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Abstract

We establish the existence and uniqueness of weak solution of the
three-dimensional nonhomogeneous stationary Oseen flow around a
rotating body in an exterior domain. This article is extension of the
previous results on the whole space. For the present extension to the
case of exterior domains, we will use the localization procedure (see
e.g. KoSo). In this way we combine the previous results (see KNP
and FHM) about existence, uniqueness and Lq-boundedness of the
solutions for two associated problems, in the whole space and in an
appropriate bounded domain.

1 Introduction

The study of Navier - Stokes fluid flows past a rigid body translating with
a constant velocity (or past a rotating obstacle with a prescribed constant
velocity) is one of the most fundamental questions in theoretical and applied
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Fluid Dynamics. A systematic and rigorous mathematical study was initi-
ated by the fundamental pioneer works of Oseen (1927), Leray (1933, 1934)
and then developed by the several others mathematicians with significant
contributions.

In the last decade a lot of efforts have been made on the analysis of so-
lutions to different problems, stationary as well nonstationary, linear models
as well nonlinear one, in the whole space as well in exterior domains. We
refer to [6, 7, 8, 9, 10, 11, 13, 14, 15, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30].

In the present paper we mainly investigate the existence and uniqueness
of weak solution to the linear stationary rotating Oseen system in exterior
domains in the case of non-integrable right-hand side. Our approach is based
on the localization method which decomposed our problem to problems in
the whole domain and in the appropriate bounded domain. We consider that
our right-hand side is a solution of Bogovskii equation in the corresponding
negative homogeneous Sobolev spaces.

Let D be an exterior domain in R3. We consider the motion of a viscous
fluid filling the domain D when the ”obstacle” Ω = R3\D , which consists of a
finite number of rigid bodies, is rotating about an axis with constant angular
velocity ω and moving in the direction of this axis. We assume the fluid with
a non-zero velocity v∞ = ke3 at infinity, and that ω = |ω|e3 = (0, 0, |ω|)T ;
we also assume enough regularity for the boundary ∂Ω.

Our aim is to solve the time-periodic Oseen system of equations for the
velocity field v = v(y, t) and the associated pressure q = q(y, t) in the time
dependent exterior domain

D(t) = {y ∈ R3 : y = O(|ω|t)x, x ∈ D},
where

Oω(t) =




cos |ω| t − sin |ω| t 0
sin |ω| t cos |ω| t 0

0 0 1


 . (1.1)

The complemented boundary conditions on ∂D(t) are taken in the form of a
non-slip condition so that the fluid velocity attains v(y, t) = ω∧y, y ∈ ∂D(t),
for all t. The coefficient of viscosity ν > 0 and non necessary integrable
external forces f̃ = f̃(y, t) are given.

Introducing the change of variables

x = Oω(t)T y (1.2)
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and the new functions

u(x, t) = OT
ω (t)(v(y, t)− v∞), p(x, t) = q(y, t), (1.3)

as well as the force term f1(x, t) = Oω(t)T f̃(y, t), we arrive at the linear
system of equations in D × (0,∞)

∂tu− ν∆u + k∂3u− ((ω ∧ x) · ∇)u + ω ∧ u +∇p = f1

div u = g1
(1.4)

but we are interested in the stationary flow in D (so time-periodic solution
to (1.4) as well as saying periodic solution to the initial model for {v, q}).

In the case k = 0, ω = 0, this system is a nonhomogeneous Stokes system
and if ω = 0 it is a classical nonhomogeneous Oseen system. For simplicity
we will consider ν = 1, k = 1. We assume that for given f and g our system
of equations is the following

−∆u + ∂3u− ((ω ∧ x) · ∇)u + ω ∧ u +∇p = f
div u = g

}
in D (1.5)

Let’s us mention through the relation div(((ω ∧x) ·∇)u−ω ∧u) = ((ω ∧x) ·
∇) div u = div((ω ∧ x) · div u) we define p.

We recall that D = R3 \Ω, and that the system of equations (1.5) is now
complemented by both homogeneous condition at infinity

u → 0 as |x| → ∞ (1.6)

and Dirichlet boundary conditions on ∂Ω, either

u|∂Ω = 0 (1.7)

or

u|∂Ω = ω ∧ x− e3, x ∈ ∂Ω. (1.8)

If D = R3, of course {u, p} is described by equations (1.5) and condition
(1.6) only. The strong solution of the corresponding Cauchy problem (1.5)
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(1.6) has been analyzed in Lq-spaces, 1 < q < ∞, in [8] proving the a priori
estimates

‖∇2u‖q + ‖∇p‖q ≤ c(‖f‖q + ‖∇g + (ω ∧ x) · g − ge3‖q), (1.9)

‖∂3u‖q + ‖ − ((ω ∧ x) · ∇)u + ω ∧ u‖q ≤ c(1 +
1

|ω|2 )‖f‖q (1.10)

with the constant c > 0 independent of |ω|, the second estimate being written
with g = 0 just to simplify. Further these results were improved in [6] in
weighted spaces, obtaining the following a priori estimates (always written
with g = 0 to simplify)

‖∇2u‖q,w + ‖∇p‖q,w ≤ c‖f‖q,w, (1.11)

‖∂3u‖q,w + ‖ − ((ω ∧ x) · ∇)u + ω ∧ u‖q,w ≤ c(1 +
1

|ω|5/2
)‖f‖q,w (1.12)

where the weights w belong to the more general Muckenhoupt class Ã−
q , and

with the constant c > 0 independent of |ω|. A weak solution to the same
Cauchy problem (1.5) (1.6) in Lq setting, 1 < q < ∞, was investigated in
[21] and the following a priori estimates was proved (always written with
g = 0)

‖∇u‖q + ‖p‖q + ‖ − ((ω ∧ x) · ∇)u + ω ∧ u‖−1,q ≤ C‖f‖−1,q, (1.13)

where data belong to the dual of nonhomogeneous Sobolev spaces, which will
be introduced in this section.

In the work of Galdi [14] the pointwise estimates for Navier-Stokes equa-
tions with rotating terms were proved. He obtained that

|us(x)| ≤ c

|x| , ‖∇us(x)‖+ ‖Ps(x)‖ ≤ c

|x|2 .

Another outlook on the pointwise estimates above in a differential framework
by use of functional spaces has been recently proved by Farwig, Hishida
[11]. Further Galdi and Silvestre [16] have proved a stability of solution us .
Generalization in L3,∞ setting was done by Hishida and Shibata [27].

We will study the boundary value problem (1.5) (1.6) (1.7) and applying
the so-called localization technique [19], we immediately observe that it com-
bines both systems in the whole space and in a bounded domain : Indeed,
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choose ρ > ρ0 > 0 so large that Ω ⊂ Bρ0 = {x ∈ R3 : |x| < ρ0} and take a
cut-off function ψ ∈ C∞

0 (Bρ; [0, 1]) such that ψ = 1 on Bρ0 and supp(∇ψ) ⊂
{x : ρ0 < |x| < ρ}; introducing now U = (1−ψ)u, V = ψu, π = (1−ψ)p and
τ = ψp, we get

u = U + V (1.14)

p = σ + τ (1.15)

with in the whole space

−∆U + ∂3U − ((ω ∧ x) · ∇)U + ω ∧ U +∇σ = F1(u, p)
div U = G1(u)

U → 0 as |x| → ∞,



 (1.16)

where G1(u) = −∇ψ · u + (1− ψ)g,

and in the bounded domain Dρ = D ∩Bρ

−∆V + ∂3V +∇τ = F2(u, p)
div V = G2(u) = ∇ψ · u + ψg

V |∂Dρ = 0,



 (1.17)

where

F1(u, p) =(1− ψ)f + 2(∇ψ · ∇)u + [∆ψ + ((ω ∧ x)∇)ψ]u
− (∇ψ)p + (∂3ψ)u,

F2(u, p) =ψf + ψ[((ω ∧ x) · ∇)u− ω ∧ u]− 2(∇ψ · ∇)u
− (∆ψ)u + (∇ψ)p + (∂3ψ)u.





(1.18)

Let us observe that, in the bounded domain Dρ, we can equivalently write

the following nonhomogeneous Stokes problem

−∆V +∇τ = F2

div V = G2(u) = ∇ψ · u + ψg
V |∂Dρ = 0,



 (1.19)

modifying F2 = ψf + ψ[((ω ∧ x) · ∇)u− ω ∧ u]− 2(∇ψ · ∇)u− (∆ψ)u
+ (∇ψ)p + ∂3(ψu).

In section 2, we will give the definition of a weak solution to problem
(1.5) (1.6) (1.7) and our main result, existence and uniqueness of its solu-
tion. In section 3 we recall intermediate known results for both problems
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(1.16) and (1.17). In an appendix, we also recall the general results by Bo-
govski, Farwig and Sohr [1, 2, 3], Kozono and Sohr [19] and generalization
in negative Sobolev spaces by Geissert, Heck, Hieber [18] we used to solve in
different domains the equations in the form div u = g with Dirichlet bound-
ary conditions. Sections 4 and 5 are devoted to the proof of the main result.

Let us fix the notations.
C∞

0 (R3) consists of functions of the class C∞ with compact supports con-
tained in R3. By Lq(R3) we denote the usual Lebesgue spaces with norm
‖ · ‖q. We define the homogeneous Sobolev spaces

Ŵ 1,q(R3) = C∞
0 (R3)

‖∇·‖q
= {v ∈ Lq

loc(R
3); ∇v ∈ Lq(R3)3}/R, (1.20)

Ŵ 1,q(D) = C∞
0 (D)

‖∇·‖q,D

= {v ∈ Lq
loc(D); ∇v ∈ Lq(D)3, v|∂D = 0} for 3 ≤ q < ∞, (1.21)

= {v ∈ L3q/3−q(D); ∇v ∈ Lq(D)3, v|∂D = 0} for 1 ≤ q < 3. (1.22)

and their dual space

Ŵ−1,q(R3) = (Ŵ 1,q/(q−1)(R3))
′
,

Ŵ−1,q(D) = (Ŵ 1,q/(q−1)(D))
′
.

〈., .〉 denotes either different duality pairings or the inner product in L2.

Lemma 1.1.

• For 1 < r < n we have Ŵ 1,r(R3) = {u ∈ Ls(R3) : ∇u ∈ Lr(R3)},
where s = 3r

3−r
.

• Let r ≥ n. Suppose uk ∈ C∞
0 (R3), k = 1, 2, .. is a Cauchy sequence

in Ŵ 1,r(R3). Then there is a Cauchy sequence wk ∈ C∞
0 with ∇u ∈

Lr(R3) satisfying

‖∇uk −∇wk‖Lr(R3) → 0,

wk → u in Lr
loc(R

3),

∇wk → ∇u in Lr(R3) as k →∞.

(1.23)
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Such u is unique up to additive constants. In this case, we have the inclusion
Ŵ 1,r

0 (R3) ⊂ {[u] ∈ Lr
loc(R

3)/R1 : ∇u ∈ Lr(R3)} where [u] = {w ∈ Lr
loc(R

3) :
w − u ∈ R1}.
Remark 1.1 Another possibility of the definition of the homogeneous
Sobolev spaces we can found in the work of Galdi [12]. He defines the homo-
geneous Sobolev spaces by the following way

Ŵ 1,q(R3) = C∞
0 (R3)

‖∇·‖q

and from Theorem II.6.3, and Remark II.6.2 [12] he gives the following char-
acterization of the spaces

Ŵ 1,q(R3) = {v ∈ L1
loc(R3); ∇v ∈ Lq(R3)3}, q ≥ 3,

= {v ∈ L1
loc (R3); ∇v ∈ Lq(R3)3), v ∈ L

3q
3−q (R3)}, q < 3.

(1.24)

Remark 1.2 We would like to mention that definition (1.20) and (1.24) are
equivalent in the following sense. In definition (1.20) the elements of space

are classes of functions since we factorized the homogeneous spaces Ŵ 1,r by
constant. In definition (1.24) we divide to two cases : first one - the case
1 < r < n where Sobolev imbedding is valid and the case of r ≥ n where we
have that limit of Cauchy sequences are unique up to constant see previous
Lemma 1.1.

2 The main result

We consider the problem (1.5) (1.6) (1.7). Let 1 < q < ∞, f ∈ (Ŵ−1,q(D))3,

g ∈ Lq(D) such that ∇g and ((ω ∧ x) · ∇)g belong to (Ŵ−1,q(D))3.

Definition 2.1 We call {u, p} a weak solution to (1.5) (1.6) (1.7) if

(1) {u, p} ∈ (Ŵ 1,q
0 (D))3 × Lq(D),

(2) div u = g in Lq(D),

(3) ((ω ∧ x) · ∇)u− ω ∧ u in (Ŵ−1,q(D))3,
(4) 〈∇u,∇ϕ〉+ 〈∂3u, ϕ〉 − 〈((ω ∧ x) · ∇)u− ω ∧ u, ϕ〉 = 〈p, div ϕ〉+ 〈f, ϕ〉

for all ϕ in (Ŵ
1,q/(q−1)
0 (D))3,

where p is obtained from ∆p = div f + ∆g − ∂3g + ((ω ∧ x) · ∇)g.
(2.1)
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Remark 2.1 Since we make use of operator B solving the equation (2) with

u ∈ (Ŵ 1,q
0 (D))3, see Appendix, we can ask for u in the form Bg + u0 with

the homogeneous divergence condition div u0 = 0, solution to

−∆u0 + ∂3u0 − ((ω ∧ x) · ∇)u0 + ω ∧ u0 +∇p0 = f0

where
f0 = f + (∆− ∂3 + ((ω ∧ x) · ∇)− ω ∧ ·)Bg,

with
u0|∂Ω = 0 and u0 → 0 as |x| → ∞.

Therefore the study of the previous solenoidal problem is sufficient.

Our main result is

Theorem 2.1. Let 3/2 < q < 3, and suppose f and g given as previously.
Then there exists an unique weak solution {u, p} to (1.5) (1.6) (1.7) (unique-
ness up to a constant multiple of ω for u), which satisfies the estimate

‖∇u‖q,D + ‖p‖q,D + ‖ − ((ω ∧ x) · ∇)u + ω ∧ u‖−1,q,D

≤ cq(‖f‖−1,q,D + ‖g‖q,D + ‖(ω ∧ x) · g‖−1,q,D),

}
(2.2)

with some constant cq > 0 independent of |ω|.

Remark 2.2

• Similar results were obtained by Hishida for the stationary Stokes prob-
lem [24].

• It is possible to avoid some of the restrictions 3/2 < q < 3 see [30]. In
this way, we can consider the null space of the problem which is given
by

K =
{

u ∈ Ŵ 1,q(D)|div u = 0, u|∂Ω = 0,

(u, p) is a solution of (1.5) for some p ∈ Lq(D)
}

.

Then the solution u will be unique in W 1,q(D)/K for 3/2 < q < ∞.
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3 Intermediate known results

In accordance with Remark 2.1 and with the localization procedure, we can
start with the analysis of the homogeneous problem in the whole space,
then precisely the problem (1.5) in the divergence free case. So we use the
notations {U0, π0}, and preliminary results from [21, 23] are :

Definition 3.1 Let 1 < q < ∞. Given F1 ∈ Ŵ−1,q(R3)3, we call {U0, π0} ∈
Ŵ 1,q

0,σ(R3)3 × Lq(R3) a weak solution to (1.16) with G1 = 0 if

(1) div U0 = 0 in Lq(R3),

(2) ((ω ∧ x) · ∇)U0 − ω ∧ U0 ∈ Ŵ−1,q(R3)3,
(3) 〈∇U0,∇ϕ〉 − 〈((ω ∧ x) · ∇)U0 − ω ∧ U0, ϕ〉

+〈∂3U0, ϕ〉 − 〈π0, div ϕ〉 = 〈F1, ϕ〉 for all ϕ ∈ C∞
0 (R3)3.

In fact, as usual, the integral equation (3) in Definition 3.1 holds by continuity

for all ϕ ∈ Ŵ
1,q/(q−1)
0 (R3)3.

Theorem 3.1. ( [21]) Let 1 < q < ∞ and let F1 ∈ Ŵ−1,q(R3)3 be given,
then the problem (1.16) with G1 = 0 possesses a weak solution {U0, π0} ∈
Ŵ 1,q(R3)3 × Lq(R3) which satisfies

‖∇U0‖q + ‖π0‖q + ‖ − ((ω ∧ x) · ∇)U0 + ω ∧ U0‖−1,q ≤ c‖F1‖−1,q, (3.1)

with some c > 0 depending on q.

Theorem 3.2. ( [21]) The solution {U0, π0} given by Theorem 3.1 is unique.

Corollary 3.3. ( [21]) Let 1 < q < 4, F1 ∈ Ŵ−1,q(R3)3 and let U0 ∈
Ŵ 1,q(R3)3 be the unique weak solution to problem (1.16) with G1 = 0. Then
there exists α ∈ R such that

U0 − αe3 ∈ Ls(R3)3 for all s > 1,
1

s
∈ 1

q
−

[1

4
,
1

3

]
.

Moreover
‖U0 − αe3‖s ≤ c‖F1‖−1,q

with a constant c = c(s, |ω|) > 0.
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Remark 3.4( [21]) Let 1 < q < 3, F1 ∈ Ŵ−1,q(R3)3, and let U0 ∈ Ŵ 1,q(R3)3

be the unique weak solution to problem (1.16) with G1 = 0. Then we also
have the weighted estimate

‖ 1

|x|U0‖q ≤ c‖F1‖−1,q

with c = c(q, ω) > 0. R

Concerning now the nonhomogeneous problem in the whole space, we recall
the following result

Theorem 3.4. ([23]) Let 1 < q < ∞ and let F1 ∈ Ŵ−1,q(R3)3 be given.

Suppose G1 ∈ Lq(R3) such that (ω ∧ x) ·G1 ∈ Ŵ−1,q(R3). Then the problem

(1.16) possesses a weak solution {U, π} ∈ Ŵ 1,q(R3)3×Lq(R3) which satisfies

‖∇U‖q + ‖π‖q + ‖ − ((ω ∧ x) · ∇)U + ω ∧ U‖−1,q

≤ c(‖F1‖−1,q + ‖G1‖q + ‖(ω ∧ x) ·G1‖−1,q), (3.2)

with some c > 0 depending on q.

We now recall the well known result, e.g. from [19], about the nonho-
mogeneous Stokes problem in bounded domains : Indeed in the proof of our
main theorem we will be interested by {V, τ} which solves the problem (1.19)
in the domain Dρ. So, with the notations {V, τ} the theorem reads

Theorem 3.5. Let 1 < q < ∞. Suppose that

F2 ∈ W−1,q( Dρ)
3, G2 ∈ Lq( Dρ),

∫

Dρ

G2(x)dx = 0.

Then the problem (1.19) possesses an unique (up to an additive constant for
τ) weak solution {V, τ} ∈ W 1,q

0 ( Dρ)
3×Lq( Dρ), which satisfies the estimate

‖∇V ‖q, Dρ + ‖τ − τ̄‖q, Dρ ≤ C(‖F2‖−1,q, Dρ + ‖G2‖q, Dρ), (3.3)

where τ̄ = 1
| Dρ|

∫
Dρ

τ(x)dx.
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4 Uniqueness in the main theorem : Proof

We shall state the conditional uniqueness result precisely : We assume the
existence of {ug, pg} a weak solution to problem (1.5) (1.6) (1.7) in the sense

of definition 2.1. For any f ∈ (Ŵ−1,q(D))3 and for an appropriate choice of
g ∈ Lq(D), we have

−∆ug + ∂3ug − ((ω ∧ x) · ∇)ug + ω ∧ ug = f −∇pg

div ug = g

}
(4.1)

with ug ∈ (Ŵ 1,q
0 (D))3, and pg ∈ Lq(D).

In particular we know {u0, p0} for g = 0 (anyway, in the spirit of Remark
2.1, it will be the natural first part of the existence proof, see Section 5).
Therefore the adjoint model also will admit a weak solution, say {u∗0, p∗0}, so

given any h ∈ (Ŵ−1,q(D))3 we have

−∆u∗0 − ∂3u
∗
0 + ((ω ∧ x) · ∇)u∗0 − ω ∧ u∗0 = h−∇p∗0

div u∗0 = 0

}
(4.2)

with u∗0 ∈ (Ŵ 1,2
0,σ (D))3

⋂
(Ŵ 1,r(D))3, 3

2
< r < 6, and p∗0 ∈ Lq(D).

Let {u1
g, p

1
g}, {u2

g, p
2
g} be two weak solutions to problem (1.5) (1.6) (1.7),

computing u = u1
g − u2

g and p = p1
g − p2

g, we get

−∆u + ∂3u− ((ω ∧ x) · ∇)u + ω ∧ u = −∇p,
div u = 0.

}
(4.3)

To prove the uniqueness, i.e. u = 0 and p = 0, we use the duality method.
That’s why we need to assume the knowledge of {u∗0, p∗0}. Taking u∗0 as a test

function in (Ŵ 1,2
0,σ (D))3

⋂
(Ŵ 1,r(D))3, 3

2
< r < 3, we get

〈∇u,∇u∗0〉+ 〈∂3u, u∗0〉 − 〈((ω ∧ x) · ∇)u− ω ∧ u, u∗0〉 = 0.

Taking now u as a test function in (Ŵ 1,q
0 (D))3 for the problem (4.2) we obtain

〈∇u∗0,∇u〉 − 〈∂3u
∗
0, u〉+ 〈((ω ∧ x) · ∇)u∗0 − ω ∧ u∗0, u〉 = 〈h, u〉

= 〈∇u∗0,∇u〉+ 〈u∗0, ∂3u〉 − 〈u∗0, ((ω ∧ x) · ∇)u− ω ∧ u〉.
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Then 〈h, u〉 = 0 for any h, so u = 0 in (Ŵ 1,q
0 (D))3, it means u is constant,

necessary a multiple of ω. As a consequence, in (4.3), ∇p = 0, and because
of p ∈ Lq(D), we get p = 0.

Remark 4.1 L2-uniqueness can be established directly, as we shall see in
the first step of the next section. We here have easily extend to our problem
the duality method used by Hishida [26] for the stationary Stokes problem,
the solenoidality being essential.

5 Existence in the main theorem : Proof

Step 1: Existence (homogeneous divergence case)
Let f = div F with F ∈ C∞

0 ( D)9. In the domain DR according to the
support of F , we apply the classical approach to solve

−∆u + ∂3u− ((ω ∧ x) · ∇)u + ω ∧ u +∇p = f = div F

with div u = 0 and with homogeneous Dirichlet boundary conditions on
∂ DR.

The bilinear form b(u, ϕ) = 〈∇u,∇ϕ〉+〈∂3u, ϕ〉−〈((ω∧x)·∇)u−ω∧u, ϕ〉
is coercive on (Ŵ 1,2

0,σ (DR))3×(Ŵ 1,2
0,σ (DR))3 : 〈., .〉 here stands for the L2−inner

product. One can easily verify that b(uR, uR) = ‖∇uR‖2
2, DR

= 〈div F, uR〉.
Using the Lax-Milgram theorem we justify the existence of an unique

solution uR ∈ (Ŵ 1,2
0,σ (DR))3, which satisfies the estimate

‖∇uR‖2, DR
≤ ‖F‖2, DR

= ‖F‖2,D.

We can extend uR by zero in D \ DR. Then we obtain ũR ∈ (Ŵ 1,2
0,σ ( D))3

satisfying the same estimate, uniform as R → +∞.

We now choose a sequence of numbers {Rn}, tending to infinity, so that

ũRn converge weakly in (Ŵ 1,2
0,σ ( D))3. The limit u is unique (always up to an

additive multiple of ω) such that

〈∇u,∇ϕ〉+ 〈∂3u, ϕ〉 − 〈((ω ∧ x) · ∇)u− ω ∧ u, ϕ〉 − 〈div F, ϕ〉 = 0

for all ϕ ∈ C∞
0 (D)3, then for all ϕ ∈ (Ŵ 1,2

0 ( D))3.
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By density of {div F}F∈(C∞0 (D))9 in (Ŵ−1,q( D))3, the previous integral

equation holds with f ∈ (Ŵ−1,q(D))3 : Thus we have

〈∇u,∇ϕ〉+ 〈∂3u, ϕ〉 − 〈((ω ∧ x) · ∇)u− ω ∧ u, ϕ〉 − 〈f, ϕ〉 = 0. (5.1)

for all ϕ ∈ (Ŵ 1,2
0,σ ( D))3.

Therefore there exists p ∈ L2
loc( D) (unique up to an additive constant)

such that

−∆u + ∂3u− ((ω ∧ x) · ∇)u + ω ∧ u− f = −∇p.

Step 2 : {u, p} in W 1,q × Lq and localization
Having {u, p} from Step 1, and applying the localization technique we will
get the problem (1.16) in the whole space and, either the problem (1.17), or
its variant (1.19) in a certain bounded domain Dρ.

Let φ ∈ (C∞
0 (R3))3, and let ψ be always the same cut-off function. We

can successively choose the following test functions ϕ in (5.1) :

• ϕ = (1 − ψ)φ, so we can read all integrals over R3 and interpret the
solved problem in the whole space by {U, π} = {(1−ψ)u, (1−ψ)p} as
in (1.16); the formulas describing F1 = F1(u, p) and G1 = G1(u) are
given in Section 1.

• ϕ = ψφ, so we can interpret in Dρ the solved problem by {V, τ} =
{ψu, ψp} as in (1.17) or (1.19); see in Section 1 the detailed formulas
for F2 = F2(u, p) and G2 = G2(u).

Theorem 3.5 and Theorem 3.6 solve respectively these problems under
the following hypothesis

F1 ∈ (Ŵ−1,q(R3))3, G1 ∈ Lq(R3), (ω ∧ x) ·G1 ∈ W−1,q(R3),

F2 = F2(u, p) ∈ (Ŵ−1,q( Dρ))
3, G2 = G2(u) ∈ Lq

0( Dρ),

with estimates (3.2) resp. (3.3).

To exploit the previous estimates, it remains essentially to control all
terms we have from formulas (1.18) in ‖Fj(u, p)‖−1,q,R3orDρ

, j = 1, 2 for ap-
propriate q. In this way, we recall that ∇ψ and ∆ψ have a compact support
in Dρ at the most, (precisely in the annulus {x : ρ0 < |x| < ρ} closed to the
”obstacle” Ω), so we have
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• either ‖φ‖q/(q−1), Dρ ≤ c(| Dρ|)‖∇φ‖q/(q−1), Dρ

by Friedrichs-Poincaré inequality,

or ‖φ‖q/(q−1), Dρ ≤ | Dρ|1/3‖φ‖r, Dρ

by Holder inequality, with 1
r
+ 1

3
= q−1

q
, so necessary q−1

q
> 1

3
and q > 3

2
.

Thus ‖φ‖q/(q−1), Dρ ≤ | Dρ|1/3‖φ‖r,R3 ≤ c(| Dρ|)‖∇φ‖q/(q−1),R3

• |〈(1− ψ)f, φ〉| ≤ c‖f‖−1,q, D‖∇φ‖q/(q−1),R3

• |〈2(∇ψ · ∇)u + [∆ψ + ((ω ∧ x) · ∇)ψ]u, φ〉|

≤ |〈(∆ψ)φ, u〉|+ |〈2(∇ψ · ∇)φ, u〉|+ |〈((ω ∧ x) · ∇)ψ]φ, u〉|

≤ c‖u|Dρ‖q, Dρ‖∇φ‖q/(q−1),R3

• |〈(∇ψ)p, φ〉| ≤ c‖p|Dρ‖−1,q, Dρ‖∇φ‖q/q−1,R3

• |〈(∂3ψ)u, φ〉| ≤ c‖u|Dρ‖q, Dρ‖∇φ‖q/q−1,R3

• ‖(ω ∧ x)(u · ∇ψ)‖−1,q,R3 ≤ C‖u‖q,Dq‖∇φ‖q/(q−1),R3

Then, by means of the embedding W 1,2
0 (Dρ) ⊂ Lq(Dρ) where 1

6
≤ 1

q
≤ 2

3
, we

know that ‖u|Dρ‖q, Dρ ≤ c.

Since G1 = ∇ψu + (1− ψ)g and G2 = ∇ψu + ψg it implies

• | < ∇ψu, φ > | ≤ C‖u‖q,Dρ‖∇φ‖q/(q−1),R3

• | < (1− ψ)g, φ > | ≤ ‖g‖q,R3‖∇φ‖q/(q−1),R3

• | < ψg, φ > | ≤ ‖g‖q,R3‖∇φ‖q/(q−1),R3

• | < (ω ∧ x)(1− ψ)g, φ > | ≤ c‖(ω ∧ x)g‖−1,q,R3‖∇φ‖q/(q−1),R3 .

Then applying the Theorem 3.4 together with previous estimates we get

‖∇U‖q,R3 + ‖π‖q,R3 ≤ c(‖f‖−1,q + ‖u|Dρ‖q,Dρ + ‖p|Dρ‖−1,q,Dρ+
+‖(ω ∧ x)g‖−1,q,R3 + ‖g‖q,Dρ)

(5.2)

14



‖∇V ‖q,Dρ + ‖τ‖q,Dρ ≤ c
(‖f‖−1,q + ‖u|Dρ‖q,Dρ + ‖p|Dρ‖−1,q,Dρ+

+
∣∣∣
∫

Dρ
ψ(x)p(x)dx

∣∣∣ + ‖g‖q,Dρ

)
.

(5.3)

Finally (u = U + V, p = π + τ),

‖∇u‖q,D + ‖p‖q,D ≤ c(‖f‖−1,q + ‖u|Dρ‖q,Dρ + ‖p|Dρ‖−1,q,Dρ +
∣∣∣
∫

Dρ
p(x)dx

∣∣∣
‖ − ((ω ∧ x) · ∇)u + ω ∧ u‖−1,q ≤ ‖f‖−1,q + ‖∇u|Dρ‖q + ‖p|Dρ‖q.

(5.4)

Therefore our weak solution {u, p} from Step 1 verifies u ∈ Ŵ 1,q
0 (D)3 and

p ∈ Lq(D), 3/2 < q < 6.

Step 3: Proof of the estimate (2.2) for {u, p}
Estimate (2.2) reads

‖∇u‖q,D + ‖p‖q,D + ‖ − ((ω ∧ x) · ∇)u + ω ∧ u‖−1,q,D

≤ cq(‖f‖−1,q,D + ‖g‖q,D + ‖(ω ∧ x) · g‖−1,q,D).

Let 3/2 < q < 3. Suppose on the contrary the existence of two sequences

{fk} in Ŵ−1,q(D)3 and {gk} in Lq(D) tending to f∞ = 0 and g∞ = 0 as
k tends to infinity, such that for the corresponding sequence of solutions
{uk, pk} in Ŵ 1,q

0 (D)3 × Lq(D)

‖∇uk‖q,D + ‖pk‖q,D + ‖ − ((ω ∧ x) · ∇)uk + ω ∧ uk‖−1,q,D = 1. (5.5)

We know from Step 2 that

‖∇uk‖q,D+‖pk‖q,D ≤ c(‖fk‖−1,q+‖uk|Dρ‖q,Dρ +‖pk|Dρ‖−1,q,Dρ +
∣∣∣
∫

Dρ

pk(x)dx
∣∣∣

and

‖ − ((ω ∧ x) · ∇)uk + ω ∧ uk‖−1,q,D ≤ ‖fk‖−1,q + ‖∇uk|Dρ‖q,Dρ + ‖pk|Dρ‖q,Dρ .

On the other hand we have (with q < 3)

‖uk|Dρ‖1,q,Dρ ≤ ‖∇uk|Dρ‖q,Dρ + c‖uk|Dρ‖3q/(3−q),Dρ ≤ c‖∇uk‖q,D ≤ c

‖pk|Dρ‖q,Dρ ≤ 1,
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thus we can extract subsequences {u′k}, {p′k} weakly convergent in W 1,q(Dρ)×
Lq(Dρ), strongly convergent in Lq(Dρ) ×W−1,q(Dρ) (by Rellich’s theorem),
say {u∞, p∞} the limit.

Then {u∞, p∞} ∈ Ŵ 1,q
0 (D)3×Lq(D) is the unique weak solution to prob-

lem (1.5) (1.6) (1.7) with f = f∞ = 0 and g = g∞ = 0. From Section 2,
u∞ = α|ω|e3 and p∞ = 0, leading in a contradiction with (5.5).

We have completed the proof of theorem 2.1.

6 Nonhomogeneous boundary conditions

If we replace the homogeneous Dirichlet boundary conditions by nonhomo-
geneous ones in the form of (1.8), we also have the following theorem

Theorem 6.1. Let 3/2 < q < 3, and suppose f and g given as previously.
Then there exists a unique weak solution {u, p} to (1.5) (1.6) (1.8) (unique-
ness up to a constant multiple of ω for u), which satisfies the estimate

‖∇u‖q,D + ‖p‖q,D + ‖(ω ∧ x) · ∇u− ω ∧ u‖−1,q,D

≤ cq(‖f‖−1,q,D + ‖g‖q,D + ‖(ω ∧ x) · g‖−1,q,D + |ω|+ |ω|2 + 1),

}
(6.1)

with some constant cq > 0 independent of |ω|.

Proof: The result is a corollary of Theorem 2.1. Choose a cut-off function
ξ ∈ C∞

0 (R3; [0, 1]) satisfying ξ = 1 near the boundary ∂Ω and set

b(x) = 1
2
curl (ξ(x)|x|2ω − 1

2
e3 ∧∇|x|2)

b|∂Ω(x) = ω ∧ x− e3.

Let v = u− b, div v = 0 since div u = 0 and div b = 0. So we obtain

−∆v + ∂3v − ((ω ∧ x) · ∇)v + ω ∧ v +∇p = f + fb in D
div v = 0 in D

v = 0 on ∂Ω
v → 0 at ∞,

(6.2)

where
fb = −∆b + ∂3b− ((ω ∧ x)∇)b + (ω ∧ b).
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Applying Theorem 2.1 we get the existence of the unique weak solution (v, p)
satisfying ∆p = div f and the following estimate

‖∇v‖q,D + ‖p‖q,D + ‖ − ((ω ∧ x)∇)v + ω ∧ v‖−1,q,D

≤ c(‖f‖−1,q,D + ‖fb‖−1,q,D)

≤ c(‖f‖−1,q,D + |ω|+ |ω|2 + 1).

(6.3)

Appendix - Bogovski operator

Let us formulate the geometrical assumptions and the properties we will used
to take into account a non zero divergence vectorial field. We refer e.g. to
[1, 2, 12, 19] for the details.

Geometrical assumptions:
Let 1 < q < +∞. Let Ω ⊂ RN , N ≥ 2, be a domain with boundary

∂Ω ∈ C1,1 and suppose one of the following cases
(i) Ω is bounded
(ii) Ω is an exterior domain, i.e., a domain having a compact nonempty
complement.

In the bounded situation, Bogovski [1, 2] has constructed a bounded linear
operator B : Lq

0(Ω) → W 1,q
0 (Ω)N such that u = Bg is a solution to

div u = g in Ω
u = 0 on ∂Ω.

(6.4)

satisfying ‖Bg‖W 1,q(Ω) ≤ c‖g‖q. The problem (6.4) is not uniquely solved,
given g ∈ Lq(Ω),

∫
Ω

g(x)dx = 0 is always assumed.
If we consider less smooth boundary the problem of solvability of Bogov-

skii operator was solved for star-shaped domain see Galdi [12].
Additionally B maps W 1,q

0 (Ω) ∩ Lq
0(Ω) into W 2,q

0 (Ω), see [1].

There are many applications in Fluid Dynamics with the use of Bogovski’s
operator also in Sobolev spaces of negative order, so B is a bounded linear
operator from W r,q

0 (Ω) in W
(r+1),q
0 (Ω)N , r + 2 > 1

q
. They define

W s,p
0 = Ĉc(Ω)

‖·‖Ws,p(Ω)

.
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For s < 0 they denote

W s,p(Ω) := (W−s,p′
0 (Ω))′, W s,p

0 (Ω) := (W−s,p′(Ω))′,

where 1
p

+ 1
p′ = 1.

For more details see [18]. Also we would like to mention comments concerning
Sobolev spaces of negative order in work of Galdi [12] and Farwig, Sohr [4].

Farwig and Sohr [3] have observed B as a bounded linear operator in domain
satisfying one of the assumptions (i)-(ii) that

• from Ŵ 1,q(Ω) ∩ Lq
0(Ω) in W 1,q

0 (Ω)N ∩W 2,q(Ω)N , if Ω is bounded

• from Ŵ−1,q(Ω) in Lq(Ω)N , also if Ω is bounded

• from W 1,q(Ω) ∩ Ŵ−1,q(Ω) in W 1,q
0 (Ω)N ∩W 2,q(Ω)N , if Ω is unbounded

and u = Bg solves always divBg = g with Bg|∂Ω = 0 under the condition∫
Ω

g(x)dx = 0, and satisfies the estimates

‖u‖q ≤ c‖g‖−1,q,
‖u‖2,q ≤ c(‖∇g‖q + ‖g‖−1,q),

where c = c(Ω, q) > 0 is a constant.

In the work of Kozono and Sohr [19] we find the following lemma

Lemma 6.2. (Kozono- Sohr) [[19], Lemma 2.2, Corollary 2.3]
Let Ω ⊂ Rn n ≥ 2 be any domain and let 1 < q < ∞. For all f ∈

Ŵ−1,q(Ω), there is F ∈ L(Ω)n such that

∇ · F = f, ‖F‖q,Ω ≤ C‖f‖−1,q,Ω

with some C > 0. As a result, the space {∇ · F ; F ∈ C∞
0 (Ω)n} is dense

in Ŵ−1,q(Ω).
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[30] Nečasová, Š., Schumacher, K. Strong Solutions to the Stokes
Equations of a Flow Around a Rotating Body in Weighted Lq -Spaces,
Preprint 2007

22


