

DUAL SPACES OF LOCAL MORREY-TYPE SPACES

A. GOGATISHVILI, R. MUSTAFAYEV

ABSTRACT. In this paper we have shown that associated and dual spaces of local Morrey-type spaces are "so called" complementary local Morrey-type spaces. Our method is based on characterization of multidimensional reverse Hardy inequalities.

1. INTRODUCTION

If E is a nonempty measurable subset on \mathbb{R}^n and f is a measurable function on E, then we put

$$||g||_{L_p(E)} := \left(\int_E |f(y)|^p dy \right)^{\frac{1}{p}}, \ 0
$$||f||_{L_{\infty}(E)} := \sup\{\alpha : |\{y \in E : |f(y)| \ge \alpha\}| > 0\}.$$$$

If I a nonempty measurable subset on $(0, +\infty)$ and g is a measurable function on I, then we define $\|g\|_{L_p(I)}$ and $\|g\|_{L_\infty(I)}$ correspondingly.

By $A \leq B$ we mean that $A \leq cB$ with some positive constant c independent of appropriate quantities. If $A \leq B$ and $B \leq A$, we write $A \approx B$ and say that A and B are equivalent.

We put

$$p' := \begin{cases} \frac{p}{1-p} & \text{if } 0$$

and $1/(+\infty) = 0$, 0/0 = 0, $0 \cdot (\pm \infty) = 0$.

For $x \in \mathbb{R}^n$ and r > 0, let B(x, r) be the open ball centered at x of radius r and ${}^{\complement}B(x, r) := \mathbb{R}^n \setminus B(x, r)$.

We recall definitions of local Morrey-type space and complementary local Morrey-type space.

¹⁹⁹¹ Mathematics Subject Classification. 26D15, 46E30.

Key words and phrases. Local Morrey-type spaces, complementary local Morrey-type spaces, associated spaces, dual spaces, multidimensional Hardy inequalities.

The research of A. Gogatishvili was partially supported by the grant no. 201/05/2033 and 201/08/0383 of the Grant Agency of the Czech Republic, by the Institutional Research Plan no. AV0Z10190503 of AS CR. The research of R. Mustafayev was supported by a Post Doctoral Fellowship of INTAS (Grant 06-1000015-6385).

Definition 1.1. ([1]) Let $0 < p, \theta \leq \infty$ and let w be a non-negative measurable function on $(0, \infty)$. We denote by $LM_{p\theta,\omega}$ the local Morrey-type spaces, the spaces of all functions $f \in L_p^{\text{loc}}(\mathbb{R}^n)$ with finite quasinorm

$$\|f\|_{LM_{p\theta,\omega}} \equiv \|f\|_{LM_{p\theta,\omega}(\mathbb{R}^n)} = \|w(r)\|f\|_{L_p(B(0,r))}\|_{L_{\theta}(0,\infty)}.$$

Definition 1.2. ([2]) Let $0 < p, \theta \leq \infty$ and let w be a non-negative measurable function on $(0, \infty)$. We denote by ${}^{c}LM_{p\theta,\omega}$ the complementary local Morrey-type spaces, the spaces of all functions $f \in L_p({}^{c}B(0,t))$ for all t > 0 with finite quasinorm

$$\|f\|\mathbf{c}_{LM_{p\theta,\omega}} \equiv \|f\|\mathbf{c}_{LM_{p\theta,\omega}(\mathbb{R}^n)} = \left\|w(r)\|f\|_{L_p}(\mathbf{c}_{B(0,r))}\right\|_{L_\theta(0,\infty)}$$

Definition 1.3. Let $0 < p, \theta \leq \infty$. We denote by Ω_{θ} the set all non-negative measurable functions ω on $(0, \infty)$ such that

$$\|\omega\|_{L_{\theta}(t,\infty)} < \infty, \ t > 0,$$

and by Ω_{θ} the set all non-negative measurable functions ω on $(0, \infty)$ such that

 $\|\omega\|_{L_{\theta}(0,t)} < \infty, \ t > 0.$

We calculated the associated spaces of local Morrey-type spaces. More precisely, we show that associated spaces of local Morrey-type spaces are complementary local Morrey-type spaces. Moreover, for some values of parameters these associated spaces are dual of local Morrey-type spaces.

2. Completeness of local Morrey-type spaces

The following Theorem is true.

Theorem 2.1. Let $1 \le p, \theta < \infty, \omega \in \Omega_{\theta}$. Suppose $f_n \in LM_{p\theta,\omega}, (n = 1, 2, ...)$ and

$$\sum_{n=1}^{\infty} \|f_n\|_{LM_{p\theta,\omega}} < \infty.$$
(2.1)

Then $\sum_{n=1}^{\infty} f_n$ converges in $LM_{p\theta,\omega}$ to a function f in $LM_{p\theta,\omega}$ and

$$||f||_{LM_{p\theta,\omega}} \le \sum_{n=1}^{\infty} ||f_n||_{LM_{p\theta,\omega}}.$$
 (2.2)

In particular, $LM_{p\theta,\omega}$ is complete.

Proof. It is easy to see that for any R > 0

$$\|\omega\|_{L_{\theta}(R,\infty)}\|f\|_{L_{p}(B(0,R))} \le \|f\|_{LM_{p\theta,\omega}}.$$

Thus

$$\sum_{n=1}^{\infty} \|f_n\|_{L_p(B(0,R))} \le c \sum_{n=1}^{\infty} \|f_n\|_{LM_{p\theta,\omega}}.$$

Since $L_p(B(0,R))$ is complete, then $\sum_{n=1}^{\infty} f_n$ converges a.e. to some $f \in L_p^{\text{loc}}(\mathbb{R}^n)$

$$\sum_{n=1}^{\infty} f_n = f$$

and

$$||f||_{L_p(B(0,R))} \le \sum_{n=1}^{\infty} ||f_n||_{L_p(B(0,R))}.$$
(2.3)

But then

$$\|f\|_{LM_{p\theta,\omega}} = \|\omega(r)\|f\|_{L_p(B(0,R))}\|_{L_\theta(0,\infty)} \le \|\omega(r)\sum_{n=1}^{\infty} \|f_n\|_{L_p(B(0,R))}\|_{L_\theta(0,\infty)}$$
$$\le \sum_{n=1}^{\infty} \|\omega(r)\|f_n\|_{L_p(B(0,R))}\|_{L_\theta(0,\infty)} = \sum_{n=1}^{\infty} \|f_n\|_{LM_{p\theta,\omega}}.$$

The following Theorem can be proved in analogous way.

Theorem 2.2. Let $1 \leq p, \theta < \infty, \omega \in {}^{\complement}\Omega_{\theta}$. Suppose $f_n \in {}^{\complement}LM_{p\theta,\omega}, (n = 1, 2, ...)$ and

$$\sum_{n=1}^{\infty} \|f_n\|_{\mathfrak{c}_{LM_{p\theta,\omega}}} < \infty.$$

$$(2.4)$$

Then $\sum_{n=1}^{\infty} f_n$ converges in ${}^{c}LM_{p\theta,\omega}$ to a function f in ${}^{c}LM_{p\theta,\omega}$ and

$$\|f\|_{\mathfrak{c}_{LM_{p\theta,\omega}}} \leq \sum_{n=1}^{\infty} \|f_n\|_{\mathfrak{c}_{LM_{p\theta,\omega}}}.$$
(2.5)

In particular, ${}^{c}LM_{p\theta,\omega}$ is complete.

3. The multidimensional reverse Hardy inequality

Let us recall some results from [5].

Theorem 3.1. Assume that $0 < q \leq p \leq 1$. Let ω and u be a weight functions on \mathbb{R}^n and $(0, \infty)$ respectively. Let $||u||_{L_q(0,t)} < +\infty$ for all $t \in (0,\infty)$. Then the inequality

$$\|gw\|_{L_p(\mathbb{R}^n)} \le c \left\| u(t) \int_{\mathfrak{c}_{B(0,t)}} g(y) \, dy \right\|_{L_q(0,\infty)}.$$
 (3.1)

holds for all non-negative measurable g if and only if

$$A_1 := \sup_{t \in (0,\infty)} \|w\|_{L_{p'}(B(0,t))} \|u\|_{L_q(0,t)}^{-1} < +\infty.$$

The best possible constant c in (3.1) satisfies $c \approx A_1$.

Consider now the inequality (3.1) in the case when $0 , <math>p < q \le +\infty$ and define r by

$$\frac{1}{r} = \frac{1}{p} - \frac{1}{q}.$$
(3.2)

In such a case we shall write a condition characterizing the validity of inequality (3.1) in a compact form involving $\int_{(0,\infty)} f \, dh$, where $f(t) = \|w\|_{L_{p'}(B(0,t))}^r$ and $h(t) = -\|u\|_{L_q(0,t+)}^{-r}$, $t \in (0,\infty)$. $(\|u\|_{L_q(0,t+)} := \lim_{s \to t+} \|u\|_{L_q(0,s)})$ (Hence, the Lebesgue-Stieltjes integral $\int_{(0,\infty)} f \, dh$ is defined by the non-decreasing and right-continuous function h on $(0,\infty)$). However, it can happen that $\|u\|_{L_q(0,t+)} = 0$ for all $t \in (0,c)$ with a convenient $c \in (0,\infty)$ (provided that we omit the trivial case when u = 0 a.e. on $(0,\infty)$). Then we have to explain what is the meaning of the Lebesgue-Stieltjes integral since in such a case the function $h = -\infty$ on (0,c). To this end, we adopt the following convention.

Convention 3.2. Let $I = (a, b) \subseteq \mathbb{R}$, $f : I \to [0, +\infty]$ and $h : I \to [-\infty, 0]$. Assume that h is non-decreasing and right-continuous on I. If $h : I \to (-\infty, 0]$, then the symbol $\int_I f dh$ means the usual Lebesgue-Stieltjes integral. However, if $h = -\infty$ on some subinterval (a, c) with $c \in I$, then we define $\int_I f dh$ only if f = 0 on (a, c] and we put

$$\int_{I} f \, dh = \int_{(c,b)} f \, dh$$

Theorem 3.3. Assume that $0 , <math>p < q \leq +\infty$ and r is given by (3.2). Let ω and u be a weight functions on \mathbb{R}^n and $(0,\infty)$ respectively. Let u satisfy $\|u\|_{L_q(0,t)} < +\infty$ for all $t \in (0,\infty)$ and $u \neq 0$ a.e. on $(0,\infty)$. Then the inequality (3.1) holds for all non-negative measurable g on \mathbb{R}^n if and only if

$$A_2 := \left(\int_{(0,\infty)} \|w\|_{L_{p'}(B(0,t))}^r d\left(- \|u\|_{L_q(0,t+1)}^{-r} \right) \right)^{\frac{1}{r}} + \frac{\|w\|_{L_{p'}(\mathbb{R}^n)}}{\|u\|_{L_q(0,\infty)}} < +\infty.$$

The best possible constant c in (3.1) satisfies $c \approx A_2$.

Remark 3.4. Let $q < +\infty$ in Theorem 3.3. Then

$$||u||_{L_q(0,t+)} = ||u||_{L_q(0,t)}$$
 for all $t \in (0,\infty)$,

which implies that

$$A_{2} = \left(\int_{(0,\infty)} \|w\|_{L_{p'}(B(0,t))}^{r} d\left(-\|u\|_{L_{q}(0,t)}^{-r}\right)\right)^{\frac{1}{r}} + \frac{\|w\|_{L_{p'}(\mathbb{R}^{n})}}{\|u\|_{L_{q}(0,\infty)}}.$$

Our next assertion is a counterpart of Theorem 3.1.

Theorem 3.5. Assume that $0 < q \leq p \leq 1$. Let ω and u be a weight functions on \mathbb{R}^n and $(0, \infty)$ respectively. Let $\|u\|_{L_q(t,\infty)} < +\infty$ for all $t \in (0,\infty)$. Then the inequality

$$\|gw\|_{L_p(\mathbb{R}^n)} \le c \left\| u(t) \int_{B(0,t)} g(y) \, dy \right\|_{L_q(0,\infty)}$$
(3.3)

holds for all non-negative measurable g on \mathbb{R}^n if and only if

$$B_1 := \sup_{t \in (0,\infty)} \|w\|_{L_{p'}}({}^{c}B_{(0,t)})\|u\|_{L_q(t,\infty)}^{-1} < +\infty.$$
(3.4)

The best possible constant c in (3.3) satisfies $c \approx B_1$.

Let us denote by $||u||_{q,(t-,b),\nu}^{-r} := \lim_{s\to t-} ||u||_{L_q[s,\infty)}^{-r}, t \in (0,\infty)$. The following Theorem is true.

Theorem 3.6. Assume that $0 , <math>p < q \leq +\infty$ and r is given by (3.2). Let ω and u be a weight functions on \mathbb{R}^n and $(0,\infty)$ respectively. Let u satisfy $\|u\|_{L_q(t,\infty)} < +\infty$ for all $t \in (0,\infty)$ and $u \neq 0$ a.e. on $(0,\infty)$. Then the inequality (3.3) holds for all non-negative measurable if and only if

$$B_2 := \left(\int_{(0,\infty)} \|w\|_{L_{p'}(\mathfrak{c}_{B(0,t)})}^r d\left(\|u\|_{L_q(t-\infty)}^{-r}\right) \right)^{\frac{1}{r}} + \frac{\|w\|_{L_{p'}(\mathbb{R}^n)}}{\|u\|_{L_q(0,\infty)}} < +\infty.$$

The best possible constant c in (3.3) satisfies $c \approx B_2$.

Remark 3.7. Let $q < +\infty$ in Theorem 3.6. Then

$$|u||_{L_q(t-\infty)} = ||u||_{L_q(t,\infty)}$$
 for all $t \in (0,\infty)$,

which implies that

$$B_{2} = \left(\int_{(a,b)} \|w\|_{L_{p'}}^{r} \mathfrak{c}_{B(0,t)} d\left(\|u\|_{L_{q}(t,\infty)}^{-r}\right)\right)^{\frac{1}{r}} + \frac{\|w\|_{L_{p'}(\mathbb{R}^{n})}}{\|u\|_{L_{q}(0,\infty)}}.$$

4. Associated spaces of local Morrey-type and complementary local Morrey-type spaces

In this section by using results of previous section we calculate the associated spaces of local Morrey-type and complementary local Morrey-type spaces.

Corollary 4.1. Assume $1 \le p < \infty$, $\theta \le 1$. Let $\omega \in {}^{c}\Omega_{\theta}$. Then

$$\sup_{g\in {}^{\complement}_{LM_{p\theta,\omega}}} \frac{\int_{\mathbb{R}^n} f(x)g(x)dx}{\|g\|_{{}^{\complement}_{LM_{p\theta,\omega}}}} \approx \sup_{t\in(0,\infty)} \frac{\|f\|_{L_{p'}(B(0,t))}}{\|\omega\|_{L_{\theta}(0,t)}}$$

Proof. Since $\frac{\theta}{p} \leq \frac{1}{p} \leq 1$, then by Theorem 3.1 the inequality

$$\|g^{p}f^{p}\|_{L_{\frac{1}{p}}(\mathbb{R}^{n})} \leq c \left\|\omega^{p}(t)\int_{\mathfrak{c}_{B(0,t)}} g^{p}(y)\,dy\right\|_{L_{\frac{\theta}{p}}(0,\infty)}$$
(4.1)

holds for all non-negative measurable g on \mathbb{R}^n if and only if

$$C_1 := \sup_{t \in (0,\infty)} \|f^p\|_{L_{\left(\frac{1}{p}\right)'}(B(0,t))} \|\omega^p\|_{L_{\frac{\theta}{p}}(0,t)}^{-1} < +\infty$$

The best possible constant c in (4.1) satisfies $c \approx C_1$.

Corollary 4.2. Assume $1 \leq p < \infty$, $1 < \theta \leq \infty$. Let $\omega \in {}^{c}\Omega_{\theta}$. Then

$$\sup_{g \in \mathfrak{c}_{LM_{p\theta,\omega}}} \frac{\int_{\mathbb{R}^n} f(x)g(x)dx}{\|g\|_{\mathfrak{c}_{LM_{p\theta,\omega}}}}$$
$$\approx \left(\int_{(0,\infty)} \|f\|_{L_{p'}(B(0,t))}^{\theta'} d\left(-\|\omega\|_{L_{\theta}(0,t+)}^{-\theta'}\right)\right)^{\frac{1}{\theta'}} + \frac{\|f\|_{L_{p'}(\mathbb{R}^n)}}{\|\omega\|_{L_{\theta}(0,\infty)}}.$$

From Theorem 3.5 and Theorem 3.6 we conclude next statements

Corollary 4.3. Assume $1 \le p < \infty$, $\theta \le 1$. Let $\omega \in \Omega_{\theta}$. Then

$$\sup_{g \in LM_{p\theta,\omega}} \frac{\int_{\mathbb{R}^n} f(x)g(x)dx}{\|g\|_{LM_{p\theta,\omega}}} \approx \sup_{t \in (0,\infty)} \frac{\|f\|_{L_{p'}}(\mathfrak{c}_{B(0,t))}}{\|\omega\|_{L_{\theta}(t,\infty)}}$$

Corollary 4.4. Assume $1 \le p < \infty$, $1 < \theta \le \infty$. Let $\omega \in \Omega_{\theta}$. Then

$$\sup_{g \in LM_{p\theta,\omega}} \frac{\int_{\mathbb{R}^n} f(x)g(x)dx}{\|g\|_{LM_{p\theta,\omega}}}$$
$$\approx \left(\int_{(0,\infty)} \|f\|_{L_{p'}}^{\theta'} \mathfrak{c}_{B(0,t)}^{\theta'}d\|\omega\|_{L_{\theta}(t-,\infty)}^{-\theta'}\right)^{\frac{1}{\theta'}} + \frac{\|f\|_{L_{p'}}(\mathbb{R}^n)}{\|\omega\|_{L_{\theta}(0,\infty)}} < +\infty$$

Let X be Banach space. Denote by X' its associated space, that is,

$$||f||_{X'} = \sup\left\{\int_0^\infty f(t)g(t)dt : ||g||_X \le 1\right\}.$$

Now we can characterize the associated spaces of local Morrey-type and complementary local Morrey-type spaces.

Theorem 4.5. Assume $1 \le p < \infty$, $0 < \theta \le \infty$. Let $\omega \in {}^{c}\Omega_{\theta}$. Set $X = {}^{c}LM_{p\theta,\omega}$. (i) Let $0 < \theta \le 1$. Then

$$||f||_{X'} \approx \sup_{t \in (0,\infty)} ||f||_{L_{p'}(B(0,t))} ||\omega||_{L_{\theta}(0,t)}^{-1}.$$

(ii) Let $1 < \theta \leq \infty$. Then

$$\|f\|_{X'} \approx \left(\int_{(0,\infty)} \|f\|_{L_{p'}(B(0,t))}^{\theta'} d\left(-\|\omega\|_{L_{\theta}(0,t+)}^{-\theta'}\right)\right)^{\frac{1}{\theta'}} + \frac{\|f\|_{L_{p'}(\mathbb{R}^n)}}{\|\omega\|_{L_{\theta}(0,\infty)}}$$

Proof. This is just a simple application of Corollary 4.1 and 4.2.

Theorem 4.6. Assume $1 \le p < \infty$, $0 < \theta \le \infty$. Let $\omega \in \Omega_{\theta}$. Set $X = LM_{p\theta,\omega}$. (i) Let $0 < \theta \le 1$. Then

$$\|f\|_{X'} \approx \sup_{t \in (0,\infty)} \|f\|_{L_{p'}(\mathfrak{c}_{B(0,t)})} \|\omega\|_{L_{\theta}(t,\infty)}^{-1}$$

(ii) Let $1 < \theta \leq \infty$. Then

$$\|f\|_{X'} \approx \left(\int_{(0,\infty)} \|f\|_{L_{p'}}^{\theta'} \mathfrak{c}_{B(0,t)} d\|\omega\|_{L_{\theta}(t-,\infty)}^{-\theta'}\right)^{\frac{1}{\theta'}} + \frac{\|f\|_{L_{p'}(\mathbb{R}^n)}}{\|\omega\|_{L_{\theta}(0,\infty)}}.$$

Proof. This is just a simple application of Corollary 4.3 and 4.4.

5. Dual spaces of local Morrey-type and complementary local Morrey-type spaces

In this section we calculate dual spaces of local Morrey-type and complementary local Morrey-type spaces. More precisely, we show that for some values of parameters the dual spaces coincide with the associated spaces.

The following theorem is true.

Theorem 5.1. Assume $1 \le p < \infty$, $1 < \theta < \infty$. Let $\omega \in \Omega_{\theta}$ and $\|\omega\|_{L_{\theta}(0,\infty)} = \infty$. Then

$$(LM_{p\theta,\omega})^* = {}^{\mathfrak{c}}LM_{p'\theta',\widetilde{\omega}}, \qquad (5.1)$$

where $\widetilde{\omega}(t) = \omega^{\theta-1}(t) \left(\int_t^\infty \omega^\theta(s) ds\right)^{-1}$, under the following pairing:

$$\langle f,g \rangle = \int_{\mathbb{R}^n} fg.$$

Moreover $||f||_{\mathfrak{c}_{LM_{p'\theta',\tilde{\omega}}}} = \sup_{g} \left| \int_{\mathbb{R}^n} fg \right|$, where the supremum is taken over all functions $g \in LM_{p\theta,\omega}$ with $||g||_{LM_{p\theta,\omega}} \leq 1$.

Proof. If $f \in {}^{c}LM_{p'\theta',\widetilde{\omega}}$ and $g \in LM_{p\theta,\omega}$, then by Corollary 4.4 we have

$$| < f,g > | \leq \int_{\mathbb{R}^n} |fg| \leq \|f\| \operatorname{c}_{LM_{p'\theta',\widetilde{\omega}}} \|g\|_{LM_{p\theta,\omega}}$$

In particular, every function $f \in {}^{c}LM_{p'\theta',\widetilde{\omega}}$ induces a bounded linear functional on $LM_{p\theta,\omega}$.

Conversely, suppose L is a bounded linear functional on $LM_{p\theta,\omega}$ with the norm $||L|| < \infty$. If g is supported in $D_0 = {}^{\complement}B(0, r_0)$ for some $r_0 > 0$, then

$$||g||_{LM_{p\theta,\omega}} \le ||\omega||_{L_{\theta}(r_0,\infty)} ||g||_{L_p(\mathfrak{c}_{B(0,r_0)})},$$

and

$$|L(g)| \le ||L|| ||\omega||_{L_{\theta}(r_0,\infty)} ||g||_{L_{p}(\mathfrak{c}_{B(0,r_0)})}.$$

Hence L induces a bounded linear functional on $L_p({}^{c}B(0,r_0))$ and acts with some function $f^0 \in L_{p'}({}^{c}B(0,r_0))$. By taking $D_j = {}^{c}B(0,r_0/j), j = 1, 2, 3, \ldots$, we have

 $f^j = f^{j+1}$ on D_j , so we get a single function f on \mathbb{R}^n that $f \in L_{p'}({}^{c}B(0,r))$ for any r > 0, and such that $L(g) = \int_{\mathbb{R}^n} fg$ when $g \in L_p({}^{c}B(0,t))$ with support in ${}^{c}B(0,t)$ for any t > 0.

For arbitrary r > 0, take $g = \chi_{\mathfrak{c}_{B(0,r)}} |f|^{p'} f^{-1}$, then

$$\int_{\mathfrak{c}_{B(0,r)}} |f|^{p'} = |L(g)| \le ||L|| ||\omega||_{L_{\theta}(r,\infty)} \left(\int_{\mathfrak{c}_{B(0,r)}} |f|^{p'} \right)^{\frac{1}{p}},$$

thus

$$\left(\int_{\mathfrak{c}_{B(0,r)}} |f|^{p'}\right)^{\frac{1}{p'}} \le \|L\| \|\omega\|_{L_{\theta}(r,\infty)}$$

hence

$$\left(\int_{r}^{\infty} \widetilde{\omega}(t)^{\theta'} \left(\int_{\mathfrak{G}_{B(0,t)}} |f|^{p'}\right)^{\frac{\theta'}{p'}} dt\right)^{\frac{1}{\theta'}} \leq \left(\int_{r}^{\infty} \widetilde{\omega}(t)^{\theta'} dt\right)^{\frac{1}{\theta'}} \|L\| \|\omega\|_{L_{\theta}(r,\infty)} \leq \|L\|.$$

Therefore, $f \in {}^{c}LM_{p'\theta',\widetilde{\omega}}$ with

$$\|f\|\operatorname{c}_{LM_{p'\theta',\widetilde{\omega}}}\leq\|L\|.$$

For $g \in LM_{p\theta,\omega}$ and any $n \in \mathbb{N}$, denote by $g_n(x) = g(x)\chi_{B(0,n)\setminus B(0,\frac{1}{n})}$. It is evident that $g_n \to g$, $n \to \infty$ a.e in \mathbb{R}^n . By Lebesgue's Dominated Convergence Theorem, we get that $\|g - g_n\|_{LM_{p\theta,\omega}} \to 0$, $n \to \infty$. Therefore

$$L(g_n) \to L(g), \ n \to \infty.$$
 (5.2)

On the other hand, by Corollary 4.4

$$\left| \int fg - \int fg_n \right| \le \int |f(g - g_n)| \le \|f\|_{\mathfrak{c}_{LM_{p\theta,\omega}}} \|g - g_n\|_{LM_{p\theta,\omega}} \to 0.$$
(5.3)

Since $g_n \in L_p({}^{\mathbf{b}}B(0,\frac{1}{n}))$, then

$$L(g_n) = \int fg_n.$$

Consequently, from (5.2) and (5.3) we obtain

$$L(g) = \int fg.$$

In a similar manner the following theorem is proved.

Theorem 5.2. Assume $1 \le p < \infty$, $1 < \theta < \infty$. Let $\omega \in {}^{\complement}\Omega_{\theta}$ and $\|\omega\|_{L_{\theta}(0,\infty)} = \infty$. Then

$$\left({}^{c}LM_{p\theta,\omega}\right)^{*} = LM_{p'\theta',\overline{\omega}}, \qquad (5.4)$$

8

where $\overline{\omega}(t) = \omega^{\theta-1}(t) \left(\int_0^t \omega^{\theta}(s) ds \right)^{-1}$, under the following pairing:

$$\langle f,g \rangle = \int_{\mathbb{R}^n} fg.$$

$$\begin{split} & \text{Moreover } \|f\|_{LM_{p'\theta',\overline{\omega}}} = \sup_g \left|\int_{\mathbb{R}^n} fg\right|, \text{ where the supremum is taken over all functions } g \in {}^{\complement}\!LM_{p\theta,\omega} \, : \, \|g\|_{\mathfrak{c}_{LM_{p\theta,\omega}}} \leq 1. \end{split}$$

Acknowledgement. Rza Mustafayev would like to express his gratitude to INTAS for the possibility to visit the Institute of Mathematics of Academy of Sciences of Czech Republic during 2007/8, under his INTAS YSF Post Doctoral programme and also the Institute of Mathematics of Academy of Sciences of Czech Republic for its hospitality.

References

- V.I.Burenkov, H.V.Guliyev, Necessary and sufficient conditions for boundedness of the maximal operator in the local Morrey-type spaces. Studia Mathematica, 163 (2) (2004), p.157-176.
- [2] V.I.Burenkov, H.V.Guliyev, V.S.Guliyev On boundedness of the fractional maximal operator from complementary Morrey-type spaces to Morrey-type spaces. Contemporary Mathematics, v.424 (2007), p.1-16.
- [3] W.D.Evans, A.Gogatishvili, B.Opic The reverse Hardy inequality with measures. Math. Ineq. and Appl. v.11, no.1, 2008, p.43–74.
- [4] A. Gogatishvili and L. Pick, Discretization and anti-discretization of rearrangementinvariant norms, Publ. Mat. 47 (2003), 311–358.
- [5] A.Gogatishvili, R.Mustafayev The multidimensional reverse Hardy inequalities. (to appear)
- [6] W. Rudin, *Principles of Mathematical Analysis*, McGraw-Hill Book Company, New York, 2nd ed., 1964.

Amiran Gogatishvili

Institute of Mathematics of the Academy of Sciences of the Czech Republic, Źitna 25, 115 67 Prague 1, Czech Republic

E-mail: gogatish@math.cas.cz

Rza Mustafayev

Institute of Mathematics and Mechanics, Academy of Sciences of Azerbaijan, F. Agayev St. 9, Baku, AZ 1141, Azerbaijan

E-mail: rzamustafayev@mail.az