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Abstract. BL-algebras, introduced by P. Hájek, form an algebraic counterpart of the
basic fuzzy logic. In the paper it is shown that BL-algebras are the duals of bounded
representable DRl-monoids. This duality enables us to describe some structure properties
of BL-algebras.
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1. Connections between BL-algebras and DRl-monoids

Dually residuated lattice ordered monoids (briefly: DRl-monoids) were introduced

and studied by K. L. N. Swamy in [16], [17] and [18] as a common generalization
of commutative lattice ordered groups (l-groups) and Brouwerian (and hence also

Boolean) algebras.

Definition. An algebra A = (A, +, 0,∨,∧,−) of signature 〈2, 0, 2, 2, 2〉 is called
a DRl-monoid if it satisfies the following conditions (x, y, z ∈ A):

(1) (A, +, 0) is an abelian monoid;
(2) (A,∨,∧) is a lattice;

(3) (A, +,∨,∧, 0) is an l-monoid;
(4) if � denotes the order on A induced by the lattice (A,∨,∧) then x − y is the

smallest z ∈ A such that y + z � x;
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(5) ((x − y) ∨ 0) + y � x ∨ y.

����. As is shown in [16], condition (4) is equivalent to the system of identities

x + (y − x) � y;

x − y � (x ∨ z) − y;

(x + y) − y � x,

hence DRl-monoids form a variety of algebras of type 〈2, 0, 2, 2, 2〉.
The notion of a DRl-monoid actually includes also other types of algebras.

It is well-known (by C. C. Chang [2]) that the �Lukasiewicz infinite valued proposi-

tional logic has as its algebraic counterpart the notion of an MV -algebra. Moreover,
there are several other types of algebraic structures equivalent to MV -algebras which

in this sense can be associated with �Lukasiewicz logic. For example, by D. Mundici [8]
and [9], MV -algebras are categorically equivalent to abelian lattice ordered groups

with strong order units and to bounded commutative BCK-algebras.

In [12] and [14] it was shown that the class of MV -algebras is polynomially equiv-
alent to a variety of bounded DRl-monoids.

The �Lukasiewicz infinite valued logic is an axiomatic extension of the basic fuzzy

logic. The latter has as its algebraic counterpart the notion of a BL-algebra. (See
[6], [7] or [4].) The basic fuzzy logic and BL-algebras were introduced by P. Hájek

to formalize a part of the reasoning in fuzzy logic. In this paper we will show that
also BL-algebras can be equivalently replaced by a class of dually residuated lattice

ordered monoids, and that this equivalence makes it possible to use some results of
the theory of such lattice ordered monoids in the theory of BL-algebras.

Definition. A BL-algebra is an algebra A = (A,∧,∨,�,→, 0, 1) of signature

〈2, 2, 2, 2, 0, 0〉 such that

(i) (A,∧,∨, 0, 1) is a bounded lattice with the least element 0 and the greatest
element 1;

(ii) (A,�, 1,∨,∧) is a commutative lattice ordered monoid;

(iii) A satisfies the following conditions:

(1) z � x → y iff x � z � y, for all x, y, z ∈ A,

(2) x ∧ y = x � (x → y),

(3) (x → y) ∨ (y → x) = 1.

������. a) The BL-algebras also form a variety of algebras of the type con-

sidered.

b) A BL-algebra could be also defined equivalently as an algebra A = (A,�,→, 0)
of signature 〈2, 2, 0〉 (see [4]). We use the above Hájek’s definition because it gives a
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direct possibility to show a duality between the class of BL-algebras and a class of

DRl-monoids.

Now we can recognize BL-algebras as dual cases of some DRl-monoids.

Definition. A DRl-monoid A = (A, +, 0,∨,∧,−) is called representable (see

[20]) if it is isomorphic to a subdirect product of linearly ordered DRl-monoids
(i.e. DRl-chains).

For instance, commutative l-groups and Boolean algebras are representable DRl-

monoids.
One can prove (see [20]) that a DRl-monoid A is representable if and only if A

satisfies the identity
(x − y) ∧ (y − x) � 0.

������. Comparing two classes of algebras, it will be simpler to use alge-

bras dual to BL-algebras. Namely, an algebra A = (A,∨,∧,⊕,	, 1, 0) of type
〈2, 2, 2, 2, 0, 0〉 is called a dual BL-algebra if

(i)d (A,∨,∧, 1, 0) is a bounded lattice with the greatest element 1 and the least
element 0;

(ii)d (A,⊕, 0,∧,∨) is a commutative lattice ordered monoid;
(iii)d A satisfies the conditions

(1) z � x 	 y iff x ⊕ z � y, for all x, y, z ∈ A,
(2) x ∨ y = x ⊕ (y 	 x),

(3) (x 	 y) ∧ (y 	 x) = 0.
Let A = (A,∧,∨,�,→, 0, 1) be a BL-algebra and let (A,∧d,∨d) be the lattice dual

to the lattice (A,∧,∨), i.e. x∧d y = x∨y and x∨d y = x∧y for any x, y ∈ A. Further,
set x⊕dy = x�y and x	dy = y → x for each x, y ∈ A. Then (A,∨d,∧d,⊕d,	d, 0, 1)

is a dual BL-algebra. Conversely, using the dual considerations, one can obtain a
BL-algebra from a given dual BL-algebra. It is obvious that the above processes

are mutually inverse and therefore there is a one-to-one correspondence between the
BL-algebras and the dual BL-algebras.

Theorem 1. Let A = (A, +, 0,∨,∧,−) be an above bounded DRl-monoid with

the greatest element 1. Then (A,∨,∧, +,−, 1, 0) is a dual BL-algebra if and only if

A is representable.
	���
. One can easily prove (see e.g. [10], Theorem 1.2.3) that if a DRl-

monoid A is bounded above then it is bounded below too, and, moreover, 0 is the
least element in A. If this is the case, then the conditions (i)d, (ii)d and (iii)d(1) are

trivially satisfied, and the condition (iii)d(2) follows from (5) of the definition of a
DRl-monoid. If moreover A is representable, the condition (iii)d(3) holds.
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Conversely, if A is a bounded DRl-monoid such that (A,∨,∧, +,−, 1, 0) is a dual

BL-algebra, then A is obviously representable. �

Comparing the definitions of BL-algebras and representable DRl-monoids we get
the following theorem.

Theorem 2. If A = (A,∨,∧,⊕,	, 1, 0) is a dual BL-algebra then (A,⊕, 0,∨,∧,

	) is a bounded representable DRl-monoid with the greatest element 1.

������. For the class DRl1 of bounded DRl-monoids (and especially for the
class RDRl1 of bounded representable DRl-monoids) we will consider the greatest

element 1 as a new nullary operation and thus we will enlarge the type of those DRl-
monoids to (+, 0,∨,∧,−, 1) of signature 〈2, 0, 2, 2, 2, 0〉. Hence the class DBL of dual

BL-algebras is, from this point of view, a subclass of the class DRl1 which is, by
Theorems 1 and 2, equal to the class RDRl1 of bounded representable DRl-monoids.

This means that BL-algebras are in fact the dual algebras of bounded representable
DRl-monoids, and therefore one can obtain some results on BL-algebras as conse-

quences of those on DRl-monoids.

Now, let us recall the notion of an MV -algebra.

Definition. An algebra A = (A,⊕,¬, 0) of signature 〈2, 1, 0〉 is called an MV -
algebra if A satisfies the following identities:

(MV1) x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z;

(MV2) x ⊕ y = y ⊕ x;

(MV3) x ⊕ 0 = x;

(MV4) ¬¬x = x;

(MV5) x ⊕ ¬0 = ¬0;

(MV6) ¬(¬x ⊕ y) ⊕ y = ¬(x ⊕ ¬y) ⊕ x.

As is known, MV -algebras were introduced by C. C. Chang in [2] and [3] as an

algebraic counterpart of �Lukasiewicz infinite-valued propositional logic.

If we put in any MV -algebra A

1 = ¬0, x 	 y = ¬(¬x ⊕ y),

x ∨ y = ¬(¬x ⊕ y) ⊕ y, x ∧ y = ¬(¬x ∨ ¬y)

for each x, y ∈ A, then (A,∨,∧,⊕,	, 1, 0) is a dual BL-algebra and so also a bounded

representable DRl-monoid.

Moreover, MV -algebras are by [12] and [14] in a one-to-one correspondence with
bounded DRl-monoids (the representability is not explicitly required) which satisfy
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the identity

(i) 1 − (1 − x) = x.

Therefore we get as a consequence a known characterization of MV -algebras in the
class of dual BL-algebras:

Corollary 3. A dual BL-algebra A is an MV -algebra if and only if A satisfies

(i′) 1 	 (1 	 x) = x.

����. This corollary corresponds to [7], Definition 3.2.2, where MV -algebras are

defined as BL-algebras satisfying the law of double negation ¬¬x = x.

������. DRl-monoids (similarly as MV -algebras) in general lack additive

idempotents. However, in Brouwerian algebras which are special cases of DRl-
monoids, the operations + and ∨ coincide, and hence, among others, all elements

are additive idempotents. It is known ([2], Theorem 1.17) that additive idempotents
in any MV -algebra form a Boolean algebra. Now we can analogously describe the

properties of the set of idempotents in any bounded representable DRl-monoid.

Proposition 4. The set B of additive idempotents of any representable bounded

DRl-monoid A is a Brouwerian algebra.
	���
. Let A = (A, +, 0,∨,∧,−, 1) be a bounded representable DRl-monoid

and B = {x ∈ A; x + x = x}. Obviously 0, 1 ∈ B. Let x, y ∈ B. Then

(x + y) + (x + y) = x + y,

(x ∧ y) + (x ∧ y) = (x + x) ∧ (x + y) ∧ (y + y) = x ∧ y ∧ (x + y) = x ∧ y,

hence x + y, x ∧ y ∈ B.

For any x, y ∈ B,

x + (x ∧ y) = x ∧ (x + y) = x,

thus (B, +,∧) satisfies both absorption laws. Therefore (B, +,∧) is a lattice which
is distributive by the definition of a DRl-monoid.

Let A be a bounded DRl-chain. The order induced on B by the lattice (B, +,∧)
is clearly the same as that induced on B by A. Hence (B, +,∧) is a chain, and so

x + y = sup(x, y) = max(x, y) = x ∨A y

565



for any x, y ∈ B.

Moreover, (B, +,∧) = (B,∨,∧) is a Brouwerian algebra because for any x, y ∈ B

we have

x − y = 0 if x � y,

x − y = x if x > y.

Let now a DRl-monoid A be a subdirect product of bounded DRl-chains Ai, i ∈ I.
If a = (ai; i ∈ I) ∈ A, then a ∈ B if and only if ai ∈ Bi for each i ∈ I. (Bi is the set

of idempotents of Ai.) Hence, if a, b ∈ B then

a + b = (ai + bi; i ∈ I) = (max(ai, bi); i ∈ I) = a ∨ b,

and if we set a− b = (ai − bi; i ∈ I) for any a, b ∈ B, we get that (B, 0,∨,∧,−, 1) is

a Brouwerian algebra. �

Corollary 5. The set of multiplicative idempotents of any BL-algebra is a Heyt-

ing algebra.

2. Structure properties of BL-algebras

Recall the notion of a filter of a BL-algebra introduced in [7], Definition 2.3.13:

If A is a BL-algebra then ∅ �= F ⊆ A is called a filter of A if

(a) ∀a, b ∈ F ; a � b ∈ F,

(b) ∀a ∈ F, x ∈ A; a � x ⇒ x ∈ F.

Further, recall that ∅ �= F ⊆ A is called a deductive system of a BL-algebra A if

(a′) 1 ∈ F,

(b′) ∀x, y ∈ A; x ∈ F, x → y ∈ F =⇒ y ∈ F.

One can easily prove that ∅ �= F ⊆ A is a filter of A if and only if F is a deductive

system in A.

Note that deductive systems of BL-algebras were introduced in [21] where, more-

over, also special types of deductive systems called implicative and weakly implicative
were studied.

Let B be an arbitrary DRl-monoid. For any x, y ∈ B set x ∗ y = (x− y)∨ (y − x).

Then ∅ �= I ⊆ B is called an ideal of B if

(c) ∀a, b ∈ I; a + b ∈ I,

(d) ∀a ∈ I, x ∈ B; x ∗ 0 � a ∗ 0 ⇒ x ∈ I.
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It is obvious that 0 � x implies x∗0 = x for any x in a DRl-monoid B. Therefore,

if A is a BL-algebra then the filters of A and the ideals of the DRl-monoid Ad dual
to A coincide.

Further, the ideals and congruences in any DRl-monoid are in a one-to-one cor-

respondence (see [18]), therefore this holds also for filters and congruences of BL-
algebras (see also [7] or [4]).

In [19] some results concerning the lattices of semiregular normal autometrized

lattice ordered algebras are obtained. The DRl-monoids are special cases of these
algebras, thus the following assertions are consequences of [19], Theorem 6, of the

distributivity of Brouwerian lattices, and of the correspondence between the lattice
of subvarieties of any variety of algebras V and the lattice of fully characteristic

congruences of the free algebra with countable rank in V .

Theorem 6. The filters of any BL-algebra form, under the ordering by set in-

clusion, a complete algebraic Brouwerian lattice.

Corollary 7. The variety BL of BL-algebras is congruence distributive.

Theorem 8. The lattice BL of all varieties of BL-algebras is a complete dually

algebraic dually Brouwerian lattice.

If A is a BL-algebra then a filter F of A is called prime if F is a finitely meet
irreducible element of the lattice F(A) of all filters of A, i.e., if

∀K, L ∈ F(A); K ∩ L = F =⇒ K = F or L = F.

According to [11], F is a prime filter of A if and only if

∀x, y ∈ A; x ∨ y ∈ F =⇒ x ∈ F or y ∈ F,

and hence by [7] if and only if the quotient algebra of A by the congruence corre-

sponding to F is linearly ordered.

In [7], Definition 2.3.13, a filter F of a BL-algebra A is defined to be prime if for

each x, y ∈ A,

x → y ∈ F or y → x ∈ F.

Further, in [7], Lemma 2.3.14, the correspondence between congruences and filters
of BL-algebras is described and it is shown that the quotient BL-algebra is linearly

ordered if and only if it corresponds to a prime filter. Hence our definition of a prime
filter is equivalent to that of [7]. Moreover, in [7], Lemma 2.3.15, it is shown that
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any BL-algebra A has “enough” prime filters because for any 1 �= x ∈ A there is a

prime filter of A not containing x.

Let us denote by SpecA the prime spectrum of a BL-algebra A, i.e. the set of

all proper prime filters of A. As dual BL-algebras form a subvariety of the variety
DRl1 of bounded DRl-monoids, we get, by [13], Corollary 6, the following theorem.

Theorem 9. If A is a BL-algebra, then SpecA endowed with the spectral
(i.e. hull-kernel) topology is a compact topological space.

Let us consider the sets m(A) and M(A) of all minimal and maximal, respectively,

proper prime filters of a BL-algebra A. Since Ad is, moreover, a representable
DRl-monoid, Theorems 11 and 14 of [13] imply the following properties of spectral

topologies on m(A) and M(A) induced by the spectral topology of SpecA.

Theorem 10. Let A be a BL-algebra. Then the spectral topologies of m(A) and

M(A) are T2-topologies and the spaceM(A) is compact.

Let us recall the notion of a weak Boolean product of algebras.

Definition. An algebra A is called a weak Boolean product (a Boolean product)
of an indexed family (Ax; x ∈ X) of algebras over a Boolean space X if A is a

subdirect product of the family (Ax; x ∈ X) such that

(BP1) if a, b ∈ A then [[a = b]] = {x ∈ X ; a(x) = b(x)} is open (clopen);

(BP2) if a, b ∈ A and U is a clopen subset of X , then a|U ∪ b|X\U ∈ A, where
(a|U ∪ b|X\U )(x) = a(x) for x ∈ U and (a|U ∪ b|X\U )(x) = b(x) for x ∈ X \U .

(See [1] or [5].)

In the paper [5], Theorem 2.3, it was proved how the ordered prime spectrum of
a weak Boolean product (and hence also of a Boolean product) of MV -algebras is

composed by the prime ordered spectra of the components of this product. This
result was generalized in [15], Theorem 2, to weak Boolean products of arbitrary

bounded DRl-monoids. Hence the next theorem is a consequence of [15].

Theorem 11. Let a BL-algebra A be a weak Boolean product over a Boolean
space X of a system (Ax; x ∈ X) of BL-algebras. Then the ordered prime spec-

trum (SpecA,⊆) is isomorphic to the cardinal sum of the ordered prime spectra

(SpecAx,⊆), x ∈ X .
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