BOUNDEDNESS OF BIORTHOGONAL SYSTEMS IN BANACH SPACES

PETR HÁJEK AND VICENTE MONTESINOS

Abstract

We prove that every Banach space that admits a Markushevich basis also admits a bounded Markushevich basis.

1. Introduction

A Markushevich basis (in short, an M-basis) for a Banach space X is a biorthogonal system $\left\{x_{\gamma} ; f_{\gamma}\right\}_{\gamma \in \Gamma}$ in $X \times X^{*}$ such that $\left\{x_{\gamma}: \gamma \in \Gamma\right\}$ is fundamental, i.e., linearly dense in X, and $\left\{f_{\gamma}: \gamma \in \Gamma\right\}$ is total, i.e., w^{*}-linearly dense in X^{*}. The boundedness constant of the system is $\sup \left\{\left\|x_{\gamma}\right\| \cdot\left\|f_{\gamma}\right\|: \gamma \in \Gamma\right\}$ (eventually $+\infty)$. If the boundedness constant of an M-basis is a finite number K, we speak of a K-bounded M-basis. The main results of this note is the construction of a $(2(1+\sqrt{2})+\varepsilon)$-bounded M-basis (for every $\varepsilon>0)$ in every nonseparable Banach space which admits an M-basis.

The boundedness problem for an M-basis (or more generally a biorthogonal system) has received attention in the work of many mathematicians. In the separable case, Davis and Johnson [DJ73] (building up on the work of Singer [S73]) constructed a $(1+\varepsilon)$-bounded fundamental system, an essentially optimal result for fundamental systems (see, e.g., [HMVZ, Corollary 1.26]). An important ingredient in their work was the use of Dvoretzky's theorem on almost Euclidean sections. Their ideas were developed further by Ovsepian and Pełczyński [OP75], who constructed a bounded M-basis in every separable Banach space. Ultimately, Pełczyński [Pe76] and Plichko [Pl77] independently, constructed a $(1+\varepsilon)$-bounded M-basis in every separable Banach space. The existence in every separable Banach space of a 1bounded M-basis (i.e., an Auerbach basis) is still open.
In non-separable spaces, the existence of a bounded M-basis (provided the space has some M-basis) was claimed by Plichko [Pl82]. His method yields a boundedness constant roughly 10 (see, e.g., [HMVZ, Theorem 5.13]). However, the proof of this result in [P182] (and its reproduction in [HMVZ], Theorem 5.13) is flawed. The (subtle) troublesome point in the proof (see in [HMVZ] the claim on page 171, line 10 from below; we follow the notation there) is that $\operatorname{span}\left\{x_{\alpha}: \alpha \in J_{\gamma+2} \backslash J_{\gamma-1}\right\}$ is dense in $G_{\gamma}^{\perp} \cap X$. This claim (and thus the statement of Plichko's theorem) is true whenever the original M-basis is strong, but it is false in general (see [HMVZ], Proposition 1.35.). Let us recall that an M-basis $\left\{x_{\gamma} ; f_{\gamma}\right\}_{\gamma \in \Gamma}$ is called strong if, for every $x \in X, x \in \overline{\operatorname{span}}\left\{\left\langle x, f_{\gamma}\right\rangle x_{\gamma}: \gamma \in \Gamma\right\}$. The class of Banach spaces having a strong M-basis is quite large. For example, every Banach space belonging to a

[^0]\mathcal{P}-class has a strong M-basis [HMVZ, Theorem 5.1]. We recall here that a class \mathcal{C} of Banach spaces is a \mathcal{P}-class if, for every $X \in \mathcal{C}$, there exists a projectional resolution of the identity $\left(P_{\alpha}\right)_{\omega \leq \alpha \leq \mu}$ (where μ is the first ordinal with cardinal dens X) such that $\left(P_{\alpha+1}-P_{\alpha}\right) \bar{X} \in \mathcal{C}$ for all $\alpha \in[\omega, \mu)$. The class of all weakly compactly generated (resp. weakly countably determined, resp. weakly Lindelöf determined) Banach spaces is a \mathcal{P}-class.
However, there exists a Banach space with an M-basis admitting no strong M-basis ([HMVZ], Prop. 5.5).
Our approach to the problem uses ideas from several of the above mentioned papers, including [P182]. The essential new ingredient is the use of the Δ-system lemma (see Lemma 2), which solves the difficulties in [Pl82]. We are also able to reduce the boundedness constant, by incorporating Dvoretzky's theorem together with the Walsh-matrices-mixing technique used in [OP75].
In the special case of WCG spaces, an adaptation of the proof in the separable case by Plichko leads to a constant $2+\varepsilon$ (for every $\varepsilon>0$) [P179], which is essentially optimal ([Pl86]).
This alternative approach uses the existence of many projections in the WCG space. In the end of our note we indicate how to obtain a (more or less formal) generalization of the $2+\varepsilon$ result for wider classes of Banach spaces (\mathcal{P}-classes). We refer to [HMVZ] for more results and references related to boundedness of biorthogonal systems.

Our notation is standard. B_{X} is the closed unit ball of a Banach space X, S_{X} its unit sphere. Given a non-empty subset S of a Banach space, let span S be the linear span of S, and $\operatorname{span}_{\mathbb{Q}} S$ the set of all linear combinations with rational coefficients of elements in S. The closed linear span of S is denoted $\overline{\operatorname{span}} S$. Given two subspaces F and G of a Banach space X, we put $F \hookrightarrow G$ if F is a subspace of G. We denote by $|S|$ the cardinality of a set S. The density character of X, dens X, is the smallest ordinal Ω such that X has a dense subset with cardinal $|\Omega|$. We identify, as usual, an ordinal number Ω with the segment $[0, \Omega)$, and a cardinal number with the initial ordinal having this cardinality. The ordinal number of \mathbb{N} is denoted by ω and its cardinal number by \aleph_{0}. If $\left\{x_{\gamma} ; f_{\gamma}\right\}_{\gamma \in \Gamma}$ is an M-basis for X and $x \in X$, the support of x (with respect to the M-basis) is the set $\operatorname{supp}(x):=\left\{\gamma \in \Gamma:\left\langle x, f_{\gamma}\right\rangle \neq 0\right\}$. Analogously, if $f \in X^{*}, \operatorname{supp}(f):=\left\{\gamma \in \Gamma:\left\langle x_{\gamma}, f\right\rangle \neq 0\right\}$.

For convenience, we formulate the main tools used in the proof of our theorem.
Theorem 1 (Dvoretzky). Let $N \in \mathbb{N}, \varepsilon>0$. Then there exists a natural number $K:=K(N, \varepsilon)$, such that for every Banach space $(X,\|\cdot\|)$ of dimension at least K, there exists a linear space $Y \hookrightarrow X$ of dimension N, which is $(1+\varepsilon)$-isomorphic to ℓ_{2}^{N}.

A family $\left\{A_{\lambda}\right\}_{\lambda \in \Lambda}$ of sets is called a Δ-system (with root B, possibly empty) if $A_{\lambda} \cap A_{\alpha}=B$ for all distinct $\lambda, \alpha \in \Lambda$.
Lemma 2 (Δ-system lemma, see, e.g., [Ju80], Lemma 0.6). Let $\Lambda>\omega$ be a regular cardinal and $\left\{A_{\lambda}\right\}_{\lambda \in \Lambda}$ a family of finite subsets of Λ. Then there exists a subfamily $\Omega \subset \Lambda$ of cardinality Λ that is a Δ-system.

By a more or less standard argument, we obtain the next mild strengthening of the previous result.
Corollary 3. Let $\Lambda>\omega$ be a regular cardinal, X a Banach space with an Mbasis $\left\{x_{\gamma} ; f_{\gamma}\right\}_{\gamma \in \Gamma},\left\{v_{\lambda}\right\}_{\lambda \in \Lambda}$ a long sequence of finitely supported vectors in X with supports $\left\{A_{\lambda}\right\}_{\lambda \in \Lambda}$ and only rational coefficients $\left\langle v_{\lambda}, f_{\gamma}\right\rangle$. Then there exists a subset
$\Omega \subset \Lambda$ of cardinality Λ and a finite set $B \subset \Lambda$ such that $A_{\lambda} \cap A_{\alpha}=B$ for all $\lambda, \alpha \in \Omega$, and the coefficients of v_{λ} on B are independent of $\lambda \in \Omega$.
Proof. Apply Lemma 2 to the family $\left\{A_{\lambda}\right\}_{\lambda \in \Lambda}$ to obtain a Δ-system $\left\{A_{\lambda}\right\}_{\lambda \in \Lambda^{\prime}}$ with root B such that $\left|\Lambda^{\prime}\right|=|\Lambda|$. The set \mathbb{Q}^{B} is countable. We define a mapping $r: \Lambda^{\prime} \rightarrow \mathbb{Q}^{B}$ by $r\left(v_{\lambda}\right)(b)=v_{\lambda}(b)$ for all $b \in B$ and $\lambda \in \Lambda^{\prime}$. Assume that $\mid\left\{\lambda \in \Lambda^{\prime}:\right.$ $r(\lambda)=\mathbf{q}\}\left|<|\Lambda|\right.$ for all $\mathbf{q} \in \mathbb{Q}^{B}$. We have $\Lambda^{\prime}=\bigcup_{\mathbf{q} \in \mathbb{Q}^{B}}\left\{\lambda \in \Lambda^{\prime}: r(\lambda)=\mathbf{q}\right\}$. Since \mathbb{Q}^{B} is countable and $\left|\Lambda^{\prime}\right|(>\omega)$ is regular we obtain a contradiction, hence there exists $\mathbf{q} \in \mathbb{Q}^{B}$ such that $|\Omega|=|\Lambda|$, where $\Omega:=\left\{\lambda \in \Lambda^{\prime}: r(\lambda)=\mathbf{q}\right\}$. For all $\lambda \in \Omega$ and $b \in B$ we get $v_{\lambda}(b)=\mathbf{q}(b)$.
Recall (see, e.g., [J78]) that every non-limit cardinal is regular, and thus in particular every cardinal is a limit of a transfinite increasing sequence of regular cardinals. We rely on orthonormal matrices with special properties, described below.

Lemma 4. Given $n \in \mathbb{N}$, there exists an orthonormal matrix $W:=\left(a_{k, j}^{n}\right)_{0 \leq k, j<2^{n}}$ with real coefficients, such that

$$
\begin{gather*}
a_{k, 0}^{n}=2^{-\frac{n}{2}} \quad \text { for } 0 \leq k<2^{n}, \tag{1}\\
\sum_{j=1}^{2^{n}-1}\left|a_{k, j}^{n}\right|<1+\sqrt{2} \quad \text { for } 0 \leq k<2^{n} . \tag{2}
\end{gather*}
$$

Such matrices were used by Ovsepian and Pełczyński in [OP75]. For a concrete example of Walsh matrices see, e.g., [HMVZ, Lemma 5.17] or [LT77, Lemma 1.f.5].

The following is the main result of this note.
Theorem 5. Let X be a Banach space with an M-basis $\left\{x_{\gamma} ; f_{\gamma}\right\}_{\gamma \in \Gamma}$, and let $\varepsilon>0$. Then X admits an M-basis $\left\{x_{\gamma}^{\prime} ; f_{\gamma}^{\prime}\right\}_{\gamma \in \Gamma}$ such that $\left\|x_{\gamma}^{\prime}\right\| .\left\|f_{\gamma}^{\prime}\right\| \leq 2(1+\sqrt{2})+\varepsilon$ for every $\gamma \in \Gamma$. Moreover, $\operatorname{span}\left\{x_{\gamma}: \gamma \in \Gamma\right\}=\operatorname{span}\left\{x_{\gamma}^{\prime}: \gamma \in \Gamma\right\}$ and $\operatorname{span}\left\{f_{\gamma}: \gamma \in\right.$ $\Gamma\}=\operatorname{span}\left\{f_{\gamma}^{\prime}: \gamma \in \Gamma\right\}$.

Proof. For convenience, we may assume without loss of generality that Γ is an ordinal of cardinality $|\Gamma|$. We are going to find a system consisting of a splitting $\Gamma=\bigcup_{\lambda \in \Gamma} A_{\lambda}$, where all A_{λ} are countable and pairwise disjoint, together with biorthogonal systems $\left\{x_{\gamma}^{\prime} ; f_{\gamma}^{\prime}\right\}_{\gamma \in A_{\lambda}}$, so that
A. $\quad \operatorname{span}\left\{x_{\gamma}^{\prime}: \gamma \in A_{\lambda}\right\}=\operatorname{span}\left\{x_{\gamma}: \gamma \in A_{\lambda}\right\}$
B. $\operatorname{span}\left\{f_{\gamma}^{\prime}: \gamma \in A_{\lambda}\right\}=\operatorname{span}\left\{f_{\gamma}: \gamma \in A_{\lambda}\right\}$
C. $\quad\left\|x_{\gamma}^{\prime}\right\|\left\|f_{\gamma}^{\prime}\right\| \leq 2(1+\sqrt{2})+\varepsilon$, for all $\gamma \in A_{\lambda}, \lambda \in \Gamma$

The existence of such a system clearly implies the statement of the theorem. We construct the A_{λ} 's and the biorthogonal system associated to each of them by using induction in $\lambda \in \Gamma$.
We start by putting $A_{1}:=\{0\}$ (the first element in Γ), and letting $\left\{x_{0}^{\prime} ; f_{0}^{\prime}\right\}$ be a (single-element) biorthogonal system in $\operatorname{span}\left\{x_{0}\right\} \times \operatorname{span}\left\{f_{0}\right\}$ with $\left\|x_{0}^{\prime}\right\|=\left\|f_{0}^{\prime}\right\|=1$. Suppose we achieved this for all $\lambda<\beta \in \Gamma$. It remains to obtain the objects A_{β} and $\left\{x_{\gamma}^{\prime} ; f_{\gamma}^{\prime}\right\}_{\gamma \in A_{\beta}}$. To this end we are going to construct an increasing sequence $\left\{A^{j}\right\}_{j=1}^{\infty}$, $A^{j} \subset A^{j+1}$, of finite subsets of Γ, so that $A_{\beta}=\bigcup_{j=1}^{\infty} A^{j}$. We are simultaneously going to build finite biorthogonal systems $\left\{x_{\gamma}^{j} ; f_{\gamma}^{j}\right\}_{\gamma \in A^{j}}, j \in \mathbb{N}$, and a sequence of finite sets $\left\{C^{j}\right\}_{j=1}^{\infty}$ satisfying the following conditions for all $j \in \mathbb{N}$.

1. $\operatorname{span}\left\{x_{\alpha}: \alpha \in A^{j}\right\}=\operatorname{span}\left\{x_{\alpha}^{j}: \alpha \in A^{j}\right\}$.
2. $\operatorname{span}\left\{f_{\alpha}: \alpha \in A^{j}\right\}=\operatorname{span}\left\{f_{\alpha}^{j}: \alpha \in A^{j}\right\}$.
3. $\quad C^{j}=\left\{\alpha \in A^{j}:\left\|x_{\alpha}^{j}\right\|\left\|f_{\alpha}^{j}\right\| \leq 2(1+\sqrt{2})+\varepsilon\right\}$.
4. $A^{j} \subset C^{j+1}$.
5. $x_{\gamma}^{j+1}=x_{\gamma}^{j}$ whenever $\gamma \in C^{j}$.
6. $\quad f_{\gamma}^{j+1}=f_{\gamma}^{j}$ whenever $\gamma \in C^{j}$.
7. $\operatorname{span}\left\{x_{\alpha}^{j}: \alpha \in A^{j}\right\} \subset \operatorname{span}\left\{x_{\alpha}^{j+1}: \alpha \in C^{j+1}\right\}$.
8. $\operatorname{span}\left\{f_{\alpha}^{j}: \alpha \in A^{j}\right\} \subset \operatorname{span}\left\{f_{\alpha}^{j+1}: \alpha \in C^{j+1}\right\}$.

The existence of such systems now implies the inductive step in the proof of the main theorem.
Indeed, we put $A_{\beta}:=\bigcup_{j=1}^{\infty} A^{j}\left(=\bigcup_{j=1}^{\infty} C^{j}\right)$. If $\gamma \in C^{j}$ for some $j \in \mathbb{N}$ then, by 5 ., $x_{\gamma}^{j}=x_{\gamma}^{j+l}$ for all $l \in \mathbb{N}$, and so we can put $x_{\gamma}^{\prime}:=x_{\gamma}^{j}$. Similarly, by $6 ., f_{\gamma}^{j}=f_{\gamma}^{j+l}$ for all $l \in \mathbb{N}$, and we put $f_{\gamma}^{\prime}=f_{\gamma}^{j}$. The biorthogonality of $\left\{x_{\gamma}^{\prime} ; f_{\gamma}^{\prime}\right\}_{\gamma \in A_{\beta}}$ follows from the fact that $\left\{x_{\gamma}^{j} ; f_{\gamma}^{j}\right\}_{\gamma \in A^{j}}$ is biorthogonal for every $j \in \mathbb{N}$. Conditions A. and B. are checked easily. On one hand, if $\gamma \in A_{\beta}$, then $\gamma \in C^{j}$ for some $j \in \mathbb{N}$, so by 1 .,

$$
x_{\gamma}^{\prime}=x_{\gamma}^{j} \in \operatorname{span}\left\{x_{\alpha}: \alpha \in A^{j}\right\} \subset \operatorname{span}\left\{x_{\alpha}: \alpha \in A_{\beta}\right\},
$$

and, since $\gamma \in A^{j}$, by 7 .,

$$
\begin{aligned}
x_{\gamma} & \in \operatorname{span}\left\{x_{\alpha}^{j}: \alpha \in A^{j}\right\} \subset \operatorname{span}\left\{x_{\alpha}^{j+1}: \alpha \in C^{j+1}\right\} \\
& =\operatorname{span}\left\{x_{\alpha}^{\prime}: \alpha \in C^{j+1}\right\} \subset \operatorname{span}\left\{x_{\alpha}^{\prime}: \alpha \in A_{\beta}\right\} .
\end{aligned}
$$

We obtain similar results for f_{γ}^{\prime} and f_{γ}. Note that conditions 3. and 4. imply C.. It remains to check that $\bigcup_{\lambda \in \Gamma} A_{\lambda}=\Gamma$. This follows from the fact (see below) that in the construction of $\left\{A^{j}\right\}_{j \in \mathbb{N}}$ we start by taking $A^{1}:=\left\{\gamma_{0}\right\}$, where γ_{0} is the first element in $\Gamma \backslash \bigcup_{\lambda<\beta} A_{\lambda}$, so $A_{\beta} \neq \emptyset$ while $\bigcup_{\lambda<\beta} A_{\lambda} \neq \Gamma$.
To start, put $A^{1}=\left\{\gamma_{0}\right\}$, where γ_{0} is the first element in $\Gamma \backslash \bigcup_{\lambda<\beta} A_{\lambda}, x_{\gamma_{0}}^{1}:=x_{\gamma_{0}}$, and $f_{\gamma_{0}}^{1}:=f_{\gamma_{0}}$. Put $C^{1}:=\left\{\gamma_{0}\right\}$ if $\left\|x_{\gamma_{0}}\right\|\left\|f_{\gamma_{0}}\right\| \leq 2(1+\sqrt{2})+\varepsilon, C^{1}=\emptyset$ otherwise. Let us describe the inductive step from j to $j+1$. Suppose that $A^{p}, x_{\gamma}^{p}, f_{\gamma}^{p}$ for $p \leq j$ have been constructed, such that 1.-8. are satisfied whenever the indices exist. Put $L=\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}=A^{j} \backslash C^{j}$, and find $C>0$ such that $\sup \left\{\left\|x_{\lambda}\right\|,\left\|f_{\lambda}\right\|: \lambda \in L\right\}<C$. Put $N=2^{n}-1$, with $n \in \mathbb{N}$ large enough to have $2^{-n / 2} C<\varepsilon$. Use Theorem 1 to find $K:=K(N, \varepsilon)$. We are going to build a family $\left\{S_{\lambda}: \lambda \in L\right\}$ of finite pairwise disjoint subsets of Γ, disjoint also from $\bigcup_{\lambda<\beta} A_{\lambda} \cup \bigcup_{i \leq j} A^{i}$, together with finite biorthogonal systems $\left\{y_{\gamma} ; g_{\gamma}\right\}_{\gamma \in S_{\lambda}}, \lambda \in L$, such that, for all $\lambda \in L$,
a. $\quad S_{\lambda}=S_{\lambda}^{1} \cup S_{\lambda}^{2},\left|S_{\lambda}^{1}\right|=N, S_{\lambda}^{1} \cap S_{\lambda}^{2}=\emptyset$.
b. $\quad \operatorname{span}\left\{x_{\gamma}: \gamma \in S_{\lambda}\right\}=\operatorname{span}\left\{y_{\gamma}: \gamma \in S_{\lambda}\right\}$.
c. $\quad \operatorname{span}\left\{f_{\gamma}: \gamma \in S_{\lambda}\right\}=\operatorname{span}\left\{g_{\gamma}: \gamma \in S_{\lambda}\right\}$.
d. $\quad\left\{g_{\gamma}: \gamma \in S_{\lambda}^{1}\right\}$ is $(1+\varepsilon)$-equivalent to the unit basis of ℓ_{2}^{N}.
e. $\quad\left\|y_{\gamma}\right\| \leq 2+2 \varepsilon$, for $\gamma \in \bigcup_{\lambda \in L} S_{\lambda}$.

Finding the above system is the main step of our construction. We have $|\beta|<\Gamma$ and so there exists a regular cardinal $R, \beta<R \leq \Gamma$. Denote $\left\{B_{\lambda, \alpha}\right\}_{\lambda \in L, \alpha<R}$ a system of pairwise disjoint subsets of $\Gamma \backslash \bigcup_{\delta<\beta} A_{\delta}$, each of them of cardinality K. By Theorem 1, we have that every $\operatorname{span}\left\{f_{\gamma}: \gamma \in B_{\lambda, \alpha}\right\}$ contains a ($1+\varepsilon$)-isometric copy $G_{\lambda, \alpha}$ of ℓ_{2}^{N}. Since the pair of finite dimensional spaces

$$
\left(\operatorname{span}\left\{f_{\gamma}: \gamma \in B_{\lambda, \alpha}\right\}, \operatorname{span}\left\{x_{\gamma}: \gamma \in B_{\lambda, \alpha}\right\}\right)
$$

is a dual pair, it follows by standard linear algebra that there exist a splitting $B_{\lambda, \alpha}=D_{\lambda, \alpha} \cup E_{\lambda, \alpha}, D_{\lambda, \alpha}:=\left\{\gamma_{1}^{\lambda, \alpha}, \ldots, \gamma_{N}^{\lambda, \alpha}\right\}, D_{\lambda, \alpha} \cap E_{\lambda, \alpha}=\emptyset$, and a finite biorthogonal system $\left\{h_{\gamma} ; z_{\gamma}\right\}_{\gamma \in B_{\lambda, \alpha}}$, with properties
$\operatorname{span}\left\{h_{\gamma}: \gamma \in B_{\lambda, \alpha}\right\}=\operatorname{span}\left\{f_{\gamma}: \gamma \in B_{\lambda, \alpha}\right\}$,
$\operatorname{span}\left\{z_{\gamma}: \gamma \in B_{\lambda, \alpha}\right\}=\operatorname{span}\left\{x_{\gamma}: \gamma \in B_{\lambda, \alpha}\right\}$,
$\left\{h_{\gamma}\right\}_{\gamma \in D_{\lambda, \alpha}}$ is $(1+\varepsilon)$-equivalent to the unit basis of ℓ_{2}^{N}.
Let $G_{\lambda, \alpha}:=\operatorname{span}\left\{h_{\gamma}: \gamma \in D_{\lambda, \alpha}\right\}$.
Fix $\lambda \in L, \alpha<R$, and $\gamma \in D_{\lambda, \alpha}$. Put $X_{\gamma}:=z_{\gamma} \upharpoonright_{G_{\lambda, \alpha}}$.
Clearly, $1 \leq\left\|X_{\gamma}\right\| \leq 1+\varepsilon$. Denote X_{γ} again the Hahn-Banach norm-preserving extension of X_{γ} from $G_{\lambda, \alpha} \hookrightarrow X^{*}$ to the whole X^{*}, so $X_{\gamma} \in X^{* *}$. Since obviously $\overline{\operatorname{span}}_{\mathbb{Q}}\left\{x_{\zeta}\right\}_{\zeta \in \Gamma}=X$, a standard application of Helly's theorem (see, e.g.,
[F^{\sim}, Exercise 3.36]) provides an element $\tilde{x}_{\gamma} \in \operatorname{span}_{\mathbb{Q}}\left\{x_{\zeta}: \zeta \in \Gamma\right\}$ such that $\left\|\tilde{x}_{\gamma}\right\|<\left\|X_{\gamma}\right\|+\varepsilon(<1+2 \varepsilon)$ and $\tilde{x}_{\gamma} \upharpoonright_{G_{\lambda, \alpha}}=X_{\gamma}$. Denote by $F_{m}^{\lambda, \alpha} \subset \Gamma$ the finite support sets of $\tilde{x}_{\gamma_{m}^{\lambda, \alpha}}, m \in\{1, \ldots, N\}$. Apply Corollary 3 to the given M-basis $\left\{x_{\gamma} ; f_{\gamma}\right\}_{\gamma \in \Gamma}$ and to each system $\left\{\tilde{x}_{\gamma_{m}^{\lambda, \alpha}}\right\}_{\alpha<R}, m \in\{1, \ldots, N\}, \lambda \in L$, to obtain a (single) subset $R^{\prime} \subset R$ of cardinality $|R|$, such that the following conditions hold. There exists finite sets $\Delta_{\lambda, m} \subset \Gamma$, such that for all $\alpha<\xi \in R^{\prime}, m \in\{1, \ldots, N\}$, $\lambda \in L$,

1. $\quad F_{m}^{\lambda, \alpha} \cap F_{m}^{\lambda, \xi}=\Delta_{\lambda, m}\left(\operatorname{sosupp}\left(\tilde{x}_{\gamma_{m}^{\lambda, \alpha}}-\tilde{x}_{\gamma_{m}^{\lambda}, \xi}\right) \cap \Delta_{\lambda, m}=\emptyset\right)$.
2. $\quad F_{m}^{\lambda, \xi} \backslash \Delta_{\lambda, m} \subset \Gamma \backslash\left(\bigcup_{\alpha<\xi} B_{\lambda, \alpha} \cup \bigcup_{i \leq j} A^{i} \cup \bigcup_{\lambda<\beta} A_{\lambda}\right)$

It is also easy to see that by a suitable choice of $\alpha_{\lambda}, \xi_{\lambda} \in R^{\prime}$, for $\lambda \in L$, we may, without loss of generality, assume that putting for $m \in\{1,2, \ldots, N\}$

$$
\begin{gathered}
\hat{x}_{\lambda, m}:=\tilde{x}_{\gamma_{m}^{\lambda, \alpha_{\lambda}}}-\tilde{x}_{\gamma_{m}^{\lambda, \xi_{\lambda}}}, \\
\hat{f}_{\lambda, m}=h_{\gamma_{m}^{\lambda, \alpha_{\lambda}}},
\end{gathered}
$$

we have, in addition, that $\operatorname{supp}\left(\hat{x}_{\lambda, m}\right) \cap \operatorname{supp}\left(\hat{x}_{\lambda^{\prime}, m^{\prime}}\right)=\emptyset$ unless $\lambda=\lambda^{\prime}, m=m^{\prime}$. Thus we have that

$$
\left\{\hat{x}_{\lambda, m}, \hat{f}_{\lambda, m}\right\}_{m \in\{1, \ldots, N\}}
$$

is a biorthogonal $(2+2 \varepsilon)$-bounded biorthogonal system such that vectors $\hat{x}_{\lambda, m}$, $m \in\{1,2, \ldots, N\}$, have disjoint supports with similar systems built previously in the inductive process. Next, we put

$$
S_{\lambda}:=B_{\lambda, \alpha_{\lambda}} \cup \bigcup_{m=1}^{N} \operatorname{supp}\left(\hat{x}_{\lambda, m}\right), \text { for } \lambda \in L
$$

Again, we have $S_{\lambda} \cap S_{\lambda^{\prime}}=\emptyset$, unless $\lambda=\lambda^{\prime}$. Let $S_{\lambda}^{1}=D_{\lambda, \alpha_{\lambda}}=\left\{\gamma_{1}^{\lambda, \alpha_{\lambda}}, \ldots, \gamma_{N}^{\lambda, \alpha_{\lambda}}\right\}$. For every $\gamma=\gamma_{m}^{\lambda, \alpha_{\lambda}} \in S_{\lambda}^{1}$, we put $g_{\gamma}:=\hat{f}_{\lambda, m}, y_{\gamma}:=\hat{x}_{\lambda, m}$. This choice guarantees that conditions a., d., and e. are satisfied. It remains to use standard linear algebra in order to add elements g_{γ}, y_{γ} for $\gamma \in S_{\lambda}^{2}$, so that b. and c. will be satisfied.
To finish the inductive step, put $A^{j+1}:=A^{j} \cup \bigcup_{\lambda \in L} S_{\lambda}$. For $\gamma \in C^{j}$, we let $x_{\gamma}^{j+1}:=x_{\gamma}^{j}, f_{\gamma}^{j+1}:=f_{\gamma}^{j}$. For $\lambda \in L$ put $\hat{x}_{\lambda, 0}:=x_{\lambda}, \hat{f}_{\lambda, 0}:=f_{\lambda}$. We have that $\left\{\hat{x}_{\lambda, m} ; \hat{f}_{\lambda, m}\right\}_{m \in\{0, \ldots, N\}}$ is a biorthogonal system. Let $W:=\left(a_{i, j}\right)_{i, j=0, \ldots, N}$ be a matrix from Lemma 4. Put, for $k=0,1,2, \ldots, N$,

$$
u_{k}^{\lambda}:=\sum_{m=0}^{N} a_{k, m} \hat{x}_{\lambda, m}, \quad v_{k}^{\lambda}:=\sum_{m=0}^{N} a_{k, m} \hat{f}_{\lambda, m}
$$

Finally, define x_{γ}^{j+1} and f_{γ}^{j+1} for $\gamma \in A^{j+1}$ in the following way:

$$
\begin{aligned}
& x_{\gamma}^{j+1}:= \begin{cases}u_{0}^{\lambda}, & \text { if } \gamma=\lambda \in L, \\
u_{m}^{\lambda}, & \text { if } \gamma \in S_{\lambda}^{1}\left(=D_{\lambda, \alpha_{\lambda}}\right), \gamma=\gamma_{m}^{\lambda, \alpha_{\lambda}}, \\
y_{\gamma}, & \text { if } \gamma \in S_{\lambda}^{2} .\end{cases} \\
& f_{\gamma}^{j+1}:= \begin{cases}v_{0}^{\lambda}, & \text { if } \gamma=\lambda \in L, \\
v_{m}^{\lambda}, & \text { if } \gamma \in S_{\lambda}^{1}\left(=D_{\lambda, \alpha_{\lambda}}\right), \gamma=\gamma_{m}^{\lambda, \alpha_{\lambda}}, \\
g_{\gamma}, & \text { if } \gamma \in S_{\lambda}^{2} .\end{cases}
\end{aligned}
$$

Since W is an orthonormal matrix, we obtain that $\left\{x_{\gamma}^{j+1} ; f_{\gamma}^{j+1}\right\}_{\gamma \in\{\lambda\} \cup S_{\lambda}^{1}}$ is again a biorthogonal system, for every $\lambda \in L$.
It remains to estimate the norms of the new vectors and functionals. By using the condition d., (1), and the orthonormality of W, we get the following estimate,
whenever $\gamma \in\{\lambda\} \cup S_{\lambda}^{1}$:

$$
\begin{aligned}
& \left\|f_{\gamma}^{j+1}\right\|<2^{-n / 2}\left\|f_{\lambda}\right\|+(1+\sqrt{2}) \max _{1 \leq m \leq N}\left\|\hat{f}_{\lambda, m}\right\| \\
& \quad \leq 2^{-n / 2} C+(1+\sqrt{2})(1+\varepsilon)<(1+\sqrt{2})+4 \varepsilon
\end{aligned}
$$

Similarly, using (2) instead,

$$
\begin{aligned}
& \left\|x_{\gamma}^{j+1}\right\|<2^{-n / 2}\left\|x_{\lambda}\right\|+(1+\sqrt{2}) \max _{1 \leq m \leq N}\left\|\hat{x}_{\lambda, m}\right\| \\
& \quad \leq 2^{-n / 2} C+(1+\sqrt{2}) 2(1+2 \varepsilon)<2(1+\sqrt{2})+13 \varepsilon
\end{aligned}
$$

Since $\varepsilon>0$ was arbitrary, these estimates imply conditions 4., 7., 8.. The remaining conditions follow from our construction by standard arguments.

Let us recall that Plichko in [Pl86] ([HMVZ], Example 5.19) has constructed an example of a WCG space which has no C-bounded M-basis, for every $C<2$. On the other hand, in [Pl79] there is a generalization of the construction of $(1+\varepsilon)$ bounded M-basis in a separable space, to the case of WCG spaces, where one obtains $(2+\varepsilon)$-bounded M-bases. This result can be generalized to spaces with "many projections". In particular, one gets the following result.

Proposition 6. Every Banach space belonging to a \mathcal{P}-class of nonseparable Banach space admits a $(2+\varepsilon)$-bounded M-basis for every $\varepsilon>0$.

Proof. Only formal changes in the proof in [Pl79] are needed. Let $\left\{P_{\alpha}\right\}_{\alpha \in \Gamma}$ be a projectional resolution of the identity in X, such that $P_{\alpha}(X)$ belong to \mathcal{P} for all α. Each space $X_{\alpha}=\left(P_{\alpha+1}-P_{\alpha}\right)(X)$ contains a 1-complemented separable space Y_{α}, which is 2 -complemented in the whole X. In each of Y_{α}, we can build an M-basis, $\left\{x_{i}^{\alpha} ; f_{i}^{\alpha}\right\}_{i \in \mathbb{N}}$, such that $\left\{x_{i}^{\alpha}\right\}_{i=1, \ldots, N}$ is almost isometric to the unit basis of ℓ_{2}^{N}, for suitable values of N. Using complementability, it is possible to extend $f_{i}^{\alpha}, i=1, \ldots, N$, onto the whole X keeping the norm below $2+\varepsilon$. Using a standard device (see, e.g., [Fa97, Proposition 6.2.4]), we can glue all those partial biorthogonal systems into a full M-basis for X. This is the key ingredient in the proof, and the rest follows along the lines of [Pl79].

Acknowledgment. A large part of the work on the present note has been carried out during a visit of the first named author to the Instituto de Matemática Pura y Aplicada, Universidad Politécnica de Valencia, in June 2008. This author wishes to express his thanks for the hospitality and excellent working conditions provided.

References

[DJ73] W.J. Davis and W.B. Johnson, On the existence of fundamental and total bounded biorthogonal systems in Banach spaces, Studia Math. 45 (1973), 173-179.
[Fa97] M. Fabian, Gâteaux Differentiability of Convex Functions and Topology, Weak Asplund Spaces, John Wiley \& Sons, Interscience, New York, 1997.
[F^{\sim}] M. Fabian, P. Habala, P. Hájek, V. Montesinos, J. Pelant, and V. Zizler, Functional Analysis and Infinite Dimensional Geometry, Canad. Math. Soc. Books in Mathematics 8, Springer-Verlag, 2001.
[HMVZ] P. Hájek, V. Montesinos, J. Vanderwerff and V. Zizler, Biorthogonal Systems in Banach Spaces. CMS Books in Mathematics. Canadian Mathematical Society, Springer Verlag, 2007.
[J78] T. Jech, Set Theory, Academic Press, New York, 1978.
[Ju80] I. Juhász, Cardinal functions in topology, ten years later, Mathematical Centre Tracts 123, Amsterdam, 1980.
[LT77] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer-Verlag, 1977.
[OP75] R.I. Ovsepian and A. Pełczyński, The existence in separable Banach space of fundamental total and bounded biorthogonal sequence and related constructions of uniformly bounded orthonormal systems in L_{2}, Studia Math. 54 (1975), 149-159.
[Pe76] A. Pełczyński, All separable Banach spaces admit for every $\varepsilon>0$ funda- mental and total biorthogonal sequences bounded by $1+\varepsilon$, Studia Math. 55 (1976), 295-304.
[PR83] A. Plans and A. Reyes, On the geometry of sequences in Banach spaces, Arch. Math. 40 (1983), 452-458.
[Pl77] A.N. Plichko, M-bases in separable and reflexive Banach spaces, Ukrain. Mat. Ž. 29 (1977), 681-685.
[Pl79] A.N. Plichko, The existence of bounded Markushevich bases in WCG spaces, Theory Funct. Funct. Anal. Appl. 32 (1979), 61-69.
[Pl82] A.N. Plichko, On projective resolutions of the identity operator and Markuševič bases, Soviet Math. Dokl., 25 (1982), 386-389.
[Pl83] A.N. Plichko, Projection decompositions, Markushevich bases and equiv- alent norms, Mat. Zametki 34, 5 (1983), 719-726.
[Pl86] A.N. Plichko, On bounded biorthogonal systems in some function spaces, Studia Math. 84 (1986), 25-37.
[S70] I. Singer, Bases in Banach Spaces I, Springer-Verlag, 1970.
[S73] I. Singer, On biorthogonal systems and total sequences of functionals II. Math. Ann. 201 (1973), 1-8.
[S81] I. Singer, Bases in Banach Spaces II, Springer-Verlag, 1981.
Mathematical Institute, Academy of Sciences of the Czech Rep., Žitná 25, 11567 Praha 1, Czech Republic
E-mail address: hajek@math.cas.cz
Instituto Universitario de Matemática Pura y Aplicada. Departamento de Matemática Aplicada. E.T.S.I. Telecomunicación. Universidad Politécnica de Valencia. Camino de Vera, s/n. 46022 Valencia, Spain
E-mail address: vmontesinos@mat.upv.es

[^0]: Date: October 28, 2008.
 2000 Mathematics Subject Classification. 46B30, 46B03.
 Key words and phrases. Biorthogonal systems, Markushevich bases, bounded Markushevich bases.

 Supported by grants: Institutional Research Plan AV0Z10190503, GA ČR 201/07/0394, Universidad Politécnica de Valencia and Generalitat Valenciana (P. Hájek), Proyecto MTM200508210, Universidad Politécnica de Valencia and Generalitat Valenciana (V. Montesinos).

