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All l-groups considered in the present paper are assumed to be abelian. For
convergence £-groups (shorter: cl-groups) we apply the same notation and definitions
as in [6].

Let (G, @) be a cl-group (where G is an ¢-group and « is a convergence in G). For
the definition of a closed £-subgroup (shorter: cl-subgroup) of (G, a) cf. Section 1
below. The system of all convex cl-subgroups of (G, a) will be denoted by ¢(G, a);
this system is partially ordered by the set-theoretical inclusion.

In the present paper we prove that ¢(G,«) is a Brouwer lattice. The lattice
operations in ¢(G, a) are constructively described.

For X C G the meaning of lim X is defined in a natural way. We show that if X
is an £-subgroup of G such thataX can be represented as a direct product of a finite
number of linearly ordered groups, then

lim lim X = lim X.

A nonempty class A of cl-groups is called a radical class of cl-groups if it is closed
with respect to isomorphisms, convex cl-subgroups and joins of convex cl-subgroups.
For radical classes A; and As we put A; < A, if A; is a subclass of As.
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We prove that a certain form of distributive law (analogous to the condition applied
when defining a Brouwer lattice) is valid for radical classes of cl-groups.

The analogous notion of a radical class of ¢-groups was introduced in [5] and
studied in several papers (cf., e.g., [1], [2], [7], [8])-

1. PRELIMINARIES

For an ¢-group G we denote by ¢(G) the system of all convex £-subgroups of G; this
system is partially ordered by the set theoretical inclusion. Then ¢(G) is a complete
lattice. The lattice operations in ¢(G) will be denoted by V and A.

Let G be the class of all /-groups. A nonempty subclass X of G is said to be a
radical class of /-groups if it satisfies the following conditions:

(i) X is closed with respect to isomorphisms.
(ii) Whenever G € X and Gp € ¢(G), then Gy € X.
(iii) Whenever G € G and {G;};cs is a nonempty subset of X N¢(G), then \/ G;
i€l
belongs to X.

We suppose that the reader is acquainted with the definitions from Section 1 of
[6]-
Let (G, a) and (G, a;) be cl-groups.

1.1. Definition. (Gi,q) is said to be a cl-subgroup of (G, «) if

(i) Gy is an £-subgroup of G;

(ii) whenever (z,) is a sequence in Gy, ¢ € G and z,, =, z, then z € Gy and
xn _>Oé1 .'L',
(iii) whenever (z,,) is a sequence in Gy, x € Gy and x,, —q, T, then x,, —4 x.

If (G1,a1) is a cl-subgroup of (G, ), then we often write (G1,«) instead of
(Gl 5 041).

The meaning of a convex cl-subgroup of (G, «) is obvious. The system of all convex
cl-subgroups of (G, a) will be denoted by ¢(G,a). If (G1,a1) and (G2, az2) belong
to ¢(G,a) and G1 C Ga, then we put (G1,a1) < (Ga2,az2). It is easy to verify that
under the relation <, the system ¢(G, ) is a complete lattice. The lattice operations
in ¢(G, ) will be denoted by V¢ and A°.

1.2. Definition. A mapping ¢ of G into G; is called a cl-homomorphism if

(i) ¢ is a homomorphism of the ¢-group G into the ¢-group Gy;
(ii) whenever (z,) is a sequence in G, z € G and z,, — z, then p(z,) —4, ©(z).

If there exists a cl-homomorphism of (G, &) onto (G, a1), then (G1,ay) is said to
be a homomorphic image of (G, a).
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1.3. Definition.  Let ¢ be a cl-homomorphism of (G,a) onto (G1,a1) such
that

(i) ¢ is a monomorphism;

1

(ii) the inverse mapping ¢~ is a cl-homomorphism of (G, a1) onto (G, a).

Then ¢ is an isomorphism of (G,a) onto (Gi1,a1); if such ¢ does exist, then
(G1,0q) is said to be cl-isomorphic to (G, a).
Let G. be the class of all cl-groups.

1.4. Definition. A nonempty subclass Y of G, is said to be a radical class of
a cl-group if the following conditions are satisfied:

(i) Y is closed with respect to cl-isomorphisms;
(ii) whenever (G,a) € Y and (G1,a1) € ¢(G, ), then (Gi,a1) €Y
(iii) whenever (G, a) € G. and {(Gi, ;) }ier is a nonempty subset of Y N ¢(G, ),
then v (Gi,ai) cy.
iel
We shall often apply without quotation the following facts:

(a1) If ap, —4 a and a,, < a for each n € N, then \/ a, = a (and dually).
neN
(a2) If G is linearly ordered, a, —4 a, ¢; < a < ¢, then there is m € N such that

for each n > m the relation c¢; < a, < ¢y is valid.

(The assertion (a;) is easy to verify; (as) is a consequence of (a1).)

2. THE SYSTEM ¢(G, o)

Again, let (G, ) € G..
A subset S of G is said to be closed with respect to (G, «) if, whenever (z,,) is a
sequence in S, ¢ € G and z, =, , then x € S.

2.1. Lemma. Let H be an {-subgroup of G such that it is closed with respect
to (G,a). For a sequence (x,) in H and x € H we put x, —qp) ¢ if T —a .
Then

(i) (H,«a(H)) is a cl-group.
(ii) (H,«a(H)) is a cl-subgroup of (G, ).

Proof. The first assertion is an immediate consequence of the definition of the
cl-group. Since H is closed with respect to (G, ) and in view of (i), the assertion
(ii) holds as well. O
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In view of the above remark concerning the notation (cf. Section 1) we will write
(H, ) instead of (H,a(H)).
Let X be a nonempty subset of G. We denote by lim X the set of all y € G such

that there exists a sequence (z,) in X with z, —, y.

2.2. Lemma. Let H be an {-subgroup of G. Then lim H is an {-subgroup of G.

If, moreover, H is convex in G, then lim H is convex in G as well.
(e

Proof. Let yi,y2 € lim H. Hence there are sequences (zf) in H such that

2t =4y (i =1,2). Thus 2L + 22 —, y1 + y2, and analogously for the operations
A and V. Also, —x. — —y;. Hence lim H is an ¢-subgroup of G.
(o7
Now suppose that H is convex in G and that z € G, y; < z < y2. Then

x,ll /\xi —a Y1, x; \/9U,2I —a Y2.
Put
2n = ((x2 A22)V 2) A (2 v 22).
Hence z, € H and z,, =4 (y1 V 2) Ay2 = z. Thus z € lim H. O
«@

Let H be as in 2.2. We put Hy = H and for each ordinal ¢t > 0 we construct H; by
transfinite induction as follows. Suppose that for t; < t all H;, are already defined
and that they are ¢-subgroups of G such that, whenever ¢t; < ty < ¢, then Hy, C Hy,.
If ¢ is a limit ordinal, then we put

Ht - U Htl'

t1<t

If t is non-limit, then there exists t; with ¢t = ¢; + 1. In this case we set
Ht = lim Htl .
(7
There exists an ordinal ¢ such that H; = H;, whenever ¢, > t. We denote
o
lim H = H;.
(o7
From 2.1, 2.2 and from the construction of lim H we immediately obtain

2.3. Lemma. Let H be an ¢-subgroup of G. Put li(;nH = H*. Then
(i) (H*,a) is a cl-subgroup of (G, a);

(if) if (K, «) is a cl-subgroup of (G,«) and H C K, then H* C K;

(iii) if, moreover, H is convex in G, then H* is convex in G as well.
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2.4. Lemma. Let {(H;,)}ier be a nonempty subset of ¢(G,«). Put Hy =
n Hi, HO = V Hi- Then

iel i€l
(i) /\ (Hiva) = (HO’ O‘);
iel
(i) V (Hi, @) = (im HO, ).
i€l
Proof. The first assertion is obvious; the second is a consequence of 2.3. O

2.5. Lemma. Let H be an {-subgroup of G. Then the following conditions are
equivalent:

(i) H is closed with respect to (G, a);
(i) H™ is closed with respect to (G, a).

Proof. Let (i) be valid and let (z,) be a sequence in HT, z € G, T,, =4 T.
Then z, = x, VO —, V0, whence z V0 = z and thus (ii) holds. Conversely,
suppose that (ii) is satisfied. Let (z,) be a sequence in H, z € G, x,, = x. Then
zt =4zt and x;, —4 7. We have z}t,x;, € HY for each n € N and thus, in view

n»n

of (ii), both z* and 2~ belong to HT. Hence © = 2+ — 2~ is an element of H. [

For subsets X and Y of G we denote
X-Y={z—y:ze€XandyeY}

2.6. Lemma. Let X be a subset of Gt such that
(i) X is a sublattice and a subsemigroup of GF;
(i) 0 € X.
Then X — X is an £-subgroup of G and (X — X)T = X. If, moreover, X is a convex
subset of Gt, then X — X is a convex £-subgroup of G.

The proof is routine, it will be omitted.

For each nonempty subset X of G we can perform an analogous construction as
we did above for H; in this way we obtain a subset of G which will be denoted by
lim X or by X*.

From the construction of X* we immediately obtain

2.7. Lemma. Let X be as in 2.6. Then

(i) X* is a subset of GT and it satisfies the conditions (i), (i) from 2.6;
(if) X™* is closed with respect to (G, a);
(iii) if, moreover, X is convex in G, then X* is convex in G as well.
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2.8. Lemma. Let H be an {-subgroup of G; put X = HT. Then H* = X* - X*.

Proof. In view of the constructions of H* and X* we have X* C H*. Then
according to 2.3 (i), X*— X* C H*. Further, 2.7 and 2.5 yield that X* — X* is closed
with respect to (G, «). Moreover, H = HT — Ht C X* — X*. Hence according to
2.3 (ii) we obtain the relation H* C X* — X* which completes the proof. O

2.9. Lemma. Let {(H;,a)}icr and H® be as in 2.4. Put (H°)* = X. Then

\C/(Hi,a) =X* - X*.
iel

Proof. This is a consequence of 2.4 and 2.8. O
Now, let (A,«a) and (B;,a) (i € I) be elements of ¢(G, ). Put
+
X =Xo= (\/ Bz-) :
i€l

and let X* be as above. For each ordinal ¢ we define X; analogously as when defining
H;.
Further, we put

Y=Y, = (\/(A/\BZ-)>+;

iel
the symbols Y* and Y; are defined analogously as X* and X;.
It is well-known that the relation

AN (\/Bi) =\/(AAB;)

i€l iel
is valid (cf., e.g., [5]). From this relation we immediately obtain that
ANXy =Y,

holds. Let ¢ be an ordinal with ¢ > 0 and assume that for each ordinal t; < ¢ the
relation
A /\ th = }/1-51

is valid.
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a) Suppose that t is a limit ordinal. Then we have

vi=Jv.=UJ@nrx,)=J@anx,)

1<t t1<t t1<t

:Am(U th) =ANX; = AN X,.

t1 <t

b) Further, suppose that ¢ is a non-limit ordinal. Hence there is an ordinal ¢; with
t =1t + 1. Then

X, =limX,,, Y,=limY;, =lm(4NX,).

Let z € AN X;. Hence z € A and z € X;. Also, z > 0. There exists a sequence
(zn) in Xy, such that z, —4 z. Clearly z, > 0. Then 0 < 2z, A z < 2, whence
2n N2 € ANXy, =Y and 2, A 2 =4 2. Thus z € Y; and therefore AN X; C Y;.

Assume that v € Y;. There exists a sequence (v,) in Yz, with v, —4 v. We have
v, € A for each n € N. Since A is closed with respect to (G, @) we obtain that v € A.
Further, v, € X;, for each n € N and thus v € X;. Therefore v € AN X;.

By summarizing, we obtain the relation

A A Xt = 1/,5
for each ordinal ¢. Thus
(%) ANX* =YY",

2.10. Theorem. Let (A,«) and (B;,a), i € I, be elements of (G, «). Then

(4,0) A° (v(Bi,a>) —\/((A,0) A° (B:,a)).

iel iel
Proof. Thisis a consequence of 2.8, 2.9 and of the relation (x). O

2.11. Corollary. The system ¢(G, ) is a Brouwer lattice.

Let the symbol w; have the usual meaning. It is easy to verify that if X is a
nonempty subset of G and if ¢ is an ordinal with X* = X;, then ¢ < w;.

If ¢ is the first ordinal with X* = X, then ¢ will be said to be the degree of X in
(G, a).

Further, let ¢’ be the first ordinal such that, whenever X is a nonempty subset of
G, then the degree of X in (G, ) is less or equal to t'. We denote d(G,a) =t'.
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The following questions remain open:

a) For which ordinals ¢ there exist (G, a) € G. and X C G such that ¢ is the degree
of X in (G, a)?

b) For which ordinals ¢ there exists (G, a) € G. such that d(G,a) = t?

For a related open question concerning convergence groups cf. [3].

2
3. THE CONDITION lim X = lim X

(e

2
Let (G, a) be as above. For X C G we denote limlim X = lim X. In this section

we prove that if X is an f-subgroup of G such that X is a direct product of a finite
number of linearly ordered groups, then the relation

2
(1) lim X = lim X
is valid. In other words, the degree of X is either 0 or 1.

3.1. Lemma. Let X be a linearly ordered ¢-subgroup of G and g € lim X. Then

the set X U {g} is linearly ordered and there are x',z*> € X such that z' < g < 2°.

Proof. In the case X = {0} we have g = 0. Assume that X # {0}. Then there
exists z§ € X with 3 > 0. First we prove that the element g cannot be an upper
bound of the set X. By way of contradiction, suppose that g > x for each z € X.

Since g € lim X, there is a sequence (z,,) in X such that z, —, ¢g. Because z,, < g
for each n € f\oj, we obtain that

Sup{xn}nEN =g

and this yields that sup X = g. For each z € X we have z+z} € X, thus z+z} < g,
hence z < g — 2§ < g. This is a contradiction with the relation sup X = g. Hence
there is 22 € X such that 22 7{_ g.

If 22 is any element of X with this property, then there is a positive integer m(z?)
such that for each n € N with n > m(2?) we have z, < 2? (otherwise the relation
g > 22 would be valid). Then g < z2. By a dual argument we prove that there
is ' € X with z' < g. Moreover, if 2% is any element of X with 2 % g, then
g > 3. O

3.2. Lemma. Let X be a linearly ordered ¢-subgroup of G. Then lim X is also
a linearly ordered ¢-subgroup of G.
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Proof. In view of 2.2, lim X is an ¢-subgroup of G. Hence it suffices to verify
that whenever g, and g» are distinct elements of lim X, then g; and g, are compa-
rable. In view of 3.1 there are ideals X; and X, of the linearly ordered set X such
that

(i) X1 # X # Xo;

(i) z<grifx € Xy,and x > g if z € X \ Xy;

(i) r<gpifreXy,andz > grif z € X \ Xo.

The ideals X; and X, are comparable. Since g; # g2, we obtain that X; # X,. Thus
without loss of generality we can suppose that X; C X5. Hence thereis z € X5\ X;.

Then in view of (ii), z > ¢;. Further, according to (iii), z < g2. Therefore g; < go.
O

3.3. Lemma. Let X be a linearly ordered ¢-subgroup of G. Then (1) holds.

Proof. Let (y,) be a sequence in limX, g € G and vy, =4 ¢g. Then in view
(e
of 3.1 and 3.2, g is comparable with all elements of lim X. Hence there exists a

subsequence (yl) of (y,) such that either (i) yL > g for each n € N, or (i) yL < g

for each n € N. Suppose that (i) holds (in the case of (ii) the method is similar). If

yl = g for some n € N, then g € lim X. Thus it suffices to suppose that y. < g for
(e

each n € N, and in this case we can assume without loss of generality that y., <yl ,
for each n € N.

Let n € N. There exists a sequence (2% )ren in X such that 27 —4 yl (as k — 00).
Hence there is m(n) € N such that

1 n 1
Yn—1 <Tp <Ynq1
whenever k > m(n). Since y},_; =4 g and y},; —« g we obtain that
To(n) o g

and thus g € lim X. Hence (1) is valid. O

3.4. Lemma. Let L be a distributive lattice with the least element 0. Let A
and B be sublattices of L such that
(i) 0e AN B;
(iil) a Ab=0 for each a € A and each b € B;
(iii) for each g € L there area € A and b € B with g =a V b.
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Then the elements a, b from (iii) are uniquely determined and the mapping g — (a, b)
gives an isomorphism of L onto the direct product A x B.

The proof is routine, it will be omitted.

3.5. Lemma. Let X be an ¢(-subgroup of G such that X is a direct product of
linearly ordered groups Xy, Xs,...,Xg. Then the ¢-group lim X is a direct product

of linearly ordered groups lim Xj,lim Xo,...,lim X.

Proof. We proceed by induction with respect to k. The case k = 1 is trivial.
Suppose that k£ > 1 and that the assertion is valid for &k — 1.

Without loss of generality we can assume that X; # {0} for i = 1,2,...,k. Put
Y; = lior‘n X; (1=1,2,...,k). According to 3.2, all Y; are linearly ordered ¢-subgroups
of G. Also, liinX =Y is an {-subgroup of G. In view of Theorem 2.3, [4] it suffices

to verify that the lattice Y+ is a direct product of lattices Y;',..., Y,
Let g € Y. In the same way as in the proof of 3.1 we can verify that g fails to
be an upper bound of the set XT. For each x € Xt we have

z=z(X1)V...Va(Xy), z(X;)=20 (i=12,...,k),

where z(X;) is the component of z in X;. Hence g fails to be an upper bound of the
set X" U X, U...UX;". Thus we can suppose that g is not an upper bound of the
set X;7. Therefore there is 2o € X; such that z¢ jé g.

There is a sequence (z,) in X such that z, —, g. Put 2}, = 2, V0. Then we have
z!. —4 g as well. Further,

2h ANxo = (20 (X1) V2L (X2) V...V 2l (X)) Azo =

= Z;I(Xk) Nxo € X

and 2!, (Xk) Axo —a g A zo, whence g A zg € lim X, C lim X.
(e [e4
Put Ny = {n € N: 2/,(Xx) > xo}. If the set Ny is infinite, then there exists

"
n

a subsequence (zI') of (z!) such that 2! > z¢ for each n € N and then we would

have g > xo, which is a contradiction. Hence the set Vi is finite; thus there is a
subsequence (z!/) of (2!,) such that z!/(X})) < zo for each n € N, whence

20(Xg) Azo = 20 (Xy)
and then z!/(Xy) —a g A zo. Therefore

2l — 2 X)) =20 (X1) + 20 (X2) + ..o+ 20 (Xk—1) —a 9 — (g A To).
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Therefore by the induction hypothesis (since 2(X;) + ... + z//(Xx—1) belongs to
X1 X ... x Xp_1) the element g — (g A x¢) belongs to the direct product Y7 x Y5 X
... X Yi_1. Since g — (g Axp) = 0 we obtain, moreover, that this element belongs to
the direct product of lattices Y;t,..., V! .

Let t € Y;" x Y5" x ... x Y;|. Then by the induction hypothesis, there is a
sequence (t,) in X~ x ... x X; | such that ¢, —, t. We have

tn A2zp(Xi) =0 foreachn €N,

thus
tA (g Axg) =0,

t+(gAxzo) =1tV (gAxo).
In particular,
g=1(9—(9Az0)) + (9N x0) =(9—(9Ax0))V (g o)

with g — (g Azo) € V;H x ... x thl and g A\ xg € Yk"'.
Hence in view of 3.4 we obtain that for the lattice YT there exists a direct product
decomposition
YT =Y xYt x...xYt.

Now we apply again Theorem 2.3 of [4] concluding that the ¢-group Y has a direct
product decomposition

(2) Y=Y1xYyx...xY;.
O

3.6. Theorem. Let X be an {-subgroup of G such that X is a direct product
of a finite number of linearly ordered groups. Then (1) holds.

Proof. We apply the notation as in the proof of 3.5 and similarly as in 3.5 we
proceed by induction with respect to k. The case k = 1 was dealt with in 3.3; let
k> 1.

Since all Y; are linearly ordered we can apply 3.5 to the relation (2) obtaining

IlmY =limY; xlimYs x ... x1limY}.
2 2
Since limY =lim X and limY; =lim X; (i = 1,2,...,k), by applying 3.3 we infer

2
ImX =Y x...x Y, =limX.
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4. THE RELATION OF PARTIAL ORDER BETWEEN RADICAL CLASSES

For a class X of cl-groups we denote by

Subg X—the class of all cl-groups (G, ) having the property that there exist
(H,B) in X and (H1, ) € ¢(H, B) such that (G, «) and (Hi, ) are cl-isomorphic;

Join X—the class of all cl-groups (G, ) having the property that there exist
(Hi, 0;) in X and (G;, @) € ¢(G,a) (i € I) such that

a) for each i € I, (H;, 5;) and (G;, @) are cl-isomorphic, and

b) (G.a) = V (Gs.a).

i€l
4.1. Proposition. Let X be a nonempty class of cl-groups. Then

a) Join Sub. X is a radical class of cl-groups.
b) IfY is a radical class of cl-groups and X CY, then JoinSub. X C Y.

Proof. Put JoinSub, X = Z. We have to verify that Z satisfies the con-
ditions (i), (i) and (iii) from 1.4. It is obvious that Z is closed with respect to
cl-isomorphisms. For each nonempty class Z; of cl-groups we have Join Join Z; =
Join Z;, whence Z satisfies the condition (iii) from 1.4.

Let (G,a) € Z and (G4, a) € ¢(G,a). Hence there exist (H;, ;) (i € I) belonging
to Sub. X N¢(G, a) such that

c

(Ga) = \/ (Hi, ).

il
Then by applying 2.10

c

(Gl,Oé) = (Gl,a) A€ (G,Oé) = (Gl,a) A€ (\/(Hi,a))
i€l

c

= \/(G1,0) A° (Hi,a)).

iel

For each i € I, the cl-group (Gi,a) A° (H;,a) belongs to Sub, Sub, X = Sub. X
and therefore (G1, «) belongs to Z. Hence the condition (ii) from 1.3 is valid, which
completes the proof of a).

Let Y be a radical class of cl-groups and X C Y. Then Sub, X C Sub.,Y =Y
and Join Sub, X C JoinY =Y. Thus b) is valid. O

Let Y7 and Y, be radical classes of cl-groups. We put Y7 < Y3 if Y7 is a subclass
of 5.
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We denote by Yy the class of all cl-groups (G, ) such that G is a one-element set.
Then Yj is a radical class of cl-groups and for each radical class Y of cl-groups we
have Yo <Y < G..

Let G be an /-group. For a sequence (z,) in G and for x € G we put =, —q(q) =
if there exists m € N such that z,, = z for each positive integer n with n > m. Then
(G, a(G)) is a cl-group; a(G) is the discrete convergence on G.

If X is a class of ¢-groups, then we put

e(X) ={(G;a(G)): G € X}.
Then we obviously have

4.2. Lemma. If X is a radical class of {-groups, then ¢(X) is a radical class
of cl-groups. Moreover, if X7 and X, are distinct radical classes of {-groups, then

o(X1) # p(X2).

Let R, and R. be the collection of all radical classes of /-groups or the collection
of all radical classes of cl-groups, respectively. (Let us remark that in [5] the symbol
R was used, but in [5] it was not assumed that the ¢-groups under consideration
were abelian.)

There exists an injective mapping of the class of all infinite cardinals into R, (this
follows from the construction in [5], Section 3). Hence in view of 4.2, there exists an
injective mapping of the class of all infinite cardinals into R..

Suppose that I is a nonempty class and that for each i € I, Y; is a radical class of

a:ﬂn

iel

cl-groups. Put

Then in view of 1.4, Z; is a radical class of cl-groups. We obviously have
Z1 = inf{YL’}iej.

We express this fact by writing

a:An

el
Further, we put
Zy = JoinSub | ] V.
el

Then 4.1 yields that the relation

Zy = sup{Yi}ier
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is valid in R.. We express this fact by writing
Zy=\/ Y.
icl
We clearly have
Sub| JV; = Sub¥;.

¢ el ier €
Since each Y; is a radical class of cl-groups we obtain Sub. Y; =Y;. Hence

\/ Yi = Join | vi.

i€l i€l

4.3. Theorem. Let{Y;};cr be as above and let Y be a radical class of cl-groups.

Then
YA(VE)ZVQmm)

iel i€l
Proof. We have

VQWWQ<YA(VE)

iel iel
Let (G,a) € Y A(V Y;). Thus (G,a) €Y and
iel
(G,a) € Join | ) Vi.

icl
Then there exist cl-groups (Gk,a) (k € K) such that, for each k € K,
(Grra) € c(Gayn (U 77)
il

and

c

(G,a) = \/ (Gg, ).
keK
Hence for each k € K there exists i(k) € I with (Gy, ) € Yj(x). Denote
L ={i(k): ke K}.
Thus (Gk, a) ceYA K(k) and

(G, ) € Join | J (Y A Yiwy) < Join| (¥ AY:) = \/ (Y AY:).
i€l i€l el
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