
ON AN UPPER BOUND IN DIMENSION OF REFLEXIVITY CLOSURE
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Abstract. Let V ,W be linear spaces over an algebraically closed field, and let S be an n–dimensional

subspace of linear operators that map V into W . We give a sharp upper bound for the dimension of the

intersection of all images of nonzero operators from S, namely dim (
T

A∈S\{0} Im A ) ≤ dimV − n + 1.

As an application, we also give a sharp upper bound for the dimension of the reflexivity closure Ref S

of S, namely dim (Ref S) ≤ n(n + 1)/2.

1. Introduction and statements of the main results

1.1. Intersection of images. By definition, a field F is algebraically closed if every nonconstant poly-

nomial with coefficient from F has a root if F (all fields will be commutative, without further notice).

A fundamental theorem of algebra states that C, the field of complex numbers, is algebraically closed

field. However, there are many others; one of the examples, important in number theory, is the field of

algebraic numbers. This is in fact the smallest algebraically closed field that contains the integers.

In an algebraically closed field, every n–by–n matrix A ∈ Mn(F) has an eigenvalue. That is, at

least one of the matrices A + λ Id is singular, as λ runs over all the scalars. There is an equivalent way

of formulating this fact in terms of images of matrices: dim
⋂

λ∈F
Im(A + λ Id) ≤ n − 1. We may even

symmetrize the rôle of A and Id because Im X = Im(λ0X) whenever λ0 6= 0 and because Im(X) ⊆ Im(Id).

So we derive yet another equivalent formulation:

dim
⋂

(λ0,λ)∈F2\{0}

Im(λ0A + λ Id) ≤ n − 1.

Moreover, we may replace the identity matrix Id by an arbitrary matrix B:

dim
⋂

(λ0,λ)∈F2\{0}

Im(λ0A + λB) ≤ n − 1.

This is clear if the matrix B is singular. If B is invertible, then the last formula for the pair (A, B) is

equivalent to the formula for the pair (B−1A, Id).

The advantage of these formulas over the eigenvalue problem is that it allows us to work with rect-

angular, and not necessarily square matrices. Our main result below is the generalization of the above

formula for more than two matrices.
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Theorem 1.1. Let F = F̄ be algebraically closed field, let n, m ≥ 1, and suppose A1, . . . , Ak ∈ Mm×n(C)

are m–by–n matrices, with 1 ≤ k ≤ n + 1. Then,

(1.1) dim
⋂

(ξ1,...,ξk) 6=0

Im(ξ1A1 + · · · + ξkAk) ≤ n − k + 1.

Remark 1.2. Although for m–by–n matrices, dim(Im X) ≤ min{m, n} we cannot replace, in general,

in (1.1) the right side with min{m, n} − k + 1. We refer to the last section for more details.

Note that, if A1, . . . , Ak are linearly dependent, the formula (1.1) is automatically true, because the

image of some linear combination of them is zero. Otherwise, A1, . . . , Ak span a k dimensional subspace

of m–by–n matrices. So there is a more compact, but equivalent, version of Theorem 1.1:

Theorem 1.3. Let F = F, let m, n ≥ 1 and 0 ≤ k ≤ n. If S ⊆ Mm×n(F) is a subspace of dimension at

least (k + 1) then

dim
( ⋂

A∈S\{0}

Im A
)
≤ n − k.

To prove Theorem 1.3, we will require a deep result from determinantal varieties. We state it in a

form which resembles [4, Lemma 2.5]:

Lemma 1.4. Let F = F̄ be an algebraically closed field, let 0 ≤ s ≤ n− 1, and let S ⊆ M(n−s+1)×n(F) be

a linear subspace of dimension at least (s +1). Then, S contains a nonzero matrix of rank at most n− s.

Proof. Since S \ {0} is a projective space of dimension at least s, the statement follows by combining

Proposition 11.4 and Proposition 12.2 of [8]. For an alternate proof we refer to Sylvester [11, Corollary I];

with his notation, one uses m := n−s+1. The conclusion is that the subspace of (n−s+1)–by–n matrices,

such that each nonzero member has maximal rank, is of dimension at most ℓ(n − s + 1, n − s + 1, n) ≤
n − (n − s + 1) + 1 = s. �

Proof of Theorem 1.3. We first make three reductions on S and then argue with contradiction. As for the

first reduction, we may clearly assume m ≥ n. Otherwise, when m < n, we would enlarge each member

A ∈ S, by adding zero rows, into Â := ( A
0 ) ∈ Mn(F). This procedure does not change the dimension of

S, nor does it change the dimension of the intersection of the images (because Im Â = (Im A) ⊕ 0n−m.)

As for the second reduction, we may also assume that m = n. Namely, if m > n we will show that

either
⋂

A∈S\{0} Im A = 0 or else we will construct a subspace S′ of n–by–n matrices, with dim S′ = dim S,

but such that dim
⋂

A∈S\{0} Im A ≤ dim
⋂

A′∈S′\{0} Im A′. To this end, we choose any nonzero member

A0 ∈ S. Then, r := rk A0 ≤ min{m, n} implies that there exists an invertible S ∈ Mm(F) (= a change of

basis in F
m) such that S Im A0 = Fr ⊕ 0m−r ⊆ Fn ⊕ 0m−n. Clearly, S Im A = Im(SA), and together with

invertibility of S we derive

(1.2) S
⋂

A∈S\{0}

Im A =
⋂

A∈S\{0}

Im(SA) ⊆ Im(SA0) ⊆ F
n ⊕ 0.

We may identify Fn ⊕ 0m−n with Fn. With this in mind, let P : Fm = Fn ⊕ Fm−n → Fn be a projection

along 0n ⊕ F
m−n. Then, in view of the last two containments in (1.2), and because the images of any
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function f obey f
(⋂

ω Ωω

)
⊆ ⋂ω f(Ωω), we further have

( ⋂

A∈S\{0}

Im(SA)
)

= P
( ⋂

A∈S\{0}

Im(SA)
)
⊆

⋂

A∈S\{0}

P Im(SA) =
⋂

A∈S\{0}

Im(PSA).

Now, if Im(PSA) = 0 for some nonzero A ∈ S, we are done. Otherwise, the map A 7→ PSA is a linear

isomorphism from S onto S′ := PS · S = {PSA; A ∈ S}. Therefore, dim S′ = dim S. Note also that

PSA : Fn → Fn for A ∈ S. So, if m > n and the intersection of images is not zero, we would replace S by

S′. By doing so, we get the wanted subspace S′ ⊆ Mn(F), with dimension at least k + 1, but such that

dim
⋂

A∈S\{0}

Im A = dim
⋂

A∈S\{0}

Im(SA) ≤ dim
⋂

A′∈S′\{0}

Im A′.

So it suffices to prove the theorem when m = n. We may further assume k ≥ 2. Namely for k = 0

the claim is trivial, while for k = 1 Lemma 1.4 already implies that at least one nonzero member of

S ⊆ Mn(F) is not invertible (in fact it is a consequence of the nonemptiness of the spectrum, see the

introduction). Hence, the dimension of its image is at most n − 1 and we are done.

After these reductions we are ready to argue with contradiction. Assume on the contrary that a

subspace S ⊆ Mn(F), of dimension dim S ≤ (k + 1), satisfies d := dimW ′ ≥ n − k + 1, where

W ′ :=
⋂

A∈S\{0}

Im A.

Using a similarity (that is, a change of basis) we may assume that W ′ = 0n−d ⊕ Fd. Then, W ′′ :=

Fk−1 ⊕ 0n−k+1 is a subspace with W ′ + W ′′ = Fn (though the sum is direct only when d = n − k + 1). Let

e1, . . . ek−1 ∈ W ′′ be the standard basis of column vectors. We may now enlarge each member A ∈ S into

an n–by–(n + k − 1) matrix

Â :=
[
A
∣∣
e1

∣∣ · · ·
∣∣
ek−1

]

obtained by concatenating columns. Now, the decomposition Fn = W ′′ ⊕ Fn−k+1 gives

Â =

(
A′ Idk−1

A′′ 0

)
,

and so the rank of Â is equal to the rank of a reduced matrix
(

0(k−1)×n Idk−1

A′′ 0(n−k+1)×(k−1)

)
.

Note that W ′ ⊆ Im A for every nonzero A ∈ S. Since W ′+W ′′ = Fn, the columns of Â span the whole Fn,

and consequently, rk Â = n for every nonzero A ∈ S. In particular, this implies that rkA′′ = n − (k − 1)

for every nonzero A ∈ S. On one hand, since n − (k − 1) > 0, the map A 7→ A′′ is a linear isomorphism

from S onto a subspace S′′ := {A′′; A ∈ S} ⊆ M(n−k+1)×n(F), so dim S′′ = dim S ≥ (k + 1). On the

other hand, if k = n then the space S′′ of 1–by–n matrices is at most n dimensional, and if k < n then

Lemma 1.4 implies that at least one nonzero member of S′′ must have rank ≤ n − k. A contradiction to

rkA′′ = n − (k − 1). �

We conclude this section with a dual version of Theorem 1.3. As usual, given a set of subspaces

Xλ ⊆ W , we let
∨
Xλ stand for the linear span of

⋃
Xλ.
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Corollary 1.5. Under all the assumptions of Theorem 1.3, except for 0 ≤ k ≤ n replaced by 0 ≤ k ≤ m,

we have

dim
∨

A∈S\{0}

KerA ≥ n − m + k.

Proof. Regard m–by–n matrices as linear operators from V := Fn into W := Fm. Given A ∈ S, its

adjoint, A∗ maps the dual space W∗ of W into the dual space V∗. Now, the space of adjoint operators

S∗ := {A∗; A ∈ S} ⊆ Hom(W∗,V∗) is of the same dimension as S, and can be identified with transposed

matrices from S. In particular, S∗ ⊆ Mn×m(F). Also, KerA = (Im A∗)⊥, where X⊥ := {x ∈ V ; f(x) =

0 ∀f ∈ X} is the pre-annihilator of a subspace X ⊆ V∗. Consequently, since spaces are finite-dimensional,

dim
( ∨

A∈S\{0}

KerA
)

= dim
∨

A∈S\{0}

(Im A∗)⊥ = dim
( ⋂

A∗∈S∗\{0}

Im A∗
)
⊥

= n − dim
( ⋂

A∗∈S∗\{0}

Im A∗
)
.

The right-hand side is intersection of images of n–by–m matrices so, by Theorem 1.3 the right-hand side

is greater or equal to n − (m − k). �

2. Application

Let V ,W be vector spaces over a field F and let S ⊆ Hom(V ,W) be a subspace of F-linear operators

from V into W . The reflexivity closure, Ref S is the set of all linear operators T ∈ Hom(V ,W) such that

for every x ∈ V there exists some S = Sx ∈ S with Tx = Sx. Equivalently, Tx ∈ Sx := {Sx, S ∈ S} for

each x. It is immediate that Ref S is also a subspace and it contains S. When dim S < ∞ we introduce

the quantity rdS := dim(Ref S) − dim S = dim((Ref S)/S), which measures how much larger Ref S is

compared to S. Following Delai [6], we call this integer a reflexivity defect of S.

On the one extreme, it may happen that Ref S = S. Such spaces are called reflexive, and have been

extensively studied [3, 7, 9, 10]. . . .

Example 2.1. If S = Lin{T } is a one-dimensional subspace then the elementary exercise validates

Ref S = S, so rdS = 0. More generally, rdS = 0 whenever Ref S = S, that is, whenever S is reflexive.

But on the other extreme, it may happen that the space is far from being reflexive.

Example 2.2. The ideal F ⊆ B(X) of finite-rank operators on some Banach space X is transitive, that

is, Fx = X for every nonzero vector x ∈ X. It follows that Ref F = B(X). Inversely, if Ref S = B(X) for

some subspace of operators, then S must be transitive. Therefore, transitive spaces are as far from being

reflexive, as one can hope for.

However, there are also subspaces which are neither reflexive nor transitive.

Example 2.3. Let e1, . . . , en be a standard basis of column vectors in V := Fn. With respect to this

basis, Hom(Fn, Fn) can be identified with Mn(F), the algebra of n–by–n matrices. Let N ∈ Mn(F) be

an elementary upper-triangular Jordan nilpotent, and let S := Lin{Id, N, . . . , Nn−1} ⊆ Mn(F). Then

it follows from [5, Theorem 4.3], with q(z) := z and (n1, n2) = (n, 0), that Ref S consists of all upper-

triangular matrices. Thus, rdS = n(n + 1)/2 − n.
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It is our aim to show that, for algebraically closed fields, the reflexivity defect is always bounded above

by n(n + 1)/2− n, where n := dim S — see Theorem 2.7 below. Example 2.3 shows that this estimate is

sharp. Before giving a proof, however, we introduce the following notation. Given any subspace U ⊆ V ,

and S ⊆ Hom(V ,W), we let S|U := {T |U ; T ∈ S} be the set of all restrictions of operators from S. Recall

that T |U : U → W .

We start with a trivial observation.

Lemma 2.4. If S ⊆ Hom(V ,W) and U ⊆ V is a subspace then (Ref S)|U ⊆ Ref(S|U ).

Proof. Immediate. �

Lemma 2.5. Suppose O ⊆ Hom(V ,W) is a finite-dimensional subspace of linear operator from V into W.

If U ⊆ V is a subspace then

dimO = dim(O|U) + dim{T ∈ O; T |U = 0}.

In addition, if U = Û + Lin{x} with O|Û = 0 then

dimO = dim(Ox) + dim{T ∈ O; T |U = 0}.

Proof. Let T1, . . . , Tn ∈ O be such that their restrictions T1|U , . . . , Tn|U form a basis for O|U , and let

U1, . . . , Um ∈ O be a basis of {T ∈ O; T |U = 0}. To prove the first part, it suffices to verify that

T1, . . . , Tn, U1, . . . , Um form a basis of O.

Pick any T ∈ O, and consider its restriction to U . There exist scalars λ1, . . . , λn such that T |U =

λ1T1|U + · · ·+Tn|U . Then, T −∑λiTi ∈ {T ∈ O; T |U = 0}. In particular, there exist scalars µ1, . . . , µm

such that T −∑λiTi = µ1U1 + · · · + µmUm. Wherefrom, T =
∑

λiTi +
∑

µjUj .

It remains to show linear independence of the operators T1, . . . , Tn, U1, . . . , Um. Let the scalars

α1, . . . , αn, β1, . . . , βm ∈ F satisfy
∑n

i=1 αiTi +
∑m

j=1 βjUj = 0. Then
∑n

i=1 αiT |U = 0, and so α1 =

· · · = αn = 0. Thus
∑m

j=1 βjUj = 0, and so β1 = · · · = βm = 0 since the operators U1, . . . , Um are

linearly independent. This proves the first statement.

The second equality follows from the first one by noticing that T |U 7→ Tx is an isomorphism between

O|U and Ox. �

We will also require the following general lemma:

Lemma 2.6. Let r ∈ N, let X ,Y be vector spaces over a field F with |F| ≥ r +3, and let O ⊆ Hom(X ,Y)

be a finite-dimensional subspace. Suppose the vectors x,x′ ∈ X satisfy r := dimOx ≥ dimO(x+ λx′) for

λ ∈ F. If y ∈ O(x + λx′) for each nonzero λ ∈ F \ {0} then also y ∈ Ox.

Proof. There is nothing to prove when r = 0.

Assume r ≥ 1. Let S1, . . . , Sn be a basis for O. If necessary we re-index this basis such that the first

r vectors S1x, . . . , Srx are linearly independent, while Sr+1x, . . . , Snx are their linear combinations.

Clearly, the vectors S1x, . . . , Snx, S1x
′, . . . , Snx′ span the finite-dimensional subspace Ox+ Ox′ ⊆ Y ,

and O(x + λx′) ⊆ Ox + Ox′ for every λ. Choose and fix an arbitrary basis of Ox + Ox′. With respect

to this basis, we may identify Ox + Ox′ with Fd, for some d ≥ r. By doing so, we may assume that

y, S1x, . . . , Snx, S1x
′, . . . , Snx′ are already column vectors from F

d.
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Construct a d × (n + 1) matrix

Ξ(λ) :=
[
y
∣∣ S1(x + λx′)

∣∣ · · ·
∣∣ Sn(x + λx′)

]

by concatenating the column vectors one after another. Now, by assumptions, y ∈ O(x + λx′), so y is

a linear combination of S1(x + λx′), . . . , Sn(x + λx′), for every λ 6= 0. Moreover, due to r = dimOx ≥
dimO(x + λx′), there are at most r linearly independent vectors among S1(x + λx′), . . . , Sn(x + λx′).

Equivalently stated, rkΞ(λ) ≤ r for every λ 6= 0. So, every (r+1)× (r+1) minor of Ξ(λ) is identically

zero, for λ 6= 0. But note that Si(x + λx′) = Six + λSix
′ implies that these minors are polynomials in

variable λ of degree at most r + 1. Since they vanish for λ 6= 0, and the field F has at least r + 2 nonzero

elements, every (r + 1)× (r + 1) minor is a zero polynomial. Therefore, they also vanish at λ = 0, which

gives rk Ξ(λ)|λ=0 ≤ r.

By assumptions, S1x, . . . , Srx are linearly independent, which means that the second, third, . . . (r+1)-

th column of Ξ(0) are also linearly independent. But then, rkΞ(0) ≤ r implies that the first column of

Ξ(0), that is the vector y, must be a linear combination of the vectors S1x, . . . , Srx. Equivalently,

y ∈ Lin{S1x, . . . , Srx} = Ox. �

We can now prove our main result of this section.

Theorem 2.7. Suppose that V ,W are vector spaces over an algebraically closed field, and let S ⊆
Hom(V ,W) be a finite-dimensional subspace of operators from V to W. Then,

dim(Ref S) ≤ (dim S)(1 + dim S)

2

Proof. To shorten the arguments we write n := dim S. We first verify the claim for the restriction of S

to finite-dimensional vector subspaces of V .

So suppose Vk ⊆ V is a subspace of dimension k, and consider B0 := Ref(S|Vk
). Fix a vector x1 ∈ Vk

such that dimB0x1 = maxx∈Vk
dimB0x is maximal. By the definition of reflexive closure, B0x ⊆ Sx for

every x ∈ Vk, giving dimB0x ≤ n. Now, let B1 := {A ∈ B0; Ax1 = 0}. We next construct inductively

vectors x2,x3, . . . ,xk ∈ Vk and subspaces B2, . . . , Bk ⊆ B0 such that dimBi−1xi = maxx∈Vk
dimBi−1x

and Bi := {A ∈ B0; Ax1 = · · · = Axi = 0}. Clearly we may assume that the vectors x1, . . . ,xk are

linearly independent, so they form a basis of Vk. Then we have B0 ⊇ B1 ⊇ · · · ⊇ Bk = {0}. Moreover,

the operators from B0 are determined by prescribing their values on basis elements of Vk, so that

dimBi ≤ dim B0 ≤ dimVk · max
x∈Vk

dim Sx ≤ kn < ∞.

We proceed by showing that Bi−1xi ⊆ Bi−2xi−1, (i ≥ 2). Let i ≥ 2 and let A ∈ Bi−1 be arbitrary.

For each λ ∈ F \ {0} we have

Axi = A(λ−1xi−1 + xi) ∈ Bi−1(λ
−1xi−1 + xi) = Bi−1(xi−1 + λxi) ⊆ Bi−2(xi−1 + λxi); (λ 6= 0).

Since dimBi−2xi−1 = maxx∈Vk
dimBi−2x, and as algebraically closed fields have infinite cardinality,

Lemma 2.6 for O := Bi−2 and y := Axi indeed gives Axi ∈ Bi−2xi−1, as anticipated.

We now claim that

(2.1) Bs−1xs ⊆
⋂

(ξ1,...,ξs)∈Fs\{0}

S

( s∑

i=1

ξixi

)
; (s ≥ 1).
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When s = 1 this follows from the definition of reflexivity closure. So assume s ≥ 2, and let A ∈ Bs−1.

Choose any nontrivial s-tuple (ξ1, . . . , ξs) ∈ Fs \ {0}, and let j be the last index with ξj 6= 0; so ξj+1 =

0 = · · · = ξs. Now,

Axs ∈ Bs−1xs ⊆ Bs−2xs−1 ⊆ · · · ⊆ Bj−1xj = Bj−1

(
xj +

j−1∑

i=1

ξ−1
j ξixi

)
.

Since Bj−1 ⊆ Ref(S|Vk
), we further have, by the definition of the reflexivity closure:

Bj−1

(
xj +

j−1∑

i=1

ξ−1
j ξixi

)
⊆ S

(
xj +

j−1∑

i=1

ξ−1
j ξixi

)
= S

( j∑

i=1

ξixi

)
,

and since A ∈ Bs−1 was arbitrary, we deduce (2.1).

Fix a basis S1, . . . , Sn of S. Then, Ŵ := SVk = Lin{Sixj ; 1 ≤ i ≤ n, 1 ≤ j ≤ k} is a finite-dimensional

subspace of W . Actually, its dimension, m := dim Ŵ satisfies m ≤ kn. So we may identify Ŵ with Fm

and associate to each vector xj the m–by–n matrix, given by the columns

(2.2) Sj :=
[
S1xj |S2xj | · · · |Snxj

]
.

Given a vector x = ξ1x1 + · · · + ξjxj , it is immediate that Sx = Im(ξ1S1 + · · · + ξjSj). Consequently,

we can restate (2.1) as

dim Bs−1xs ≤ dim
⋂

(ξ1,...,ξs)∈Fs\{0}

S

( s∑

i=1

ξixi

)
= dim

⋂

(ξ1,...,ξs)∈Fs\{0}

Im(ξ1S1 + · · · + ξsSs).

By Theorem 1.1,

(2.3) dimBs−1xs ≤ dim
⋂

(ξ1,...,ξs)∈Fs\{0}

Im(ξ1S1 + · · · + ξsSs) ≤ n − s + 1,

wherefrom, with a repeated use of Lemma 2.5 on a nest of subspaces Uj := Lin{x1, . . . ,xj} ⊆ Vk:

dimRef(S|Vk
) = dimB0 ≤ dim(B0|Lin{x1}) + dimB1

≤ dim(B0|Lin{x1}) + dim(B1|Lin{x1,x2}) + dimB2 ≤
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

≤ dim(B0|Lin{x1}) + dim(B1|Lin{x1,x2}) + · · · + dim(Bk−1|{x1,...,xk}) + dimBk =

≤ dimB0x1 + dimB1x2 + · · · + dimBk−1xk + dimBk

≤





n + (n − 1) + · · · + (n − k + 1) + 0; k ≤ n

n + (n − 1) + · · · + 1 + 0; k ≥ n
≤ n(n + 1)

2
.(2.4)

By Lemma 2.4, and in view of (2.4), dim
(
(Ref S)|Vk

)
≤ dimRef(S|Vk

) ≤ n(n + 1)/2 holds for every

finite-dimensional subspace Vk ⊆ V . Therefore, dim(Ref S) ≤ n(n + 1)/2. �
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3. Non-algebraically-closed fields

The estimate in Theorem 2.7 is not true for non-algebraically closed field.

Example 3.1. Consider the 2-dimensional subspace S of M2(R) generated by the matrices

A1 =

(
1 0

0 −1

)
, A2 =

(
0 1

1 0

)
.

It is easy to check that for each nonzero vector x the vectors A1x and A2x are linearly independent and

therefore span all R2. Hence Ref S = M2(R) and dimRef S = 4 (in the complex case dim S = 2 implies

dimRef S ≤ 3, by Theorem 2.7).

We show that for any field we have dimRef S ≤ (dim S)2. First we need the following reduction:

Lemma 3.2. Let n ∈ N, let F be a field satisfying |F| ≥ n +3. Let V ,W be vector spaces over F, let S be

an n-dimensional subspace of Hom(V ,W). Then there exist vector spaces W ′ ⊆ W and S′ ⊆ Hom(V ,W ′)

such that dimW ′ ≤ n, dim S′ ≤ n and dimRef S′ ≥ dim Ref S.

Proof. Fix a vector x ∈ V such that the dimension dim Sx is maximal. Set W ′ = Sx. Clearly dimW ′ ≤ n.

Fix a projection P : W → W with ImP = W ′. Let S′ = PS = {PA; A ∈ S}. Then S′ ⊆ Hom(V ,W ′)

and dim S′ ≤ dim S = n.

Let A ∈ Ref S and Ax = 0. We show that ImA ⊆ W ′. Indeed, let x′ ∈ V be arbitrary. For each

nonzero λ ∈ F we have

Ax′ = A(x′ + λ−1x) ∈ S(x′ + λ−1x) = S(x + λx′).

By Lemma 2.6, we have Ax′ ∈ Sx = W ′.

We have just proved that A ∈ Ref S and Ax = 0 imply A = PA ∈ S′. Consequently,

dimRef S = dim Sx + dim{A ∈ Ref S; Ax = 0}

≤ dim S
′x + dim{B ∈ Ref S

′; Bx = 0} = dimRef S
′.

�

Theorem 3.3. Let n ∈ N, let F be a field satisfying |F| ≥ n + 3. Let V ,W be vector spaces over F, let S

be an n-dimensional subspace of Hom(V , W ). Then dimRef S ≤ n2.

Proof. Suppose on the contrary that dim Ref S > n2. By Lemma 3.2, we may assume that dimW ≤ n.

Consider the space S∗ = {A∗; A ∈ S} ⊆ Hom(W∗,V∗). Then dim S∗ = dim S = n and dimRef S∗ =

dim(Ref S)∗ > n2 (see [5, Proposition 2.1]). Also by the previous lemma, there exist subspaces V ′ ⊆
V∗ and S′ ⊆ Hom(W∗,V ′) such that dim S ≤ n and dim Ref S′ > n2. This is a contradiction since

dimHom(W∗,V ′) = dimW∗ dimV ′ ≤ n2. �

It is perhaps worth noting that the only place in the proof of Theorem 2.7, where we needed that

the field is algebraically closed, was in the estimates (2.3) and (2.4). In all other places the arguments

demand only |F| ≥ 3 + dimBi−2xi−1 when invoking Lemma 2.6 to show that Bi−1xi ⊆ Bi−2xi−1.

However, dimBi−2xi−1 = maxx∈Vk
dimBi−2x ≤ maxx∈Vk

dimB0x = dim Sx1 ≤ n, so we only need
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|F| ≥ n + 3. To appreciate the extra information, we use the notation from the above proof, denote by

~x := (x1, . . . ,xk) a basis for Vk, and introduce subspaces

~x

Ms−1 :=
⋂

(α1,...,αs)∈Fs\{0}

Im(α1S1 + · · · + αsSs), (s = 1, . . . , k).

Recall that the m–by–n matrices Sj were introduced in (2.2). We can now record the following corollary.

Corollary 3.4. Let n ∈ N and let V ,W be finite-dimensional vector spaces over a field with |F| ≥ n + 3.

Suppose S ⊆ Hom(V ,W) is an n-dimensional subspace. Then, there exists a basis ~x := (x1, . . . ,xk) of V
such that

dimRef S ≤ dim
~x

M0 + dim
~x

M1 + · · · + dim
~x

Mk ≤ dim S + dim
~x

M1 + · · · + dim
~x

Mk.

Corollary 3.5. Under the notations from the previous corollary, suppose dim
~x

M1 = 0 for any basis

vectors ~x of V. Then, the space S is reflexive.

Proof. This is evident from the previous corollary plus the fact that 0 =
~x

M1 ⊇
~x

M2 ⊇ · · · ⊇
~x

Mk. �

Remark 3.6. Let V ,W be real vector spaces and S ⊆ Hom(V ,W) a finite-dimensional subspace, dim S = n.

By Theorem 3.3, dimRef S ≤ n2. For n = 2 the estimate is the best possible, see Example 3.1. The same

is true for n = 4 and n = 8 (the main reason is that in these cases there are n square matrices of order

n such that each nontrivial linear combination of them is invertible, see [1] and [2]). However, n = 2, 4, 8

are the only cases when the estimate dimRef S ≤ n2 is the optimal, since for other values of n such a

system of n matrices does not exist. For example, for n = 3 each 3 × 3 matrix has an eigenvalue and it

is easy to show that dimRef S ≤ 7.

Problem: What is the optimal estimate for dimRef S in the real case?

Remark 3.7. We conclude with another question: What is the smallest possible transitive subspace in

Mn(F)? Our results for algebraically closed fields imply that it must have dimension at least dim S ≥
1
2

(
−1 +

√
8n2 + 1

)
— this follows because a subspace is transitive if Ref S = Mn(F). Comparing the

dimensions gives n2 = dim Ref S ≤ dim S(dim S + 1)/2.

4. Examples

Here we provide several examples to illuminate our results. Firstly, it would be tempting to conjecture

the more ‘natural’ formula dim
⋂

(ξ1,...,ξk) 6=0 Im(ξ1A1 + · · ·+ ξkAk) ≤ min{m, n}− k + 1 in place of (1.1).

But this is wrong, in general.

Example 4.1. Consider the 2–by–4 matrices

A0 :=

(
1 0 0 0

0 1 0 0

)
, A1 :=

(
0 0 1 0

0 0 0 1

)
.

It is easy to see that Im(ξ0A0 + ξ1A1) = Lin{(1, 0)t, (0, 1)t} for every nonzero linear combination. Hence,

the intersection of images has dimension 2. However, min{m, n} − k + 1 = 2 − 2 + 1 = 1.
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The next example shows that if S ⊆ Mm×n(C) and dim S = k, but m 6= n − k + 1, then in general

there exists no nonzero matrix A ∈ S with rank ≤ n − k + 1 (c.f. Lemma 1.4).

Example 4.2. Let

A =

{


a b c

0 a b

b 0 a


 ; a, b, c ∈ C

}
.

Then every nonzero matrix in A has rank ≥ 2.

The estimates, provided in Theorem 1.1, respectively, in Theorem 1.3, are sharp. We show this in our

next example.

Example 4.3. Let N be an n–by–n upper-triangular elementary Jordan nilpotent. Consider a subspace

S := Lin{Id, N, N2, . . . , Nk−1}. It is easy to see that

⋂

A∈S\{0}

Im A =
⋂

(ξ0,...,ξk−1) 6=0

Im
(
ξ0N

0 + · · · + ξn−1N
k−1
)

= Im Nk−1 = F
n−k+1 ⊕ 0,

so for this subspace, the upper bound in Theorem 1.1 is achieved.

It would be tempting to conjecture that the inverse of the above statement is also true, up to multipli-

cation by a fixed invertible matrix (that is, up to choosing a basis vectors). In order words, if the upper

bound in (1.1) is achieved, is it always S = P Lin{Id, N, N2, . . . , Nk−1}Q for some invertible matrices

P, Q? The answer is negative:

Example 4.4. Consider a subspace S ⊆ M3(C), spanned by the identity matrix A1 and the nilpotents

A2 :=




0 1 0

0 0 1

0 0 0


 , A3 :=




0 0 0

−1 0 0

0 1 0


 .

Thus, n = 3 = k. One easily sees that ξ2A2 + ξ3A3 is singular for every nonzero linear combination. So,

Im(ξ1A1 + ξ2A2 + ξ3A3) = C3, unless ξ1 = 0 in which case the image always contains the vector (0, 1, 0)t.

Hence,

dim
⋂

ξ1 6=0

Im(ξ1A1) = 3, dim
⋂

(ξ1,ξ2) 6=0

Im(ξ1A1+ξ2A2) = 2, dim
⋂

(ξ1,ξ2,ξ3) 6=0

Im(ξ1A1 +ξ2A2+ξ3A3) = 1.

and the upper bound in (1.1) is always achieved.

On the other hand, no invertible matrices P, Q would force PSQ to be upper–triangular. Namely

otherwise, PA1Q and PA2Q are singular, hence they would have to be strictly upper-triangular. But

two-dimensional subspace Lin{PA1Q, PA2Q} of 3–by–3 strictly upper triangular matrices necessarily

contains a matrix of rank-one, a contradiction because every nonzero linear combination of A1, A2 is of

rank-two. In particular, this shows that PSQ cannot be spanned by powers of a fixed nilpotent.

The inverse of Corollary 3.5 is not true, in general. It may happen that S is reflexive, yet dim
~x

M1 6= 0.
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Example 4.5. Consider a subspace S := Lin{A1, A2} of 3–by–4 matrices, spanned by

A1 :=




1 0 0 0

0 0 1 0

0 0 0 1


 and A2 :=




0 1 0 1

1 0 0 0

0 0 1 0


 .

Let ~x := (e1, . . . , e4) be the standard basis in F4. It follows from the definition (2.2) that S1 =
[
A1e1

∣∣

A2e1

]
=
(

1 0
0 1
0 0

)
and S2 =

[
A1e2

∣∣ A2e2

]
=
(

0 1
0 0
0 0

)
, and so dim

⋂
(α1,α2) 6=0 Im(α1S1 + α2S2) = 1. Despite

this, S is reflexive. This can be computed directly, or else one uses the fact that every nonzero member

from two-dimensional space S has rank 3, and then applies [10, Theorem 1.1].

This example also shows that the inequality (Ref S)|U ⊆ Ref(S|U ) in Lemma 2.4 can be strict — just

use U := Lin{e1, e2} ⊆ F4.
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[9] R. Meshulam, P. Šemrl, Locally linearly dependent operators and reflexivity of operator spaces, Lin. Alg. Appl., 383

(2004), 143-150.
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