)

frequency for several angles of incidence. Solid lines: results of the TMM
fts by 1 (amplitude) or 2p (phase) were gradually applied to the data as the
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Fig. 3. Band structure of guided and leaky modes in the segmented grating.
The plotted data represent a compilation of the results obtained by all the
methods discussed. The experimental data were measured in Ref. [19]. The
broad maxima are related to transverse Fabry–Pérot resonances of a slab
with effective dielectric properties; sharp dips are essentially due to leaky
modes. The branches obtained from transmission spectra with m = 1 are
related to the band folding into the first Brillouin zone [see Eq. (1)].
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appear in the spectra: the plot of the band structure one
can obtain using this method is then only approximate
and not complete.

2.2. Modal method

The electromagnetic theory of gratings called modal
approach has been described, e.g. in Refs. [7,12]. The wave
equation for the TE polarization ðEx ¼ Ez ¼ 0Þ

o
2Ey

ox2
þ o

2Ey

oz2
¼ �k2

0eðx; zÞEy ð2Þ

is solved. The eigenmodes in the different regions of the
space (Fig. 1) can be expanded in terms of the Bloch waves:

EðiÞy ðx; zÞ ¼
XM

m¼�M

F ðiÞm exp½icðiÞzþ iðbþ GmÞx�; ð3Þ
where the superscript (i) stands for the grating region (g)
and for the vacuum regions above and below the grating
[(u), (l)] (see Fig. 1). In theory, the sum runs over all reci-
procal lattice vectors GmðM !1Þ. A finite value of the
integer M is used in the numerical calculations. Substitu-
tion of this sum into (2) yields an eigenvalue problem for
the z-components of the wave vector cðiÞ and eigenvectors
F ðiÞm .

In the vacuum regions the eigenmodes are simple prop-
agative or evanescent plane waves with

cðu;lÞm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0 � ðbþ GmÞ2
q

; ð4Þ

where the sign of the square root is chosen such that
Reðcðu;lÞm Þ þ Imðcðu;lÞm Þ > 0 [29] which allows for accounting
the leaky modes correctly. The eigenmodes in the grating
region are superpositions of plane waves with amplitudes
F ðgÞm;q (with q ¼ �M . . . MÞ: these eigenvectors together with
corresponding eigenvalues cðgÞq must be found numerically.

The field in each region is expressed as an arbitrary
superposition of the eigenmodes (3), e.g. in the region (g)
one finds:

EðgÞy ðx; zÞ ¼
XM

m;q¼�M

F ðgÞm;q exp icðgÞq zþ iðbþ GmÞx
h i

: ð5Þ

The tangential components of the electric and magnetic
fields Ey and Hx ðixl0Hx ¼ �oEy=ozÞ must be continuous
across the interfaces in the planes z ¼ �d=2; e.g.,
EðgÞy ðx; z ¼ d=2Þ ¼ EðuÞy ðx; z ¼ d=2Þ for any x. This leads to
a system of linear equations for the amplitudes of the eigen-
modes. The zeroes of this system of equations describe
guided modes of the segmented waveguide. In this way, it
is possible to find for each frequency x the corresponding
set of complex longitudinal propagation constants b. Alter-
natively, one can look for a set of complex frequencies x
for any real propagation constant b. In this work we use
this second possibility. Two kinds of solutions are found:
(i) true guided modes for which both b and x are real
and the field outside the grating is evanescent, and (ii) leaky
modes for which x (or b) is complex, i.e., the mode is atten-
uated when propagating along the structure owing to the
radiation of electromagnetic energy out of the structure.
In the numerical calculations, the series (3) was limited to
the lowest 17 modes (M = 8). We have verified that taking
M > 8 does not improve the numerical results.

2.3. Bi-directional mode expansion and propagation method

In this method, the grating is considered as a segmented
waveguide, and wave propagation in both directions along

the grating is numerically calculated. The grating is sup-
posed to be excited, say, from the left, by the fundamental
eigenmode of a silicon slab waveguide with the same thick-
ness. Complex amplitudes of slab eigenmodes transmitted
to the right-hand side of the grating and reflected back
are calculated (see Fig. 4a); the fractional power of these
waves with respect to the input power is denoted as the
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modal transmittance T and reflectance R, respectively. All
remaining fractional power is considered as the radiation
loss L in the segmented region, L ¼ 1� T � R. Intrinsic
absorption losses in silicon are neglected in this calculation.

The scheme of the principle of the method is shown in
Fig. 4a. It makes use of the mode matching principle
well-known in microwave engineering. Its first application
for integrated optical waveguides was described in [30].
In [31], an efficient handling of periodic waveguide struc-
tures based on the application of Bloch modes was
described. The results presented in this paper were obtained
with its simple but numerically very stable version based on
the expansion of the fields into a suitable set of orthogonal
functions [32]. The results of this calculation are shown in
Fig. 4b for N = 10 and 100 grating periods.

3. Discussion

The rigorous dispersion relation obtained using the
modal method is plotted in Fig. 3. Only true guided modes
can be found below the vacuum line: these modes do not
exhibit any radiation losses as they cannot couple to other
propagative modes in vacuum regions. In turn, these
modes do not leave any fingerprints in the transmittance
spectra.

All other modes plotted in Fig. 3 are leaky, with the
exception of a few special values of xðbÞ. Note that their
radiation losses are rather high: for comparison, the ampli-
tude attenuation of THz radiation in lightly doped silicon
ðe ¼ 11:68þ i0:008Þ used in the experiment is only
0.074 cm�1 at 300 GHz (which corresponds to the imagi-
nary part 0.65i GHz in the complex frequency representa-
tion used in Fig. 3).

Note that there is a set of modes with particularly high
radiation losses for small longitudinal propagation con-
stant b, which appear as wide oscillations in the transmit-
tance spectra. For example, the radiation losses of the
lowest mode above the vacuum line (x = 275 GHz for
b = 0 cm�1) reach 52 GHz. Such wide resonances are sig-
natures of the Fabry–Pérot effect. For low frequencies,
the grating behaves as a homogeneous slab with effective
dielectric properties and the transmittance spectrum resem-
bles that of a Fabry–Pérot resonator. Indeed, the frequency
of the first broad maximum in the transmittance spectrum
matches very well the frequency of this mode. The second
mode of this type starts at 470 GHz. However, its relation
to the Fabry–Pérot effect is less obvious as (i) the elevated
frequency precludes the use of effective medium theories
and (ii) the frequency of the broad transmittance maximum
is affected by the presence of a sharp leaky mode in the
same spectral range.

A remarkable feature in the dispersion relation is the
existence of forbidden bands. The two lowest forbidden
bands spread from 172 GHz to 269 GHz and from
353 GHz to 389 GHz, respectively. The electromagnetic
radiation with frequencies belonging to the forbidden band
cannot propagate inside the waveguide along the x-direc-
tion, and can only radiate into the free space. This fact is
important e.g. for the design of efficient light-emitting
diodes [33].

The results of the bi-directional mode propagation cal-
culation are in a very good agreement with these conclu-
sions: we compare here the spectra plotted in Fig. 4b with
the dispersion curves shown in Fig. 3. The inset of Fig. 4b
shows the two even true guided modes obtained for a sim-
ulation using a segmented waveguide with N = 100 peri-
ods. The first mode shows a cut-off frequency at
172 GHz and the second one is observed in the range
280–289 GHz: this is in a quantitative agreement with
the dispersion curves shown in Fig. 3. The odd modes
are not observed in this simulation because of the even
symmetry of the TE0 input mode (see Fig. 4a). (We note
that a simulation with a TE1 input mode – not shown
here – yields a band at 275–300 GHz corresponding to
the odd mode below the vacuum line in Fig. 3.) If the
number of the segmented waveguide periods is decreased
in the simulation to N = 10, leaky modes with small radi-
ation losses start to be observed (see the main part of
Fig. 4b). We point out again a very good agreement of
these findings with the results of the modal approach:
such modes occur close to the center and to the boundary
of the first Brillouin zone, namely at 279, 340, 505 and
557 GHz. A small broad maximum in the modal losses
near 450 GHz corresponds to the second even Fabry–
Pérot mode of the structure.

It is also interesting to compare the rigorously calculated
band structure with the band structure reconstructed from
transmittance spectra. The agreement is very good for low
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frequencies (for x < pc=LÞ. In particular, the mode starting
at 353 GHz at b = 0 cm�1 is clearly resolved in the trans-
mittance spectra. The agreement is quite good also for
the second and third even mode starting at 505 GHz and
610 GHz, respectively. However, the reconstruction of dis-
persion curves from the transmittance spectra becomes
tricky for higher frequencies. Firstly, crossings of the dis-
persion curves of distinct leaky modes (e.g. in the spectral
range around 450 GHz and 690 GHz) necessarily leads to
a complicated shape of the transmittance spectra. Sec-
ondly, longer reciprocal lattice vectors start to play a role
in Eq. (1), i.e., m becomes non-zero. This is equivalent to
a mapping of the dispersion relation into the first Brillouin
zone, which yields additional dispersion curves. Such a
folding of dispersion curves is observed at the border of
the first Brillouin zone at 565 GHz and also for several
branches in the spectral range around 670 GHz. Although
the rigorously defined band structure is unique, the disper-
sion curves obtained from the transmittance spectra do
often considerably differ for different values of m.

4. Conclusion

Three methods were used for investigation of properties
of a periodically modulated dielectric waveguide in the
THz range. The rigorous modal approach allows us to
identify the forbidden bands for the propagation along
the waveguide. It also allows us to distinguish between (i)
the true guided modes which propagate without radiation
losses along the grating and which do not leave fingerprints
in the transmission spectra and (ii) leaky modes which are
guided along the structure but show radiation losses: these
modes are detected in the transmission spectra.

The transfer matrix method yields the transmission spec-
tra which are in a very good agreement with previously
published experimental data and facilitates the connection
of the experimental data to the band structure of the
waveguide.

The approach based on the bi-directional mode expan-
sion and propagation in the waveguide provides an inde-
pendent check of the characteristics of true guided modes
which are not accessible in the transmission experiments;
it allows us also to identify the leaky modes characterized
by small radiation losses.

For f < 300 GHz the grating behaves as a homogeneous
slab with effective dielectric properties and the transmit-
tance spectrum resembles to that of a Fabry–Pérot etalon
(homogeneous waveguide). At higher frequencies leaky
modes appear originating in resonant properties of seg-
ments: quantitative agreement between the experimental
data and all three theoretical models remains very good.
For f > c=L the transmission spectra become very complex
namely due to the contribution of longer reciprocal lattice
vectors and the consequent folding of the dispersion rela-
tion to the first Brillouin zone.
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[31] J. Čtyroký, S. Helfert, R. Pregla, Opt. Quantum Electron. 30 (1998)

343.
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