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Abstract. We estimate the rate of convergence of products of
projections on lines in R

d.
Consider the orbit of a point under any sequence of orthogonal

projections on K lines in R
d. Assume that the sum of the squares

of the distances of the consecutive iterates is less than ε. We show
that if ε tends to zero, then the diameter of the orbit tends to zero
uniformly for all families L of a fixed number K of lines.

We relate this result to questions concerning convergence of
products of projections on finite families of closed subspaces of
ℓ2.

Introduction

Let K be a fixed natural number and let L be a family of K affine
subspaces of R

d. Let z ∈ R
d and k1, k2, · · · ∈ {1, 2, . . . , K} be arbitrary.

Consider the sequence of projections

z1 = Pk1
z,

zn = Pkn
zn−1,

where Pk denotes the orthogonal projection on the k-th space in L. The
orbit {zi} is always bounded according to [ADW], [BGP], and [Me].

In this note we consider an additional constraint on the distances of
the consecutive iterates, namely that

(1)
∞

∑

i=1

|zi+1 − zi|2 ≤ ε

for some ε > 0. In Theorem 2.3 we show, that if ε goes to zero, then
the diameter of the orbit {zi} goes to zero uniformly for all families L
of a fixed number K of lines.

Let L be a family of K closed linear subspaces of ℓ2. Any sequence
{zi} of orthogonal projections on the spaces in L converges weakly ac-
cording to [AA]. If K = 2 the sequence of projections even converges in

2000 Mathematics Subject Classification. Primary: 46C05; Secondary: 47H09.
The second author was supported by Grants FWF-P19643-N18 and GAČR
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norm [vN]. If K ≥ 3, this is known only under additional assumptions,
for example, if the sequence {ki} is (quasi) periodic [H, S].

In Theorem 3.2 we show that proving the norm convergence of the
sequence for every K ∈ N is equivalent to proving a version of Theo-
rem 2.3 with the family L of lines replaced by any family L of K closed
linear subspaces of R

d.
The paper is organized as follows. In the next section we point out

the main ingredients of Theorem 2.3. In Section 1 we present some
elementary estimates for almost parallel lines. In Section 2 we state
and prove the main result, Theorem 2.3, after reducing it to the case
of almost parallel and well separated lines. In the crucial Lemma 2.1,
we construct a calibration function needed in the proof of the theorem.
Section 3 is devoted to norm convergence of successive projections in ℓ2.

Notation. For K ∈ N, we denote the set {1, . . . , K} by [K]. If x ∈ R
d

we denote by |x| the euclidean norm of x. As usual, Sd−1 is the unit
sphere of R

d. The set {x ∈ R
d : dist (x, A) ≤ δ} is denoted by B(A, δ).

By aff A we denote the affine hull of the set A. If X is an affine subspace
of R

d, we denote by PX the orthogonal projection on X. Let w ∈ R
d,

a ∈ R and let F be the affine function defined by F (x) = 〈w, x〉 + a.
We denote F ′(x) = w.

Outline of the proof of Theorem 2.3

The goal of this paper is to approach the question of convergence
of products of projections by methods somewhat different from those
which have so far appeared in the literature. This section is a brief
guide to the ingredients of our main Theorem 2.3. We will show that if
zi+1 = Pki+1

zi defines a sequence of projections on K lines p1, . . . , pK ,
then

(2) |z1 − zm| ≤ c(K)

m−1
∑

i=1

|zi+1 − zi|2,

where c(K) > 0 depends on K only. The proof proceeds by contradic-
tion in several steps.
• Assume the theorem is false. Then for each ε > 0 there exists a
family L of K lines such that the corresponding projections satisfy

(3) z1 = 0, |zm| = 1,

m−1
∑

i=1

|zi+1 − zi|2 ≤ ε.

We may assume in addition, that |zi| ≤ 1 for all i’s, since otherwise
we obtain a counterexample for z1, . . . , zn, n < m with |zn| = max |zi|
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after rescaling by 1/ max |zi|.
• In Lemma 2.2 we will show that if such a family L exists, then one can
already achieve (3) with a family of lines which are all almost parallel
to w = zm − z1 = zm, and which are well separated in the sense that
the points where two lines pi and pj are closest lie well outside the unit
ball. The precise conditions are described in the Setting in Section 2.

The proof of Lemma 2.2 uses a compactness argument and the fol-
lowing simple observation. If a curve γ of diameter one is contained in
the union of K lines, then a “long” sub-curve of γ is contained in one
of the lines.
• As each vector zi − zi+1 is orthogonal to one of the lines in L and
these lines are almost parallel to w, it follows that 〈w, zi+1 − zi〉 ≈ 0.
This seemingly allows the following contradictory estimate:

(4) 1 = |zm − z1|2 = 〈w, zm − z1〉 =

m−1
∑

i=1

〈w, zi+1 − zi〉 ≈
m−1
∑

i=1

0 ≈ 0.

Since, however, we do not have any estimate of the number m of the
iterates, the last step “

∑m−1

i=1
0 ≈ 0” requires a justification.

• Let wi ∈ Sd−1 be the direction of the line pi; recall that all w′

is are
close to w. The main point is to construct a “calibration function” Φ,
with the following properties. If v ∈ Sd−1 is orthogonal to pj ∈ L, then

(5) |〈v, Φ′(y)〉| ≤ Cdist (y, pj),

for y ∈ B(0, 1), and if we set F = w − Φ, then

(6) |F | ≤ 1/5.

Condition (5) implies that

Φ(Pjz) − Φ(z) ≤ C|z − Pjz|2,
if |z| ≤ 1. Indeed, for every x ∈ pj ∩ B(0, 1) and for any v ∈ Sd−1

orthogonal to pj, we have

Φ(x) − Φ(x + tv) =

∫ t

0

〈−v, Φ′(x + sv)〉ds ≤
∫ t

0

Cs ds ≤ Ct2.

In particular,

(7) Φ(zi+1) − Φ(zi) ≤ C|zi+1 − zi|2.
Summation yields

Φ(zm) − Φ(z1) ≤ C

m−1
∑

i=1

|zi+1 − zi|2 ≤ Cε.
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Thus by (6),

1 = 〈zm − z1, w〉 = Φ(zm) − Φ(z1) + F (zm) − F (z1) ≤ Cε + 2/5.

For ε sufficiently small this yields the desired contradiction.
• The key to the whole proof is the construction of the calibration
function Φ in Lemma 2.1. We finish this guide with its description.

We actually construct a piecewise affine “replacement” Φ of w in (4)
satisfying (5) and (6). It is very close to the linear function w, and
its derivative Φ′ is very close to the constant mapping equal to w. In
particular, on each line pi of L, Φ′ = wi on pi.
• Let ui = pi ∩ B(0, 1). We define Φ only where the piecewise linear
curve z1, z2, . . . , zm might appear, that is, on

⋃

conv (ui ∪ uj).
• The construction of Φ on conv (u1∪u2), say, is based on the following
two observations.

Suppose Ai = wi + ηi, with ηi ∈ R small, are two affine functions
equal at the point of p1 where the lines p1 and p2 are closest. Then
setting Φ(x) = Ai(x) if dist (x, pi) ≤ dist (x, pj) works. Moreover, in
Lemma 1.2 we show that |A1(x)−A2(x)| ≤ dist (u1, u2)

2, for any x ∈ ui.
Conversely, assume p1 and p2 are two lines and Ai = wi+ηi two affine

functions such that |A1(x) − A2(x)| ≤ dist (u1, u2)
2 for any x ∈ ui. By

Lemma 1.4, there exists a calibration function Φ on conv (u1 ∪ u2) as
required above so that Φ = Ai on ui.
• In the proof of Lemma 2.1, we consider the complete weighted graph
G on the vertices [K], where dist (ui, uj) stands for the weight of the
edge {i, j}. Let T be a minimum spanning tree of G. We first go in-
ductively through the edges of T and use the first observation above
to determine all constants ηi and Φ on conv (ui ∪ uj) where {i, j} is
an arbitrary edge of T . The minimality of T ensures that the second
observation can be used to determine Φ on conv (ui ∪ uj) for the re-
maining pairs {i, j}.
• Since the lines in L are skew, the different conv (ui ∪ uj) intersect
only in the line segments u, and the above construction results in no
conflicts.

1. Piecewise affine functions

For this entire section let d ≥ 4 and let a large K ∈ N be fixed. Key
to the proof of Theorem 2.3 is the construction of a certain potential
function. This section remains very elementary, though. We prepare
here the two and three dimensional affine blocs of which the potential
constructed in Lemma 2.1 consists. A reader confident in his three-
dimensional linear imagination might want to skip the proofs.
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y = y1,2

y2,1 = y + hv p2

q

p1 u1

u2

Figure 1. Skew lines p1 and p2 at distance h.

3-dimensional Setting: We consider two skew lines p1 and p2 at
distance h > 0 (see Fig. 1). More precisely, for i ∈ {1, 2}, we assume
that wi ∈ Sd−1 and xi ∈ R

d with |w1 − w2| < 1/4 and |xi| < 1/8 are
linearly independent and that pi = xi + span wi. Let yi,j ∈ pi be the
point for which dist (yi,j, pj) = h. We assume, moreover, that both
|y1,2| > K and |y2,1| > K.

On the lines pi we define the line segments ui = pi ∩ B(0, 1), and
denote

m = dist (u1, u2) = min{|x − y| : x ∈ u1 and y ∈ u2}.
We denote by X and Y the parallel two-dimensional affine subspaces
of aff (p1 ∪ p2) containing p1 and p2 respectively. Let v ∈ Sd−1 be such
that y2,1 = y1,2 + hv. Notice that Y = X + hv, and that the linear
function v is constant on X and also on Y ; we denote the first constant
by s. For brevity we also denote y = y1,2; by q we denote the line
PX(p2).

We first show that the distance of any point of ui from uj is nearly
equal to m.

Lemma 1.1. Let x ∈ ui and j 6= i. Then m ≤ dist (x, uj) ≤ 3m.

Moreover, |w1 − w2| ≤ 2m/|y|.

Proof. Let x ∈ B(0, 1) be a point, p be a line, and u = p∩B(0, 1) 6= ∅.
It is easy to see that dist (x, u) ≤ 2dist (x, p).

Let x ∈ u1 be given. To prove the lemma it is enough to show that

dist (x, p2) ≤ 3m1/2,

where m1 = dist (u1, p2); because then

m ≤ dist (x, u2) ≤ 2dist (x, p2) ≤ 3m1 ≤ 3m.
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Indeed, let x′ = Pq(x) and x′′ = Pp2
(x′) = Pp2

(x). Then |x′ − x′′| = h
and

dist (x, p2) = (|x − x′|2 + |x′ − x′′|2)1/2 = (|x − x′|2 + h2)1/2.

Choose a ∈ u1 so that m1 = dist (a, p2) and put a′ = Pq(a). By the
similarity of the triangles yaa′ and yxx′ we have

|x − x′|
|a − a′| =

|x − y|
|a − y| ≤

|a − y| + 2

|a − y| ≤ 1 + 2/(K − 1) ≤ 3

2
,

since |a − x| ≤ 2 and |a − y| ≥ K − 1. Hence

1 ≤ dist (x, p2)

m1

=

( |x − x′|2 + h2

|a − a′|2 + h2

)
1

2

≤ 3

2
.

The second inequality of the lemma follows again easily by similarity
of suitable triangles. �

Let Q be the acute wedge

{t1w1 + t2w2 + rv : ti ≥ 0, r ∈ [0, h]}.
We define W+ = y + Q and W− = y −Q, and the acute double-wedge
W = W+ ∪ W−. Notice that either u1 ∪ u2 ⊂ W+, or u1 ∪ u2 ⊂ W−;
in particular, conv (u1 ∪ u2) ⊂ W .

For αi ∈ R we consider the affine functions gi = wi +αi. On R
d they

define the piecewise affine function

G(x) =

{

g1(x), if dist (x, p1) ≤ dist (x, q);

g2(x), if dist (x, p1) > dist (x, q).

If g1(y) = g2(y), then both g1 and g2 approximate G on conv (u1 ∪ u2)
very well.

Lemma 1.2. Suppose g1(y) = g2(y). Then for any x ∈ R
d, |g1(x) −

g2(x)| ≤ m2 + mdist (x, u1 ∪ u2). The function G is continuous, and

for x ∈ R
d,

|gi(x) − G(x)| ≤ m2 + mdist (x, u1 ∪ u2).

If x ∈ W ∩ B(0, 1), then |wi − G′(x)| ≤ 2dist (x, pi).

Proof. The continuity of G is clear, and the estimate of its distance
from gi follows directly from the first inequality of the lemma. The
derivative G′(x) is w1 or w2 depending on whether x is closer to p1 or
to q. Assume x ∈ X ∩W ∩B(0, 1) is such that dist (x, p1) > dist (x, q).
Then

|w1 − G′(x)| = |w1 − w2| ≤ 2dist (x, p1).
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By the symmetry of W , this shows the second inequality in the lemma
for all x ∈ W ∩ B(0, 1).

Let x ∈ R
d be given. To show the estimate on |g1 − g2|, we can

assume there is b ∈ u1 so that |x − b| = dist (x, u1 ∪ u2). Then

|g1(x) − g2(x)| = |〈w1 − w2, x〉 + η1 − η2|
= |〈w1 − w2, x − y〉 + g1(y) − g2(y)| = |〈w1 − w2, x − y〉|
≤ |〈w1 − w2, b − y〉| + |〈w1 − w2, x − b〉| ≤ |〈w1 − w2, b − y〉| + m|x − b|,
since |w1 − w2| ≤ m by Lemma 1.1. Setting b′ = Pq(b), we have

±〈w1, b − y〉 = |b − y|
±〈w2, b − y〉 = |b′ − y|,

where the plus or minus signs depend on whether conv (u1 ∪ u2) is
contained in W+ or in W−. Hence

|〈w1 − w2, b − y〉| = |b − y| − |b′ − y| =
|b − y|2 − |b′ − y|2
|b − y| + |b′ − y|

≤ |b − b′|2
K − 1

≤ 9m2

K − 1
,

since K − 1 ≤ |b − y| and |b − b′| ≤ dist (b, u2) ≤ 3m by Lemma 1.1.
�

Now we construct a piecewise affine function on a strip. Let h̃ > 0
and η ∈ R be given. We define a piecewise linear function ϕ on R as
follows:

ϕ(t) =











0 if t ≤ h̃/3 ;

η(3t/h̃ − 1) if h̃/3 ≤ t ≤ 2h̃/3 ;

η, if 2h̃/3 ≤ t.

For ṽ ∈ Sd−1 and s̃ ∈ R we define a piecewise affine function H =
ϕ ◦ (ṽ − s̃) on R

d. We denote by X̃i the two hyperplanes in R
d where

ṽ = s̃, or where ṽ = s̃ + h̃, respectively.

Lemma 1.3. Suppose |η| ≤ ch̃2 for some c > 0. Then H is continuous,

|H| ≤ |η| and |H ′(x)| ≤ 9c dist (x, X̃i) for x ∈ R
d.

Proof. We check just the last inequality. If dist (x, X̃1 ∪ X̃2) < h̃/3,
then H ′(x) = 0. Otherwise

|H ′(x)| ≤ |3η/h̃ṽ| = 3|η|/h̃ ≤ 3ch̃ ≤ 9c dist (x, X̃i).

�

Finally, we show a converse to Lemma 1.2.
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h < m/2 h ≥ m/2

y yỹ u1

u2

u1

u2

p1

p2

q q̃

p1

q

p2

Figure 2. Level sets of the function A in the wedge W .

Lemma 1.4. Let c ≥ 1, ηi ∈ R and let Ai = wi + ηi be two affine

functions such that

|A1(x) − A2(x)| ≤ cm2

for all x ∈ u2. Then there is a continuous piecewise affine function A
so that A = Ai on a neighborhood of ui and for x ∈ conv (u1 ∪ u2) we

have |A(x) − Ai(x)| ≤ 6cm and

|A′(x) − wi| ≤ Cdist (x, pi),

where C > 0 depends on c only.

Proof. We distinguish two cases. First suppose that h = dist (X, Y ) ≥
m/2. Let α1 = η1 and α2 = A1(y) − 〈w2, y〉 and η = η2 − α2. Let G

be defined as in Lemma 1.2 and H be as above, where we set h̃ = h,
ṽ = v, and s̃ = s. We define A = G + H , and fix some b ∈ u2. Since
A1 = g1,

|η| = |A2(b) − G(b)| ≤ |A1(b) − A2(b)| + |A1(b) − G(b)| ≤ (c + 1)m2

by Lemma 1.2. Let x ∈ conv (u1 ∪ u2) be given. Then

|A(x) − Ai(x)| ≤ |G(x) − Ai(x)| + max |ϕ| ≤ |G(x) − gi(x)| + 2η

≤ 4m + 2η ≤ 6cm.

Also,

|A′(x) − wi| ≤ |G′(x) − wi| + |H ′(x)| ≤ 11c dist (x, pi),

by Lemma 1.2 and Lemma 1.3.
If h < m/2, then we make A depend on PX(x) only. The construction

of A is similar to the one above; therefore we just sketch it here (see
also Fig. 2).
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Let ỹ ∈ p1 be the midpoint of the line segment connecting y and u1,
and q̃ = ỹ +span w2 a line parallel to q. We define Ã2 = w2 + η̃2, where
η̃2 = A1(ỹ)−〈w2, ỹ〉. Let G be the piecewise affine continuous function

G(x) =

{

A1(x), if dist (x, p1) ≤ dist (x, q̃);

Ã2(x), if dist (x, p1) > dist (x, q̃).

Let h̃ > 0 and ṽ ∈ Sd−1 ∩ span {w1, w2} orthogonal to w2 be such that

q = q̃ + h̃ṽ. Let η = η2 − η̃2. We set H = ϕ ◦ (ṽ − 〈ṽ, ỹ〉) and define
A = G + H . �

2. Projections on lines

In the plane R
2 consider the unit line segment [0, 1] on the x-axis

and the family L of K +1 lines parallel to the y-axis, intersecting [0, 1]
at the points 0, 1/K, 2/K, . . . , 1. The points zi = i/K form a sequence
of projections on the lines in L and at the same time

|z0 − zK | = 1 and
∑

|zi+1 − zi|2 = 1/K < ε,

if K is large enough. In this section we will show, that with a fixed K
number of lines, and very small ε > 0 this cannot occur.

Let L be a family of K lines in R
d. Theorem 2.3 states that if

z1, . . . , zm is a sequence of projections on the lines in L, then

|z1 − zm|2 ≤ c(K)

m−1
∑

i=1

|zi+1 − zi|2,

where c(K) > 0 depends on K only. In Lemma 2.2 we reduce the proof
to families of almost parallel lines as in the Setting below.

Let K0 be a large enough natural number (just how large can be
in principle determined by an inspection of the estimates in the proof
of Lemma 2.2). For a fixed K ≥ K0, we consider a family L of K
line segments u1, . . . , uK in general position, which stay very close to
a given unit line segment u, but do not intersect each other in a very
strong sense.

Setting: Let w ∈ Sd−1, K0 ≤ K ∈ N, and 0 < δ < 1/104 be given.
Let u be the line segment [−w, w] and p0 = span w. Consider a family
L of K lines pi = xi + span wi, where the vectors xi ∈ R

d, wi ∈
Sd−1 ∩ B(w, δ), i ∈ [K], are linearly independent and such that:

(i) u ⊂ B(pi, δ/K
2) for i ∈ [K].

(ii) For i 6= j, let yi,j ∈ pi be the point for which dist (yi,j, pj) =
dist (pi, pj). Then |yi,j| > K.
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1

2

3

k

k − 1

m = m1,k

m1,2

mk−1,k

i

j

mi,j

K

m2,3

Figure 3. A spanning tree T of G.

We set ui = pi ∩ B(0, 1). For i 6= j we set Ci,j = conv (ui ∪ uj) and
C =

⋃ Ci,j. We put also Y = {yi,j : i 6= j}.
Key to the proof of Theorem 2.3 is the following construction of an

“error” function F . The potential F is small in absolute value, so that
the function Φ = w − F is a small perturbation of the linear function
w. Moreover, its derivative Φ′ is a useful extension of the mapping
equal to wi on each pi. In particular, it is a small perturbation of the
constant mapping which equals w.

Lemma 2.1. There exists a constant C > 0, depending only on K,

such that for every family L of lines as in the Setting, there is a con-

tinuous piecewise affine function F on C so that |F | ≤ 1/5 and

|〈v, w − F ′(x)〉| ≤ Cdist (x, pi)

for all v ∈ Sd−1 orthogonal to pi, and all x ∈ Ci,j, i, j ∈ [K].

Proof. We consider the complete weighted graph G on the K vertices
[K] with the weight function

mi,j = dist (ui, uj).

Let T be a minimum spanning tree of G; we denote by E the edges of
T (see Fig. 3). For i ∈ K we define affine functions

Ai = wi + ηi

where the constants ηi ∈ R are defined inductively through the edges
of E. We set η1 = 0. Suppose {i, j} ∈ E. If ηi has already been defined
but ηj is not, we put

ηj = Ai(yi,j) − 〈wj, yi,j〉.
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By Lemma 1.1,

|ηj| = |〈wi − wj , yi,j〉 + ηi| ≤ |ηi| + |wi − wj| · |yi,j| ≤ |ηi| + 2mi,j

≤ |ηi| + 4δ/K2,

since mi,j ≤ 2δ/K2 by (i) of the Setting. By induction we get then
|ηi| ≤ 4δ for all i ∈ [K], since η1 = 0.

For {i, j} ∈ E, let X and Y be the parallel two-dimensional sub-
spaces of aff {pi ∪ pj} containing pi and pj respectively. For x ∈ Ci,j,
we define

Φ(x) =

{

Ai(x), if dist (x, pi) ≤ dist (x, PX(pj));

Aj(x), if dist (x, pi) ≥ dist (x, PX(pj)).

Hence Φ is continuous and Φ = Ai on ui for each i ∈ [K]. By
Lemma 1.2, if {i, j} ∈ E, then

|wi − Φ′(x)| ≤ 2dist (x, pi),

for x ∈ Ci,j, and

|Φ(x) − 〈wi, x〉| ≤ |wi − wj| + max{ηi, ηj} ≤ 2δ + 4δ ≤ 1/10.

Now let a pair of indices which is not in E be given. For further easier
indexing, we can assume that it is of the form {1, k}. Later we will
show that if x ∈ uk, then

(8) |A1(x) − Ak(x)| ≤ 10K2m2,

where m = m1,k. Lemma 1.4 then implies that there exists a continuous
piecewise affine function Φ with the following property. If j ∈ {1, k},
then Φ = Aj on uj and for x ∈ C1,k,

|wj − Φ′(x)| ≤ Cdist (x, pj),

where C > 0 is a constant depending on K only. Moreover,

|Φ(x) − 〈wj, x〉| = |Φ(x) − Aj(x) + ηj | ≤ 60K2m + 4δ ≤ 124δ ≤ 1/10.

In order to show (8), we choose the unique path from 1 to k in T . We
can assume that it corresponds to the vertices 1, 2, . . . , k. Since T is a
minimum spanning tree,

mi,i+1 ≤ m for 1 ≤ i < k.

We choose an arbitrary x1 ∈ u1 and then by Lemma 1.1 inductively
choose xi ∈ ui so that |xi − xi+1| ≤ 3mi,i+1. The triangle inequality
implies that

mi,k ≤ |xi − xk| ≤ |xi − xi+1| + · · · + |xk−1 − xk|
≤ 3(mi,i+1 + · · · + mk−1,k) ≤ 3Km.
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Since {i, i + 1} ∈ E, if x ∈ uk then by Lemma 1.2,

|Ai(x) − Ai+1(x)| ≤ m2

i,i+1 + mi,i+1dist (x, ui) ≤ m2

i,i+1 + 3mi,i+1mi,k

≤ (9K + 1)m2,

since dist (x, ui) ≤ 3mi,k by Lemma 1.1. To get inequality (8) for x ∈ uk

we estimate

|A1(x) − Ak(x)| ≤ |A1(x) − A2(x)| + · · ·+ |Ak−1(x) − Ak(x)|
≤ 10K2m2.

For x ∈ C we define F (x) = 〈w, x〉 − Φ(x). Assume i, j, k, l ∈ [K] are
four different indices. Then Ci,j ∩ Ck,l = ∅ and Ci,j ∩ Ci,l = ui. Hence F
is a continuous piecewise affine function on C.

For every x ∈ C there is an ix ∈ [K] so that |Φ(x)−〈wix , x〉| ≤ 1/10.
Hence

|F (x)| ≤ |w − wix| + |Φ(x) − 〈wix , x〉| < 1/5.

Since F ′ = w − Φ′,

|〈v, w − F ′(x)〉| = |〈v, Φ′(x) − wi〉| ≤ |Φ′(x) − wi| ≤ Cdist (x, pi)

for all x ∈ Ci,j and v ∈ Sd−1 orthogonal to pi. �

In order to use Lemma 2.1 in the proof of Theorem 2.3, we need the
following reduction to lines as in the Setting.

Lemma 2.2. Suppose K, d ∈ N are such that K0 ≤ K and 4K < d.
Suppose that for every ε > 0, there is a family Lε of K lines in R

d and

a sequence z1, . . . , zmε
of projections on these lines so that

(9) |z1 − zmε
| = 1 and

mε−1
∑

i=1

|zi+1 − zi|2 < ε.

Let w ∈ Sd−1 and 0 < δ < 1/104 be given. Then for every ε > 0, there

exists a family Lε as above which also satisfies the conditions in the

Setting. Moreover, 〈zmε
− z1, w〉 = 1.

Proof. We denote the lines in Lε by pε
1, . . . , p

ε
K and call γε the piecewise

linear curve z1, . . . , zmε
. To construct a “better” γε, that is, one defined

by a family Lε of almost parallel lines, we pick a somewhat better sub-
curve of γε, then we choose a still better sub-curve of the new curve,
and so on. We always truncate γε at one of the points zi. At the end
we blow the resulting curve up to diameter one.

First we make sure that all curves γε are uniformly bounded. Trans-
lating the whole picture by −z1 we can assume that each γε starts at
the origin. We truncate γε the first time it gets out of the unit ball, to
get |zi| ≤ 1 for all i. Then all lines in Lε that are really in use (and
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from now on, we include in Lε only such lines, if needed repetitiously)
are contained in the compact set of lines which intersect B(0, 1). We
can therefore also assume that limε→0 pε

i = qi for i ∈ [K]. Not all of
the K lines qi are necessarily different. By passing to sub-curves we
will actually arrange that all pi’s are close to one line q.

The reason why this is possible is intuitively obvious. If a curve γ
of diameter one is contained in the union of K lines, then a “long”
sub-curve of γ is contained in one of the lines. We make this more
precise.

Let I consist of all possible intersections of the lines in Q = {q1, . . . , qK};
then |I| < K2/2. We thicken up the lines in Q to pipes of radius r
so that the pipes intersect only within B(I, 1/K2). In particular, we
choose 0 < r < δ/(19K6) so that if qi 6= qj then

(10) B(qi, r) ∩ B(qj , r) ⊂ B(qi ∩ qj, 1/K
2).

We choose 0 <
√

ε < r/2 so small that all pε
i ’s are already close to the

qi’s:

(11) pε
i ∩ B(0, 1) ⊂ B(qi, r/2).

Hence

γε ⊂ B(Lε,
√

ε) ∩ B(0, 1) ⊂ B(Q, r).

Since diam γε ≥ 1−√
ε, and |I| < K2/2, there exist k and a point z of

γε so that z ∈ B(qk, r) \ B(I, 2/K2). By watching where γε leaves the
ball B(z, 1/K2), we get a sub-curve γ̃1 so that

1/(2K2) < diam γ̃1 < 2/K2.

The curve γ̃1 ⊂ B(Q, r) \ B(I, 1/K2) can be by (10) contained only
in one component of the latter set. Hence γ̃1 ⊂ B(qk, r). Moreover,
dist (γ̃1, pj) > r/2 >

√
ε always when qj 6= qk by (11), hence

(12) p ∩ B(0, 1) ⊂ B(qk, r/2) if p ∈ L̃,

where L̃ ⊂ Lε is the set of the lines really in use in γ̃1. We call p1, . . . , pk

the lines in L̃; if needed, we use repetition to achieve |L̃| = K.
Let e1, . . . , e2K be orthonormal vectors in the orthogonal complement

of span L̃ and α > 0 be very small. To ensure that the lines in L̃ are
skew, we replace the original lines pi = xi + span wi by their small
perturbations

(xi + αei) + span (wi + αe2i),

so that (12) is still satisfied, and call them pi’s again. Notice, that (12)
ensures that the directional vectors of the lines are at distance at most
δ from w.
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Since the projections are Lipschitz mappings, for the perturbed lines
we obtain a curve γ̃2 very close to γ̃1 so that the corresponding sequence
z1, . . . , zm of projections satisfies

1/(2K2) < diam γ̃2 < 2/K2 and
m−1
∑

i=1

|zi+1 − zi|2 < ε.

To ensure (ii) of the Setting we need γ̃2 to avoid the K2 points of Y .
Since diam γ̃2 > 1/(2K2), there exists z ∈ γ̃2 so that |z− y| > 1/(2K4)
for all y ∈ Y . By watching where γ̃2 leaves the ball B(z, 1/(8K5)), we
obtain a part γ̃3 of γ̃2 such that

(13) 1/(9K5) ≤ diam γ̃3 < 1/(4K5) and dist (γ̃3,Y) ≥ 1/(4K4).

By translation, we can assume that γ̃3 starts at zero on, say, the line
p1. If we blow the whole picture up by c = 1/diam γ̃3, we get a curve
γ and a corresponding sequence 0 = z1, . . . , zm of projections on the
lines in L = cL̃. Since 4K5 < c ≤ 9K5,

|z1 − zm| = |zm| = 1 and
m−1
∑

i=1

|zi+1 − zi|2 < 9K5ε.

Up to an isometry we can assume that w = zm. Then 〈zm−z1, w〉 = 1.
Since zm ∈ p2, say, zm ∈ B(p1, cr) by (12). Since p1 contains the origin,
we also have −w = −zm ∈ B(p1, cr), and again by (12),

u ⊂ B(p, 2cr) ⊂ B(p, δ/K)

for p ∈ L̃ and (i) of the Setting is satisfied. By (13),

|yi,j| ≥ dist (Y , 0) ≥ dist (Y , γ) ≥ c/(4K4) > K,

and (ii) of the Setting is satisfied as well. �

Next comes our main result on the rate of convergence of projections
on lines. The case where all of the lines intersect at one point, and the
sequence of projections necessarily converges, appears in [DR]. Some-
what surprisingly, our proof for general lines seems to be conceptually
simpler than the one in [DR].

Theorem 2.3. For every K ∈ N there is a constant c(K) depending

only on K with the following property. If L is a family of K lines in

R
d and z1, z2, . . . is a sequence of orthogonal projections on the lines

in L then

diam 2{zi}∞i=1 ≤ c(K)
∞

∑

i=1

|zi+1 − zi|2.
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B(0, 1)

z1

zm

0

zi

zi+1

p1

pK

z2

zm−1

p2

Figure 4. Sequence of projections on the lines in L.

Proof. Assume the statement of the theorem is false for some K. We
can assume that K is larger than a fixed constant K0 and that d > 4K.
By scaling the whole picture we then get, for every ε > 0, a collection
Lε = {p1, . . . , pK} of K lines, a sequence k1, . . . , kmε

∈ [K], and z1 ∈ pk1

with the following property. If we denote by Pk the projection onto pk,
and define zi+1 = Pki+1

zi, then

(14) |z1 − zmε
| = 1 and

mε−1
∑

i=1

|zi+1 − zi|2 < ε.

Let C > 0 be the constant from Lemma 2.1. We fix some 0 < ε <
1/(5C) and 0 < δ < 1/99, and from now on we drop the indices ε. By
Lemma 2.2 we can assume that L is as in the Setting for some fixed
w ∈ Sd−1 and the piecewise linear curve γ = (z1, . . . , zm) is contained
in C (see Fig. 4). We use an arc-length parametrization γ : [0, s] → C.
Let 0 = s1 < s2 < · · · < sm = s satisfy γ(si) = zi. We denote

vi =
zi+1 − zi

|zi+1 − zi|
∈ Sd−1.

Then vi is orthogonal to pki+1
. Moreover, γ(t) ∈ Cki,ki+1

and γ′(t) = vi

for t ∈ (si, si+1). By Lemma 2.2,

1 = 〈zm − z1, w〉 =

m−1
∑

i=1

〈zi+1 − zi, w〉 =

m−1
∑

i=1

∫ si+1

si

〈γ′(t), w〉dt

=

m−1
∑

i=1

∫ si+1

si

〈vi, w〉dt.

(15)

Let F be the continuous piecewise affine function from Lemma 2.1.
Then

〈vi, w〉 ≤ Cdist (γ(t), pki+1
) + 〈F ′(γ(t)), vi〉
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for all t ∈ (si, si+1), and we can continue with (15) as follows:

≤ C

m−1
∑

i=1

∫ si+1

si

dist (γ(t), pki+1
)dt +

m−1
∑

i=1

∫ si+1

si

〈F ′(γ(t)), vi〉dt

≤ C

m−1
∑

i=1

∫ si+1−si

0

tdt +

m−1
∑

i=1

∫ si+1

si

〈F ′(γ(t)), γ′(t)〉dt

= C/2
m−1
∑

i=1

(si+1 − si)
2 +

m−1
∑

i=1

F (zi+1) − F (zi)

= C/2
m−1
∑

i=1

|zi+1 − zi|2 + F (zm) − F (z1)

≤ Cε/2 + 2/5 < 1/2,

and this is a contradiction. �

3. Projections on subspaces

Let L be a family of K closed linear subspaces of ℓ2. Any sequence
{zi} of orthogonal projections on the spaces in L converges weakly ac-
cording to [AA]. If K = 2 the sequence of projections even converges
in norm [vN]. If K ≥ 3, this is known only under additional assump-
tions, for example, if the sequence {ki} is (quasi) periodic [H, S]. In
this section we give a necessary and sufficient condition ensuring norm
convergence.

The following observation is well known. In Theorem 2.3 we verified
that its assumptions are satisfied for finite families of one-dimensional
affine subspaces of ℓ2. For one-dimensional linear subspaces this was
done already in [DR].

Proposition 3.1. Suppose that for some K ∈ N there is a constant

c(K) with the following property. If z1, z2, . . . is a sequence of orthog-

onal projections on K finite dimensional subspaces ℓ2, then

|z1 − zm|2 ≤ c(K)
m−1
∑

i=1

|zi+1 − zi|2.

Then if L is a family of K closed linear subspaces of ℓ2, then any

sequence of orthogonal projections on the subspaces in L converges in

norm.

Proof. Suppose z1, z2, . . . are successive projections on K closed sub-
spaces of ℓ2. By Pythagoras’ theorem, |zi|2 = |zi+1|2 + |zi+1 − zi|2.
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Hence

(16) |zj − zk|2 ≤ c(K)

k−1
∑

i=j

|zi+1 − zi|2 = c(K)(|zj|2 − |zk|2).

Since the sequence {|zi|2} is nonincreasing and hence convergent, the
sequence {zi} is Cauchy. �

A slightly weaker assumption than the one of Proposition 3.1 already
causes random projections to converge. Conversely, its lack implies
the existence of a sequence of random projections that converges only
weakly but not in norm as we will show in Theorem 3.2.

Let K ∈ N, and let δK : (0, 1] → (0, 2] be defined by

δK(ε) = sup |z1 − zm|,
where the supremum is taken over all sequences {zi}mε

1 ⊂ Bℓ2 of pro-
jections on some K finite dimensional subspaces of ℓ2, for which

|z1|2 − |zm|2 =

m−1
∑

i=1

|zi+1 − zi|2 ≤ ε.

Clearly, δK is an increasing positive function of ε, hence limε→0 δK(ε)
always exists. Proposition 3.1 above deals with the hypothetical situa-
tion when δK(ε) ≤ c(K)

√
ε for all ε > 0 and some c(K) > 0 depending

on K only.

Theorem 3.2. Let K ∈ N.

(i) Suppose limε→0 δK(ε) = 0. If L is a family of K closed linear

subspaces of ℓ2, then any sequence of orthogonal projections on

the subspaces in L converges in norm.

(ii) Suppose limε→0 δK(ε) = r > 0. Then for every K̃ > 9K/r,

there is a family L of K̃ closed linear subspaces of ℓ2 and a

sequence of orthogonal projections on the subspaces in L that

does not converge in norm.

Proof. To show (i) we proceed exactly as in Proposition 3.1. Suppose
z1, z2, . . . are successive projections on K closed subspaces of ℓ2. By
Pythagoras’ theorem,

(17) |zj − zk| ≤ δK(
k−1
∑

i=j

|zi+1 − zi|2) = δK(|zj|2 − |zk|2).

Since the sequence {|zi|2} is nonincreasing, the sequence {zi} is Cauchy.
To verify (ii), let u, v ∈ Sℓ2 so that |u − v| ≤ r and 1 ≥ s > t > 1/2

be given. By the assumptions, there exist K + 1 finite dimensional
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subspaces of ℓ2 and a sequence z1, . . . , zm of projections on these sub-
spaces so that z1 = su and zm = t′v, where s > t′ ≥ t. Indeed, for
ε > 0 small enough it suffices to choose K subspaces and a sequence
x1, . . . , xn ∈ Bℓ2 of projections on these spaces so that |x1|2 −|xn|2 ≤ ε
and |x1−xn| is nearly equal to r. We truncate the sequence so that the
angle x1, 0, xn nearly corresponds to the angle u, 0, v. Then we scale
the sequence so that |x1| = s. We use an isometry to achieve x1 = su
and that xn nearly lies on the line p = span v. Finally, we project on
p.

Let k = ⌈π/(2r)⌉. We will inductively construct an orthonormal
sequence {en} in ℓ2 and finite dimensional subspaces F n

i,j , i ∈ [K + 1],
j ∈ [k], and n ∈ N, so that if |m − n| ≥ 2, then F m

i,j is orthogonal to
F n

i,j. For i ∈ [K + 1] and j ∈ [k], we define

pi,j = span

∞
⋃

n=1

F 2n−1

i,j ,

qi,j = span

∞
⋃

n=1

F 2n
i,j .

This is a family L of 2k(K + 1) ≤ 9K/r closed linear subspaces of ℓ2.
In the construction we, moreover, arrange that there is as sequence of
projections on the spaces in L, which contains tnen for some 1 = t1 >
t2 > · · · > 1/2 as a subsequence. Such a sequence does not converge in
norm.

To start the induction we choose two orthonormal vectors e1 and
e2. We divide the quarter-circle connecting e1 and e2 into k sectors of
equal length; we call the division points e1 = u0, u1, . . . , uk = e2. We
choose some 1 = s0 > s1 > · · · > sk > 1/2 + 1/3. We choose finite
dimensional spaces F 1

i,1, i ∈ [K + 1], and a sequence of projections on
these spaces, so that the first point is e1 = u0 and the last point is
s′1u1 for some s′1 ≥ s1. Next we choose the spaces F 1

i,2 and a sequence
of projections on them starting at s′1u1 and finishing at s′2u2 for some
s′2 ≥ s2. We continue in this manner, till we reach via the spaces F 1

i,k

the point t2e2 for some t2 > 1/2 + 1/3.
Suppose orthonormal vectors e1, . . . , en−1 and spaces F m

i,k for m ≤
n− 1 with a sequence of points finishing at tn−1en−1 with tn−1 > 1/2+
1/n have already been constructed. We choose en ∈ Sℓ2 orthogonal
to all vectors e1, . . . , en−1, and to all spaces F m

i,k, m ≤ n − 1. We
again divide the quarter-circle connecting en−1 and en into k sectors
of equal length and construct in k steps the spaces F n

i,1, . . . , F
n
i,k, i ∈

[K + 1], and sequences of projections connecting tn−1en−1 to tnen for
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some tn > 1/2 + 1/(n + 1). Moreover, in each step we make sure
that F n

i,j is orthogonal to all vectors e1, . . . , en−2, and to all spaces F m
i,k,

m ≤ n − 2. �
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