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Abstract

We study linearly ordered spaces which are Valdivia compact in their order topology.
We find an internal characterization of these spaces and we present a counter-example
disproving a conjecture posed earlier by the first author. The conjecture asserted that
a compact line is Valdivia compact if its weight does not exceed ℵ1, every point of un-
countable character is isolated from one side and every closed first countable subspace is
metrizable. It turns out that the last condition is not sufficient. On the other hand, we
show that the conjecture is valid if the closure of the set of points of uncountable character
is scattered. This improves an earlier result of the first author.
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1 Introduction

By a compact line we mean a linearly ordered compact space, i.e. a compact space whose
topology is induced by a linear order. We investigate Valdivia compact lines, i.e., compact
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lines which are Valdivia compact spaces. Recall that a compact space K is called Valdivia if
it is homeomorphic to some K ′ ⊆ RΓ for a set Γ such that

{x ∈ K ′ : {γ ∈ Γ : x(γ) 6= ∅} is countable}

is dense in K ′. Valdivia compact spaces play an important role in the study of the structure
of nonseparable Banach spaces. They appeared first in [1], the name was given in [2]. For a
detailed study of this class we refer to [7, 9]. Valdivia compact lines were addressed in [10,
Section 5], [11] and in [9, Section 3]. In [9] the following question was asked.

Question 1. Let K be a compact line satisfying the following three conditions.

(i) K has weight at most ℵ1.

(ii) Each point x ∈ K of uncountable character is isolated from one side (i.e, one of the
intervals (←, x] or [x,→) is open in K).

(iii) Each closed first countable subset of K is metrizable.

Is K necessarily Valdivia?

It is showed there that these conditions are necessary and that they are also sufficient in
case K is either scattered or connected. It is conjectured there [9, Conjecture 3.5] that these
conditions are sufficient in general. In the present paper we show that the conjecture is false
(Example 3.5 below). We further give a characterization of zero-dimensional Valdivia compact
lines using functions defined on stationary subsets of ω1 (Theorem 3.1). In this characterization
we use a strengthening of condition (iii) from the above question. A characterization of general,
not necessarily zero-dimensional, Valdivia compact lines is given in Section 4. In Section 5
we show that the above question has positive answer if the points of uncountable character
have scattered closure in K, which generalizes the results of [9]. In the last section we study
compact lines which are continuous images of Valdivia compacta.

2 Preliminaries

In this section we collect some auxiliary results on Valdivia compacta and namely on Valdivia
compact lines, needed in the sequel.
A compact line is a compact space K together with a linear order which induces the topology
of K. It is well known that a linearly ordered set X is compact in its interval topology if and
only if it is order complete, i.e. every nonempty subset of X has both the supremum and the
infimum. A compact line K is zero-dimensional if and only if for every x, y ∈ K with x < y
there are x′, y′ such that x ≤ x′ < y′ ≤ y and the open interval (x′, y′) is empty. Given a
compact line K, we shall denote by 0K and 1K the minimal and the maximal element of K
respectively.
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We shall use standard notation concerning intervals in a linearly ordered set. For example:
[a,→) will denote the closed final interval (segment) induced by a, i.e. [a,→) = {x : a ≤ x}.
A subset G of a linearly ordered set X is convex if [x, y] ⊆ G whenever x, y ∈ G are such
that x < y. The smallest convex set containing A ⊆ X will be denoted by conv(A). A map
f : X → Y between linearly ordered sets is increasing if f(x0) ≤ f(x1) whenever x0 ≤ x1.
We shall often use the simple fact that every increasing surjection between compact lines is
continuous.
We treat ordinals as well ordered sets with respect to ∈. In particular, given two ordinals α, β,
α < β holds iff α ∈ β. Recall that ω1 denotes the smallest uncountable ordinal, which is at
the same time treated as a linearly ordered space, endowed with the order topology. We shall
denote by ω−1

1 the set ω1 with reversed ordering. Note that a set C ⊆ ω1 is unbounded if it has
cardinality ℵ1. Recall that a set S ⊆ ω1 is stationary if it intersects every closed unbounded
subset of ω1. The Pressing Down Lemma says that given a stationary set S ⊆ ω1, for every
function f : S → ω1 which is regressive, i.e. f(α) < α for α ∈ S, there exists a stationary set
S′ ⊆ S on which f is constant. For more information concerning ordinals and set-theoretic
notions we refer to [4] and [14].
An ω1-sequence in a topological space X is a function x : ω1 → X. We shall often write
xα instead of x(α). The notion of a limit of an ω1-sequence x is defined naturally. Namely,
p = limα→ω1 xα if for every neighborhood U of p there is α < ω1 such that {xξ : ξ ≥ α} ⊆ U . If
X is linearly ordered and the sequence x is increasing then its possible limit is the supremum
of the set {xα : α < ω1}. A sequence is monotone if it is either increasing or decreasing (i.e.
increasing with respect to the reversed ordering).
Let K be a compact space and A ⊆ K. We say that A is a Σ-subset of K if there is a
homeomorphic injection h : K → RΓ such that A = h−1(Σ(Γ)), where

Σ(Γ) = {x ∈ RΓ : {γ ∈ Γ : x(γ) 6= ∅} is countable}.

Hence, K is Valdivia if and only if it admits a dense Σ-subspace.
Further, if K is a compact line, following [9] we denote by G(K) the set of all points of
K which are either isolated or can be obtained as the limit of a one-to-one sequence. The
following lemma was proved in [9, Lemma 3.1].

Lemma 2.1. Let K be a compact line. Then G(K) is dense in K. Moreover, if K is Valdivia,
then G(K) is the unique dense Σ-subset of K and is formed by all Gδ points of K.

We will also use the following characterization of Valdivia compact lines.

Lemma 2.2. Let K be a compact line. Then K is Valdivia if and only if there is a family A
of open Fσ-intervals in K satisfying the following two conditions:

• Family A separates points of K, i.e. for each distinct points x, y ∈ K there is I ∈ A
containing exactly one of them.

• Each x ∈ G(K) belongs to countably many elements of A.
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Further, if A is such a family, we have

G(K) = {x ∈ K : {I ∈ A : x ∈ I} is countable}.

If K is moreover zero-dimensional, the family A may be chosen to consist of clopen intervals.

Proof. It follows from Lemma 2.3 and [7, Proposition 1.9] that being Valdivia is equivalent
to the existence of a family of open Fσ sets satisfying the two conditions. We have also the
equality given above. Finally, as each open Fσ subset of a compact space is Lindelöf, it can
be expressed as a countable union of elements of a given basis. Therefore A may be chosen to
consist of open Fσ-intervals and in case K is zero-dimensional to consist of clopen intervals.

The next result is proved in [9, Proposition 3.2] and shows that Valdivia compact lines have
rather exceptional structure.

Lemma 2.3. Let K be a compact line. If K is Valdivia (a continuous image of a Valdivia
compact space), then so is each closed subset of K.

We will further need the following result on continuous images:

Lemma 2.4. Let K be a Valdivia compact line, L a compact line and ϕ : K → L an order-
preserving continuous surjection. Suppose that for each y ∈ L either ϕ−1(y) is a singleton or
ϕ−1(y) ∩G(K) is dense in ϕ−1(y). Then L is Valdivia as well.

Proof. Set
E = {〈x1, x2〉 ∈ K ×K : ϕ(x1) = ϕ(x2)}.

As G(K) is a dense Σ-subset of K, by [6, Lemma 2.9 and Theorem 2.20] it is enough to observe
that E ∩ (G(K)×G(K)) is dense in E. But this easily follows from the assumptions.

3 Zero-dimensional Valdivia compact lines

In this section we give an internal characterization of zero-dimensional Valdivia compact lines.
We first restrict to the 0-dimensional case as there is a duality between compact 0-dimensional
lines and linearly ordered sets. Namely, given a 0-dimensional compact line K, let X (K) be the
set of all clopen final segments F of K such that 0K /∈ F and 1K ∈ F . Then X (K) is a linearly
ordered set (the order being defined by inverse inclusion). Conversely, given a linearly ordered
set X, let K (X) be the set of all final segments endowed with the topology inherited from the
Cantor cube {0, 1}X , where each final segment is identified with its characteristic function.
Then K (X) is a compact 0-dimensional line, the order is given by inverse inclusion. Note that
K (X (K)) is canonically order-homeomorphic to K for each zero-dimensional compact line K
and X (K (X)) is canonically order-isomorphic to X for each linearly ordered set X.
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The above defined operations naturally extend to contravariant functors which witness the
isomorphism between the category of linearly ordered sets with increasing maps and the
category of nonempty compact 0-dimensional lines K with continuous increasing maps.
The promised characterization of zero-dimensional Valdivia compact lines is contained in the
following theorem.

Theorem 3.1. Let X be a linearly ordered set. Then K (X) is Valdivia if and only if the
following three conditions are satisfied.

(1) |X| ≤ ℵ1.

(2) Every bounded monotone ω1-sequence has a limit in X.

(3) For every stationary set S ⊆ ω1 and every map f : S → X there is a stationary set
T ⊆ S such that f |T is monotone.

Let us comment a bit the conditions in the above theorem.
As the cardinality of X is equal to the weight of K (X), condition (1) means just that the
weight of K (X) is at most equal to ℵ1. This corresponds to condition (i) in Question 1.
Condition (2) formulated in more detail means that each increasing ω1-sequence which is
bounded from above has a supremum in X and each decreasing ω1-sequence bounded from
below has an infimum in X. Supposing that (1) holds, the validity of (2) is equivalent to the
validity of condition (ii) from Question 1 for the space K (X). Indeed, if, say, (xα)α<ω1 is an
increasing ω1-sequence which is bounded from above but has no supremum, then the final
segment ⋂

α<ω1

(xα,→)

has uncountable character in K (X) while it is not isolated from either side. Conversely,
suppose that k ∈ K (X) has uncountable character and is not isolated from either side.
Without loss of generality we can suppose that the character of k in (←, k] is uncountable.
Then there are kα ∈ (←, k), k < ω1, isolated from the left such that the ω1-sequence (kα)
is increasing and has limit k. If we set xα = [kα,→), we get an incresing ω1-sequence in X
which is bounded from above and having no limit in X.
As we will see below, condition (3) is a natural strengthening of condition (iii) from Question 1.
We first prove the necessity of a weaker assumption.

Proposition 3.2. Let X be a linearly ordered set. If K (X) is Valdivia compact then the
following condition is satisfied:

(3’) Every uncountable subset of X contains either a copy of ω1 or a copy of ω−1
1 .

Proof. Assume Y ⊆ X contains neither ω1 nor ω−1
1 . Then K (Y ) is a first countable increasing

quotient of K (X), therefore it is Corson compact by the result of [7]. Nakhmanson’s theorem
[16] implies that K (Y ) is metrizable, therefore |Y | ≤ ℵ0.
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Note that condition (3’) is weaker than (3). Indeed, suppose that (3) holds for a linearly
ordered set X. Let Y ⊆ X be uncountable. Then there is a one-to-one map f : ω1 → Y . By
(3) there is a stationary set T ⊆ ω1 such that f |T is monotone. If f |T is increasing, then f [T ]
is a copy of ω1, otherwise it is a copy of ω−1

1 .
Further, note that condition (3’) implies the validity of (iii) for the space K (X). Indeed, let
L ⊆ K (X) be a closed first countable set. As K (X) is zero-dimensional, there is an increasing
retraction r : K (X)→ L. It follows that X (L) is order-isomorphic to a subset of X. As L is
first countable, X (L) contains no copies of ω1 or ω−1

1 . By (3’) we get that X (L) is countable,
so L is metrizable.
Below (in Example 3.5) we show that conditions (1), (2) and (3’) are not sufficient for K (X)
being Valdivia. In particular, this will disprove the above conjecture. But before proving the
example we need two lemmata.

Lemma 3.3. Let X, Y be linearly ordered sets such that Y ⊆ X. Denote by f the dual map to
the inclusion (hence f is an incresing quotient mapping of K (X) onto K (Y )). The following
conditions are equivalent:

(a) The map f is topologically right-invertible.

(b) There exists an increasing map p : conv(Y )→ Y such that p|Y = idY .

(c) Every proper gap 〈A,B〉 in Y remains a gap in X, i.e., whenever A,B ⊆ Y are nonempty
subsets such that A∪B = Y , a < b whenever a ∈ A and b ∈ B, A has no maximum and
B has no minimum, then there is no x ∈ X with a < x < b for all a ∈ A and b ∈ B.

Proof. (a)⇒(b) Let g : K (Y )→ K (X) be a right inverse of f , i.e., f ◦ g = idK(Y ). It is clear
that g must be increasing. We define p as follows. Let y ∈ conv(Y ). Set k = (y,→). Then
k ∈ K (X) and k > 0K(X). As y ∈ conv(Y ), there are y1, y2 ∈ Y with y1 ≤ y ≤ y2. Then

0K(Y ) ≤ [y1,→) ∩ Y < (y1,→) ∩ Y ≤ (y,→) ∩ Y = f(k),

hence k > g(0K(Y )). Further, given any k1 < k we have

f(k1) ≤ [y,→) ∩ Y ≤ [y2 →) ∩ Y < (y2,→) ∩ Y ≤ 1K(Y ),

hence k ≤ g(1K(Y )). Thus [k,→)∩g[K (Y )] is a clopen final segment of g[K (Y )] not containing
g(0K(Y )) but containing g(1K(Y )). So, we can set p(y) = f [[k,→)]. It is now clear that p maps
conv(Y ) into Y and that it is increasing. Finally if y ∈ Y , then [y,→) ∩ Y < (y,→) ∩ Y and
hence f [[k,→) ∩ Y ] = [f(k),→). The latter clopen interval corresponds to y. This completes
the argument.
(b)⇒(c) Let p be such a mapping. Let A,B ⊆ Y be like in (c). Suppose there is x ∈ X such
that a < x < b for each a ∈ A and b ∈ B. Then x ∈ conv(Y ) and so p(x) is defined. As
Y = A ∪ B necessarily p(x) ∈ A or p(x) ∈ B. If p(x) ∈ A, then a = p(a) ≤ p(x) for each
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a ∈ A, so p(x) is the maximum of A, a contradiction. Similarly, if p(x) ∈ B, then p(x) is the
minimum of B, a contradiction.
(c)⇒(a) We will define a right inverse of f as follows. Take k ∈ K (Y ). Then f−1(k) is a closed
interval in K (X), say [α, β]. If it is a singleton, the definition of g(k) is clear. Otherwise, if β
is isolated from the right, set g(k) = α. If β is not isolated from the right but α is isolated
from the left, set g(k) = β. If this can be done for each k ∈ K (Y ), it is clear that g is the
required right inverse.
It remains to show that it is not possible that α < β, α is not isolated from the left and β is not
isolated from the right. Suppose this possibility takes place. Let A be the set of all elements
of Y such that the respective clopen interval has minimum less than k and B be the set of
all elements of Y such that the respective clopen interval has minimum greater than k. Then
A and B do satisfy all assumptions given in (c). As α < β, and K (X) is zero-dimensional,
there is a clopen interval in K (X) with minimum in (α, β]. The corresponding element of x
produces a contradiction with (c).

Lemma 3.4. Let X be a linearly ordered space. Then K (X) is Valdivia if and only if there
is a family (Xα : α < ω1) satisfying the following properties:

(i) Xα is a countable subset of X;

(ii) Xα ⊆ Xβ for α < β;

(iii) Xλ =
⋃

α<λ Xα for every limit ordinal λ < ω1;

(iv) X =
⋃

α<ω1
Xα;

(v) the inclusion Xα ⊆ X satisfies condition (c) of Lemma 3.3.

Proof. It follows from [13, Proposition 2.6 and Corollary 4.3] that a compact space K of weight
ℵ1 is Valdivia if and only if there is an ω1-sequence of retractions (rα : α < ω1) satisfying

• rα[K] is metrizable for each α < ω1;

• rα ◦ rβ = rβ ◦ rα = rα for α ≤ β < ω1;

• the map α 7→ rα(x) is continuous (when ω1 is equipped with the order topology) and
has limit x for each x ∈ K.

Moreover, if K is linearly ordered, the retractions may be chosen increasing (this follows using
[11, Proposition 5.7]).
If K = K (X) is Valdivia, take such retractions and set Xα = X (rα[K]) canonically embedded
into X. Then the family (Xα) satisfies the required conditions, the last one follows from
Lemma 3.3.
Conversely, let (Xα) be a family satisfying the required conditions. Set Xω1 = X and Kα =
K (Xα) for α ≤ ω1. If α ≤ β ≤ ω1 let fβ

α : Kβ → Kα be the incresing surjection dual to
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the inclusion Xα ⊆ Xβ . Then it is clear that fβ
α = fγ

α ◦ fβ
γ for α ≤ γ ≤ β ≤ ω1, hence

we have an inverse sequence indexed by ω1. Moreover, this sequence is continuous because
of condition (iii), all bonding maps are right-invertible by Lemma 3.3, Kα is metrizable for
α < ω1, therefore the limit K = Kω1 is Valdivia compact by [13, Corollary 4.3].

Below is the announced example. In fact, it is a classical construction due to Kurepa [15],
generalized by Todorčević in [17, Section 4].

Example 3.5. There is a linearly ordered set Z satisfying conditions (1), (2) and (3’) such
that K (Z) is not Valdivia.

Proof. Let X = {x ∈ Qω1 : | suppt(x)| < ℵ0} be endowed with the lexicographic ordering,
where suppt(x) = {α : x(α) 6= 0}. Then K (X) is a Valdivia compact. Indeed, the sets

Xα = {x ∈ X : supptx ⊂ α}, α < ω1,

have all properties from Lemma 3.4.
We shall now extend X by adding some new elements. Fix a set S ⊆ ω1 consisting of limit
ordinals. For each δ ∈ S choose a set cδ order isomorphic to ω and such that sup(cδ) = δ.
Now let

YS = {1cδ
: δ ∈ S},

where 1a denotes the characteristic function of the set a ⊆ ω1. Define XS = X ∪ YS . Clearly,
XS satisfies (1). We check that XS satisfies (2).
We will use the following easy observation: If {aα}α<ω1 is a monotone ω1-sequence in Qω1 ,
then

(*) (∀ γ < ω1)(∃ α0 < ω1) {aα � γ}α0≤α<ω1 is constant.

Fix a strictly monotone sequence {aα : α < ω1} ⊆ XS . Define

T = {t ∈ Q<ω1 : ∃ α < ω1 ∀ ξ ≥ α (t ⊆ aξ)}.

By Q<ω1 we mean
⋃

α<ω1
Qα, i.e. functions with rationals values whose domain is a countable

ordinal. We consider Qω1 ordered by inclusion. Note that T is a chain in Q<ω1 . Let g =
⋃

T .
Then either g ∈ T or dom(g) = ω1. The first possibility cannot occur, because assuming
δ = dom(g) < ω1 we would find (due to (*)) α0 < ω1 such that aα � δ + 1 is constant for
α ≥ α0 and then aα0 � δ + 1 = g ∪ {〈δ, aα0(δ)〉} would be an element of T .
Thus g ∈ Qω1 . It is clear that suppt(g) finite, because the sequence is strictly monotone and
hence it contains at most one of the added elements 1cδ

, δ ∈ S. Thus g ∈ X ⊆ XS . Further,
we will show that g is the limit of {aα}α<ω1 in Qω1 .
Suppose that the sequence {aα}α<ω1 is increasing. Then aα ≤ g for all α < ω1. Indeed, suppose
that there is some α0 < ω1 with aα0 > g. Then for each α ≥ α0 we have aα > g and so there
is some γ(α) < ω1 such that aα � γ(α) = g � γ(α) and aα(γ(α)) > g(γ(α)). As {aα}α<ω1 is
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increasing, the ω1-sequence {γ(α)}α0≥α<ω1 is decreasing. Therefore it is eventually constant,
i.e., there is α1 ∈ [α0, ω1) and γ < ω1 such that for each α ∈ [α1, ω1) we have γ(α) = γ. It
follows that g � (γ + 1) /∈ T , a contradiction.
Finally, it follows easily from the definition of g that it is the supremum of {aα}α<ω1 . If
{aα}α<ω1 is decreasing, the proof is similar. This completes the proof of (2).
We now show that XS satisfies (3’). We shall use the fact that K (X) is Valdivia compact. In
particular, by Proposition 3.2, every uncountable subset of X contains a copy of ω1 or ω−1

1 .
Fix (if possible) an uncountable set A ⊆ S. Let us denote yδ = 1cδ

for δ ∈ S. We shall show
that {yδ : δ ∈ A} contains a monotone subsequence. For each limit ordinal λ < ω1 fix δ(λ) ∈ A
such that δ(λ) > λ and set γ(λ) = sup suppt(yδ(λ) � λ). By the Pressing Down Lemma there
is a stationary set S and γ0 < ω1 such that γ(λ) = γ0 for each λ ∈ S. Moreover, as γ0 is
countable and suppt(yδ(λ) � λ) is finite for each λ, there are a stationary set S′ ⊆ S and a
finite set F ⊆ γ0 + 1 such that suppt(yδ(λ) � λ) = F for each λ ∈ S′.
Further we choose λη ∈ S′ for η < ω1 such that λη > δ(λθ) whenever θ < η < ω1. It can be
done as S′ is unbounded in ω1. Finally note that {yδ(λη)}η<ω1 is decreasing by the definition
of the lexicographic order. This finishes the proof of (3’).
Finally, notice that K (XS) is Valdivia compact if and only if S is not stationary. This follows
from Lemma 3.4. Indeed, set

Xδ = {x ∈ XS : ∃γ < δ : supptx ⊆ γ}.

Then the family (Xδ : δ < ω1) satisfies all conditions from Lemma 3.4 except for the last one.
If there is a closed unbounded set C ⊆ ω1 \ S, then the family (Xδ : δ ∈ C) witnesses that
K (XS) is Valdivia.
Conversely, suppose that S is stationary and K (XS) is Valdivia. Let (Yδ : δ < ω1) be the
family witnessing it (i.e., satisfying all the conditions from Lemma 3.4). Now, there is a closed
unbounded set C ⊆ ω1 such that Xδ = Yδ for each δ ∈ C. Choose some δ ∈ C ∩ S. Then the
sets

A = {x ∈ Xδ : x < yδ}
B = {x ∈ Xδ : x > yδ}

witness that condition (c) of Lemma 3.3 is violated for Yδ ⊆ XS . This is a contradiction
showing that K (XS) is not Valdivia.

Before proving Theorem 3.1, we briefly recall the method of elementary substructures which
we use here.
In what follows, the letter χ will denote an uncountable regular cardinal, big enough so that
all relevant objects have cardinality strictly less than χ. More precisely, denote by H(χ) the
family of all sets x whose transitive closure tc (x) has cardinality < χ. Recall that tc (x) =
x∪

⋃
x∪

⋃ ⋃
x∪. . . . Now, saying “χ is big enough” means that all objects under consideration

(e.g. a given topological space, a given transformation, etc.) belong to H(χ).
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The structure 〈H(χ),∈〉 satisfies all the axioms of set theory, except possibly the power
set axiom. A set M is an elementary substructure of of 〈H(χ),∈〉 if M ⊆ H(χ) and for
every formula ϕ(x1, . . . , xn), for every a1, . . . , an ∈ M , M |= ϕ(a1, . . . , an) if and only if
H(χ) |= ϕ(a1, . . . , an). Here, “M |= ϕ” means “M satisfies ϕ” in the usual sense of model
theory. The method of elementary submodels is based on the well known Löwenheim-Skolem
Theorem, saying that every countable subset of H(χ) can be enlarged to a countable ele-
mentary substructure of H(χ). As a consequence, given a countable set S ⊆ H(χ), one can
easily consrtuct by induction a chain {Mα}α<ω1 of countable elementary substructures of
〈H(χ),∈〉 such that S ⊆M0 and α ⊆Mα for every α < ω1. In fact, we may even require that
Mα ∈ Mα+1 and that the chain be continuous, i.e. Mδ =

⋃
ξ<δ Mξ for every limit ordinal δ.

The last property follows from the fact that
⋃

ξ<δ Mξ is again elementary. Given such a chain
{Mα}α<ω1 and setting δα = Mα ∩ ω1, we note that each δα is a countable ordinal and the set
C = {δα : α < ω1} is closed and unbounded in ω1. Consequently, if S is a stationary subset of
ω1, there exists α such that Mα ∩ ω1 ∈ S. We shall use this remark below.
We refer to [13, 10] for applications of elementary submodels in the context of retractions and
Valdivia compacta. More explanations of the method and its use for finding projections in
Banach spaces can be found in [12]. Last but not least, [3] is an important survey on the use
of elementary substructures in general topology.

Proof of Theorem 3.1. Suppose first that K (X) is Valdivia. Then (1) and (2) are satisfied
by the above remarks. Let us prove (3). Let (Xα : α < ω1) be a family with properties from
Lemma 3.4. Let pα : conv(Xα)→ Xα be an increasing projection, i.e. pα � Xα = idXα (it exists
by Lemma 3.3). Let us extend pα by setting pα(x) = −∞ if x < conv(Xα) and pα(x) = +∞
if x > conv(Xα). Assuming −∞ < x < +∞ for every x ∈ X, this defines an increasing map
from X into Xα ∪ {−∞,+∞}. We shall write yα instead of f(α).
Fix a sufficiently big regular cardinal χ and fix a continuous chain {Mα}α<ω1 of elementary
substructures of 〈H(χ),∈〉 such that X ∈ M0, f ∈ M0, {pα}α<ω1 ∈ M0 and α ⊆ Mα for
α < ω1.
If β < α < ω1, then β ∈Mα, so pβ ∈Mα and hence Xβ ∈Mα (as Xβ is the range of pβ). As
Xβ is countable, we get Xβ ⊂Mα by [12, Proposition 2]. Therefore X ⊂

⋃
α<ω1

Mα, and so

C1 = {α < ω1 : Xα = X ∩Mα}

is a closed unbounded set.
Let δα = ω1 ∩Mα and let C2 = {α < ω1 : δα = α}. Then C2 is a closed unbounded subset
of ω1, so C1 ∩ C2 ∩ S is stationary. Note that each δα is a limit ordinal, therefore pα(yα) ∈
Xξ(α) ∪ {−∞,+∞} for some ξ(α) < α. Using the Pressing Down Lemma, we may assume
that ξ(α) = ξ for α ∈ S′, where S′ ⊆ C1 ∩ C2 ∩ S is stationary.
Now suppose that for a stationary set S1 ⊆ S′ we have that pα(yα) = −∞. Then the sequence
{yα : α ∈ S1} is strictly decreasing. Indeed, let α, β ∈ S1 such that α < β. Then α ∈ Mβ,
so yα ∈ Mβ. As α ∈ C1, we get yα ∈ Xβ . Further, pβ(yβ) = −∞ and so yβ < conv(Xβ). In
particular yβ < yα.
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Similarly, if the set S2 = {α ∈ S′ : pα(yα) = +∞} is stationary, we get a strictly increasing
sequence y � S2. So assume that the set

S′′ = {α ∈ S′ : pα(yα) ∈ Xξ}

is stationary. Using the fact that Xξ is countable, further refining S′′ we may assume that
pα(yα) = v ∈ Xξ for all α ∈ S′′. Now suppose α, β ∈ S′′ are such that α < β and v < yα and
v < yβ. Then pβ(yβ) = v and pβ(yα) = yα, because yα ∈ Xβ . Since pβ is order preserving,
necessarily yβ < yα. This observation shows that y � R is strictly decreasing, where

R = {α ∈ S′′ : v < yα}.

Similarly, y � L is strictly increasing, where

L = {α ∈ S′′ : yα < v}.

One of these sets must be stationary, unless y has constant value v on a stationary set. This
completes the proof of (3).
Now we are going to prove sufficiency. Let X satisfy conditions (1)–(3). Write X =

⋃
α<ω1

Xα,
where ~x = {Xα}α<ω1 is an increasing chain of countable subsets of X such that Xδ =

⋃
ξ<δ Xξ

whenever δ is a limit ordinal.
Denote by S the set of all ordinals α < ω1 for which there exist a proper gap 〈Aα, Bα〉 in Xα

and an element yα ∈ X \Xα which fills this gap, i.e. a < yα < b whenever a ∈ Aα, b ∈ Bα. If
there exists a closed unbounded set C ⊆ ω1 \S then we are done by Lemma 3.4. So suppose S
is stationary. Using (3), we fix a stationary subset T ⊆ S such that ~y = {yα}α∈T is monotone.
Note that ~y cannot be constant, because yα /∈ Xα for α ∈ T . Thus, reversing the order if
necessary, we may assume that ~y is strictly increasing.
Fix a big enough regular cardinal χ and fix a continuous chain {Mα}α<ω1 of elementary
substructures of 〈H(χ),∈〉 such that ~x ∈ M0, ~y ∈ M0 and α ⊂ Mα for α < ω1. Similarly as
above we get that Xα ⊂Mβ for α < β < ω1 and hence

C1 = {α < ω1 : Xα = X ∩Mα}

is a closed unbounded set.
Denote again δα = ω1 ∩Mα and let C2 = {α < ω1 : δα = α}. Then C2 is a closed unbounded
subset of ω1 and so is C1 ∩ C2.
Fix δ ∈ C1 ∩C2 ∩ T . Clearly, δ is a limit ordinal, so Xδ =

⋃
ξ<δ Xξ. Recalling that yδ fills the

gap 〈Aδ, Bδ〉 we see that

(**) Mδ |= (∃ b ∈ X)(∀ α ∈ T ) yα < b.

To show it first note that T ∈ M0 ⊂ Mδ, as T is the domain of ~y and ~y ∈ M0. Further, we
know that Xα ⊂ Mδ for each α < δ, so Xδ ⊂ Mδ as well. In particular, Bδ ⊂ Mδ. So, choose
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some b ∈ Bδ. Then b ∈ M . Moreover, if α ∈ T ∩M , then α < δ, so yα < yδ < b. This proves
(**). By elementarity, the sequence ~y is bounded from above.
By (2) there exists g ∈ X such that g = supα∈T yα. Find γ ∈ C1 ∩C2 ∩T such that γ ≥ δ and
g ∈ Xγ = Mγ ∩X.
Observe that [yγ , g) ∩Xγ = ∅. Indeed, if x ∈ Xγ ∩ [yγ , g) then there would exist α ∈ T such
that x < yα < g; by elementarity, we would have x < yβ for some β ∈ T ∩Mγ and hence
x < yγ , a contradiction.
Recalling that g ∈ Xγ , it follows that

g = min
(
[yγ ,→) ∩Xγ

)
= minBγ .

This contradicts the fact that yγ fills the gap 〈Aγ , Bγ〉.

4 The non-zero-dimensional case

In this section we give a characterization of not necessarily zero-dimensional Valdivia compact
lines.
Let K be a Valdivia compact line. We introduce an equivalence relation ∼ on K by setting
x ∼ y if the interval [x, y] is connected. It is clear that this is indeed an equivalence relation
and that equivalence classes are closed intervals. As a closed subset of a Valdivia compact line
is again Valdivia by Lemma 2.3, each equivalence class is a connected Valdivia compact line.
By [10, Theorem 5.2] there are only five such spaces. Two metrizable ones – the singleton
and the unit interval [0, 1] and three others, which are denoted by R→ + 1, (R→ + 1)−1 and
←I→ in [10]. R→ denotes the long line, i.e. the lexicographic product ω1 · [0, 1), R→ + 1 is
its compactification made by adding the endpoint. The space (R→+ 1)−1 is the order inverse
of R→ + 1. Finally, the space ←I→ is the unique connected compact line [a, b] such that
a < b and for each y ∈ (a, b) the interval [y, b] is order homeomorphic to R→ + 1 and [a, y] is
order homeomorphic to (R→ + 1)−1. Therefore each of the equivalence classes of ∼ is order
isomorphic to one of these five spaces.
Further, as K has weight at most equal to ℵ1, at most ℵ1 equivalence classes contain more
than one point. Finally, the space

K0 = K \
⋃
{(a, b) : a ∼ b}

is Valdivia as well (by Lemma 2.3). Moreover, it is zero-dimensional, hence the criterion from
the previous section applies. The space K must also satisfy conditions (i)–(iii) from Question 1.
Hence we have proved the necessity in the following theorem.

Theorem 4.1. Let K be a compact line. Define the equivalence ∼ as above and define K0 by
the above formula. The space K is Valdivia if and only if the following conditions are satisfied.

• Each equivalence class is a Valdivia compact.
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• The space K0 is Valdivia.

• Each point of uncountable character is isolated from one side.

Proof. It remains to prove the sufficiency. We will use Lemma 2.2. Suppose the above three
conditions are satisfied. Let A be a family of clopen intervals in K0 such that A separates
points of K0 and for each x ∈ G(K0) there are only countably many elements of A containing
x.
For each interval I ∈ A we define an open Fσ interval Ĩ ⊆ K as follows. As I is clopen, we
have I = [a, b] where a is isolated from the left and b is isolated from the right (in K0). If
there is some x < a such that x ∼ a, choose some a′ ∈ (x, a). Otherwise set a′ = a. Similarly,
if there is some y > b with y ∼ b, choose b′ ∈ (b, y). Otherwise set b′ = b. Now set

Ĩ =


[a, b], if a′ = a, b′ = b,

(a′, b], if a′ < a, b′ = b,

[a, b′), if a′ = a, b′ > b,

(a′, b′), if a′ < a, b′ > b.

It is clear that Ĩ is an open Fσ interval in K. Indeed, if a′ = a, then a is isolated from the
left also in K, and if a′ < a, then a′ has countable character in K (as it is not isolated from
either side). Similarly for b and b′.
Set Ã = {Ĩ : I ∈ A}. Then Ã separates points of K0 and for each x ∈ G(K) there are only
countably many elements of Ã containing x.
Indeed, if x ∈ G(K) ∩K0, then x ∈ G(K0) and hence it is only in countably many elements
of A. As Ĩ ∩K0 = I for each I ∈ A, x belongs to only countably many elements of Ã as well.
Furher, suppose that x ∈ G(K) \ K0. Let [a, b] be the equivalence class containing x. Then
necessarily a, b ∈ G(K0). (If, say, a has uncountable character in K0, then it is not isolated
from either side in K, a contradiction.) Finally observe that if x ∈ Ĩ for some I ∈ A, then
necessarily either a ∈ I or b ∈ I. Thus there can be at most countably many such I’s.
Now we extend Ã in order to separate points of K. Fix any equivalence class [a, b] with a < b.
Then a, b ∈ K0. There are four possibilities:
(i) [a, b] is order-homeomorphic to [0, 1]. Then let Ba,b be a countable basis of (a, b) consisting
of intervals.
(ii) [a, b] is order-homeomorphic to ←I→. Then [a, b] is clopen in K. Let Ba,b be a family of
open Fσ intervals in [a, b] separating points of [a, b] such that [a, b] ∈ Ba,b and each point of
(a, b) is contained only in countably many elements of Ba,b.
(iii) [a, b] is order-homeomorphic to R→ + 1. Then b is isolated from the right in K. Let C be
a family of open Fσ intervals in [a, b] separating points of [a, b] such that [a, b] ∈ C and each
point of [a, b) is contained only in countably many elements of C. Set Ba,b = {I∩(a, b] : I ∈ C}.
(iv) [a, b] is order-homeomorphic to (R→+1)−1. Define the family Ba,b analogously as in (iii).
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Finally set
U = Ã ∪

⋃
{Ba,b : a, b ∈ K0, a < b, a ∼ b}.

Then U is a family of open Fσ intervals in K separating points of K such that each point of
G(K) is contained only in countably many elements of U . This proves that K is Valdivia.

5 When the conjecture is valid

In this section we prove the following theorem.

Theorem 5.1. Let K be a compact line satisfying the conditions (i)–(iii) from Question 1
such that the closure of the set of points of uncountable character is scattered. Then K is
Valdivia.

Proof. We define an equivalence relation on K by setting a ∼ b if and only if [a, b] is Valdivia.
We will prove, using the conditions (i)–(iii), that it is really an equivalence relation and that
the quotient L = K/ ∼ is a connected compact line. Further, if we denote by q the canonical
quotient mapping of K onto L, we will show that the image under q of the set of points of
uncountable character is dense in L unless L is a singleton. If we prove all this, it follows that
L is a connected compact line which is at the same time scattered (as a continuous image of
a scattered compact space is again scattered). Thus L is a singleton, hence K is Valdivia.
So, it is enough to prove the above mentioned properties of ∼.

Step 1. ∼ is an equivalence relation.
First note that by Lemma 2.3 we have x ∼ y whenever x, y ∈ [a, b] and a ∼ b. To prove that
it is really an equivalence relation it remains to check that a ∼ c whenever a < b < c and
a ∼ b and b ∼ c. If b is isolated from one side, then [a, c] is the topological sum of two Valdivia
compact spaces and therefore it is Valdivia as well. If b is isolated from neither side, it has
countable characted. As the topological sum [a, b]⊕ [b, c] is Valdivia and [a, c] is the quotient
made by identifying the two copies of b, we get that [a, c] is Valdivia by Lemma 2.4.

Step 2. Each equivalence class of ∼ is closed.
Let a ∈ K be arbitrary and let b be the supremum of all x ∈ K with a ∼ x. We will show
that a ∼ b. Suppose b > a.
If b is isolated from the left, then clearly a ∼ b (in this case the supremum in the definition of
b is obviously attained).
So suppose that b is not isolated from the left. If there is some x ∈ (a, b) such that [x, b] is
connected, then [x, b] is a connected compact line satisfying (i)–(iii) and hence it is Valdivia
by [9, Section 3.2], so x ∼ b. As a ∼ x, we get a ∼ b.
Next suppose that b is not isolated from the left and [x, b] is connected for no x ∈ (a, b). There
are two possibilities:

14



(a) There is a sequence bn in (a, b) such that bn ↗ b. Without loss of generality we may
suppose that each bn is isolated from one side. By passing to a subsequence we may suppose
that all the points bn are isolated from the same side. Suppose that each bn is isolated from
the left. Then [a, b] is homeomorphic to the one-point compactification of the topological sum
of Valdivia compacta [a, b1), [b1, b2), [b2, b3), . . . . Therefore [a, b] is Valdivia by [7, Theorem
3.35] and so a ∼ b. If each bn is isolated from the right we can proceed similarly.

(b) b has uncountable character in [a, b]. Then we can find an increasing homeomorphic copy
(bα : α < ω1) of ω1 in (a, b) with supremum b. Again, we can without loss of generality
suppose that for each isolated ordinal α < ω1 the point bα is isolated from one side and
that all these points are isolated from the same side. Suppose they are isolated from the left.
Set Xα = [bα−1, bα) for α < ω1 isolated (where b−1 = a. Let X be the [0, ω1 + 1)-sum of
these spaces in the sense of [8]. Then X is Valdivia by [8, Proposition 3.4]. Moreover, X is
homeomorphic to the compact line made from [a, b] by duplicating bα for each limit ordinal
α < ω1. As each of these points has countable character, by Lemma 2.4 we get that [a, b] is
Valdivia and so a ∼ b. If bα is isolated from the right for each isolated α < ω1, we can proceed
similarly.

Step 3. L = K/ ∼ is a connected compact line.

By Steps 1 and 2 we get that the quotient L = K/ ∼ is a Hausdorff compact space, in fact
a compact line. Let us prove that L is connected. Suppose that a, b ∈ L are such that a < b
and (a, b) = ∅. Let [x1, y1] be the equivalence class in K corresponding to a and [x2, y2] be
the equivalence class corresponding to b. Then y1 < x2 and [y1, x2] = {y1, x2} and therefore
y1 ∼ x2, a contradiction.

Step 4. Denote by q the quotient mapping of K onto L associated to ∼. Then the image
under q of the set of all points of uncountable character in K is dense in L unless L is a
singleton.

To see this, let y ∈ L be any point different from the endpoint. The inverse image of y is a
closed interval [a, b] ⊆ K. If b is isolated from the right, then there is b+ = min(b,→). Clearly
b ∼ b+, hence also a ∼ b+. This is a contradiction to the fact that [a, b] is an equivalence
class of ∼. Further, let c > b be arbitrary. If [b, c] is first countable, then it is metrizable
by (iii) and so b ∼ c. Again we get a ∼ c which is a contradiction. Thus [b, c] contains a
point of uncoutable character. Therefore there is a net dν of points of uncountable character
converging to b. Finally, q(dν)→ y.

The proof is complete.
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6 Compact lines which are continuous images of Valdivia com-
pacta

In this section we discuss the class of compact lines which are continuous images of Valdivia
compacta. The main question in this context is the following one.

Question 2. Let K be a compact line which is a continuous image of a Valdivia compact
space. Is there a Valdivia compact line L and an order-preserving continuous surjection of L
onto K?

In [9] it is conjectured that the answer is positive (Conjecture 3.6). It follows from [9, Theorem
3.7] that the answer is positive for scattered compact lines. Let us note that the weight of a
compact line which is a continuous image of a Valdivia compact cannot exceed ℵ1. This fact
can be proved by similar arguments as in [10, Prop. 5.5].
We do not know the answer to this question. Nonetheless, we provide a characterization of
order-preserving quotients of Valdivia compact lines.

Theorem 6.1. Let K be a compact line. Denote by A the set of all points of uncountable
character in K which are not isolated from any side. Then K is an order-preserving quotient
of a Valdivia compact line if and only if the compact line made from K by duplicating all
points of A is Valdivia.

Proof. The if part is obvious (the order preserving quotient is made by collating back the
duplicated points).
Let us show the only if part. Let L be a Valdivia compact line and ϕ : L → K an order-
preserving continuous surjection. Let ∼ be the associated equivalence relation on L, i.e. x ∼ y
if and only if ϕ(x) = ϕ(y). By our assumptions the equivalence classes are closed intervals.
Set

L1 = L \
⋃
{(a, b) : a ∼ b}.

Then L1 is again a Valdivia compact line by Lemma 2.3. Moreover, ϕ(L1) = K and ϕ is at
most two-to-one. Denote the restriction of ∼ to L1 again by ∼. Then each eqivalence class
has at most two points.
For each equivalence class {a, b} such that a < b and at least one of the points a, b is isolated
in L1, choose an isolated point ya,b ∈ {a, b}. Denote by L2 the compact line made from L1

by omitting all these points ya,b. Then L2 is again a Valdivia compact line (Lemma 2.3) and
ϕ(L2) = K. Denote the restriction of ∼ to L2 again by ∼. Then the equivalence classes have
at most two points and, moreover, if an equivalence class has two points, none of them is
isolated in L2.
Define an equivalence relation ∼2 on L2 by the following formula

x ∼2 y ⇔ x = y or (x ∼ y and both points x, y have countable character in L2)

Then L3 = L2/ ∼2 is a Valdivia compact line by Lemma 2.4.
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Finally it is easy to see that L3 is exactly the compact line made from K by duplicating all
points of uncountable character which are not isolated from any side.

As a consequence we get that the non-Valdivia compact lines constructed in Example 3.5 are
not order-preserving quotients of a Valdivia compact line. Are they continuous images of a
Valdivia compact space?
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