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Štefan Schwabik ∗

Inst. of Math. Acad. Sci., Praha, Czech Republic

1 Introduction

For a given continuous function F on a compact interval E in the set R of
reals the problem is how to describe the ”total change” of F on a set M ⊂ E.

Quantities WF (M) and VF (M) (see Section 3) are introduced in this work
for this aim. They are in fact full variational measures in the sense presented
by B.S. Thomson in [10] generated by two slightly different interval functions,
namely the oscillation of F over an interval and the value of the additive
interval function generated as usual by F . They coincide with the concept
of classical total variation if M is an interval and they are zero if on the set
M the function F is of negligible variation.

Properties of these variational measures are recalled from [10] and inves-
tigated.

The Kurzweil-Henstock integration is shortly described and some of its
properties are studied using the variational measure WF (M) for the indefinite
integral F of an integrable function f .

2 Notations, divisions, tags, gauges

Let −∞ < a < b < ∞ and let the compact interval E = [a, b] be fixed in the
sequel. The topology on E is induced by the usual topology on the set R of
reals.
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We denote by Int(M) the interior of a set M ⊂ E and M denotes the
closure of a set M ⊂ E.

In the next I and J always denote closed subintervals of E. The set of
all closed subintervals of J will be denoted by Sub(J). The empty set ∅ is
also assumed to belong to Sub(J).

If I is nonempty, then by l(I), r(I) we denote the left, right endpoint of
I, respectively.

The number |I| = r(I)− l(I) is the length of I.
For the purposes of this paper a mapping T from a set Γ into a set M

will be sometimes called a system of elements of M .
The notation T = {Vj; j ∈ Γ} means that T (j) = Vj ∈ M for j ∈ Γ. A

system {Vj; j ∈ Γ} of elements of M is called finite if Γ is finite. The usual
use of this are mostly the cases Γ = N or Γ = Nk where N is the set of natural
numbers and Nk = {j ∈ N; j ≤ k}.

When we will deal with a system of elements belonging to Sub(E), we
will speak simply about a system (of intervals).

The set of all finite unions of closed subintervals of E (i.e. unions of
elements of all finite systems) is denoted by Alg(E).

The set Alg(E) is closed with respect to finite unions and intersections.
Any set M ∈ Alg(E) is the union of elements of a finite system {Ij; j ∈ Γ},
where Ij∩Ik = ∅ for j 6= k. If M ∈ Alg(E), then clearly also E \M ∈ Alg(E).

A division is a finite system D = {Ij; j ∈ Γ} of intervals, where Int(Ij) ∩
Ik = ∅ for j 6= k. This means that the elements of a division do not overlap.

For a given set M ⊂ E the division D is called a division in M if M ⊃⋃
j∈Γ Ij D is called a division of M if M =

⋃
j∈Γ Ij; and the division D covers

M if M ⊂ ⋃
j∈Γ Ij.

A division of M exists if and only if M ∈ Alg(E).
A map τ from Sub(E) into E is called a tag if τ(I) ∈ I for I ∈ Dom(τ).

In the sequel only tags of this sort will be used.
A tagged system is a pair (D, τ), where D = {Ij; j ∈ Γ} is a system and

τ is a tag defined on the range of D, i.e. on all Ij, j ∈ Γ. In this case we
write usually τj instead of τ(Ij).

The tagged system (D, τ) is called M-tagged for some set M ⊂ E if
τj ∈ M for j ∈ Γ.

Given a function f : E → R and a set M ⊂ E we denote

|f |M = sup
x∈M

|f(x)|.



Variational measures and the Kurzweil-Henstock integral 3

A gauge is any function on E with values in the set R+ of positive reals.
The set of all gauges is denoted by ∆(E).

For δ1, δ2 ∈ ∆(E) we write δ1 ≤ δ2 if δ1(x) ≤ δ2(x) for x ∈ E. In this
way a partial ordering in ∆(E) is defined and any finite set in ∆(E) has an
infimum with respect to this ordering.

If δ ∈ ∆(E), then a tagged system (D, τ), where D = {Ij; j ∈ Γ}, is
called δ-fine if |Ij| < δ(τj) for j ∈ Γ.

If δ1, δ2 ∈ ∆(E), δ1 ≤ δ2, then every δ1-fine tagged system is also δ2-fine.
Remark. Let us note that for a given M ⊂ E and a gauge δ ∈ ∆(E) in

some situations it can be helpful to use divisions D = {Ij; j ∈ Γ} with the
property

|Ij| ≤ |δ|Ij∩M , j ∈ Γ

instead of δ-fine M -tagged divisions. Let us call divisions of this type δ-fine
and M-related.

If {Ij; j ∈ Γ} is δ-fine and M -related and Ij ∩M = ∅ then |δ|Ij∩M = 0.
Hence |Ij| = 0 and the element Ij of the division D = {Ij; j ∈ Γ} can be
neglected in many of the considerations.

If (D, τ) = ({Ij; j ∈ Γ}, τ) is an M -tagged δ-fine system then τ(Ij) =
τj ∈ M ∩ Ij and |Ij| ≤ δ(τj) ≤ |δ|Ij∩M and D = {Ij; j ∈ Γ} is δ-fine and
M -related.

If, conversely, D = {Ij; j ∈ Γ} is δ-fine and M -related then it need not
be possible to find τj ∈ M ∩ Ij for j ∈ Γ such that |Ij| ≤ δ(τj).

The following crucial statement is known as Cousin’s lemma (see e.g. [5,
3.4 Lemma] or any other relevant text on Kurzweil-Henstock integration).

Proposition 2.1. To any δ ∈ ∆(E) and I ∈ Sub(E) there exists a δ-fine
division of I.

Cousin’s lemma can be used in many different ways. We shall use the
following statements.

Lemma 2.2. Let I ∈ Sub(E) and let A be a closed subset of I. Then to
every δ ∈ ∆(E) there is a δ-fine A-tagged division in I which covers A.

Proof. Denote dist(x,A) the distance of a point x ∈ R from the set A. Let
us set

η(x) =

{
min{δ(x), 1

2
dist(x,A)} for x ∈ I \ A,

δ(x) for x ∈ A ∪ (E \ I).
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It is easy to see that η ∈ ∆(E). Let ({Ij; j ∈ Φ}, τ) be an η-fine division
of I (it exists by Proposition 2.1) and set Γ = {j ∈ Φ, τj ∈ A}. Then
({Ij; j ∈ Γ}, τ) is a δ-fine A-tagged division which covers A. This follows from
the definition of η for x /∈ A because for the tag τj /∈ A the corresponding
interval Ij does not intersect A by the definition of the gauge η.

Lemma 2.3. Let A be a closed subset of E, δ ∈ ∆(E) and let ({Ij; j ∈ Γ}, τ)
be a δ-fine A-tagged division.

Then there exists a set Φ ⊃ Γ a tag σ and a σ-fine A-tagged division
({Ij; j ∈ Φ}, σ) such that σj = τj for j ∈ Γ and

A ⊂ Int(
⋃
j∈Φ

Ij).

Proof. Let E \ ⋃
j∈Γ Ij =

⋃
k∈Ψ Uk where {Uk; k ∈ Ψ} is a pairwise disjoint

finite system of closed intervals.
For any k ∈ Ψ let ({Ij; j ∈ Γk}, τ (k)) be a δ-fine A-tagged division in

Uk which covers A ∩ Uk. Now it suffices to set Φ = Γ ∪ (
⋃

k∈Ψ Γk) and
σ(Ij) = τ(Ij) for j ∈ Γ and σ(Ij) = τ (k)(Ij) for j ∈ Γk.

Remark. Lemma 2.3 means that any δ-fine A-tagged division can be ex-
tended to a δ-fine A-tagged division which covers a closed set A ⊂ E.

3 The function W

Assume that F : E → R is a real function defined on E. For I ∈ Sub(E)
define the usual interval function

F [I] = F (r(I))− F (l(I)).

Let us denote by C(E) the set of all continuous real-valued functions on E.
The oscillation of F ∈ C(E) on an interval I ∈ Sub(E) is defined in the

usual way by

ω(F, I) = sup{|F (x)− F (y)|; x, y ∈ I} = sup{|F [J ]|; J ∈ Sub(I)}.

The following simple properties of the oscillation of a function may be
mentioned:
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(3.1) ω(F, I) ≥ 0,

(3.2) ω(F, I) = 0 if and only if F is constant on I,

(3.3) ω(αF, I) = |α|ω(F, I) for α ∈ R,

(3.4) ω(
∑
j∈Φ

Fj, I) ≤
∑
j∈Φ

ω(Fj, I) if Φ is finite ,

(3.5) ω(F,
⋃
j∈Φ

Ij) ≤
∑
j∈Φ

ω(F, Ij) if Φ is finite and
⋃
j∈Φ

Ij ∈ Sub (E).

Definition 3.1. For F ∈ C(E) and a division D = {Ij; j ∈ Γ} let us set

Ω(F, D) =
∑
j∈Γ

ω(F, Ij)

and
A(F,D) =

∑
j∈Γ

|F [Ij]|.

If F ∈ C(E) and M ⊂ E then for any δ ∈ ∆(E) set

Wδ(F,M) = sup{Ω(F, D); D is δ-fine,M -tagged}

and
Vδ(F, M) = sup{A(F,D); D is δ-fine,M -tagged}

and put

(3.6) WF (M) = inf{Wδ(F, M); δ ∈ ∆(E)},

(3.7) VF (M) = inf{Vδ(F, M); δ ∈ ∆(E)},
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Let us note that if δ1, δ2 ∈ ∆(E), δ1 ≤ δ2 then Wδ1(F, M) ≤ Wδ2(F, M)
and Vδ1(F, M) ≤ Vδ2(F, M).

Therefore in the definition of WF (M) and VF (M) it suffices to take into
account gauges which are less than some fixed gauge δ0 only.

If D = {Ij; j ∈ Γ} is a division then

|F [Ij]| ≤ ω(F, Ij) for j ∈ Γ.

Therefore
A(F, D) ≤ Ω(F, D)

and

(3.8) VF (M) ≤ WF (M)

Let us recall the notion V (F, I) of total variation of a function F over
I ∈ Sub(E) which is defined by

(3.9) V (F, I) = sup{
∑
j∈Γ

|F [Ij]|; {Ij; j ∈ Γ} is a division of I}.

Note that V (F, I) = 0 for I ∈ Sub(E) if and only if the function F is
constant on I and that V (F, I) = VF (I) for I ∈ Sub(E).

First let us show that in the simple situation of an interval I ∈ Sub(E)
the values WF (I) and VF (I) have the classical meaning of the total variation
of F over I.

Lemma 3.2. Let F ∈ C(E) and I ∈ Sub(E). Then

(3.10) WF (I) = VF (I) = V (F, I).

Proof. Assume that ε > 0 is given.
Since F is uniformly continuous on E there is a σ > 0 such that |F [J ]| <

1
2
ε provided J ⊂ E and |J | ≤ σ.

If δ(x) = σ for x ∈ E then for any δ-fine I-tagged division {Ij; j ∈ Γ} we
have Ω(F, D) =

∑
j∈Γ ω(F, Ij) =

∑
j∈Γ |F [Jj]| where Jj ∈ Sub(Ij), j ∈ Γ is

such that |F [Jj]| = ω(F, Ij).
Define Γ1 = {j ∈ Γ; Ij ⊂ I} and Γ2 = Γ \ Γ1. Since I is an interval, the

set Γ2 consists of at most two elements. Hence

Ω(F, D) =
∑
j∈Γ

|F [Jj]| =
∑
j∈Γ1

|F [Jj]|+
∑
j∈Γ2

|F [Jj]| < V (F, I) + ε
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and therefore also
WF (I) ≤ V (F, I) + ε

and

(3.11) WF (I) ≤ V (F, I)

since ε > 0 can be taken arbitrarily small.
Further let {Ij; j ∈ Nk} be a division of I, for which

V (F, I) <

k∑
j=1

|F [Ij]|+ ε

2
.

Let δ ∈ ∆(E) be arbitrary and let Dj = {J j
i ; i ∈ Φj} be a δ-fine division of

Ij. Then

|F [Ij]| ≤
∑
i∈Φj

|F [J j
i ]|

and

V (F, I) <
ε

2
+

k∑
j=1

∑
i∈Φj

|F [J j
i ]|.

Let us set D = {J j
i ; j = 1, . . . , k, i ∈ Φj}. Then D is a δ-fine division of I

and therefore
k∑

j=1

∑
i∈Φj

|F [J j
i ]| ≤ Vδ(F, I).

This yields then V (F, I) < ε
2
+Vδ(F, I) and also V (F, I) < ε+VF (I), i.e. we

get
V (F, I) ≤ VF (I).

Using (3.8), (3.11) we obtain

VF (I) ≤ WF (I) ≤ V (F, I) ≤ VF (I)

and this finishes the proof.

The following simple assertion will be also useful.

Lemma 3.3. Let F ∈ C(E), I ∈ Sub(E) and τ ∈ I.
Then there exists J ∈ Sub(I) such that τ ∈ J and

ω(F, I) ≤ 2|F [J ]|.
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Proof. Since F ∈ C(E), there is an interval Ĩ ∈ Sub(I) such that |F [Ĩ]| =
ω(F, I).

If τ ∈ Ĩ, then we may take J = Ĩ.
If τ /∈ Ĩ, then we have two intervals J1, J2 ∈ Sub(I), where the endpoints

of J1 are τ and l(Ĩ) and J2, where the endpoints of J2 are τ and r(Ĩ) and
evidently ω(F, I) ≤ |F [J1]|+ |F [J2]|. To get the statement we put J = J1 if
|F [J1]| ≥ |F [J2]| or J = J2 if |F [J1]| < |F [J2]|.
Corollary 3.4. Assume that F ∈ C(E). If M ⊂ E then

VF (M) ≤ WF (M) ≤ 2VF (M).

(This implies e.g. that VF (M) = 0 if and only if WF (M) = 0.)

Given a function F ∈ C(E) by WF (M) and VF (M) two set functions are
given. Using the terms presented by B.S.Thomson in [10] we identify WF (M)
and VF (M) as the full variational measures generated by the continuous
interval functions given for I ∈ Sub(E) by ω(F, I), F [I], respectively.

By Theorem 3.7 in [10] WF (·) and VF (·) are metric outer measures. This
means that the following holds.

Proposition 3.5. Assume that F ∈ C(E).
1. If M,M1, M2,M3, . . . is a sequence of sets in E for which M ⊂ ⋃∞

i=1 Mi

then

WF (M) ≤
∞∑
i=1

WF (Mi)

and

VF (M) ≤
∞∑
i=1

VF (Mi).

2. If M1,M2 ⊂ E are such that there are open sets G1, G2 with M1 ⊂ G1,
M2 ⊂ G2 and G1 ∩G2 = ∅, then

WF (M1) + WF (M2) = WF (M1 ∪M2)

and
VF (M1) + VF (M2) = VF (M1 ∪M2).

From the second part of this proposition we obtain immediately the fol-
lowing.
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Corollary 3.6. If F ∈ C(E) and A1, A2 ⊂ E are closed sets with A1 ∩A2 =
∅, then

WF (A1 ∪ A2) = WF (A1) + WF (A2)

and
VF (A1 ∪ A2) = VF (A1) + VF (A2)

Since ω(F, I) and F [I] are continuous interval functions for the case F ∈
C(E), by Theorem 3.10 in [10] the outer measures WF (·) and VF (·) have the
increasing sets property presented in the following statement.

Proposition 3.7. If F ∈ C(E) and Mi is a sequence of sets with Mi ⊂ Mi+1

then

WF (
∞⋃
i=1

Mi) = lim
n→+∞

WF (Mn)

and similarly

VF (
∞⋃
i=1

Mi) = lim
n→+∞

VF (Mn).

Let us recall another known concept.

Definition 3.8. Let F ∈ C(E) and M ⊂ E. The function F is called to be
of negligible variation on the set M if for any ε > 0 there is a δ ∈ ∆(E) such
that

(3.12) |
∑
j∈Γ

F [Ij]| < ε

for any δ-fine M -tagged division ({Ij; j ∈ Γ}, τ).

Remark. Let us mention that if M is countable then every F ∈ C(E) is of
negligible variation on M .

It is easy to see that the notion of negligible variation on a set M for a
function F ∈ C(E) remains unchanged if (3.12) is replaced by

∑
j∈Γ

|F [Ij]| < ε

in Definition 3.8.
The next statement indicates where the function WF might be important.

It shows that the concept of negligible variation can be characterized by WF .



Variational measures and the Kurzweil-Henstock integral 10

Lemma 3.9. Let F ∈ C(E) and M ⊂ E. Then F is of negligible variation
on M if and only if WF (M) = VF (M) = 0.

Proof. Let ε > 0 be given and let δ ∈ ∆(E) be such that (3.12) is satisfied
in the case that F is of negligible variation on M .

Assume that ({Ij; j ∈ Γ}, τ) is a δ-fine M -tagged division and let Γ+ =
{j ∈ Γ; F [Ij] ≥ 0} and Γ− = Γ \ Γ+. Then ({Ij; j ∈ Γ+}, τ) and ({Ij; j ∈
Γ−}, τ) are again δ-fine M -tagged divisions and this implies that

∑
j∈Γ

|F [Ij]| =
∑
j∈Γ+

F [Ij]−
∑
j∈Γ−

F [Ij] < 2ε

holds. By Lemma 3.3 for any j ∈ Γ there is an interval Jj for which τj ∈
Jj ⊂ Ij and ω(F, Ij) ≤ 2|F [Jj]| for j ∈ Γ. Hence

∑
j∈Γ

ω(F, Ij) ≤ 2
∑
j∈Γ

|F [Jj]| < 4ε,

because ({Jj; j ∈ Γ}, τ) is also a δ-fine M -tagged division. The last inequality
gives Wδ(F, M) ≤ 4ε and this yields WF (M) ≤ 4ε for any ε > 0. Hence
WF (M) = 0.

If WF (M) = 0 then by definition to every ε > 0 there is a δ ∈ ∆(E) such
that Wδ(F, M) < ε. Hence for every δ-fine M -tagged division D = ({Ij; j ∈
Γ}, τ) we have Ω(F, D) < ε and this yields the other implication because
|F [Ij]| ≤ ω(F, Ij) for every j ∈ Γ.

The quantity VF (M) appears in the result simply by using Corollary
3.4.

The basic properties of the function W are summarized in the following
statement.

Theorem 3.10. Let F, Fj ∈ C(E) and M,Mj ⊂ E, j ∈ N.
Then

(3.13) if M1 ⊂ M2, then 0 ≤ WF (M1) ≤ WF (M2),

(3.14) WF (
⋃
j∈Φ

Mj) ≤
∑
j∈Φ

WF (Mj) if Φ is at most countable ,

(3.15) W (αF, I) = |α|WF (I) for α ∈ R,
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(3.16) W∑
j∈Φ Fj

(M) ≤
∑
j∈Φ

WFj
(M) if Φ is finite.

Proof. The items (3.13), (3.14), (3.16) are easy to prove. (3.14) follows from
Proposition 3.5.

Remark. The problem under what conditions the equality holds in (3.14),
i.e. when

WF (
⋃
j∈Φ

Mj) =
∑
j∈Φ

WF (Mj)

if Φ is at most countable, will be important. We give a result of this type in
Theorem 3.14 below.

For a given set M ⊂ E denote by µ(M) the Lebesgue measure of M .

Definition 3.11. By C∗(E) we denote the set of all continuous functions on
E which are of negligible variation on sets of Lebesgue measure zero, i.e.

(3.17) C∗(E) = {F ∈ C(E); WF (N) = 0 whenever µ(N) = 0}.

(See Lemma 3.9.)
It should be mentioned that functions F ∈ C∗(E) are called in the liter-

ature also functions satisfying the strong Luzin condition on E (see e.g. [7,
Definition 4.1.1] ).

If E = [0, 1] and F : E → R is the well known Cantor function (cf. [3,
Theorem 1.21]) then F ∈ C(E) but F /∈ C∗(E).

The following well known assertion will be also needed in the sequel.

Proposition 3.12. Let M be a (Lebesgue) measurable subset of E. Then
there exists a sequence {Aj, j ∈ N} of closed sets, for which Aj ⊂ Aj+1 ⊂ M
for j ∈ N and

(3.18) µ(M \
∞⋃

j=1

Aj) = 0.

This statement means that there is an Fσ set F such that F ⊂ M and
µ(M \ F ) = 0. (See e. g. [3, Theorem 1.12].)
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Lemma 3.13. Let F ∈ C∗(E), M a measurable subset of E and assume that
{Aj, j ∈ N} is a sequence of closed sets, for which Aj ⊂ Aj+1 ⊂ M for j ∈ N
and

µ(M \
∞⋃

j=1

Aj) = 0.

Then
WF (M) = lim

j→∞
WF (Aj).

Proof. Clearly

M = (M \
∞⋃

j=1

Aj) ∪
∞⋃

j=1

Aj.

Since F ∈ C∗(E), we have WF (M \⋃∞
j=1 Aj) = 0. This yields by (3.14) in

Theorem 3.10 and by Proposition 3.7

WF (M) ≤ WF (M \
∞⋃

j=1

Aj) + WF (
∞⋃

j=1

Aj) =

= WF (
∞⋃

j=1

Aj) = lim
j→∞

WF (Aj).

On the other hand, by (3.13) in Theorem 3.10 we have

WF (Aj) ≤ WF (Aj+1) ≤ WF (M)

for every j ∈ N and therefore

lim
j→∞

WF (Aj) ≤ WF (M).

This together with the previous inequality gives the statement of the lemma.

Theorem 3.14. Assume that F ∈ C∗(E) and that {Mk; k ∈ N} is a sequence
of measurable subsets of E.

If Mk ∩Mn = ∅ for k 6= n, then

WF (
∞⋃

k=1

Mk) =
∞∑

k=1

WF (Mk).
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Proof. Let Mk ∩Mn = ∅ for k, n ∈ N and k 6= n.
First let us show that

WF (M1 ∪M2) = WF (M1) + WF (M2)

holds.
If {Aj; j ∈ N} and {Bj; j ∈ N} are sequences of closed sets such that

Aj ⊂ Aj+1 ⊂ M1, Bj ⊂ Bj+1 ⊂ M2 for j ∈ N and

µ(M1 \
∞⋃

j=1

Aj) = 0, µ(M2 \
∞⋃

j=1

Bj) = 0,

(cf. Proposition 3.12) then by Lemma 3.13 we have

WF (M1) = lim
j→∞

WF (Aj), WF (M2) = lim
j→∞

WF (Bj).

Further clearly

µ((M1 ∪M2) \
∞⋃

j=1

(Aj ∪Bj)) = 0

and again by Lemma 3.13 we get

WF (M1 ∪M2) = lim
j→∞

WF (Aj ∪Bj) =

= lim
j→∞

WF (Aj) + lim
j→∞

WF (Bj) = WF (M1) + WF (M2)

because
WF (Aj ∪Bj) = WF (Aj) + WF (Bj)

for every j ∈ N by Corollary 3.6.
This easily implies that

WF (
n⋃

k=1

Mk) =
n∑

k=1

WF (Mk)

holds for every n ∈ N. By (3.13) we have

WF (
n⋃

k=1

Mk) ≤ WF (
∞⋃

k=1

Mk)
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for every n ∈ N and therefore

∞∑

k=1

WF (Mk) ≤ WF (
∞⋃

k=1

Mk).

From (3.14) in Theorem 3.10 we have

WF (
∞⋃

k=1

Mk) ≤
∞∑

k=1

WF (Mk)

and the assertion follows.

Theorem 3.14 shows that if F ∈ C∗(E) then the variational measure
WF (·) generated by F is countably additive on the σ-algebra of measurable
subsets of E.
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4 The Kurzweil-Henstock integral K

Let us start with the basic definition of the integral.

Definition 4.1. K denotes the set of all pairs (f, γ), where f is a function
on E and γ ∈ R, for which to any ε > 0 there exists a gauge δ such that

|
∑
j∈Γ

f(τj)|Ij| − γ| < ε

for any δ-fine division ({Ij; j ∈ Γ}, τ) of the interval E.
The value γ ∈ R is called the Kurzweil-Henstock integral of f over E and

it will be denoted by K(f) or (K)
∫

E
f .

K is in fact a mapping from a set of functions on E into R (a functional).
Denote by Dom(K) the set of all f for which the functional K is defined.
If f ∈ Dom(K) then f is called K-integrable over E.
Denote the characteristic function of a set M ⊂ E by χ(M), i.e. χ(M) =

1 on M and χ(M) = 0 on E \M .
The characteristic function of the empty set ∅ may be denoted simply by

0 if no confusion can arise.
If the product f ·χ(M) belongs to Dom(K), then K(f, M) (or (K)

∫
M

f)
denotes the value of the functional K on f ·χ(M), i.e. K(f, M) = K(f ·χ(M))
and of course K(f, E) = K(f).

Definition 4.2. If f ∈ Dom(K), then a function F : E → R is called a
K-primitive (or the indefinite K-integral) to f provided

F [I] = K(f, I)

holds for every I ∈ Sub(E).

Now we present a collection of basic properties of the Kurzweil-Henstock
integral which will be used in the framework of this paper and in subsequent
work.

Proposition 4.3.

(4.1) 0 ∈ Dom(K) and K(0) = 0.

If c ∈ [a, b] = E and I1 = [a, c], I2 = [c, b] then f ∈ Dom(K) if and only if
f · χ(I1), f · χ(I2) ∈ Dom(K) and

(4.2) K(f) = K(f, I1) + K(f, I2).
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If f = 0 almost everywhere (with respect to the Lebesgue measure) then

(4.3) f ∈ Dom(K) and K(f) = 0.

(4.4) If f ∈ Dom(K) and F is a K-primitive to f then F ∈ C∗(E).

(4.5) If f ∈ Dom(K) then f is (Lebesgue) measurable.

K is a linear functional, i.e. if f, g ∈ Dom(K) and α, β ∈ R then αf +
βg ∈ Dom(K) and

(4.6) K(αf + βg) = αK(f) + βK(g).

Proof. The properties (4.1), (4.2) and (4.6) are easy to prove.
In [3, Theorem 9.5] it is shown that (4.3) holds.
In [7, Theorem 3.9.2] it is proved that a K-primitive function F to f ∈

Dom(K) is continuous and of negligible variation on sets of zero (Lebesgue)
measure and this means that (4.4) is satisfied (cf. Definition 3.11).

The Lebesgue measurability of every f ∈ Dom(K) is proved e.g. in [3,
Theorem 9.12] ).

Let us mention that a K-primitive function to f ∈ Dom(K) always exists
(e.g. F (x) = K(f, [a, x]) for x ∈ E = [a, b] is a K-primitive to f) and it is
determined uniquely up to a constant.

If M ∈ Alg(E) and {Ij; j ∈ Γ} is a division of M , then f ·χ(M) ∈ Dom(K)
if and only if f · χ(Ij) ∈ Dom(K) for all j ∈ Γ and

K(f, M) =
∑
j∈Γ

K(f, Ij).

In connection with the property (4.4) from Proposition 4.3 the following
beautiful descriptive characterization of the Kurzweil-Henstock integral pre-
sented by Bongiorno, Di Piazza an Skvortsov in [1, Theorem 3] should be
mentioned.

Theorem 4.4. A function F : E → R is a K-primitive function to some
f : E → R if and only if F ∈ C∗(E).

In other words the class of all functions F : E → R which are K-primitive
to some f coincides with the class of all F ∈ C(E) for which WF (N) = 0 if
N ⊂ E and µ(N) = 0.
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For more detail see [1] and also [8], [9].
From Gordon’s book [3] it is known that a function F : E → R is K-

primitive to some f : E → R if and only if F is an ACG∗ function on E. This
leads immediately to the conclusion of Theorem 4 in [1] which says that the
class of all ACG∗ functions on E coincides with the class C∗(E) of functions
satisfying the strong Luzin condition.

Similar problems are dealt with also in the posthumous paper [2] of Vasile
Ene in connection with an older result of Jarńık and Kurzweil from [4].

The following assertion known as the Saks-Henstock lemma plays an im-
portant role in the theory (see e.g. [3, Lemma 9.11], [5, Lemma 5.3] , etc.).

Proposition 4.5. Let f ∈ Dom(K). Then to any ε > 0 there is a gauge δ
such that for any δ-fine tagged division ({Ij; j ∈ Γ}, τ) in E the inequality

(4.7) |
∑
j∈Γ

f(τj)|Ij| −K(f,
⋃
j∈Γ

Ij)| < ε

holds.
In other words (F being the K-primitive to f) we have

(4.8) |
∑
j∈Γ

f(τj)|Ij| −
∑
j∈Γ

F [Ij]| < ε.

In [3, Theorem 9.21] the following is presented.

Theorem 4.6 (Hake). Let f : E → R be given. Suppose that f · χ([c, d]) ∈
Dom(K) for each [c, d] ⊂ E, a < c < d < b. If K(f, [c, d]) has a finite limit
as c → a+ and d → b− then f ∈ Dom(K) and

K(f) = lim
c→a+, d→b−

K(f, [c, d]).

Now we give another property of the Kurzweil-Henstock integral.

Lemma 4.7. Assume that f ∈ Dom(K) and let F be its K-primitive func-
tion. Then

(4.9) WF (M) ≤ 2|E||f |M
holds for M ⊂ E.
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Proof. Proof Let ε > 0 be given. Let δ ∈ ∆(E) be such that (4.8) holds.
Assume that ({Ij; j ∈ Γ}, τ) is a δ-fine M -tagged division and let Jj ⊂ Ij be
such that τj ∈ Jj and ω(F, Ij) ≤ 2|F [Jj]| for j ∈ Γ (see Lemma 3.3).

Assume that Γ1 = {j ∈ Γ; F [Jj] ≥ 0} and set Γ2 = Γ \ Γ1. Evidently
({Ij; j ∈ Γ1}, τ) and ({Ij; j ∈ Γ2}, τ) are δ-fine divisions in E.

We have
∑
j∈Γ

ω(F, Ij) ≤ 2
∑
j∈Γ

|F [Jj]| = 2|
∑
j∈Γ1

F [Jj]|+ 2|
∑
j∈Γ2

F [Jj]|

and by (4.8)

∑
j∈Γ1

|F [Jj]| =
∑
j∈Γ1

F [Jj] =
∑
j∈Γ1

f(τj)|Jj|+
∑
j∈Γ1

(F [Jj]− f(τj)|Jj|) ≤

≤ |
∑
j∈Γ1

f(τj)|Jj||+ |
∑
j∈Γ1

(F [Jj]− f(τj)|Jj|)| <
∑
j∈Γ1

|f(τj)|Jj|+ ε.

Similarly

∑
j∈Γ2

|F [Jj]| = −
∑
j∈Γ2

F [Jj] =
∑
j∈Γ2

f(τj)|Jj| −
∑
j∈Γ2

(F [Jj]− f(τj)|Jj|) ≤

≤ |
∑
j∈Γ2

f(τj)|Jj||+ |
∑
j∈Γ2

(F [Jj]− f(τj)|Jj|)| <
∑
j∈Γ1

|f(τj)||Jj|+ ε.

Therefore ∑
j∈Γ

ω(F, Ij) < 2
∑
j∈Γ

|f(τj)||Jj|+ 4ε ≤

≤ 2|f |M
∑
j∈Γ

|Jj|+ 4ε ≤ 2|f |M |E|+ 4ε

and
Wδ(F, M) < 2|f |M |E|+ 4ε.

Hence
WF (M) < 2|f |M |E|+ 4ε

for every ε > 0 and this implies (4.9).

Definition 4.8. If I ∈ Sub(E) and A ⊂ E is closed then Comp(I, A) denotes
the set of all (maximal and nonempty) connected components of the set I \A.
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The set Comp(I, A) is always at most countable and any element

U ∈ Comp(I, A)

is an interval, i.e. U ∈ Sub(E).

Lemma 4.9. Let A ⊂ E be a closed set, f, F : E → R.
Assume that

1) f = 0 on A,

2) for every [c, d] ⊂ U ∈ Comp(E, A) we have f · χ([c, d]) ∈ Dom(K) and

K(f, [c, d]) = F (d)− F (c),

3) F ∈ C(E),

4) WF (A) = 0.

Then f ∈ Dom(K) and F is a K-primitive to f .

Proof. By 4) to any ε > 0 there is a δ0 ∈ ∆(E) such that

Ω(F, D) =
∑
j∈Γ

ω(F, Ij) < ε

for every δ0-fine A-tagged division ({Ij; j ∈ Γ}, τ). Therefore

|
∑
j∈Γ

F [Ij]| ≤
∑
j∈Γ

|F [Ij]| ≤
∑
j∈Γ

ω(F, Ij) < ε

for every δ0-fine A-tagged division ({Ij; j ∈ Γ}, τ).
The conditions 2) and 3) together with Hake’s Theorem 4.6 yield

f · χ(U) ∈ Dom(K)

for every U ∈ Comp(E, A) and

K(f, U) = F [U ] = F (r(U))− F (l(U))

by the continuity of F which is required by 3).
Comp(E,A) is at most countable, Comp(E,A) = {Uj; j ∈ N}, because

A is closed.
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Since f · χ(Uj) ∈ Dom(K) for every j ∈ N and K(f, I) = F [I] for every
I ∈ Sub(Uj), there is a δj ∈ ∆(Uj) such that

|
∑

l∈Γj

(f(τl)|Il| − F [Il])| < ε

2j

holds for every δj-fine division ({Il; l ∈ Γj}, τ) in Uj, j ∈ N. This follows
from the Saks-Henstock lemma 4.5.

Define

δ(t) =

{
min{δj(t),

1
2
dist(t, A)} for t ∈ Uj, j ∈ N,

δ0(t) for t ∈ A.

Clearly δ ∈ ∆(E). Assume that ({Jk; k ∈ Φ}, τ) is a δ-fine division of E.
Denote Γ0 = {k ∈ Φ; τk ∈ A}, Γj = {k ∈ Φ; τk ∈ Uj}. By the definition of
δ ∈ ∆(E) we have Jk ⊂ Uj for k ∈ Γj and

|
∑

k∈Φ

f(τk)|Jk| − F [E]| = |
∑

k∈Φ

(f(τk)|Jk| − F [Jk]| ≤

≤ |
∑

k∈Γ0

F [Jk]|+
∑

j∈N
|
∑

k∈Γj

(f(τk)|Jk| − F [Jk]| < ε +
∑

j∈N

ε

2j
= 2ε.

Hence f ∈ Dom(K) and K(f) = F [E].
If I ∈ Sub(E) then the same procedure can be used for the interval I

and the closed set A ∩ I ⊂ E to show that f · χ([I]) ∈ Dom(K) and that
K(f, I) = F [I]. This yields the statement.

Corollary 4.10. Let A ⊂ E be a closed set, f, F : E → R.
Assume that

1) f = 0 on A,

2) for every interval I = [c, d] ⊂ U ∈ Comp(E, A) we have f · χ(I) ∈
Dom(K) and

K(f, I) = F [I] = F (d)− F (c),

3) F ∈ C(E).

Then f ∈ Dom(K) and F is a K-primitive to f if and only if WF (A) = 0.
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Proof. Lemma 4.9 gives one of the implications an therefore it suffices to
show that if f ∈ Dom(K) and F is a K-primitive to f then WF (A) = 0. But
this is clear by (4.9) from Lemma 4.7 because by 1) we have |f |A = 0.

Theorem 4.11. Let A ⊂ E be a closed set, g, F : E → R.
Assume that

1) g · χ(A) ∈ Dom(K),

2) for every interval I ⊂ U ∈ Comp(E, A) we have g · χ(I) ∈ Dom(K)
and

K(g, I) = F [I],

3) F ∈ C(E).

Then g ∈ Dom(K) and

K(g) = K(g, A) + F [E] = K(g, A) + F (b)− F (a)

if and only if WF (A) = 0.

Proof. Let us set f = g − g · χ(A). Then clearly f = 0 on A and f = g on
every U ∈ Comp(E,A). By 2) we obtain that f · χ(I) ∈ Dom(K) for every
I ⊂ U ∈ Comp(E, A) and

K(f, I) = F [I].

This together with 3) implies by Corollary 4.10 that f ∈ Dom(K) if
and only if WF (A) = 0 and F is a K-primitive to f . This implies also
K(f) = F [E].

By (4.6) and by the definition of f we obtain g ∈ Dom(K) if and only if
WF (A) = 0 and

K(g) = K(g · χ(A)) + K(f) = K(g, A) + F [E].

The theorem is proved.

Remark. Let us mention that if G is a K-primitive to g·χ(A) ∈ Dom(K),
then G + F is a K-primitive to g.

In other words, if WF (A) = 0 then the function

K(g · χ(A), [a, x]) + F (x)− F (a), x ∈ E

is a K-primitive to g.

In [7, Theorem 3.4.1] the following statement was proved.
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Theorem 4.12. If g is K-integrable over I ∈ Sub(E) and G is its K-
primitive then |g| is K-integrable over I if and only if V (G, I) < ∞ and

V (G, I) = K(|g|, I).

In this situation we have G ∈ C(E) and using Lemma 3.2 we get the
following.

Lemma 4.13. If g is K-integrable over I ∈ Sub(E) and G is its K-primitive
then |g| is K-integrable over I if and only if W (G, I) < ∞ and

WG(I) = K(|g|, I)

in this case.

Lemma 4.14. If M ⊂ E and f, g = f · χ(M) ∈ Dom(K) where F,G are
K-primitives to f, g then

(4.10) WF (M) = WG(M)

Proof. Proof Since f − g ∈ Dom(K) and F −G is a K-primitive to f − g we
have by (4.9) in Lemma 4.7

WF−G(M) ≤ 2|E||f − g|M = 0.

Hence by (3.14) from Theorem 3.10 we get

WF (M) = WF−G+G(M) ≤ WF−G(M) + WG(M) = WG(M).

Similarly also WG(M) ≤ WF (M) and (4.10) holds.

Lemma 4.15. Assume that f ∈ Dom(K) with F being its K-primitive,
M ⊂ E (Lebesgue) measurable and g = |f | · χ(M) ∈ Dom(K) with the
K-primitive G. Then

(4.11) WF (M) = K(|f |,M) = K(g).

Proof. Proof By (4.5) f is measurable and therefore f · χ(M) is measurable
as well.

Since |f · χ(M)| = |f | · χ(M) ∈ Dom(K) we have f · χ(M) ∈ Dom(K)
(see e.g. [7, Theorem 3.11.2] ).

Hence by Lemma 4.14 we have WF (M) = WG(M).
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Since M ⊂ E we have WG(M) ≤ WG(E) by (3.13) and on the other hand
by (3.14) we get

WG(E) ≤ WG(M) + WG(E \M) = WG(M)

because by Lemma 4.7 we have WG(E \M) ≤ 2|E||g|E\M = 0. This yields
WG(M) = WG(E) and therefore

WF (M) = WG(E).

By Lemma 4.13 we have

WG(E) = K(g) = K(|f | · χ(M)) = K(|f |, M)

because g = |g| and (4.11) is proved.

For f ∈ Dom(K), M ⊂ E measurable, denote

K(|f |,M) = K(|f |,M) if |f | · χ(M) ∈ Dom(K),
K(|f |,M) = ∞ otherwise.

Using Lemma 4.15 we have

(4.12) WF (M) ≤ K(|f |,M)

for every f ∈ Dom(K) with F being its K-primitive.

Proposition 4.16. If f ∈ Dom(K), F a K-primitive to f and M ⊂ E
measurable, then

(4.13) WF (M) = K(|f |,M).

Proof. Since (4.12) holds, the equality (4.13) is valid for the case when
WF (M) = ∞.

Assume that WF (M) < ∞. By (4.12) for proving (4.13) it suffices to
show that

(4.14) K(|f |, M) ≤ WF (M).

Denote g = |f | · χ(M) and assume that ε > 0 is given.
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Since f ∈ Dom(K), by the Saks-Henstock lemma (Proposition 4.5) there
is a δ1 ∈ ∆(E) such that

(4.15) |
∑
j∈Γ

(f(τj)|Ij| − F [Ij])| < ε

for any δ1-fine division ({Ij, j ∈ Γ}, τ) in E. By the definition of WF (M)
assume further that δ2 ∈ ∆(E) is such that

(4.16)
∑
j∈Γ

ω(F, Ij) < WF (M) + ε

for every δ2-fine M -tagged division ({Ij, j ∈ Γ}, τ) in E and put

δ = min{δ1, δ2}.

Let ({Ij, j ∈ Γ}, τ) be an arbitrary δ-fine division in E. Denote Γ̃ = {j ∈
Γ; g(τj) 6= 0}. For j ∈ Γ̃ we have clearly τj ∈ M and {Ij, j ∈ Γ̃} forms an
M -tagged division in E which is both δ1- and δ2-fine.

Then ∑
j∈Γ

g(τj)|Ij| =
∑

j∈Γ̃

g(τj)|Ij| =
∑

j∈Γ̃

f(τj)|Ij|

=
∑
j∈Γ+

f(τj)|Ij| −
∑
j∈Γ−

f(τj)|Ij|

where Γ+ = {j ∈ Γ̃, f(τj) > 0}, Γ− = {j ∈ Γ̃, f(τj) < 0}.
Hence by (4.15) and (4.16) we get

∑
j∈Γ

g(τj)|Ij| ≤ |
∑
j∈Γ+

f(τj)|Ij| − F [Ij]|+ |
∑
j∈Γ−

f(τj)|Ij| − F [Ij]|+

|
∑
j∈Γ+

F [Ij]|+ |
∑
j∈Γ−

F [Ij]| <

2ε +
∑

j∈Γ̃

|F [Ij]| ≤ 2ε +
∑

j∈Γ̃

ω(F, Ij) < WF (M) + 3ε.

Since all the integral sums corresponding to the nonnegative function g =
|f | · χ(M) and to the δ1-fine tagged division ({Ij, j ∈ Γ}, τ) are bounded
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by WF (M) + 3ε we obtain that the integral K(g) = K(|f |,M) exists and
satisfies the estimate

K(g) = K(|f |,M) < WF (M) + 3ε

for an arbitrary ε > 0. Hence

K(|f |,M) ≤ WF (M)

and (4.14) holds.
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