

BOUNDEDNESS OF BIORTHOGONAL SYSTEMS IN BANACH SPACES

PETR HÁJEK AND VICENTE MONTESINOS

ABSTRACT. We prove that every Banach space that admits a Markushevich basis also admits a bounded Markushevich basis.

1. INTRODUCTION

A Markushevich basis (in short, an M-basis) for a Banach space X is a biorthogonal system $\{x_{\gamma}; f_{\gamma}\}_{\gamma \in \Gamma}$ in $X \times X^*$ such that $\{x_{\gamma} : \gamma \in \Gamma\}$ is fundamental, i.e., linearly dense in X, and $\{f_{\gamma} : \gamma \in \Gamma\}$ is total, i.e., w^* -linearly dense in X^* . The boundedness constant of the system is $\sup\{||x_{\gamma}||.||f_{\gamma}|| : \gamma \in \Gamma\}$ (eventually $+\infty$). If the boundedness constant of an M-basis is a finite number K, we speak of a K-bounded M-basis. The main results of this note is the construction of a $(2(1 + \sqrt{2}) + \varepsilon)$ -bounded M-basis (for every $\varepsilon > 0$) in every nonseparable Banach space which admits an M-basis.

The boundedness problem for an M-basis (or more generally a biorthogonal system) has received attention in the work of many mathematicians. In the separable case, Davis and Johnson [DJ73] (building up on the work of Singer [S73]) constructed a $(1 + \varepsilon)$ -bounded fundamental system, an essentially optimal result for fundamental systems (see, e.g., [HMVZ, Corollary 1.26]). An important ingredient in their work was the use of Dvoretzky's theorem on almost Euclidean sections. Their ideas were developed further by Ovsepian and Pełczyński [OP75], who constructed a bounded M-basis in every separable Banach space. Ultimately, Pełczyński [Pe76] and Plichko [Pl77] independently, constructed a $(1 + \varepsilon)$ -bounded M-basis in every separable Banach space of a 1-bounded M-basis (i.e., an Auerbach basis) is still open.

In non-separable spaces, the existence of a bounded M-basis (provided the space has some M-basis) was claimed by Plichko [Pl82]. His method yields a boundedness constant roughly 10 (see, e.g., [HMVZ, Theorem 5.13]). However, the proof of this result in [Pl82] (and its reproduction in [HMVZ], Theorem 5.13) is flawed. The (subtle) troublesome point in the proof (see in [HMVZ] the claim on page 171, line 10 from below; we follow the notation there) is that $\operatorname{span}\{x_{\alpha} : \alpha \in J_{\gamma+2} \setminus J_{\gamma-1}\}$ is dense in $G_{\gamma}^{\perp} \cap X$. This claim (and thus the statement of Plichko's theorem) is true whenever the original M-basis is strong, but it is false in general (see [HMVZ], Proposition 1.35.). Let us recall that an M-basis $\{x_{\gamma}; f_{\gamma}\}_{\gamma \in \Gamma}$ is called *strong* if, for every $x \in X$, $x \in \overline{\operatorname{span}}\{\langle x, f_{\gamma} \rangle x_{\gamma} : \gamma \in \Gamma\}$. The class of Banach spaces having a strong M-basis is quite large. For example, *every Banach space belonging to a*

Date: October 28, 2008.

²⁰⁰⁰ Mathematics Subject Classification. 46B30, 46B03.

 $Key\ words\ and\ phrases.$ Biorthogonal systems, Markushevich bases, bounded Markushevich bases.

Supported by grants: Institutional Research Plan AV0Z10190503, GA ČR 201/07/0394, Universidad Politécnica de Valencia and Generalitat Valenciana (P. Hájek), Proyecto MTM2005-08210, Universidad Politécnica de Valencia and Generalitat Valenciana (V. Montesinos).

 \mathcal{P} -class has a strong *M*-basis [HMVZ, Theorem 5.1]. We recall here that a class \mathcal{C} of Banach spaces is a \mathcal{P} -class if, for every $X \in \mathcal{C}$, there exists a projectional resolution of the identity $(P_{\alpha})_{\omega \leq \alpha \leq \mu}$ (where μ is the first ordinal with cardinal dens X) such that $(P_{\alpha+1} - P_{\alpha})X \in \mathcal{C}$ for all $\alpha \in [\omega, \mu)$. The class of all weakly compactly generated (resp. weakly countably determined, resp. weakly Lindelöf determined) Banach spaces is a \mathcal{P} -class.

However, there exists a Banach space with an M-basis admitting no strong M-basis ([HMVZ], Prop. 5.5).

Our approach to the problem uses ideas from several of the above mentioned papers, including [Pl82]. The essential new ingredient is the use of the Δ -system lemma (see Lemma 2), which solves the difficulties in [Pl82]. We are also able to reduce the boundedness constant, by incorporating Dvoretzky's theorem together with the Walsh-matrices-mixing technique used in [OP75].

In the special case of WCG spaces, an adaptation of the proof in the separable case by Plichko leads to a constant $2 + \varepsilon$ (for every $\varepsilon > 0$) [Pl79], which is essentially optimal ([Pl86]).

This alternative approach uses the existence of many projections in the WCG space. In the end of our note we indicate how to obtain a (more or less formal) generalization of the $2 + \varepsilon$ result for wider classes of Banach spaces (\mathcal{P} -classes). We refer to [HMVZ] for more results and references related to boundedness of biorthogonal systems.

Our notation is standard. B_X is the closed unit ball of a Banach space X, S_X its unit sphere. Given a non-empty subset S of a Banach space, let span S be the linear span of S, and span_QS the set of all linear combinations with rational coefficients of elements in S. The closed linear span of S is denoted span S. Given two subspaces F and G of a Banach space X, we put $F \hookrightarrow G$ if F is a subspace of G. We denote by |S| the cardinality of a set S. The *density character* of X, dens X, is the smallest ordinal Ω such that X has a dense subset with cardinal $|\Omega|$. We identify, as usual, an ordinal number Ω with the segment $[0, \Omega)$, and a cardinal number with the initial ordinal having this cardinality. The ordinal number of \mathbb{N} is denoted by ω and its cardinal number by \aleph_0 . If $\{x_{\gamma}; f_{\gamma}\}_{\gamma \in \Gamma}$ is an M-basis for X and $x \in X$, the *support* of x (with respect to the M-basis) is the set $\sup(x) := \{\gamma \in \Gamma : \langle x, f_{\gamma} \rangle \neq 0\}$. Analogously, if $f \in X^*$, $\sup(f) := \{\gamma \in \Gamma : \langle x_{\gamma}, f \rangle \neq 0\}$.

For convenience, we formulate the main tools used in the proof of our theorem.

Theorem 1 (Dvoretzky). Let $N \in \mathbb{N}$, $\varepsilon > 0$. Then there exists a natural number $K := K(N, \varepsilon)$, such that for every Banach space $(X, \|\cdot\|)$ of dimension at least K, there exists a linear space $Y \hookrightarrow X$ of dimension N, which is $(1 + \varepsilon)$ -isomorphic to ℓ_2^N .

A family $\{A_{\lambda}\}_{\lambda \in \Lambda}$ of sets is called a Δ -system (with root B, possibly empty) if $A_{\lambda} \cap A_{\alpha} = B$ for all distinct $\lambda, \alpha \in \Lambda$.

Lemma 2 (Δ -system lemma, see, e.g., [Ju80], Lemma 0.6). Let $\Lambda > \omega$ be a regular cardinal and $\{A_{\lambda}\}_{\lambda \in \Lambda}$ a family of finite subsets of Λ . Then there exists a subfamily $\Omega \subset \Lambda$ of cardinality Λ that is a Δ -system.

By a more or less standard argument, we obtain the next mild strengthening of the previous result.

Corollary 3. Let $\Lambda > \omega$ be a regular cardinal, X a Banach space with an Mbasis $\{x_{\gamma}; f_{\gamma}\}_{\gamma \in \Gamma}$, $\{v_{\lambda}\}_{\lambda \in \Lambda}$ a long sequence of finitely supported vectors in X with supports $\{A_{\lambda}\}_{\lambda \in \Lambda}$ and only rational coefficients $\langle v_{\lambda}, f_{\gamma} \rangle$. Then there exists a subset $\Omega \subset \Lambda$ of cardinality Λ and a finite set $B \subset \Lambda$ such that $A_{\lambda} \cap A_{\alpha} = B$ for all $\lambda, \alpha \in \Omega$, and the coefficients of v_{λ} on B are independent of $\lambda \in \Omega$.

Proof. Apply Lemma 2 to the family $\{A_{\lambda}\}_{\lambda \in \Lambda}$ to obtain a Δ -system $\{A_{\lambda}\}_{\lambda \in \Lambda'}$ with root B such that $|\Lambda'| = |\Lambda|$. The set \mathbb{Q}^B is countable. We define a mapping $r: \Lambda' \to \mathbb{Q}^B$ by $r(v_{\lambda})(b) = v_{\lambda}(b)$ for all $b \in B$ and $\lambda \in \Lambda'$. Assume that $|\{\lambda \in \Lambda' : r(\lambda) = \mathbf{q}\}| < |\Lambda|$ for all $\mathbf{q} \in \mathbb{Q}^B$. We have $\Lambda' = \bigcup_{\mathbf{q} \in \mathbb{Q}^B} \{\lambda \in \Lambda' : r(\lambda) = \mathbf{q}\}$. Since \mathbb{Q}^B is countable and $|\Lambda'| (> \omega)$ is regular we obtain a contradiction, hence there exists $\mathbf{q} \in \mathbb{Q}^B$ such that $|\Omega| = |\Lambda|$, where $\Omega := \{\lambda \in \Lambda' : r(\lambda) = \mathbf{q}\}$. For all $\lambda \in \Omega$ and $b \in B$ we get $v_{\lambda}(b) = \mathbf{q}(b)$. \square

Recall (see, e.g., [J78]) that every non-limit cardinal is regular, and thus in particular every cardinal is a limit of a transfinite increasing sequence of regular cardinals. We rely on orthonormal matrices with special properties, described below.

Lemma 4. Given $n \in \mathbb{N}$, there exists an orthonormal matrix $W := (a_{k,j}^n)_{0 \le k,j < 2^n}$ with real coefficients, such that

$$a_{k,0}^n = 2^{-\frac{n}{2}} \quad for \ 0 \le k < 2^n,$$
 (1)

$$\sum_{j=1}^{2^n - 1} |a_{k,j}^n| < 1 + \sqrt{2} \qquad for \ 0 \le k < 2^n.$$
⁽²⁾

Such matrices were used by Ovsepian and Pełczyński in [OP75]. For a concrete example of Walsh matrices see, e.g., [HMVZ, Lemma 5.17] or [LT77, Lemma 1.f.5].

The following is the main result of this note.

Theorem 5. Let X be a Banach space with an M-basis $\{x_{\gamma}; f_{\gamma}\}_{\gamma \in \Gamma}$, and let $\varepsilon > 0$. Then X admits an M-basis $\{x'_{\gamma}; f'_{\gamma}\}_{\gamma \in \Gamma}$ such that $\|x'_{\gamma}\| \|f'_{\gamma}\| \le 2(1+\sqrt{2}) + \varepsilon$ for every $\gamma \in \Gamma$. Moreover, $\operatorname{span}\{x_{\gamma} : \gamma \in \Gamma\} = \operatorname{span}\{x_{\gamma}' : \gamma \in \Gamma\}$ and $\operatorname{span}\{f_{\gamma} : \gamma \in \Gamma\}$ $\Gamma\} = \operatorname{span}\{f'_{\gamma}: \gamma \in \Gamma\}.$

Proof. For convenience, we may assume without loss of generality that Γ is an ordinal of cardinality $|\Gamma|$. We are going to find a system consisting of a splitting $\Gamma = \bigcup_{\lambda \in \Gamma} A_{\lambda}$, where all A_{λ} are countable and pairwise disjoint, together with biorthogonal systems $\{x'_{\gamma}; f'_{\gamma}\}_{\gamma \in A_{\lambda}}$, so that

 $span\{x'_{\gamma} : \gamma \in A_{\lambda}\} = span\{x_{\gamma} : \gamma \in A_{\lambda}\}$ $span\{f'_{\gamma} : \gamma \in A_{\lambda}\} = span\{f_{\gamma} : \gamma \in A_{\lambda}\}$ Α.

- В.
- $||x'_{\gamma}|| ||f'_{\gamma}|| \leq 2(1+\sqrt{2}) + \varepsilon$, for all $\gamma \in A_{\lambda}, \lambda \in \Gamma$ С.

The existence of such a system clearly implies the statement of the theorem. We construct the A_{λ} 's and the biorthogonal system associated to each of them by using induction in $\lambda \in \Gamma$.

We start by putting $A_1 := \{0\}$ (the first element in Γ), and letting $\{x'_0; f'_0\}$ be a (single-element) biorthogonal system in span $\{x_0\} \times \text{span}\{f_0\}$ with $||x'_0|| = ||f'_0|| = 1$. Suppose we achieved this for all $\lambda < \beta \in \Gamma$. It remains to obtain the objects A_{β} and $\{x'_{\gamma}; f'_{\gamma}\}_{\gamma \in A_{\beta}}$. To this end we are going to construct an increasing sequence $\{A^j\}_{j=1}^{\infty}$, $A^{j} \subset A^{j+1}$, of finite subsets of Γ , so that $A_{\beta} = \bigcup_{j=1}^{\infty} A^{j}$. We are simultaneously going to build finite biorthogonal systems $\{x_{\gamma}^{j}; f_{\gamma}^{j}\}_{\gamma \in A^{j}}, j \in \mathbb{N}$, and a sequence of finite sets $\{C^j\}_{j=1}^{\infty}$ satisfying the following conditions for all $j \in \mathbb{N}$.

- $\operatorname{span}\{x_{\alpha}: \alpha \in A^{j}\} = \operatorname{span}\{x_{\alpha}^{j}: \alpha \in A^{j}\}.$ 1.
- $\operatorname{span}\{f_{\alpha}: \alpha \in A^j\} = \operatorname{span}\{f_{\alpha}^j: \alpha \in A^j\}.$ 2.
- $C^{j} = \{ \alpha \in A^{j} : \|x_{\alpha}^{j}\| \|f_{\alpha}^{j}\| \le 2(1+\sqrt{2}) + \varepsilon \}.$ $A^{j} \subset C^{j+1}.$ 3.
- 4.
- 5.
- $\begin{array}{l} x_{\gamma}^{j+1} = x_{\gamma}^{j} \text{ whenever } \gamma \in C^{j}. \\ f_{\gamma}^{j+1} = f_{\gamma}^{j} \text{ whenever } \gamma \in C^{j}. \end{array}$ 6.

7. $\operatorname{span}\{x_{\alpha}^{j}: \alpha \in A^{j}\} \subset \operatorname{span}\{x_{\alpha}^{j+1}: \alpha \in C^{j+1}\}.$

8. $\operatorname{span}\{f_{\alpha}^{j}: \alpha \in A^{j}\} \subset \operatorname{span}\{f_{\alpha}^{j+1}: \alpha \in C^{j+1}\}.$

The existence of such systems now implies the inductive step in the proof of the main theorem.

Indeed, we put $A_{\beta} := \bigcup_{j=1}^{\infty} A^j$ $(= \bigcup_{j=1}^{\infty} C^j)$. If $\gamma \in C^j$ for some $j \in \mathbb{N}$ then, by 5., $x_{\gamma}^j = x_{\gamma}^{j+l}$ for all $l \in \mathbb{N}$, and so we can put $x_{\gamma}' := x_{\gamma}^j$. Similarly, by 6., $f_{\gamma}^j = f_{\gamma}^{j+l}$ for all $l \in \mathbb{N}$, and we put $f_{\gamma}' = f_{\gamma}^j$. The biorthogonality of $\{x_{\gamma}'; f_{\gamma}'\}_{\gamma \in A_{\beta}}$ follows from the fact that $\{x_{\gamma}^j; f_{\gamma}^j\}_{\gamma \in A^j}$ is biorthogonal for every $j \in \mathbb{N}$. Conditions A. and B. are checked easily. On one hand, if $\gamma \in A_{\beta}$, then $\gamma \in C^j$ for some $j \in \mathbb{N}$, so by 1.,

$$x'_{\gamma} = x^j_{\gamma} \in \operatorname{span}\{x_{\alpha} : \ \alpha \in A^j\} \subset \operatorname{span}\{x_{\alpha} : \ \alpha \in A_{\beta}\},$$

and, since $\gamma \in A^j$, by 7.,

 $\begin{aligned} x_{\gamma} \in \operatorname{span}\{x_{\alpha}^{j}: \ \alpha \in A^{j}\} \subset \operatorname{span}\{x_{\alpha}^{j+1}: \ \alpha \in C^{j+1}\} \\ = \operatorname{span}\{x_{\alpha}': \ \alpha \in C^{j+1}\} \subset \operatorname{span}\{x_{\alpha}': \ \alpha \in A_{\beta}\}. \end{aligned}$

We obtain similar results for f'_{γ} and f_{γ} . Note that conditions 3. and 4. imply C.. It remains to check that $\bigcup_{\lambda \in \Gamma} A_{\lambda} = \Gamma$. This follows from the fact (see below) that in the construction of $\{A^j\}_{j \in \mathbb{N}}$ we start by taking $A^1 := \{\gamma_0\}$, where γ_0 is the first element in $\Gamma \setminus \bigcup_{\lambda < \beta} A_{\lambda}$, so $A_{\beta} \neq \emptyset$ while $\bigcup_{\lambda < \beta} A_{\lambda} \neq \Gamma$.

To start, put $A^1 = \{\gamma_0\}$, where γ_0 is the first element in $\Gamma \setminus \bigcup_{\lambda < \beta} A_\lambda$, $x_{\gamma_0}^1 := x_{\gamma_0}$, and $f_{\gamma_0}^1 := f_{\gamma_0}$. Put $C^1 := \{\gamma_0\}$ if $||x_{\gamma_0}|| ||f_{\gamma_0}|| \le 2(1 + \sqrt{2}) + \varepsilon$, $C^1 = \emptyset$ otherwise. Let us describe the inductive step from j to j + 1. Suppose that A^p , x_{γ}^p , f_{γ}^p for $p \le j$ have been constructed, such that 1.-8. are satisfied whenever the indices exist. Put $L = \{\lambda_1, \ldots, \lambda_k\} = A^j \setminus C^j$, and find C > 0 such that $\sup\{||x_\lambda||, ||f_\lambda|| : \lambda \in L\} < C$. Put $N = 2^n - 1$, with $n \in \mathbb{N}$ large enough to have $2^{-n/2}C < \varepsilon$. Use Theorem 1 to find $K := K(N, \varepsilon)$. We are going to build a family $\{S_\lambda : \lambda \in L\}$ of finite pairwise disjoint subsets of Γ , disjoint also from $\bigcup_{\lambda < \beta} A_\lambda \cup \bigcup_{i \le j} A^i$, together with finite biorthogonal systems $\{y_{\gamma}; g_{\gamma}\}_{\gamma \in S_\lambda}, \lambda \in L$, such that, for all $\lambda \in L$,

- a. $S_{\lambda} = S_{\lambda}^1 \cup S_{\lambda}^2, \ |S_{\lambda}^1| = N, \ S_{\lambda}^1 \cap S_{\lambda}^2 = \emptyset.$
- b. $\operatorname{span}\{x_{\gamma}: \gamma \in S_{\lambda}\} = \operatorname{span}\{y_{\gamma}: \gamma \in S_{\lambda}\}.$
- c. $\operatorname{span}\{f_{\gamma}: \gamma \in S_{\lambda}\} = \operatorname{span}\{g_{\gamma}: \gamma \in S_{\lambda}\}.$
- d. $\{g_{\gamma} : \gamma \in S^1_{\lambda}\}$ is $(1 + \varepsilon)$ -equivalent to the unit basis of ℓ_2^N .
- e. $||y_{\gamma}|| \leq 2 + 2\varepsilon$, for $\gamma \in \bigcup_{\lambda \in L} S_{\lambda}$.

Finding the above system is the main step of our construction. We have $|\beta| < \Gamma$ and so there exists a regular cardinal $R, \beta < R \leq \Gamma$. Denote $\{B_{\lambda,\alpha}\}_{\lambda \in L, \alpha < R}$ a system of pairwise disjoint subsets of $\Gamma \setminus \bigcup_{\delta < \beta} A_{\delta}$, each of them of cardinality K. By Theorem 1, we have that every span $\{f_{\gamma} : \gamma \in B_{\lambda,\alpha}\}$ contains a $(1+\varepsilon)$ -isometric copy $G_{\lambda,\alpha}$ of ℓ_2^N . Since the pair of finite dimensional spaces

$$\operatorname{span}\{f_{\gamma}: \gamma \in B_{\lambda,\alpha}\}, \operatorname{span}\{x_{\gamma}: \gamma \in B_{\lambda,\alpha}\})$$

is a dual pair, it follows by standard linear algebra that there exist a splitting $B_{\lambda,\alpha} = D_{\lambda,\alpha} \cup E_{\lambda,\alpha}, \ D_{\lambda,\alpha} := \{\gamma_1^{\lambda,\alpha}, \ldots, \gamma_N^{\lambda,\alpha}\}, \ D_{\lambda,\alpha} \cap E_{\lambda,\alpha} = \emptyset$, and a finite biorthogonal system $\{h_{\gamma}; z_{\gamma}\}_{\gamma \in B_{\lambda,\alpha}}$, with properties

$$\operatorname{span}\{h_{\gamma}: \gamma \in B_{\lambda,\alpha}\} = \operatorname{span}\{f_{\gamma}: \gamma \in B_{\lambda,\alpha}\},\$$

$$\operatorname{span}\{z_{\gamma}: \gamma \in B_{\lambda,\alpha}\} = \operatorname{span}\{x_{\gamma}: \gamma \in B_{\lambda,\alpha}\},\$$

 ${h_{\gamma}}_{\gamma \in D_{\lambda,\alpha}}$ is $(1 + \varepsilon)$ -equivalent to the unit basis of ℓ_2^N .

Let $G_{\lambda,\alpha} := \operatorname{span}\{h_{\gamma} : \gamma \in D_{\lambda,\alpha}\}.$

Fix $\lambda \in L$, $\alpha < R$, and $\gamma \in D_{\lambda,\alpha}$. Put $X_{\gamma} := z_{\gamma} \upharpoonright_{G_{\lambda,\alpha}}$.

Clearly, $1 \leq ||X_{\gamma}|| \leq 1 + \varepsilon$. Denote X_{γ} again the Hahn-Banach norm-preserving extension of X_{γ} from $G_{\lambda,\alpha} \hookrightarrow X^*$ to the whole X^* , so $X_{\gamma} \in X^{**}$. Since obviously $\overline{\text{span}}_{\mathbb{Q}}\{x_{\zeta}\}_{\zeta \in \Gamma} = X$, a standard application of Helly's theorem (see, e.g.,

[Γ^{\sim} , Exercise 3.36]) provides an element $\tilde{x}_{\gamma} \in \operatorname{span}_{\mathbb{Q}}\{x_{\zeta} : \zeta \in \Gamma\}$ such that $\|\tilde{x}_{\gamma}\| < \|X_{\gamma}\| + \varepsilon \ (< 1 + 2\varepsilon)$ and $\tilde{x}_{\gamma} \upharpoonright_{G_{\lambda,\alpha}} = X_{\gamma}$. Denote by $F_m^{\lambda,\alpha} \subset \Gamma$ the finite support sets of $\tilde{x}_{\gamma_m^{\lambda,\alpha}}, m \in \{1,\ldots,N\}$. Apply Corollary 3 to the given M-basis $\{x_{\gamma}; f_{\gamma}\}_{\gamma \in \Gamma}$ and to each system $\{\tilde{x}_{\gamma_m^{\lambda,\alpha}}\}_{\alpha < R}, m \in \{1,\ldots,N\}, \lambda \in L$, to obtain a (single) subset $R' \subset R$ of cardinality |R|, such that the following conditions hold. There exists finite sets $\Delta_{\lambda,m} \subset \Gamma$, such that for all $\alpha < \xi \in R', m \in \{1,\ldots,N\}, \lambda \in L$,

- 1. $F_m^{\lambda,\alpha} \cap F_m^{\lambda,\xi} = \Delta_{\lambda,m} \text{ (so supp } (\tilde{x}_{\gamma_m^{\lambda,\alpha}} \tilde{x}_{\gamma_m^{\lambda,\xi}}) \cap \Delta_{\lambda,m} = \emptyset).$
- 2. $F_m^{\lambda,\xi} \setminus \Delta_{\lambda,m} \subset \Gamma \setminus (\bigcup_{\alpha < \xi} B_{\lambda,\alpha} \cup \bigcup_{i \le j} A^i \cup \bigcup_{\lambda < \beta} A_\lambda)$

It is also easy to see that by a suitable choice of $\alpha_{\lambda}, \xi_{\lambda} \in R'$, for $\lambda \in L$, we may, without loss of generality, assume that putting for $m \in \{1, 2, ..., N\}$

$$\begin{split} \hat{x}_{\lambda,m} &:= \tilde{x}_{\gamma_m^{\lambda,\alpha_\lambda}} - \tilde{x}_{\gamma_m^{\lambda,\xi_\lambda}} \\ \hat{f}_{\lambda,m} &= h_{\gamma_m^{\lambda,\alpha_\lambda}}, \end{split}$$

we have, in addition, that $\operatorname{supp}(\hat{x}_{\lambda,m}) \cap \operatorname{supp}(\hat{x}_{\lambda',m'}) = \emptyset$ unless $\lambda = \lambda', m = m'$. Thus we have that

$$\{\hat{x}_{\lambda,m}, \hat{f}_{\lambda,m}\}_{m \in \{1,\dots,N\}}$$

is a biorthogonal $(2 + 2\varepsilon)$ -bounded biorthogonal system such that vectors $\hat{x}_{\lambda,m}$, $m \in \{1, 2, \ldots, N\}$, have disjoint supports with similar systems built previously in the inductive process. Next, we put

$$S_{\lambda} := B_{\lambda, \alpha_{\lambda}} \cup \bigcup_{m=1}^{N} \operatorname{supp}(\hat{x}_{\lambda, m}), \text{ for } \lambda \in L.$$

Again, we have $S_{\lambda} \cap S_{\lambda'} = \emptyset$, unless $\lambda = \lambda'$. Let $S_{\lambda}^1 = D_{\lambda,\alpha_{\lambda}} = \{\gamma_1^{\lambda,\alpha_{\lambda}}, \ldots, \gamma_N^{\lambda,\alpha_{\lambda}}\}$. For every $\gamma = \gamma_m^{\lambda,\alpha_{\lambda}} \in S_{\lambda}^1$, we put $g_{\gamma} := \hat{f}_{\lambda,m}, y_{\gamma} := \hat{x}_{\lambda,m}$. This choice guarantees that conditions a., d., and e. are satisfied. It remains to use standard linear algebra in order to add elements g_{γ}, y_{γ} for $\gamma \in S_{\lambda}^2$, so that b. and c. will be satisfied. To finish the inductive step, put $A^{j+1} := A^j \cup \bigcup_{\lambda \in L} S_{\lambda}$. For $\gamma \in C^j$, we let

To finish the inductive step, put $A^{j+1} := A^j \cup \bigcup_{\lambda \in L} S_{\lambda}$. For $\gamma \in C^j$, we let $x_{\gamma}^{j+1} := x_{\gamma}^j, f_{\gamma}^{j+1} := f_{\gamma}^j$. For $\lambda \in L$ put $\hat{x}_{\lambda,0} := x_{\lambda}, \hat{f}_{\lambda,0} := f_{\lambda}$. We have that $\{\hat{x}_{\lambda,m}; \hat{f}_{\lambda,m}\}_{m \in \{0,\ldots,N\}}$ is a biorthogonal system. Let $W := (a_{i,j})_{i,j=0,\ldots,N}$ be a matrix from Lemma 4. Put, for $k = 0, 1, 2, \ldots, N$,

$$u_k^{\lambda} := \sum_{m=0}^N a_{k,m} \hat{x}_{\lambda,m}, \qquad v_k^{\lambda} := \sum_{m=0}^N a_{k,m} \hat{f}_{\lambda,m}.$$

Finally, define x_{γ}^{j+1} and f_{γ}^{j+1} for $\gamma \in A^{j+1}$ in the following way:

$$\begin{aligned} x_{\gamma}^{j+1} &:= \begin{cases} u_{0}^{\lambda}, & \text{if } \gamma = \lambda \in L, \\ u_{m}^{\lambda}, & \text{if } \gamma \in S_{\lambda}^{1} \ (= D_{\lambda, \alpha_{\lambda}}), \ \gamma = \gamma_{m}^{\lambda, \alpha_{\lambda}}, \\ y_{\gamma}, & \text{if } \gamma \in S_{\lambda}^{2}. \end{cases} \\ f_{\gamma}^{j+1} &:= \begin{cases} v_{0}^{\lambda}, & \text{if } \gamma = \lambda \in L, \\ v_{m}^{\lambda}, & \text{if } \gamma \in S_{\lambda}^{1} \ (= D_{\lambda, \alpha_{\lambda}}), \ \gamma = \gamma_{m}^{\lambda, \alpha_{\lambda}}, \\ g_{\gamma}, & \text{if } \gamma \in S_{\lambda}^{2}. \end{cases} \end{aligned}$$

Since W is an orthonormal matrix, we obtain that $\{x_{\gamma}^{j+1}; f_{\gamma}^{j+1}\}_{\gamma \in \{\lambda\} \cup S_{\lambda}^{1}}$ is again a biorthogonal system, for every $\lambda \in L$.

It remains to estimate the norms of the new vectors and functionals. By using the condition d_{\cdot} , (1), and the orthonormality of W, we get the following estimate,

whenever $\gamma \in \{\lambda\} \cup S^1_{\lambda}$:

$$\|f_{\gamma}^{j+1}\| < 2^{-n/2} \|f_{\lambda}\| + (1+\sqrt{2}) \max_{1 \le m \le N} \|\hat{f}_{\lambda,m}\|$$

$$\leq 2^{-n/2}C + (1+\sqrt{2})(1+\varepsilon) < (1+\sqrt{2}) + 4\varepsilon$$

Similarly, using (2) instead,

$$\begin{aligned} \|x_{\gamma}^{j+1}\| &< 2^{-n/2} \|x_{\lambda}\| + (1+\sqrt{2}) \max_{1 \le m \le N} \|\hat{x}_{\lambda,m}\| \\ &\le 2^{-n/2}C + (1+\sqrt{2})2(1+2\varepsilon) < 2(1+\sqrt{2}) + 13\varepsilon. \end{aligned}$$

Since $\varepsilon > 0$ was arbitrary, these estimates imply conditions 4., 7., 8.. The remaining conditions follow from our construction by standard arguments.

Let us recall that Plichko in [Pl86] ([HMVZ], Example 5.19) has constructed an example of a WCG space which has no *C*-bounded M-basis, for every C < 2. On the other hand, in [Pl79] there is a generalization of the construction of $(1 + \varepsilon)$ -bounded M-basis in a separable space, to the case of WCG spaces, where one obtains $(2 + \varepsilon)$ -bounded M-bases. This result can be generalized to spaces with "many projections". In particular, one gets the following result.

Proposition 6. Every Banach space belonging to a \mathcal{P} -class of nonseparable Banach space admits a $(2 + \varepsilon)$ -bounded M-basis for every $\varepsilon > 0$.

Proof. Only formal changes in the proof in [Pl79] are needed. Let $\{P_{\alpha}\}_{\alpha\in\Gamma}$ be a projectional resolution of the identity in X, such that $P_{\alpha}(X)$ belong to \mathcal{P} for all α . Each space $X_{\alpha} = (P_{\alpha+1} - P_{\alpha})(X)$ contains a 1-complemented separable space Y_{α} , which is 2-complemented in the whole X. In each of Y_{α} , we can build an M-basis, $\{x_{\alpha}^{\alpha}; f_{\alpha}^{\alpha}\}_{i\in\mathbb{N}}$, such that $\{x_{\alpha}^{\alpha}\}_{i=1,\dots,N}$ is almost isometric to the unit basis of ℓ_{2}^{N} , for suitable values of N. Using complementability, it is possible to extend f_{i}^{α} , $i = 1, \dots, N$, onto the whole X keeping the norm below $2 + \varepsilon$. Using a standard device (see, e.g., [Fa97, Proposition 6.2.4]), we can glue all those partial biorthogonal systems into a full M-basis for X. This is the key ingredient in the proof, and the rest follows along the lines of [Pl79].

Acknowledgment. A large part of the work on the present note has been carried out during a visit of the first named author to the Instituto de Matemática Pura y Aplicada, Universidad Politécnica de Valencia, in June 2008. This author wishes to express his thanks for the hospitality and excellent working conditions provided.

References

- [DJ73] W.J. Davis and W.B. Johnson, On the existence of fundamental and total bounded biorthogonal systems in Banach spaces, Studia Math. 45 (1973), 173–179.
- [Fa97] M. Fabian, Gâteaux Differentiability of Convex Functions and Topology, Weak Asplund Spaces, John Wiley & Sons, Interscience, New York, 1997.
- [F[~]] M. Fabian, P. Habala, P. Hájek, V. Montesinos, J. Pelant, and V. Zizler, Functional Analysis and Infinite Dimensional Geometry, Canad. Math. Soc. Books in Mathematics 8, Springer-Verlag, 2001.
- [HMVZ] P. Hájek, V. Montesinos, J. Vanderwerff and V. Zizler, Biorthogonal Systems in Banach Spaces. CMS Books in Mathematics. Canadian Mathematical Society, Springer Verlag, 2007.
- [J78] T. Jech, Set Theory, Academic Press, New York, 1978.
- [Ju80] I. Juhász, Cardinal functions in topology, ten years later, Mathematical Centre Tracts 123, Amsterdam, 1980.
- [LT77] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer-Verlag, 1977.

- [OP75] R.I. Ovsepian and A. Pełczyński, The existence in separable Banach space of fundamental total and bounded biorthogonal sequence and related constructions of uniformly bounded orthonormal systems in L₂, Studia Math. 54 (1975), 149–159.
- $\begin{array}{ll} [\text{Pe76}] & \text{A. Pełczyński, All separable Banach spaces admit for every ε > 0 funda- mental and total biorthogonal sequences bounded by $1 + ε, Studia Math. 55 (1976), 295–304. } \end{array}$
- [PR83] A. Plans and A. Reyes, On the geometry of sequences in Banach spaces, Arch. Math. 40 (1983), 452–458.
- [Pl77] A.N. Plichko, M-bases in separable and reflexive Banach spaces, Ukrain. Mat. Ž. 29 (1977), 681–685.
- [Pl79] A.N. Plichko, The existence of bounded Markushevich bases in WCG spaces, Theory Funct. Funct. Anal. Appl. 32 (1979), 61–69.
- [Pl82] A.N. Plichko, On projective resolutions of the identity operator and Markuševič bases, Soviet Math. Dokl., 25 (1982), 386–389.
- [Pl83] A.N. Plichko, Projection decompositions, Markushevich bases and equiv- alent norms, Mat. Zametki 34, 5 (1983), 719–726.
- [Pl86] A.N. Plichko, On bounded biorthogonal systems in some function spaces, Studia Math. 84 (1986), 25–37.
- [S70] I. Singer, Bases in Banach Spaces I, Springer-Verlag, 1970.
- [S73] I. Singer, On biorthogonal systems and total sequences of functionals II. Math. Ann. 201 (1973), 1–8.
- [S81] I. Singer, Bases in Banach Spaces II, Springer-Verlag, 1981.

MATHEMATICAL INSTITUTE, ACADEMY OF SCIENCES OF THE CZECH REP., ŽITNÁ 25, 115 67 PRAHA 1, CZECH REPUBLIC

E-mail address: hajek@math.cas.cz

Instituto Universitario de Matemática Pura y Aplicada. Departamento de Matemática Aplicada. E.T.S.I. Telecomunicación. Universidad Politécnica de Valencia. Camino de Vera, s/n. 46022 Valencia, Spain

E-mail address: vmontesinos@mat.upv.es