1		2	
	INTRODUCTION		
	 In economic decision theory, widespread recognition that assumption of unique ("precise") subjective probability measure is very demanding "Ambiguity" 		
	 Ellsberg paradox * deeper than other departures from SEU since it challenges very notion of probabilistic belief 		
OBABILISTIC BELIEFS IN THE PRESENCE OF AMBIGUITY			
Klaus Nehring University of California, Davis September 2009			

Example (2-color Ellsberg paradox).

- 1 ball drawn from each of two urns
- both contain only red and black balls

IMPRECISE PROBABILISTIC BELIEFS

- composition of one urn known to be 50:50, of the other unknown
- associated events (draws) R_{kn} and $B_{kn} R_{un}$ and B_{un}
- $X = \{0, 1\}$ with $1 \succ 0$, and
 - $[1 \text{ on } R_{kn}, 0 \text{ on } B_{kn}] \sim [1 \text{ on } B_{kn}, 0 \text{ on } R_{kn}] \succ$ $[1 \text{ on } R_{un}, 0 \text{ on } B_{un}] \sim [1 \text{ on } B_{un}, 0 \text{ on } R_{un}].$
- Behavior cannot be rationalized by unique subjective probability μ

(cannot be "probabilistically sophisticated")

(a) By first ~, $\mu(R_{kn}) = \frac{1}{2}$;

(b) By second \sim , $\mu(R_{un}) = \frac{1}{2}$;

(c) By
$$\succ$$
, $\mu(R_{kn}) > \mu(R_{un})$.

• Psychologically plausible explanation in terms of aversion to "ambiguity"

4

- "ambiguity" as "probabilistic ignorance" of sorts

- * Keynes, Levi, Seidenfeld, Dempster, Shafer, Berger, Walley et al.
- Hence Ellsberg choices rationally motivated; not just "mere behavior"
- Are Ellsberg choices rational?

- consistent with strong notions of rationality ...
- but arguably not fully rational (Nehring 1991, 1992, 2000, 2009) * yet full rationality may be super-human
- Here, want to bracket issue of full rationality; sufficiently rational to be taken seriously
 - deliberate choices of many sophisticated DMs

5

What do Ellsbergian ("ambiguity-sensitive") DMs believe?

- Basic observation: probabilistic beliefs not canonically/directly revealed by behavior
 - (a) Betting preference does not reveal corresponding likelihood comparison \geq_{rev} in meaningful sense
 - * would imply that $R_{kn} \triangleright_{rev} R_{un}$ and $R_{kn}^c \triangleright_{rev} R_{un}^c$
 - reason: betting preferences determined by probabilistic beliefs plus ambiguity attitudes

 \rightsquigarrow gap between beliefs – behavior; beliefs need to be introduced as independent primitives.

PART 1: BELIEFS AS INDEPENDENT PRIMITIVE

- First-person (DM's) point of view:
 "I prefer to bet on event A over B because I believe that A is more likely than B"
- Third-person (analyst's) point of view: "I expect the DM to bet on event A over B because it is reasonable for her to believe that A is more likely than B"
 - this, rather than *direct* attribution of preferences, dominant plausibility consideration for economic modelling
- Yes, there are deep philosophical issues
 subjective probability as *irreducible*; not reducible to behavior, information, frequency

7

Beliefs

- subjective (judgment) → qualitative primitive; any numeric/algebraic structure must be result of representation theorem
- Judgements of comparative likelihood \geq .
 - $A \supseteq B$: "A is believed/judged to be more likely than B"
 - Keynes (1921), De Finetti (1931), Koopman (1940), Savage (1954)

IMPRECISE QUALTITATIVE PROBABILITY

Comparative likelihood relation \succeq : partial order on Σ

Goal: find conditions that ensure existence and uniqueness of multiprior representation:

 $A \supseteq B$ if and only if $\pi(A) \ge \pi(B)$ for all $\pi \in \Pi$,

where Π is (weak*-)closed, convex set of finitely additive probability measures $\pi.$

such ⊵ coherent
 and valued part of representation mathematica

- real-valued part of representation mathematical 'heuristic'

- Existence: ensures that ≥ incorporates "logic of subjective probability"
- Uniqueness:

ensures that \triangleright fully captures imprecise probabilistic beliefs

AXIOMS

 Partial Order	\geq	is	transitive	and	reflexive
Partial Order	\triangleright	is	transitive	and	reflexive

Nondegeneracy $\Omega \succ \emptyset$.

Nonnegativity $A \succeq \emptyset$ for all $A \in \Sigma$.

Additivity $A \cap C = B \cap C = \emptyset$

 $A \supseteq B$ if and only if $A + C \supseteq B + C$.

Splitting

If $A + A' \supseteq B + B'$, $A \supseteq A'$ and $B \supseteq B'$ then $A \supseteq B'$.

Equidivisibility

For any $A \in \Sigma$, there exists $B \subseteq A$ such that $B \equiv A \setminus B$.

A may be ambiguous;
 B has unambiguous probability ¹/₂ given A

A is a $\frac{1}{K}$ -event if there exist at K-1 mutually disjoint events A_i , disjoint from A, such that $A \leq A_i$ for all i.

Continuity If not $A \supseteq B$, then there exists $K < \infty$ such that, for any $\frac{1}{K}$ -events C, D, it is not the case that $A \cup C \supseteq B \setminus D$.

• entailed by multi-prior representation.

12

- Π is convex-ranged if, for any event A and any α ∈ (0, 1), there exists an event B ⊆ A such that π(B) = απ(A) for all π ∈ Π.
 - convex-rangedness of Π much stronger than convexrangedness of every $\pi \in \Pi$.

THEOREM: A relation \succeq has a multi-prior representation with a convex-ranged set of priors Π if and only if it satisfies the seven axioms Partial Order, ..., Continuity.

The representing Π is unique.

11

9

Foundational Value of Axioms.

- justification: the two likelihood comparisons A vs.B and A + C vs.B + C equivalent, since have same 'differential realizations' $(A \setminus B vs. B \setminus A)$.
 - note that equivalence is not just ordinal, but *entirely qualitative*, does not appeal to any notion of combining probabilities quantitatively
 - this is as primitive as it gets;
 if any axiom is found, not made, this is it!

- compare to: Strong Additivity $A \cap C = B \cap D =$

- $\emptyset \implies A \trianglerighteq B \text{ and } C \trianglerighteq D \text{ implies } A + C \trianglerighteq B + D$ * Strong Additivity ordinal but 'quantitative'
 - why should likelihood be like that?
- * Strong Additivity implied by Additivity (3x) and Transitivity (2x); this lemma at birth of quantitative, later cardinal probability

Splitting

If $A + A' \supseteq B + B'$, $A \supseteq A'$ and $B \supseteq B'$ then $A \supseteq B'$.

- New axiom; needed under incompleteness, not under completeness.
- Worries:

(a) Splitting already appeals to quantitative intuitions.

- (b) If genuinely distinct from Additivity, (coherent) likelihood composite; how then "irreducible", "canonical" character
- But Splitting can be deduced from Additivity (via Strong Additivity) by "*necessitation argument*":

Lemma: Additivity and Transitivity imply Pre-Splitting.

Pre-Splitting

 $\begin{array}{l} \text{If } A + A' \trianglerighteq B + B', \ A \trianglerighteq A' \text{ and } B \trianglerighteq B'\\ \underline{\text{and } A \trianglerighteq B' \text{ or } B' \trianglerighteq A},\\ \hline\\ \text{ then } A \bowtie B'. \end{array}$

Thus, given the premises of Splitting, however You, the DM, compare the likelihood of A vs. B', You must judge A ≥ B'. Hence, there is no room for withholding this judgment, and You should thus assert it outright.

Equidivisibility

For any $A \in \Sigma$, there exists $B \subseteq A$ such that $B \equiv A \setminus B$.

- Richness assumption to bring out full implications of logical axioms
- Not empirically restrictive, since can obtain from postulating independent continuous random device:
 - $\Omega = \Omega_0 \times [0, 1], \Sigma = \Sigma_0 \times \Sigma_{[0,1]}, \text{ with } \bowtie_{RAND} \text{ capturing random device on } \Sigma$
 - arguably, any 'truly coherent' likelihood relation on Σ_1 must be coherently mergeable with \geq_{RAND}
 - the merged relation satisfies Equidivisibility by construction.

Continuity

- not logical, but mathematico-pragmatic to get multi-prior representation
 - Open question:
 - can one drop continuity and get meaningful generalized representation, e.g. in terms of sets of non-standard probability measures?

15

Uniqueness

- ~ uniqueness among closed convex sets of priors
 - * does nothing to justify convexity,
 - – could get unique representation alternatively in terms of sets of extreme points.
- Important here: comparative likelihood orderings **expressively** as rich as closed convex sets of priors
 - for this Equidivisibility nearly indispensable
 - * in particular, state space must be infinite

Proof Idea: Event Space as Mixture Space

Using convex-rangedness, extend \succeq to partial order $\widehat{\succeq}$ on *mixture-space* $B(\Sigma, [0, 1])$ of finite-valued functions $Z : \Omega \to [0, 1]$ as follows:

- (1) For each $Z = \sum z_i 1_{E_i}$, define [Z] as the family of all events $A \in \Sigma$ such that,
 - for all $i \in I$ and $\pi \in \Pi$, $\pi (A \cap E_i) = z_i \pi (E_i)$.
 - For any $Z, [Z] \neq \emptyset$ by convex-rangedness.
- (2) Define $\widehat{\supseteq}$ by by setting

 $Y \widehat{\cong} Z$ if $A \trianglerighteq B$ for some $A \in [Y]$ and $B \in [Z]$.

- Well-defined since for any two $A, B \in [Z]$: $\pi(A) = \pi(B)$ for all $\pi \in \Pi$, and thus $A \equiv B$.
- (3) $\widehat{\succeq}$ is monotone, continuous and satisfies

(Additivity) $Y \widehat{\supseteq} Z$ if and only if $Y + X \widehat{\supseteq} Z + X$ for any X, Y, Z,

and

(Homogeneity) $Y \widehat{\cong} Z$ if and only if $\alpha Y \widehat{\boxtimes} \alpha Z$ for any $Y, Z, \alpha > 0$.

17

20

(4) By Walley (1991) or Bewley (1986, for finite state-spaces), there exists unique $\Pi \in \mathcal{K}(\Delta(\Omega))$ such that, for all $X, Y \in B(\Sigma, [0, 1])$,

 $X \stackrel{\frown}{\cong} Y$ if and only if $E_{\pi} X \ge E_{\pi} Y$ for all $\pi \in \Pi$.

- (5) Evidently, Π is multiprior representation of \unrhd .
- (6) Uniqueness of Π by (2).
- Difficulties of proof:
 - (a) mixture-space construction *without* availability of Π
 - (b) È in proof only defined on dense subset of B(Σ, [0, 1]); essential difficulty if Σ is merely algebra.

PART 2: RATIONALITY RESTRICTIONS ON PREFERENCES

- Which restrictions on preferences/choice are rationally entailed by probabilistic beliefs *as such*?
 ~>behavioral generality: in particular, do not want to impose here EU ('Bernoullian') rationality towards probabilistic beliefs
- Bernoullian rationality norms may be valid, but do not follow from having of probabilistic beliefs as such
 - have studied in companion paper (Nehring 2007: "Bernoulli without Bayes: Utility Sophisticated Preference under Ambiguity")
 - Behavioral generality ensures robust applicability.

Preferences.

- $X = \{x, y, ..\}$ set of **consequences**
- (Savage) act f maps states to consequences, f : Ω → X
 F = class of simple (finite-valued, Σ-measurable) acts
- A preference relation is a weak order \succeq over \mathcal{F} .

19

AXIOM (LIKELIHOOD COMPATIBILITY)

For all $f \in \mathcal{F}$, $x, y \in X$ and events $A, B \in \Sigma$: i) $A \supseteq B$ and $x \succeq y$ imply

- $[x \text{ on } A \backslash B; y \text{ on } B \backslash A; f(\omega) \text{ elsewhere}] \succsim$
- [x on $B \setminus A$; y on $A \setminus B$; $f(\omega)$ elsewhere], and ii) $A \triangleright \triangleright B$ and $x \succ y$ imply
 - $[x \text{ on } A \setminus B; y \text{ on } B \setminus A; f(\omega) \text{ elsewhere}] \succ$
 - $[x \text{ on } B \backslash A; y \text{ on } A \backslash B; f(\omega) \text{ elsewhere}].$
- $A \triangleright \triangleright B$:"A is uniformly more likely than B" - in representation: $A \triangleright \triangleright B$ implies $\min_{\pi \in \Pi} [\pi (A) - \pi (B)] > 0$
- Idea: if two acts differ only in the states in which two particular consequences are realized, then the likelihood comparison of the corresponding events (*if available*) is a *decisive* criterion for their preference comparison.
- Simple instances of LC:
- $A \supseteq B$ and $x \succeq y$ imply

 $[x \text{ on } A, y \text{ on } A^c] \succeq [x \text{ on } B, y \text{ on } B^c], \text{ and}$ $[x \text{ on } B^c, y \text{ on } B] \succeq [x \text{ on } A^c, y \text{ on } A]$

betting "on A" better than betting on B;
 betting against B better than betting against A

- Acceptance of LC: **Pragmatic Rationalism** - Compelling? Banale?
- Sources of skepticism?
 - (a) comparative likelihood judgments meaningless, inscrutable
 - (b) comparative likelihood judgments meaningful, but not decisive
 - * other conceivable factors such as familiarity, felt competence may play legitimate role, too ("source preference" position)
 - strong Humean flavor

"Source Preference"

- prefer to bet on B rather than A while $A \ge B$.
 - " $\{B, B^c\}$ "more attractive" source of uncertainty than $\{A, A^c\}$
 - frequent psychological explanation (Heath-Tversky and others),
 - recently very popular with economists
 - non-credal factors of felt competence, familiarity, comfort of knowing, etc.
 - * e.g. hometown weather more attractive than roulette wheel more attractive than foreign town

21

Example (2-color Ellsberg paradox).

- 1 ball drawn from each of two urns
 - both contain only red and black balls
 - composition of one urn known to be 50:50, of the other unknown
 - associated events (draws) R_{kn} and $B_{kn} R_{un}$ and B_{un}
- $X = \{0, 1\}$ with $1 \succ 0$, and
 - $[1 \text{ on } R_{kn}, 0 \text{ on } B_{kn}] \sim [1 \text{ on } B_{kn}, 0 \text{ on } R_{kn}] \succ$ $[1 \text{ on } R_{un}, 0 \text{ on } B_{un}] \sim [1 \text{ on } B_{un}, 0 \text{ on } R_{un}].$

Basic Observation. Suppose that \supseteq is a coherent likelihood relation such that that

$$R_{kn} \equiv B_{kn}$$
 and $R_{un} \equiv B_{un}$.

Then \succeq is not compatible with \ge .

Proof. By coherence (Splitting axiom), $R_{kn} \equiv B_{kn}$ and $R_{un} \equiv B_{un}$ implies

$$R_{kn} \equiv R_{un}$$

But then by Likelihood Compatibility,

 $[1 \text{ on } R_{kn}, 0 \text{ on } B_{kn}] \sim [1 \text{ on } R_{un}, 0 \text{ on } B_{kn}].$

$$R_{kn} \sim R_{un}.$$

Trilemma: Joint inconsistency

- (1) completeness of beliefs
- (2) coherence
- (3) epistemic rationalizability (likelihood compatibility)
- On proposed *pragmatic rationalism*, coherence (2) and rationalizability (3) categorical, give up completeness (without much regret)
- Source preferentists want to maintain completeness and give up rationalizability

- hence $R_{kn} \succ R_{un}$ while $R_{kn} \equiv R_{un}$.

23

- Is this overly indulgent? Irrational?
 - Also, why remain attached to completeness?
- More general case for source preference: source dependent risk-attitudes
 - this seems very natural on view of risk attitude as matter of psychological disposition distinct from decreasing marginal 'real' utility
- source-dependent risk-attitudes precluded by LC

24

PROBABILISTIC SOPHISTICATION

- Family of unambiguous events $\Lambda = \{A \in \Sigma : \pi(A) = \pi'(A) \text{ for all } \pi, \pi' \in \Pi \}.$
 - with associated unambiguous probability $\overline{\pi}$, where $\overline{\pi}(A) = \pi(A)$ for any $\pi \in \Pi$, $A \in \Lambda$.
- *f* is unambiguous if it is *f*-measurable.
- \succeq is probabibilistically sophisticated over unambiguous acts if, for all $f, g \in \mathcal{F}, f \succeq g$ whenever $\pi (\{\omega : f(\omega) \succeq x\}) \ge \pi (\{\omega : g(\omega) \succeq x\})$ for all $x \in X$.

PROPOSITION. If the weak order \succeq is compatible with the convex-ranged, coherent likelihood relation \succeq , \succeq is probabilistically sophisticated over unambiguous acts.

COROLLARY. If \succeq is in addition complete, it is probabilistically sophisticated a la Machina-Schmeidler.

ARGUING FOR PRAGMATIC RATIONALISM

- Are there non-question begging arguments supporting LC?
 Humean concedes relevance of likelihood comparisons, simply denies decisiveness.
 - You, the rationalist, may be happy to take these to be decisive, but why should everyone do so?
 - \rightsquigarrow direct defense seems difficult
- Further defense *ex negativo*: consequences of giving up LC drastic
- In particular, is moderate LC skepticism possible?
 - Why not doubt LC for objective probabilities?
 - * why even accept Reduction of Compound Lotteries?
 - * Such skepticism has been articulated by CS Peirce and H Putnam
 - "why knowledge of probabilities decisive for single events?"
 - HP: "this is were my spade is turned"
 - Wittgensteinian humanism as "august Humeanism"
- Bottom line: LC seems necessary to maintain minimal normative connection between between beliefs/likelihood judgments and choices
 - importantly, under LC, this connection is not holistic but 'modular'

- **Modularity.** Given LC, each likelihood judgment entails committment to family of choice judgments
 - Given weak order ≿_{const} on X, 1-1 relation between ≥ and induced ≿_≥
- ≿ more than 'mere' preferences: grounding in lkh judgment
- \succeq_{\geq} less than preferences: actual choice disposition \succeq may contradict \succeq_{\geq}
 - e.g. weakness of will, motivated irrationality sheepishness, wishful thinking, self-deception ...;
- Big Philosophical Question: can lkh judgment be *identified with choice committments* ≿⊵?
 - this would allow *reduction* of subjective probability to behavior,

w/o identifying it with behavior.

- Modularity privileges comparative likelihood orderings ⊵ visa-vis other candidate representations of subjective uncertainty
 - − E.g. Lower Probability Orderings $A \ge B$ iff min_{π∈Π} π (A) ≥ min_{π∈Π} π (B)
 - * with sufficient structure (convex-rangedness of Π), holistic 1-1 relation between lpo.s and clo.s; but is there modular counterpart to LC ??
 - A fortiori, with less structure, there does not seem to exist modular epistemic rationalizability axiom if credal state described as Π or as general Complete Non-Addiditive Probability Ordering $A \ge B$ iff $\nu(A) \ge \nu(B)$.