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Abstract. We classify ω-limit sets of autonomous ordinary differential equa-
tions x′ = f(x), x(0) = x0, where f is Lipschitz, in infinite dimensional Banach

spaces as being of three types I-III. Let S ⊂ X be a Polish subset of a Banach

space X. S is of type I if there exists a Lipschitz function f and a solution x
such that S = Ω(x) and x ∩ S = ∅. S is of type II if it has non-empty interior

and there exists a Lipschitz function f and a solution x such that S = Ω(x).

S is of type III if it has empty interior and x ⊂ S for every solution x (of an
equation where f is Lipschitz) such that S = Ω(x). Our main results are the

following: S is a type I set if and only if there exists an open and connected

set U ⊂ X such that S ⊂ ∂U . Suppose that there exists an open separable
and connected set U ⊂ X such that S = U . Then S is a type II set. Every

separable Banach space with a Schauder basis contains a type III set. More-

over in all these results we show that in addition f may be chosen Ck-smooth
whenever the underlying Banach space is Ck-smooth.

1. Introduction and preliminaries

Let X be an infinite-dimensional real Banach space, f : X → X be a continuous
function (geometrically a vector field), and{

x′(t) = f(x(t))
x(0) = x0 ∈ X

(1)

be an autonomous ordinary differential equation. The global behavior of the (for-
ward) solution x : [0,∞) → X is described by the following notion of ω-limit set.

Definition 1. Let x : [0,∞) → X be a solution of an autonomous differential
equation (1). We say that S ⊂ X is an ω-limit set of the solution, if for every
p ∈ S, ε > 0, n ∈ N there is tn > n such that ‖x(tn)− p‖ < ε. We use the notation
S = Ω(x).

It is easy to see that all ω-limit sets S are closed and separable, so they are Polish
topological spaces. We introduce the following types of Polish sets in X.

Definition 2. Type I. S is of type I if there exists a Lipschitz function f and a
solution x of (1) such that S = Ω(x) and x[0,+∞) ∩ S = ∅.
Type II. S is of type II if it has non-empty interior and there exists a Lipschitz
function f and a solution x of (1) such that S = Ω(x).
Type III. S is of type III if it has empty interior and it contains every solution
x[0,+∞] of (1), where f is Lipschitz, such that S = Ω(x).

Every ω-limit set S of a Lipschitz equation (1) belongs to precisely one of these
types (Proposition 12). Our main results are Theorems 3. 4 and 5 containing a
topological characterization of type I sets, a sufficient (but not necessary) condition
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describing type II sets, and a construction of examples of type III in every separable
Banach space X with a Schauder basis.

Theorem 3. Let X be an infinite dimensional Banach space, S ⊂ X be a Polish
subset. Then S is a type I set if and only if there exists an open set U ⊂ X with
the properties:
1. U is connected.
2. S ⊂ ∂U .
Moreover, if X admits a Ck-smooth bump function then f may be chosen Ck-smooth
as well.

If X is a non-separable Banach space, the above theorem is a complete characteri-
zation of ω-limit sets for Lipschitz equations. Type II and III sets may exist only
in separable spaces.

Theorem 4. Let X be a separable infinite dimensional Banach space, S ⊂ X be
a Polish subset with non-empty interior. Suppose that there exists an open and
connected set U ⊂ X such that S = U . Then S is a type II set. Moreover, if X
has a Ck-smooth norm then f may be chosen Ck-smooth.

In the final section 6 we describe how to obtain examples of type II sets that are
not a closure of their interior.

Theorem 5. Let X be a separable Banach space with a Schauder basis. Then
there exists a C∞-smooth field f , Lipschitz on bounded sets, and a solution x such
that S = Ω(x) is a type III set. Moreover, if X has a Ck-smooth bump then f
may be chosen globally Lipschitz and Ck-smooth. Every type III set satisfies the
following property. Let U = ∪∞n=1Un be a decomposition of U = X\S into connected
components and let x be any solution to a Lipschitz equation, such that S = Ω(x),
then x ∩ ∂Un = ∅ for every n ∈ N.

The statement of the above theorem is slightly imprecise, as we have defined type
III sets with respect to (globally) Lipschitz equations. It is surprising that for
locally Lipschitz fields no smoothness assumption on X seems to be needed. We
see that a necessary condition for S to be of type III is that R = S \ ∪∞n=1Un is
dense in S. However, this condition is not sufficient for a Polish set S to be a type
III set, as the set R needs to contain an infinite smooth curve. Containing such a
curve is neither sufficient, as the directional derivatives of it may not be extended
to a global Lipschitz vector field.
In our note we will be working exclusively with Lipschitz functions f . In this case,
the classical finite-dimensional results on the existence and uniqueness of global
solutions of (1) and their continuous dependence on the initial conditions still hold.

The structure of ω-limit sets has been studied extensively in finite dimensional
spaces not only for differential equations but also in the setting of dynamical sys-
tems and ergodic theory. In R2 their structure is completely described as being
either a point or a periodic orbit by the famous Poincaré-Bedixon theorem ([Ha82]).
In higher dimensions it is known that they may have non-empty interior as a con-
sequence of the work in [Ka79], [BMK81]. We are not going to discuss here this
vast field of research. Recall the basic result in [Ha82] p. 145.

Theorem 6. Let X = Rm and x : [0,∞) → X be a bounded solution of (1). Then
an ω-limit set of a x is non-empty, compact and connected.

If X is infinite-dimensional, then the continuity of f does not guarantee the exis-
tence of any solutions to (1) (for a fixed initial condition this is due to Godunov
[G75], for any solution it is the result of Shkarin [S03] and [HJ]). However, this is not
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the only obstacle in generalizing Theorem 6. The first examples of failure of The-
orem 6 for C∞-smooth (thus locally Lipschitz) functions f in infinite dimensional
Hilbert space are due to Horst [H86], where noncompact and disconnected ω-limit
sets were obtained. A wealth of results on ω-limit sets in infinite dimensional spaces
is in the paper of Garay [Ga91], which is dealing mostly with dynamical systems.
One of the main results there is the following.

Theorem 7. (Garay) Let X be a Banach space, S ⊂ X be a separable and closed
subset, such that there exists an open set U ⊂ X with the properties:
1. U is connected.
2. S = ∂U .
Then there exists a continuous dynamical system with a trajectory x(t), with the
property S = Ω(x).

In fact, the techniques in [Ga91] are very natural, and we have discovered our
results below independently of Garay’s work, motivated instead by the work of
Herzog [H00].

Theorem 8. (Herzog)
Let P be any Polish space, X = `2 ⊕ c0. Then there exists a locally Lipschitz
function f : X → X such that P is homeomorphic to a ω-limit set of some solution
to the autonomous equation x′ = f(x).

Our first main result, Theorem 3 is a generalization of both Theorems 8 and 7.
One of the key ideas in the proof of our second main result Theorem 4, the use
of hypercyclic operators, was again conceived independently, but its relevance was
previously observed by Fathi [Fat83] in his work on dynamical systems on the
Hilbert space and by Garay in [Ga91].

Our note is organized as follows. In section 2 we collect some background results
and notions from the relevant areas of differential equations, topology and Banach
space theory. This is followed by technical lemmas needed mainly in the proofs of
Theorem 3 and 4. These proofs follow a similar pattern and are given in subsequent
sections 3 and 4. In section 5. we prove Theorem 5, which is somewhat different,
and turns out to be the most delicate part of the present note. In the final section
6 we discuss some relevant examples.

2. Auxiliary results

We begin by collecting some well-known results for the convenience of the reader.
The first result is classical in the finite dimensional setting, [Ha82], Chapter V.

Theorem 9. Let X = Rn be a Banach space, f : X → X be a Lipschitz and
Ck-smooth function. Then for every initial condition x(0) = x0, (1) has a unique
solution x(x0, t) defined on the whole t ∈ R. Moreover, the function x(x0, t) :
X × R → X is continuous (in other words, the solutions depend continuously on
the initial condition), it is Ck-smooth and it is a Ck-smooth diffeomorphism in the
first variable.

We will also need its infinite dimensional analogue. For lack of suitable reference
(the existence is mentioned e.g. in [D77], but we have not found an explicit state-
ment on the continuous dependence on the initial condition) we sketch its simple
proof.

Theorem 10. Let X be a Banach space, f : X → X be a Lipschitz function. Then
for every initial condition x(0) = x0, (1) has a unique solution x(x0, t) defined on
the whole t ∈ R. Moreover, the function x(x0, t) : X × R → X is continuous (in
other words, the solutions depend continuously on the initial condition).
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Proof. Suppose that f is K-Lipschitz, i.e. ‖f(y1)−f(y2)‖ ≤ K‖y1−y2‖ for y1, y2 ∈
X. We will solve (1) on the interval J = [0, δ], where δ = 1

2K . Let C(J,X) be the
Banach space of continuous functions from J into X equipped with the supremum
norm. It is easy to see that the continuous operator Ty : C(J,X) → C(J,X),
y ∈ X, defined as

Ty(x)(t) = y +

t∫
0

f(x(τ))dτ (2)

is a contraction. More precisely, given g, h ∈ C(J),

‖Ty(g)− Ty(h)‖ ≤
δ∫

0

‖f(g(τ))− f(h(τ))‖dτ ≤ δK‖g − h‖∞ ≤ 1
2
‖g − h‖∞. (3)

By the Banach contraction principle ([F˜] Theorem 7.55) Ty has a unique fixed
point x. Clearly, x is a solution of (1) with the initial condition x(0) = y. It is also
clear that the process can be repeated on every interval [kδ, (k + 1)δ], k ∈ Z, and
the respective solutions can be joined to form a unique solution on the whole R. It
suffices to check the continuous dependence on the initial condition y on the interval
J . Let x be a fixed point of Ty1 . Then Ty2(x) = (y2 − y1) + Ty1(x) = (y2 − y1) + x.
So ‖Ty2(x)−x‖ = ‖y2−y1‖. By the proof of the contraction principle we know that
the fixed point x̃ of Ty2 is a limit of Tn

y2
(x) and so ‖x̃− x‖ ≤

∑∞
n=0

1
2n ‖y2 − y1‖ =

2‖y2 − y1‖. This finishes the proof. �

Lemma 11. Let S = Ω(x) for a solution x of (1) with locally Lipschitz function
f . Suppose that x(0) ∈ S. Then

S = ∪t∈[0,∞)x(t) (4)
In particular, S is connected.

Proof. This follows immediately from Theorem 10. Indeed, the solution keeps re-
turning arbitrarily close to the point p = x(0), and so it does the same for every
x(t), t ∈ [0,∞). �

Proposition 12. Let X be a Banach space. Then every ω-limit set of a Lipschitz
equation (1) belongs to precisely one of the types I-III.

Proof. We only need to prove that if S is an ω-limit set such that S ∩ x 6= ∅ for
every solution x with S = Ω(x), then S is of type III. If S ∩ x 6= ∅, there exists
t0 ∈ [0,∞) with x(t0) ∈ S. So there exists a sequence tn ↗∞ with x(tn) → x(t0).
By Theorem 10 we immediately see that x(tn + s− t0) → x(s), so every x(s), s > t
belongs again to S. The case s < t follows similarly considering the backward
solution. �

The solution x to (1) is usually called a forward solution (meaning the parameter t
tends to +∞). A solution for t ∈ (−∞, 0] is called backward solution. For equations
with a Lipschitz f both solutions exist and are unique. A set S ⊂ X is said to be
f -invariant if every (forward and backward) solution with initial condition x(0) ∈ S
stays in S. If f is Lipschitz, it follows from Theorem 10 that S is f -invariant iff
X \ S is f -invariant.
We will need some facts from general topology. We say that a topological space U is
arcwise connected if for any p, q ∈ U there exists a continuous mapping γ : [0, 1] →
U , γ(0) = p, γ(1) = q. It is well-known and easy to show that an open subset of a
Banach space is arcwise connected if and only if it is connected ([HY61], Theorem 3-
17). Recall the definition of absolute neighborhood retract. A compact metrizable
topological space V is said to be an absolute neighborhood retract (ANR) if for
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every homeomorphic image of V ⊂ V ′, where V ′ is a metric space, there exists
some open neighborhood U , V ⊂ U ⊂ V ′ , and a continuous mapping g : U → V ,
g �V = Id. The classical examples of ANR are convex sets in Rn. We refer to [Bo67]
for a thorough treatment of the subject.
Let us recall some properties of higher smoothness. We will work exclusively with
the Fréchet smoothness (see [DGZ93]). Let X,Y be Banach spaces, M : Xn → Y
be a mapping with the property

M(a1
1h

1
1 + a2

1h
2
1, . . . , a

1
nh

1
n + a2

nh
2
n) =

∑
i1,...,in∈{1,2}

(
n∏

j=1

aij )M(hi1
1 , . . . , h

in
n ). (5)

Then M is called n-linear. The norm of multilinear forms is

‖M‖ = sup{M(h1, . . . , hi) : ‖hi‖ ≤ 1}. (6)

The algebra of symmetric multilinear is equipped with the symmetric product �

among the forms. We have that ‖M�N‖ ≤
(
i+ j
j

)
‖M‖‖N‖, whenever M is an i-

linear form onX and N is a j-linear form onX. Moreover, ‖φi‖ = i!‖φ‖, for φ ∈ X∗

([Fed69] p.47). By definition, higher derivatives are symmetric multilinear forms.
More precisely, given Banach spaces X,Y , an open U ⊂ X a function f : U → Y
is Ck-Frechet smooth if at every a ∈ U , there exists a symmetric multilinear form
M ∈ L(iX,Y ), 0 ≤ i ≤ k, so that Dif(a)(h1, . . . , hi) = M(h1, . . . , hi) (we are using
the convention that D0f = f), and the mappings a→ Dif(a) are continuous. Let
U be an open subset of a Banach space X, h : U → R and f : U → X be Ck-
smooth. The Leibnitz formula for the derivative of a product ([Fed69], p.222) can
be formulated in the following way.

Di(h · f) =
i∑

j=0

Di−jh(z)�Djf(z) for i = 0, . . . , k (7)

Indeed, we can verify that Di−jh(z) ∈ L(i−jX,R), Djf(a) ∈ L(jX,X) and so their
symmetric product belongs to L(iX,X) as required. If f : X → Y , g : Y → Z are
Ck-smooth, b = f(a), the the chain rule formula holds.

Di(g ◦ f)(a) =
∑

α∈S(i)

D
P

αg(b) ◦ [D1f(a)α1 � · · · �Dkf(a)αk ]/α! (8)

for i ≤ k, where S(i) is the set of all k-termed sequences of nonnegative integers
such that

k∑
j=1

jαj = i. (9)

In the particular case when f is a linear mapping, Dif(a) = 0 for all a ∈ X, i ≥ 2,
so we obtain a special case:

Di(g ◦ f)(a) = Dig(b) ◦ f i/i! (10)
This implies (using the definition of � in [Fed69]) the obvious fact that compos-
ing with linear mappings of norm at most one from the left preserves the upper
estimates for the higher derivatives.

‖Di(g ◦ f)(a)‖ ≤ ‖Di(g)(f(a))‖‖f‖i. (11)
Standard operations among functions preserve higher smoothness as in the finite
dimensional situation. We refer to [Fed69] for more details and proofs.
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We will use finite partitions of unity on Banach spaces. We say that a collection
{ψi}n

i=1 of real and non-negative Ck-smooth functions is a partition of unity if∑m
i=1 ψi(z) = 1 for every z ∈ X. We will often use the well-known fact that

given a bounded and closed set V ⊂ Rn and an open set U ⊃ V , there is a C∞-
smooth partition of unity {ψ1, ψ2} with all derivatives uniformly bounded, such
that ψ1(V ) = 1 and supp(ψ1) ⊂ U .
Recall that a norm ‖ · ‖ on a Banach space X is said to be Ck-smooth if it is
Ck-smooth as a function, away from the origin. A bump function on X is a real
nonzero function with a bounded support set. By composing a Ck-smooth norm
‖ ·‖ with a suitable real C∞-smooth function we obtain a Ck-smooth bump. Let X
be a Banach space, A,B ⊂ X be bounded closed and convex sets with nonempty
interior, and let L : A → B be a topological homeomorphism such that both
L,L−1 are Ck-smooth mappings in the interior of the sets A,B. We call such L a
Ck-smooth diffeomorphism between A,B.
We are going to work with curves in a Banach space. A curve γ comes with a
specific parametrization, i.e. a one-to-one function γ : I → X where I = [a, b] ⊂ R
is some interval. A curve is Ck-smooth if its derivatives γ(i), i ≤ k, exist and are
continuous in the interior of I, they have one-sided limits at endpoints, and also
γ′(t) 6= 0 on I. We will occasionally use also the notation γ̂ for the image of the
curve γ, i.e. γ̂ = {γ(t) : t ∈ I}. Given p, q ∈ X we denote by pq the segment joining
this pair of points, i.e. pq = {r : r = tp+ (1− t)q, t ∈ [0, 1]}.
It is clear that a solution x of (1) is also a curve provided x′ 6= 0. In some places, we
will be using the term solution curve (instead of just solution), in order to emphasize
the geometrical position of the solution x. This will be useful in describing various
deformations of the mapping f and its solutions into some prescribed forms.
Let S ⊂ X be a subset. We use the notation [S] = spanS for the closed linear span of
S. Given A,B ⊂ X, we use the notation A+B = {z ∈ X : z = a+b, a ∈ A, b ∈ B}.
We are going to use Schauder bases (c.f. [F˜] Chap. 6). Recall that a normalized
Schauder basis of a separable Banach space X is a biorthogonal system {en;φn}∞n=1,
en ∈ SX , φn ∈ X∗ with properties:

1. φm(xn) = δn
m the Kronecker delta.

2. [xn : n ∈ N] = X
The sums z =

∑∞
n=1 φn(z)en are convergent, and the projections Pk(X) → X,

Pk(z) =
∑k

n=1 φn(z)en are 1-bounded onto the finite dimensional subspace Xk =
[en : n ≤ k], and X = Xk ⊕KerPk is a topological sum. Also, Pk ◦ Pn = Pmin{k,n}.
By Xn = [ei : 1 ≤ i ≤ n] we denote the n-dimensional subspaces. We have
X = ∪∞i=1Xn. All classical separable Banach spaces (such as Lp[0, 1], `p, C[0, 1]
etc.) admit a (normalized) Schauder basis, although this is not true for every
separable Banach space due to a famous counterexample by Enflo.

The following notion is of central importance for our work. Later, we are going to
construct smooth vector fields with additional properties by using suitable trans-
ports.

Definition 13. Let X = Y ⊕ [y], ‖y‖ = 1, J = [a, b] ⊂ R. Let A,B ⊂ Y be bounded
closed and convex neighborhoods of the origin, and let L : A→ B,L(0) = 0 be a Ck-
smooth diffeomorphism. Let U be an open set in X, p, q ∈ U . We say that p+A can
be Ck-smoothly L-transported to q+B in U if there exists a closed interval J = [a, b],
ε > 0 and a one-to-one Lipschitz Ck-smooth mapping F : J × (p + A) → U such
that:
1. F (b, p+ z) = q + L(z), and for every z ∈ A, t→ F (t, z) is a Ck-smooth curve,
2. if t < ε, then F (a+ t, p′) = p′ + ty, F (b− t, p′) = q + L(p′ − p)− ty.
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3. for a fixed t ∈ J , p → F (t, p) is an Ck-smooth diffeomorphism onto its range
F (t, A) that is a convex set.
In this case we say that F is a Ck-smooth L-transport of p+A to q +B inside U .
We also say that F is a transport of p+A onto q+B inside U if it is an L-transport
for a suitable Ck-smooth diffeomorphism L, and we may also omit the specification
of the degree of smoothness. The set TF = ∪t,zF (t, z) is called tubus of transport
F .

TF ⊂ U is a closed set. Most of the time we will work with a very special type
of transports, for which the mapping p + z → F (t, p + z) is an affine mapping for
every t ∈ J . In this case, the following simple fact holds.

Fact 14. Suppose that the mapping p + z → F (t, p + z) is an affine mapping for
every t ∈ J . If A′ ⊂ A is a convex subset, then the relativization of the transport
F : J × A to the subset J × A′ again gives rise to a transport, that will be called a
restriction of F .

The role of the particular decomposition X = Y ⊕ [y] is not important for us,
as in our applications it serves together with condition 2 to compose subsequent
transports. In particular, it is clear that the following holds.

Lemma 15. Let X = Y ⊕ [y], ‖y‖ = 1. I1 = [a, b], I2 = [b, c]. Let A,B,C ⊂ Y
be bounded convex neigborhoods of zero, B = L1(A), C = L2(B), where L1, L2

are Ck-smooth diffeomorphisms. Let p, q, r ∈ X, and U be an open set in X. Let
F1 : I1×(p+A) → U be an L1-transport of p+A to q+B, F2 : I2×(q+B) → U be
a L2-transport of q +B to r + C. Assume that TF1 ∩ TF2 = B. Then F = F_

1 F2 :
I1 ∪ I2 × (p+A) → U ,

F (t, p+ z) =

{
F1(t, p+ z) for t ∈ [a, b]
F2(t− b, q + L1(z)) for t ∈ [b, c]

(12)

is a L2 ◦ L1-transport of p+A to r + C.

Proof. The main point of the proof is to show that the mapping F behaves well
around the value b of the first variable. First, note that F1(t, p+ z) = q + L1(z) +
(t − b)y for t ↗ b. On the other hand, F2(t, q + z′) = q + z′ + ty for t ↘ b, so
q + F2(t, q + L1(z)) = q + L1(z) + (t − b)y. This shows that the concatenation of
the transports is well-defined and indeed Ck-smooth. The remaining conditions are
easy to verify. �

The convexity condition contained in 3 of Definition 13 is chosen in order to obtain
the following important property.

Lemma 16. Let F : J ×A→ U be a transport of A to B in U , ε > 0. Then there
exists a finite collection of open convex sets Ci, Ci ⊂ U , so that TF ⊂ ∪n

i=1Ci ⊂
TF + εBX .

Proof. This follows easily by compactness of J , the convexity of the mappings
p→ F (t, p) for each t ∈ J and the Lipschitz condition for F . �

In order to construct transport mappings we use the following notion.

Definition 17. Let X = Y ⊕ [y]. Let I = [a, b] be an interval and ε > 0. We say
that a curve γ : I → X is ε-planar if:
0. γ is C∞-smooth
1. for every t ∈ I it holds that B(γ(t), 3ε) ∩ γ̂ lies in some two-dimensional affine
subspace of X,
2. {s : γ(s) ∈ B(γ(t), 3ε)} is an interval.
3. if t < 3ε then γ(a+ t) = γ(a) + ty, γ(b− t) = γ(b)− ty.
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The following lemma is clear.

Lemma 18. Let U be an open and arcwise connected subset of a Banach space X,
p, q ∈ U . Then there exist ε > 0 and a ε-planar curve γ from p to q.

Proof. Choose a finite sequence of points {pi}n
i=0, p = p0, q = pn such that the line

segments pipi+1 lie in U . Moreover, p1 − p0 is a positive multiple of pn − pn−1,
dist(pipi+1, X \U) > ε and dist(pipi+1, pjpj+1) > ε whenever j > i+ 1. It remains
to ”smoothen the corners” of this broken line in small enough neighbourhoods of
pi by a standard procedure. �

Lemma 19. Let γ : I → X, X = Rn be a ε-planar curve with curvature κ(t) < 1
2ε .

Then for every point h ∈ X, dist(h, γ̂) < ε there exists a unique nearest point from
γ̂.

Proof. The set R of nearest points is a closed subset of Rδ(h) = {y : ‖h− y‖ = δ},
δ = dist(h, γ̂) < ε. If R is not a singleton, then there exist t < s such that p = γ(t)
and q = γ(s) both lie in R. By condition 3 in the Definition 17 none of p, q can be
an endpoint of γ. By condition 1 in the Definition 17 there exists a two dimensional
affine subspace H ⊂ X such that γ(r) ∈ H for r ∈ [t, s]. Denote S = H ∩ Rδ(h).
Because we are working in the Euclidean space, S is a Euclidean circle of radius not
exceeding δ. Its curvature is therefore at least 1

ε , and it connects the points p, q.
On the other hand, γ lies on the outside of S in H, it connects p, q and its curvature
is less than 1

2ε . Moreover γ is tangent to S at p, q. This is a contradiction.
�

Definition 20. Let I = [a, b], γ : I → Rn be a ε-planar curve with radius of
curvature ρ(t) > 3ε. We let Dε(t) to be the (n − 1)-dimensional Euclidean ball
centered at γ(t) with radius ε and such that γ′(t) is perpendicular to the affine
hyperplane containing Dε(t). We denote by Tε = ∪t∈[a,b]Dε(t) the ε-tubus around
the curve γ.

It follows from Lemma 19 that Tε is an open set and to each y ∈ Tε there corresponds
a unique ty such that y ∈ Dε(ty).

Lemma 21. Let I = [a, b], γ : I → Rn be a ε-planar curve with radius of curvature
ρ(t) > 3ε. Let

f : Tε → Rn be the vector field f(y) = γ′(ty). (13)

Then f is a C∞-smooth vector field, which defines an autonomous differential equa-
tion

x′ = f(x) in Tε. (14)
Given any p ∈ Dε(0), the solution corresponding to the initial condition x(0) = p
is perpendicular to Dε(s) at the point of their intersection ps. Then the mapping
F : I ×Dε(0) → Rn, F (s, p) = ps is a C∞-smooth transport.

Proof. It follows from Lemma 19 that Dε(t) ∩ Dε(ts) = ∅ for t 6= s. So f is
correctly defined. Since we have not specified the mapping L, it suffices to check
the transport conditions locally. First assume that n = 2. In this case, due to
the curvature and smoothness conditions on γ it is standard to check, using tools
such as C∞-smooth inverse mapping theorem, that the mapping (s, p) → ps is a
C∞-diffeomorphism between the respective sets. This implies conditions 1 and 3.
Thus the function g(x) = dist2(x, γ̂) is C∞-smooth on the tubus Tε. We know
that f(x) ∈ KerDg(x), where Dg ∈ X∗ stands for the Frechet derivative of g,
or in this case the total differential of the function g. Consequently, every curve
corresponding to a solution of (14) preserves the value of g. In other words, all
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points of the integral curve preserve their distance to the original curve γ. Note,
however, that replacing γ by any other curve corresponding to a solution of (14)
in the above argument leads to the same conclusion on preserving the distance.
This shows that the transport mappings p → F (s, p), with a fixed s, act as linear
isometries, so condition 2. is satisfied, which finishes the proof.
In the general case X = Rn, we use that γ is locally planar. We split Rn =
R2 ⊕ Rn−2, assuming that γ lies in the first direct summand. Now using that the
function f is locally independent on the perpendicular directional subspace Rn−2,
we again see that the mapping F (s, ·) is a a linear isometry. �

Lemma 22. Let X = Rn = Rn−1 ⊕ R. Let γ : [a, b] → Rn be a ε-planar curve
with radius of curvature ρ(t) > 3ε. Let L : Rn−1 → Rn−1 be any (linear) isometry
with det(L) = 1. Then there is a C∞-smooth L-transport F : [a, b]×Dε(0) → Rn,
L : Dε(0) → Dε(1).

Proof. The transport constructed in Lemma 21 has all the properties except the
control of the endpoint isometry L. Denote L1(z) = F (b, z), p = γ(a), q = γ(b),
A = Dε(0). We have that det(L1) = 1. Indeed, we can C∞-smoothly deform the
given curve γ into a planar curve connecting p, q. For planar curves it is clear that
the endpoint mapping is the identity. However, the sign of detL for the endpoint
mapping will be constant during the curve deformation process.
Consider the transport F1 : [a, s]×Dε(0) → Rn, s = b− δ, δ small enough, which
is a restriction of F . Let B1 = F (s,A). By the endpoint condition 1′, we know
that B1 = L1(A). Choose an isometry L2 such that Id = L2 ◦L1. It is well-known
(Theorem 3.67 in [War72]) that the real orthonormal group On on Rn is a C∞-
smooth manifold with two components (accoding to the sign of the determinant).
Thus there exists for s < s1 < s2 < b a C∞-smooth curve η : [s1, s2] → On which
starts at Id and ends at L2. By reparametrizing, assume that all derivatives of η
at the endpoints are equal to zero. Extend the definition of η onto [s, b] by putting
η(t) = η(s1) whenever t ≤ s1, and η(t) = η(s2) whenever t ≥ s2. Now, we define a
transport F2 : [s, b] × L1(A) → Rn by F2(r, z) = η(r) ◦ F1(z) + (r − s)y. To finish
the proof, set F = F_

2 F1 and apply Lemma 15.
�

Lemma 23. Let U be an open connected subset of a Banach space X, p, q ∈ U .
Then p, q are connected via a ε-planar curve γ : [0, 1] → U , such that the ε-tubus
Tε ⊂ U .

Proof. As U is arcwise connected, there exists a continuous curve in U connecting
p and q. Approximate this curve inside U by a finite broken line η : [0, 1] → U
whose ε′-neighborhood still lies in U . There exists a finite dimensional linear space
F containing η̂. By smoothing up the corners we obtain a C∞-smooth ε-planar
curve γ in F connecting p, q in U . �

Lemma 24. Let X = Y ⊕ [y]. Let U be an open arcwise connected of a Banach
space X, p, q ∈ U , L = IdY . Then there exists ε > 0 so that for A = p + εBY ,
B = q + εBY there exists a C∞-smooth L-transport F : [0, 1]×A of A to B inside
U .

Proof. By above Lemmas, there exists a finite dimensional subspace F1 ↪→ Y , ε′-
planar curve γ connecting p, q, that lies in F = F1 ⊕ [y], and such that Tε′ ⊂ U .
Using the topological direct sum Y = F1 ⊕H1, we express every element of A in a
unique way a = p + a1 + a2, where a1 ∈ F1, a2 ∈ H1, and where ‖a1‖, ‖a2‖ < ε′′.
Next we equip F1 ⊕ [y] with Euclidean norm, so that y is perpendicular to F1. Let
A′ = p+ε′′B(F1,‖·‖2), B

′ = q+ε′′B(F1,‖·‖2). Using Lemma 21 construct an isometric
transport G′ of A′ to B′, whose tubus T ′ε′′ ⊂ Tε′ . In order to extend the definition of
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G′ the whole set A, use the decomposition of A: G(t, p+a1+a2) = G′(t, p+a1)+a2.
Finally, choose ε > 0 so that ‖a1 +a2‖X < ε implies that the transport G([0, 1]×A
remains inside U .

�

Lemma 25. (Size reduction) Let X = Y ⊕ [y], U be an open set in X. Given
α, β, λ > 0, p, q = p + λy ∈ X, assume that the convex hull of the set p + αBY ∪
p+ λy + βBY lies in U . Then there is a C∞-smooth transport F of A = p+ αBY

to q + βBY in U .

Proof. Let φ be a C∞-smooth monotone function on [0, λ] such that φ(t) = α in
the neighbourhood of 0 and φ(t) = β in the neighbourhood of λ. Put F (t, p+ a) =
p+ ty + φ(t)a. �

Smooth transport can be used to define smooth vector fields with controlled behav-
iour near the boundary of the tubus. We keep the notation from previous lemmas.

Lemma 26. Let X be a separable Banach space admitting a Ck-smooth bump
function b. Let V be an open set in X, f : V → X be a Ck-smooth vector field.
Then there exists a Ck-smooth and 1-Lipschitz vector field g : X → X, such that
g(z) = λ(z)f(z), λ(z) > 0 for every z ∈ V , and g(z) = 0 for z /∈ V .

Proof. WLOG b ≥ 0. Let G = int(supp(b)), 0 ∈ G. Let K > 0 be such that
‖Dib‖ < K, 0 ≤ i ≤ k on X. Since f is locally Lipschitz, by using the Lindeloff
property of V , there exists a countable collection of sets {Bn}∞n=1, Bn = xn +
ρnG, ρn < 1, dist(Bn, X \ V ) = dn > 0 with the following properties. V = ∪nBn,
f �Bn is Ln-Lipschitz, and ‖Dif‖ < Ln, 0 ≤ i ≤ k. Choose a suitable positive
sequence εn ↘ 0 so that:
1.

∑∞
n=1 εnKLn(1 + 1

ρn
) < 1

2.
∑∞

n=1
εn(k+1)KLn

ρk
n

< 1
Then g(z) =

∑∞
n=1 εnb( 1

ρn
z − xn)f(z) is well-defined on V , and has the required

properties. The 1-Lipschitz condition follows directly from condition 1 above. Com-
bining condition 2 and the Leibnitz formula (7) we see that

∑∞
n=m εnb( 1

ρn
z −

xn)f(z) has derivatives uniformly tending to zero. The support of the initial sum∑m
n=1 εnb( 1

ρn
z − xn)f(a) is on the other hand of positive distance to X \ V . �

Lemma 27. Let X be a Banach space of dimension at least n+ 1. Given bounded
open convex sets C1, . . . , Cn, let U = ∪n

i=1Ci, V = ∂U . If the set U is connected,
then given any δ > 0, W = U + δBX , we have that W \ U is arcwise connected.

Proof. Let us assume first that X = Rn+1. Note the important fact that X \V has
exactly two components. Indeed, one component U is connected by assumptions.
On the other hand, given any p /∈ U ∪ V , by the Hahn-Banach separation theorem
there exist functionals φi ∈ X∗ and αi ∈ R such that φi(p) > αi, and φi(Ci) < αi.
Since the linear dimension of X is n + 1, there exists some 0 6= h ∈ ∩iKerφi.
The line p + th, t ∈ R is clearly disjoint from U ∪ V . It is now obvious that p, q
are connected by a curve γ that is disjoint from U ∪ V , whenever p, q /∈ U ∪ V .
So X \ (U ∪ V ) is connected. Choose some pi ∈ Ci and let Mi : X → R be
the function Mi(x) = (sup{λ : λ(x − pi) ∈ Ci})−1. In other words, Mi is the
Minkowski functional of the convex set Ci − pi, shifted back to the point pi. The
function F (x) = miniMi(x) is continuous. We have U = {x : F (x) < 1}, V =
{x : F (x) = 1}. Given any δ > 0 and a C∞-smooth function Fδ, 0 ≤ Fδ − F < δ,
we may WLOG assume that the graph of Fδ in X ⊕ R is transversal to the set
{(x, 1) : x ∈ X} and F−1

δ (1) ⊂ (V + δBX) (i.e. the derivative F ′
δ has rank one

at this set). Indeed this follows from the well-known theorem of Sard (Theorem



ON ω-LIMIT SETS OF ORDINARY DIFFERENTIAL EQUATIONS IN BANACH SPACES 11

10.2.1 in [DFN85]), which claims that the range of all points where the rank is zero
has Lebesgue measure zero. Thus, Vδ = F−1

δ (1) is a C∞-smooth n-dimensional
C∞-smooth manifold M̃δ embedded into X. (Theorem III.5.8 in [Boo86]). M̃δ has
finitely many connected components, M̃δ = ∪l

j=1M̃
j
δ . Each of its components is of

course a compact connected C∞-smooth n-manifold embedded into X = Rn+1. It
follows ([Dol80] p. 269) that X \ M̃ j

δ has exactly two components Uj , Vj , where Uj

unbounded. Clearly, given i 6= j, we have either M̃ i
δ ⊂ Uj or M̃ i

δ ⊂ Vj . So we can
select a subset J ⊂ {1, . . . , l} so that for every i ∈ {1, . . . , l} there exists exactly one
j ∈ J such that M̃ i

δ ⊂ Vj . Since U∩F−1
δ (1) = ∅, we see that there exists some j ∈ J

for which U ⊂ Vj . Denote M = M̃ j
δ . Since M is a compact connected manifold, it is

also arcwise connected. Consequently, for any pair of points p, q ∈M there exists a
curve γ connecting them in M . Note that γ ⊂ V + δBX , so it lies within distance δ
of V and inside the unbounded component of X \V . So given δ > 0, W = U+δBX ,
we have that W \U is arcwise connected. In the general space X, choose a suitable
(n+1)-dimensional linear subspace X ′ such that the set ∪n

i=1(X
′∩Ci) is connected.

Applying the previous result we obtain the conclusion. �

The next statement is probably known, but we have not found a reference in the
literature. We include the proof for completeness.

Lemma 28. Let X be a Banach space of dimension at least n+ 1. Given bounded
open convex sets C1, . . . , Cn, let U = ∪n

i=1Ci, V = ∂U . If the set U is connected,
then V is arcwise connected.

Proof. First, we claim that U is an absolute neighborhood retract (ANR). Let us
recall the property (∆) in [Bo67] p.163: A topological space Y has the property
(∆) if for every y ∈ Y and every neighborhood U of y, there is a neighborhood
V ⊂ U of y, such that every compact A ⊂ V is contractible to a point in a subset
of U having dimension ≤ dimA + 1. Clearly, a closed convex and bounded set in
Rn+1 has (∆). Moreover, every finite dimensional compact with (∆) is ANR [Bo67]
p.163. By Theorem 4.1 in [Bo67] p.167, given Y1, Y2, Y1 ∩ Y2 that are closed ANR
with (∆) then Y1 ∪Y2 also has (∆). Use this theorem inductively to prove that the
closure of ∪n

i=1Ci has (∆) (and thus it is also ANR). For n = 1 it is clear. Also
n = 2 is clear, as C1∩C2 is convex. Inductive step. Let Y1 = ∪n−1

i=1 Ci, Y2 = ∪n
i=2Ci,

Y3 = ∪n−1
i=2 Ci. By assumption both Y1, Y2 have (∆). Now Y1∩Y2 = Y3∪ (C1 ∩ Cn).

By inductive hypothesis the last set again has (∆). This completes the proof. By
Corollary 3.3 in [Bo67] p. 104, there exists an open neighbourhood O of U in Rn+1

and a homotopy ht : [0, 1]×O → O such that h0 = idO and h1 is a retraction of O
onto U . Such homotopy serves to conclude that there exists a retraction r : O → U
with the additional property that r(O \ U) ⊂ V . Indeed, we put

r(o) = ht(o), where t = min{s ∈ [0, 1], hs(o) ∈ U}. (15)
Combining this statement and Lemma 27 with standard arguments we get our
desired conclusion. �

3. Type I

In this section we give the proof of Theorem 3. Let us assume first that X is
separable, X = Y ⊕ [y], A = BY . Let U be open and connected, S ⊂ ∂U be
Polish. Let {sn}∞n=1 be a dense subset of S, and {rn}∞n=1 be dense in X, with
ρn = dist(rn, S) > 0. Let {ni}∞i=1 be a sequence of natural numbers that contains
every integer infinitely many times.
We are going to construct inductively a sequence {ti}∞i=1 ⊂ X, εi ↘ 0, Ai = ti+εiA,
an increasing sequence {Ui}∞i=1 of open, arcwise connected sets U = U1 ⊂ U2 ⊂ . . .
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such that S ⊂ ∂Ui, Ji = [ai, ai+1] and transports Fi : Ji × Ai → Ui, Fi({ai+1} ×
Ai) = Ai+1 so that the following conditions hold:
1. ‖ti+1 − sni+1‖ < εi

2. TFi ∩ TFi+1 = Ai+1, TFi ∩ TFj = ∅ unless |i− j| ≤ 1.
3. if j > i, then TFj

∩B(ri, ρi

2 ) = ∅
Inductive step from n to n + 1. (The initial step is similar): We let Un+1 = Un ∪
B(rn, 2ρn

3 ) provided that Un∩B(rn, 2ρn

3 ) has non-empty interior. In this way, Un+1

being a union of two arcwise connected open sets with nonempty interior is again an
arcwise connected open set, and moreover S is a subset of the topological boundary
of Un+1. In the alternative case Un ∩ B(rn, 2ρn

3 ) = ∅ we let Un+1 = Un. Denote
P = {i ≤ n+1 : B(ri, 2ρi

3 ) ⊂ Un+1}. By Lemma 15 F = Fa
n−1 . . .

a F1 is a transport
from A1 to An in Un. Still, by the inductive assumption there exists a transport
F̃n : Jn × An in Un with final set Ãn+1 = tn+1 + ε̃n+1A, Ãn+1 = F̃n({an+1}, An).
Put

C = TF̃n
∪ ∪n−1

i=1 TFi
∪ ∪i∈PB(ri,

ρi

2
) (16)

By Lemma 16 together with Lemma 28 or 27, Un+1 \ C is arcwise connected.
Pick tn+2 ∈ U \ C, satisfying condition 1 above. By Lemma 24 there exists some
εn+2 > 0, εn+2 <

ε̃n+1
2 , such that tn+1 + εn+2A is connected with tn+2 + εn+2A

inside Un+1 \ (C + εn+2BX) by means of transport F̃n+1 : Jn+1 × (tn+1 + εn+2A).
In order to be able to properly connect the successive transports, we now invoke
the size-reduction Lemma 25 to replace the transport F̃n by Fn : Jn × An that
satisfies Fn(an+1 × An) = An+1 = tn+1 + εn+2A. This verifies condition 2 above.
This finishes the inductive step.
The process yields an infinite ”tubus” T = ∪∞i=1TFi ⊂ X, in whose interior we
have a C∞-smooth vector field f that is tangent to the transport curves by Lemma
26. Now, assuming that X has a Ck-smooth bump function we invoke Lemma 26
in order to obtain a Ck-smooth vector field g, that can be extended into a Ck-
smooth vector field on the whole X. It is clear that the solution to the autonomous
ordinary differential equation x′ = g(x), with the initial condition x(0) = t1 satisfies
the conditions of the theorem. Indeed, it ” follows the tubus” T and so by condition
1 its ω-limit sets contains S. On the other hand, condition 3 guarantees that the
solution eventually keeps away from every point p /∈ S. Our construction has the
property that the tubus is getting progressively ”thinner”. It is therefore clear
that the separability assumption on X can be dropped. Given general X, arcwise
connected U ⊂ X with a subset S ⊂ ∂U , choose a separable subspace Y ↪→ X, a
component of Ũ ⊂ U ∩ Y and S ⊂ ∂Ỹ satisfying our conditions. Then the method
of the above proof gives a solution.
The opposite implication. Let x be a solution to (1) with Ω(x) = S. In the first
case, S∩{x(t) : t ∈ [0,∞)} = ∅. In this case, choose a component U of X \S which
contains the solution x. U is arcwise connected and S ⊂ ∂U .
The same proof immediately yields the next result.

Corollary 29. Let X be a Banach space, S ⊂ X be a separable and closed subset
with empty interior whose complement X \ S is connected. Then there exists an
autonomous differential equation x′ = f(x), where f : X → X is a Lipschitz
mapping, and its solution x(t), with the property S = ω(x). Moreover, if X admits
a Ck-smooth bump function then f may be chosen Ck-smooth as well.

On the other hand, it is easy to give examples of closed sets with empty inte-
rior satisfying the assumptions of Theorem 3 but not of Corollary 29. Take e.g.
∪m

i=1(2me+ SX), where ‖e‖ = 1.
In fact a nonessential modification of the above proof gives the following result.
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Theorem 30. Let X be a Banach space, Sn ⊂ X be separable and closed subsets,
such that there exists an open set U ⊂ X with the properties:
1. U is connected.
2. Sn ⊂ ∂U .
Then given any sequence of distinct points zn ∈ U , there exists an autonomous
differential equation x′ = f(x), where f : X → X is a Lipschitz mapping, and its
solution xn(t), xn(0) = zn has the property Sn = ω(xn) for all n ∈ N. Moreover, if
X admits a Ck-smooth renorming then f may be chosen Ck-smooth as well.

4. Type II

We begin the proof of Theorem 4 with a renorming lemma.

Lemma 31. Let Y be a separable Banach space with a Ck-smooth equivalent norm
‖| · ‖|. Then there is an equivalent Ck-smooth norm ‖ · ‖ and a set {ũn}∞n=1 on the
sphere of SY , functionals {φn}∞n=1 ∈ SY ∗ , φn(ũn) = 1, εn > 0, and Ṽn = {z ∈ BY :
φ−1

n (z) ≥ 1− εn} such that letting Hn = φ−1
n (1− εn) to be affine hyperplanes in Y

we have:
1. (∪∞n=1Hn) ∩ {x̃i}∞i=1 = ∅
2. dist(Ṽn, Ṽm) > 1

2 whenever n 6= m.

Proof. We distinguish the following cases. If Y is separable, then it has a LUR norm
‖ · ‖ by Theorem II.2.6 in [DGZ93]. In the C1-smooth case, by the same theorem
the space Y admits a norm ‖ · ‖ that is simultaneously LUR and C1-smooth. So
in these cases every point on the unit sphere of S‖·‖ is strongly exposed. We may
choose as our {ũi}∞i=1 an arbitrary 2

3 -separated subset of the sphere together with
suitable norming functionals {φn}∞n=1 so that letting εn ↘ 0 small enough it holds
that diamṼn < 1

8 . It remains to deal with Ck-smooth case, k > 1. By Theorem
V.3.4 in [DGZ93] we know that Y is either superreflexive or it contains a copy of c0.
In the former case, Y is in particular an RNP space by Proposition 2.4.1 in [Bou83],
so its unit sphere S‖|·‖| is dentable by Corollary 2.3.7 in [Bou83] which finishes the
argument in a similar way as in the previous case. Indeed it suffices to pick the
points x̃i inside the suitable slices of small enough diameter. In the remaining case
we have c0 ↪→ Y . By Sobczyk’s theorem (Theorem 5.14 in [F˜]) c0 is complemented
in Y by means of a projection P , so it holds Y = c0 ⊕ Z. We are first going to
re-norm c0 by the norm ‖·‖1 whose unit ball is conv( 2

3B(c0,‖·‖∞)∪{±en}∞n=1) where
{en}∞n=1 is the canonical unit basis of c0. It is easy to verify that every en is strongly
exposed by its dual functional φn ∈ `1.. In fact, φn(y) > 1− ξ and ‖y‖1 ≤ 1 imply
that ‖y − en‖1 ≤ 2ξ

3 . By [DFH98] there exists a C∞-smooth norm ‖ · ‖2 on c0
approximating ‖ · ‖1 so that its unit ball B2 satisfies B2 ⊂ B‖·‖1 ⊂ (1+ ξ

2 )B2. Thus
φn(y) > 1 − ξ and ‖y‖2 ≤ 1 imply that ‖y − en‖1 ≤ 2ξ

3 . So choosing suitable εn

and µ̃n = λnen, ‖µ̃n‖2 = 1, Hn = φ−1
n (1− εn) and Ṽn = {z ∈ B2 : φn(z) > 1− εn}

we have diamṼn <
4
3εn and ∪Hn ∩ {Px̃i} = ∅. To finish, we re-norm Y by ‖y‖ =

‖|(Id − P )y‖| + ‖Py‖2, and extend the functionals φn onto Y canonically. The
separation of these slices follows from the separation of their projected images in
c0.

�

The norm ‖ · ‖ from Lemma 31 will be used in our proof below. Moreover, we need
another simple lemma.

Lemma 32. Let ψ : R → R+ be a nondecreasing C∞-smooth such that ψ(t) = 0
iff t ≤ λ

9 , ψ(t) = ε
2 for t ≥ λ

4 −
λ
9 . We define a vector field f in R2 as follows.
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f(x, y) =

{
0 for y ≤ ψ(x)
(1, ψ′(x)) otherwise

(17)

Then there exists a C∞-smooth field g on R2 parallel to f . This field also defines
a transport of the segment (0, 0)(0, ε

2 ) onto (λ
4 ,

ε
2 )(λ

4 , ε).

By a parallel field we mean that g(x, y) = η(x, y)f(x, y) where η(x, y) > 0 whenever
f(x, y) 6= 0.

Proof. The field f is C∞-smooth on O = {[x, y] : y > ψ(x)}. Let η : R2 → R be
C∞-smooth, supp(η) = O and all derivatives Diη = 0 on R2 \O for all i = 0, 1 . . . .
It suffices to put g(x, y) = η(x, y)f(x, y). The transport F : [0, λ

4 ]×(0, 0)(0, ε
2 ) → R2

is given by formula F (t, (0, y)) = (t, ψ(t)). �

We proceed with the proof of Theorem 4. We have X = [e] ⊕`2 Y , ‖e‖ = 1, and
assume that the norm of Y and X is Ck-smooth. Let B = BY be the closed unit
ball of Y , B0

Y be its interior. Choose v1, v2 ∈ U , such that v2 = v1+λe and δ > 0 so
that v1v2 + 3δBX ⊂ U . Let J1 = [−λ, 0]. We have that F ′

1 : J1 × (v1 + δB) → U ,
F ′

1(t, p) = p + (t + λ)e is a C∞-smooth Id-transport of v1 + δB to v2 + δB in
U . By applying Lemma 24 (and the restriction to convex subsets) there exists
0 < ε < δ, so that denoting A1 = v1 + εB, A2 = v2 + εB we have C∞-smooth
Id-transports in U F1 : J1 × A1 → U sending A1 to A2, F1 is a restriction of
F̃ ′

1, and F2 : J2 × A2 → U sending A2 to A1. WLOG assume that J2 = [0, 1].
Moreover, T2 ∩ v1v2 + 3δBX = A1 ∪A2. This means that we have created a loop of
transports that can be connected and Fa

2 F1 acts as an identity operator on A1. In
particular, applying Lemma 26 at this point (note that if a Banach space admits
a Ck-smooth norm, then it also admits a Ck-smooth bump) we have obtained a
Ck-smooth and Lipschitz autonomous equation on X with the property that all of
its non-trivial solutions are periodic and live inside the tubus T = T1∪T2. Our next
step will lead to an equation with T as its ω-limit set. In order to achieve this goal,
we apply a result from operator theory from [An97] or [Sa95]. Namely, on every
separable Banach space (in particular on Y ) there exists a hypercyclic operator,
i.e. a bounded linear operator T : Y → Y and yh ∈ Y such that {Tn(yh)}∞n=1 is
dense in Y . Moreover, and this is equally important for us, we may assume that
T = Id+K where K is a compact operator with norm ‖K‖ < 1

2 . So the spectrum
of Id + ξK, |ξ| ≤ 1 is contained in {1 + z : |z| ≤ 1

2}. does not contain zero, and
so such operator is a linear isomorphism ([F˜] p. 210). Let ζ : (−∞, 1) → R
be a C∞-smooth non-decreasing function such that ζ(t) = 0 iff t ≤ 0, ζ ′(t) > 0
for t > 0 and limt→1 ζ(t) = ∞. Let Φ : B0

Y → Y be a Ck-diffeomorphism given
by Φ(y) = ζ(‖y‖)y, and denote z = Φ−1(yh). Fix two non-negative C∞-smooth
functions α, β : [0, 1] → [0, 1], such that α(t) + β(t) = 1, α(t) = 1 for t ∈ [0, 1

9 ) and
α(t) = 0 for t ∈ (1− 1

9 , 1]. Let Ψ(θ) : B0
Y → B0

Y ,

Ψ(θ) = Φ−1 ◦ (α(θ)Id+ β(θ)T ) ◦ Φ (18)
be a Ck-smooth diffeomorphism for every θ ∈ [0, 1]. Indeed, the special form of
T guarantees that α(θ)Id + β(θ)T = Id + ξK, |ξ| ≤ 1 is an isomorphism on Y
for every θ. Moreover, it is clear that x̃n = {Ψ(1)n(z)}∞n=1 is a dense set in B0

Y ,
because {x̃n}∞n=1 = {Φ−1◦Tn(yh)}∞n=1. Define a new Ψ-transport F̃2 : J2×A2 → U ,
F̃2(θ, v2 + z) = F2(θ, v1 + Ψ(θ)(z)). It is standard to check that F̃2 is C∞-smooth
and has the same tubus as F2. Thus it can be connected into a ”loop transport”
F = F̃a

2 F1, for which F ({1} × A1) goes back into A1 and acts as an operator
Ψ = Ψ ◦ Id. Let xn = v1 + x̃n = Fn(1, z) ∈ A1 and yn = F1(1, xn) ∈ A2. Note that
yn = xn + λy. Let Vn = p + εṼn and Wn = q + εṼn. Denote also Ã1 = A1 \ ∪Vn,
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Ã2 = A2 \ ∪Wn. The restriction F̃1 = F1 �J1×Ã1
is again a transport sending Ã1

onto Ã2. Denote R1 and R2 the respective tubuses of F̃1, F̃2. We introduce trunks
from Vn or Wn using ψ from Lemma 32. Denote V 1

n = p + λ
4 e + ψ(λ

4 ) vn

‖vn‖ + εṼn

and W 1
n = q − λ

4 e+ ψ(λ
4 ) vn

‖vn‖ + εṼn.

Lemma 33. (Trunk lemma)
There exist C∞-smooth transports Rn from Vn to V 1

n with tubuses R1
n satisfying

R1
n∩R2 = Vn, R1

n∩R1 ⊂ ∂R1. Also, there exists a C∞-smooth transports R2
n from

W 1
n to Wn with tubuses R2

n satisfying R2
n ∩ R2 = Vn, R2

n ∩ R1 ⊂ ∂R1. Moreover,
Ri

n ∩Rj
m = ∅ unless i = j, n = m.

Proof. In case of V 1
n the transport formula is the following: F 1

n : [0, λ
4 ] × Vn → U ,

F 1
n(t, z) = z + ψ(t)un + te. In case of W 1

n the transport formula is: F 2
n : [ 3λ

4 , λ] ×
W 1

n → U , F 2
n(t, z) = z − ψ(λ− t)un + te. Since these transports remain within the

set v1v2 + 3δBX we get R1
n ∩R2 = Vn, R2

n ∩R2 = Wn. �

Next, we define the transport G1 from A1 \ ∪Vn onto A2 \ ∪Wn as a restriction of
F1 and R̃1 be its tubus.
It is clear that the closed set Q = R̃1∪R2∪∪∞n=1(R

1
n∪R2

n) has an arcwise connected
complement in U . Indeed, the trunks Ri

n are 1
2 -separated, so the localized version of

Lemma 27 will give us the conclusion. Since the rest of the proof is very similar to
that of Theorem 3, we proceed at a faster pace. Choose a dense sequence {sn}∞n=1

in U \Q.
We proceed by induction now. Let Q0 = Q, s0n = sn. In the first step, using
Lemma 25, Lemma 24, and Fact 14 find ε1 such that the s1 + ε1A is small enough
and construct a transport G1

1 from V 1
1 onto s1 + ε1A inside U \Q, and connect it

with the transport G2
1 from s1 + ε1A onto U1

1 . These transports result from ε1-
planar curves connecting ũ1 to s1 and from s1 to ṽ1, and the tubus remains disjoint
from Q. Moreover we may WLOG assume that TG1

1
∪ TG2

1
has distance at least ε1

from R̃1 ∪R2 ∪ ∪∞n=2(R
1
n ∪R2

n). Let Q1 = Q0 ∪ TG1
1
∪ TG2

1
.

Inductive step. We have already constructed for i = 1, . . . , n: εi and transports Gi
1

from V 1
i onto s̃i + εiA inside U \Qi−1, and connected it with transports G2

i from
s̃i + εiA onto U1

i . These transports result from εi-planar curves connecting ũi to
s̃i and from s̃i to ṽi, and the tubus remains disjoint from Qi−1. Moreover we may
WLOG assume that TG1

i
∪TG2

i
had distance at least εi from R̃1∪R2∪∪∞n=i+1(R

1
n∪

R2
n). Choose the first available si /∈ Qn and relabel it as s̃n+1. Then repeat the

first step of the inductive argument, with the obvious changes in the notation.
The inductive argument yields a family of disjoint transports G2

n
a
G1

n from Ṽn onto
Ũn in U , such that ∪∞i=1Q

i is dense in U . Apply Lemma 26 to define a Ck-smooth
and Lipschitz vector field g on the whole X, that is nonzero and parallel to the
above constructed system of transports at each interior point of ∪Qi. Let us now
trace the trajectory of the solution of x′ = g(x), x(0) = z. By condition 1 in Lemma
31, g(x) 6= 0 for the whole solution x. By construction, this solution passes through
every point x̃n ∈ A1, and its trajectory is a dense set in ∪∞i=0Q

i. This finishes the
proof.

5. Type III

Let X be a separable Banach space with a Schauder basis. Our goal is to construct
by induction a C∞-smooth and Lipschitz on bounded sets mapping f : X → X
and a solution x of (1), such that Ω(x) is of type III. We renorm X so that it has
a normalized Schauder basis {ei, φi}∞i=1 ([F˜] Lemma 6.4). Let Pn : X → X be
the initial projections Pn(

∑∞
i=1 ziei) =

∑n
i=1 ziei. These projections are 1-bounded
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linear operators, and Pk ◦ Pn = Pmin{k,n}. By Xn = [ei : 1 ≤ i ≤ n] we denote the
n-dimensional subspaces of X. We have X = ∪∞i=1Xn. Fix a continuous mapping

G : X → X∗, G(z) = −φ2(z)φ1 + φ1(z)φ2. (19)

Definition 34. Let Y be a linear subspace of X. We say that a mapping f : Y → X
is a G-positive function (or a field) if it is C∞-smooth, Lipschitz, and the following
conditions hold:

〈G(z), f(z)〉 > 0 whenever P2(z) 6= 0. (20)

P2 ◦ f(
∞∑

i=1

ziei) = −z2e1 + z1e2 whenever ‖P2(z)‖ < ξ, for some ξ > 0. (21)

This auxiliary notion will be crucial for keeping the fields fn and the sought field
f nonzero, while making the necessary perturbations that create some periodic
orbits. For convenience, we will use the notation X2 = {z ∈ X : P2(z) 6= 0},
X2

n = Xn∩X2. Note, in particular, that (21) implies that every solution y with the
initial condition from X2 remains inside X2. We sketch proofs of some deformation
lemmas for smooth fields on Xn.

Lemma 35. Let f : Xn → Xn be a G-positive field, x be a solution of (1) passing
through q, p, r ∈ X2

n, (in this order), δ > 0 and ‖p− q‖ > δ, ‖r− q‖ < δ. Let ε > 0,
be such that ‖r − q‖+ ε < δ. Moreover, assume that

〈G(z), q − r〉 > 0 for all z ∈ pq. (22)

Then there exists a G-positive field g : Xn → Xn, f(z) = g(z) whenever z /∈
rq+εBXn

and such that the solution of y′ = g(y), y(0) = p is periodic and contains
q, r.

Proof. Let γ ⊂ x be the solution curve from q to r. Let ε > 0 and γ1 ⊂ rq+ ε
2BXn

be a C∞-smooth curve, γ1 + εBX ⊂ B(q, δ) from r to q so that γ2 = γaγ1 is a
C∞-smooth periodic curve, and moreover 〈G(z), γ′2(z)〉 > 0 for all z ∈ γ2. Such a
curve exists by using a standard smoothnenning of the continuous periodic curve
γarq around the points p, q. The C∞-smooth field γ′1 can be extended (using local
coordinates) from γ2 into a C∞-smooth field h defined on some neighborhood U ⊂
rq+εBXn

⊂ X2
n of γ1 in Xn, so that h(z) = γ′2(z) for z ∈ γ2∩U . Moreover we may

WLOG assume that 〈G(z), h(z)〉 > 0 for z ∈ U . Pick a Ck-smooth partition of unity
{φ1, φ2} on Xn, supp(φ1) ⊂ U , φ1 �γ1= 1, and set g(z) = φ1(z)h(z) + φ2(z)f(z).
It follows that γ2 is a solution curve of y′ = g(y). The desired properties are clear,
in particular g is G-positive. �

Lemma 36. Let f : Xn → Xn be a G-positive field with a periodic solution x
passing through p, q ∈ X2

n, δ > 0 and ‖p − q‖ > δ. Then there exists a G-positive
field g : Xn → Xn such that f = g outside B(q, δ) and g is constant on B(q, ρ) for
some ρ > 0. Moreover the solution of y′ = g(y) passing through p is periodic and
passes through q as well.

Proof. Let φ = G(q) ∈ X∗ and choose η > 0, 0 < 3η < δ small enough so that

φ(f(z)) > 0 and 〈G(z), f(q)〉 > 0 for z ∈ B(q, 3η). (23)

Fix a constant nonzero field g1(z) = f(q) for z ∈ B(q, 2η). Choose a partition of
unity {φ1, φ2} on Xn, supp(φ1) ⊂ B(q, 2η), φ1 = 1 on B(q, η) and set g2(z) =
φ1(z)g1(z) + φ2(z)f(z). Clearly, g2 is nonzero on B(q, 3η) (as φ(g1(z)) > 0 there)
and C∞-smooth, but a solution of y′ = g1(y) passing through p may no longer be
periodic and pass through q. To retrieve this property, we apply Lemma 35 to g2



ON ω-LIMIT SETS OF ORDINARY DIFFERENTIAL EQUATIONS IN BANACH SPACES 17

twice, for suitable pairs of points p1, q1, p2, q2 from B(q, η
2 ) selected in the following

way. p, p1, q, p2 lie (in this order) on the original solution to x′ = f(x) passing
through p, and q1, q, q2 lie (in this order) on the solution to the new equation
y′ = g2(y) passing through q. The points q1, q2 are close enough to q, so that
φ(q1 − p1) > 0, φ(p2 − q2) > 0. Let ς = min{‖p1 − q‖, ‖p2 − q‖, ‖q1 − q‖, ‖q2 − q‖}.
Using Lemma 35 we connect the points p1 and q1 by a curve γ1, while perturbing g2
only on p1q1 + ς

2BXn
. We perform the same step once more connecting q2 and p2.

Using Lemma 35 we connect the points q2 and p2 by a curve γ2, while perturbing
g2 only on q2p2 + ς

2BXn . The result of these perturbations will be a G-positive
mapping g satisfying the requirements, g = g2 on B(q, ς

2 ). �

Lemma 37. Let f : Xn → Xn be a G-positive mapping on Xn with a periodic
solution curve γ ⊂ X2

n, p, r ∈ γ, 1
4‖p − r‖ > δ > 0. Then there exists a β > 0,

β < δ, a G-positive mapping g : Xn → Xn, g(z) = f(z) for z /∈ B(p, 4δ) and such
that every solution yq of y′ = g(y) y(0) = q ∈ B(p, β) is periodic. Moreover, r ∈ yp.

Proof. Choose a suitable p′ ∈ γ with ‖p−p′‖ = δ. By Lemma 36 there exists ρ > 0 a
G-positive perturbation f1 of f , f1(z) = f(p) = λe, (λ > 0, ‖e‖ = 1) for z ∈ B(p, ρ),
and f1(z) = f(z) for z /∈ B(p′, 2δ). Also, a solution curve γ1 of y′ = f1(y) passing
through r is periodic and still passes through p. We have Xn = Y ⊕[e], ‖e‖ = 1, and
we choose a normalized Auerbach linear basis v1, . . . , vn−1 of Y ([F˜] Theorem 5.6).
(This way we know that all coordinates of vectors from BY have absolute value at
most one). For simplicity of notation, re-lable γ1 as γ and f1 as f again. Choose
q = p + ρ

2e ∈ γ and a forward parametrization γ : [a, b] → Xn, a < b, γ(a) = q,
γ(b) = p (recall that γ is periodic). Let J = [a, b], γ0 : J → Xn be the backward
solution curve from p to q, γ0(t) = γ(b+ a− t). For each t ∈ J let Wt = γ0(t) + Y
(note that Wa = p + Y , Wb = q + Y ). By using the standard arguments and
Lemma 9 there exists α > 0, α < ρ

4 such that for every backward solution curve
ζ : J → B(p, ρ) starting at z ∈ B(p, 2nα) ∩Wa and ending in Wb there is a unique
point of intersection zt ∈ ζ ∩Wt, for every t ∈ J . Denote by γi, i = 1, . . . , n − 1
the backward solution curves starting at p+αei and let βi(t) = γi ∩Wt. Assuming
that α is small enough, compactness of J and Lemma 9 allow us to assume that
{βi(t)−γ0(t)}n−1

i=1 forms a linear basis of the space Wt (with origin shifted to γ0(t)).
(This is because z → zt, t ∈ J fixed, is as close to a linear isomorphism in z as we
wish in a small neighborhood of z = p). So for every z ∈ B(p, 2nα)∩Wa and t ∈ J
there is a uniquely determined tuple (z1

t , . . . , z
n−1
t ) such that

zt = γ0(t) +
n−1∑
i=1

zi
t(βi(t)− γ0(t)) (24)

Put J ′ = [0, ρ
2λ ], and put ζ0(t) = p + tλe, t ∈ J ′. Choose a small enough β < α,

such that z ∈ p+βBY , z = p+
∑n−1

i=1 zivi implies that
∑n−1

i=1 |zi| < 1
4 and a system

of suitable curves ζi : J ′ → B(p, ρ), 1 ≤ i ≤ n − 1, connecting p + βei ∈ Wa with
(p+ βei)b ∈Wb with the properties:

1. ζ ′i(t) = f(ζi(t)) = λe is constant whenever |t| < ρ
8λ or |t− ρ

2λ | <
ρ
8λ ,

2. (ζi(t)− ζ0(t)), 1 ≤ i ≤ n− 1 form a linear basis of ζ0(t) + Y , for every t ∈ J ′.
3. For every z ∈ ζ0(J ′) + 2nβBY = A and every i ∈ {1, . . . , n− 1}, t ∈ J ′ we have

|〈G(z), ζ ′i(t)〉| <
1
8n

min
z∈A

〈G(z), λe〉. (25)

We define the mapping F : J ′ × (p+ 2βBY ) → X by
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F (t, z) = ζ0(t) +
n−1∑
i=1

zi(ζi(t)− ζ0(t)), for t ∈ J ′, z =
∑

zivi ∈ B(p, 2β)∩Wa (26)

By our construction we see that this mapping is C∞-smooth and g1 = ∂F (t,z)
∂t is a

C∞-smooth and Lipschitz field that coincides with f on some neighborhoods of p, q.
The set U = F (J ′ × (p + 2βBY )) is a neighborhood of ζ0([ ρ

9λ ,
4ρ
9λ ]). It is standard

to check that (25) and (26) together imply that

〈G(z), g1(z)〉 ≥ 〈G(z), λe〉 −
n−1∑
i=1

|zi|(〈G(z), λe〉+
n−1∑
i=1

|〈G(z), ζ ′i(t)〉|) ≥ (27)

≥ 〈G(z), λe〉 − 1
4
(
1
8

min
z∈A

〈G(z), λe〉+ 〈G(z), λe〉) > 1
4

min
z∈A

〈G(z), λe〉, (28)

so

〈G(z), g1(z)〉 > 0 for z ∈ F (J ′ × (p+ 2βBY )). (29)
To finish, use the C∞-smooth partitions of unity {φ1, φ2} on Xn,

supp(φ1) ⊂ F (J ′ × (p+ 2βBY )), and φ1 = 1 on F ([
ρ

9λ
,
4ρ
9λ

]× (p+ βBY )) (30)

and set g(z) = φ1(z)g1(z)+φ2(z)f(z). Clearly, g is G-positive and solutions passing
through points in B(p, β) are periodic. �

The above perturbation in B(p, 4δ) cannot be done with a good control on the
derivatives of the perturbation (as the solutions are joined after having completed
possibly very long trajectories). This is a source of additional technical difficulties
in our proof. In order to be able to control the limit process with fn below, we are
forced to artificially modify the periodic solutions by sending them far away from
the origin, so that the spots where large perturbations occur do not accumulate in
one place, spoiling the convergence of the derivatives of fn.

We are now ready to begin the proof of Theorem 5. Let Qn ⊂ X be the sets with
the property

z ∈ Qn iff max{φ6n+2(z), φ6n+4(z), φ6n+6(z)} > 1. (31)
By induction we are going to construct the following system of objects.

1. A system of numerical parameters:

0 < νn, ρn, ϑ
1
n, αn, δ

m
n <

1
2n

where n,m ∈ N, n < m. (32)

ϑm
n ↘ 1

2
ϑ1

n,m ≥ n. (33)

2. Sequences {pn}∞n=1, {rn}∞n=1 of points from X, pn, rn ∈ X6n.

3. A sequence {fn}∞n=1, fn : X → X6n of G-positive fields with properties:

•fn = fn ◦ P6n on X, fn(z) = f0(z) if ‖P 6n(z)‖ is large enough (34)

• sup
z∈X

‖Difn(z)‖ <∞, ‖Difn+1 −Difn‖ < νn holds on X \Qn for i ≤ n. (35)

(so fn converges locally uniformly to a C∞-smooth field f).
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• Every solution to y′ = fn(y), y(0) = r ∈ e1 + ρnBX is periodic with a solution
curve γn

r . It holds γn+1
e1

(t) = γn
e1

(t) for all t ∈ [0, tn] and pn = γn
e1

(tn). We denote

Rn
0 = {z ∈ X : z ∈ γn

r , r ∈ e1 + ρnBX} ⊂ γn
e1

+ αnBX (36)

• Every solution (curve) γn
r to y′ = fn(y), y(0) = r ∈ rn + ϑn

nBX is periodic. We
denote γn = γn

rn
. We denote

Rn
n = {z ∈ X : z ∈ γr, r ∈ rn + ϑn

nBX} ⊂ γn + αnBX (37)

For i > n we introduce

Ri
n = {z ∈ X : z ∈ γr, r ∈ rn + ϑi

nBX}, (38)

Ri,j
n = {z ∈ X : z ∈ γr, r ∈ rn + (

3− j

3
ϑi

n +
j

3
ϑi+1

n )BX}, j = 1, 2, 3 (39)

Rn = {z ∈ X : z ∈ γr, r ∈ rn +
1
2
ϑn

nBX}. (40)

• It holds

γr ⊂ Rn + αmBX for every γr ⊂ Rm
n , (41)

dist(X6n \Rm
n , R

m
m) > δm

n , and fm = fn on Rm
n for every m > n ≥ 0. (42)

• ∪∞n=1Rn is norm dense in X and {pn}∞n=1 is norm dense in X \ ∪∞i=1Ri.

An important ingredient in our inductive argument is contained in the next lemma.

Lemma 38. Let f : X → Xn be a G-positive mapping such that f ◦ Pn = f . Let
ρ′ > 0, ζ > 0, t1, t2 ≥ 0, S1, S ⊂ X be f-invariant sets with properties:

S1 + ζBX ⊂ S, Pn(S) ⊂ S, Pn+1(S) ⊂ S, Pn(S1) ⊂ S1, (43)

Pn+1(S1) ⊂ S1, S ⊂ Xn +
1
2
BX . (44)

Let p, q ∈ X2 \ S, ι > 0, y1 : R → Xn be a solution to y′ = f(y), y(0) = p, and
y2 : R → Xn be a solution to y′ = f(y), y(0) = q. Assume that for some ι > 0

y1([−ι, ι]) ∩ (y2([−ι, ι]) = ∅, (45)

Then there exists a G-positive perturbation f3 : X → Xn+2 of f such that

f3 ◦ Pn+2 = f3, ‖Di(f3 − f)(z)‖ < ρ′n whenever φn+2(z) < 2, (46)

f3(z) = f(z) whenever z ∈ S1. (47)

and a solution y3 of y′ = f3(y), y(0) = p satisfies:

y3(t) = y1(t) for t ∈ [−t1, 0], and y3(t0 + t) = y2(t) for t ∈ [0, t2]. (48)

Moreover y3 is disjoint from S, the set S1 is f3-invariant, and y3 passes through
some point v ∈ Xn+2, φn+2(v) > 3

2 .
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Proof. Denote γ̃1 the solution curve of y1[−t1, 0] and γ̃2 the solution curve of
y2[0, t2]. We may WLOG assume that ι is small enough so that for every solu-
tion curve τ passing through B(p, 2ι) ∪B(q, 2ι) it holds

τ ∩ (B(p, 4ι) ∪B(q, 4ι)) 6= ∅. (49)

Let and Ki > 0, i ≤ n be some small enough constants, whose value will be de-
termined later. The construction depends on a C∞-smooth non-negative function
λ : X → R, λ = λ ◦ Pn, with the properties:{

λ(z) = 0 for z ∈ y1([−ι, 0])
λ(z) > 0 for z ∈ y1((0, ι])

(50)

{
λ(z) = 0 for z ∈ y2([0, ι])
λ(z) > 0 for z ∈ y1((−ι, 0))

(51)

λ(z) = λ0 > 0 for z /∈ B(p, 2ι) ∪B(q, 2ι). (52)

‖Diλ(z)‖ < Ki for z ∈ X, i ≤ n,Dnλ(p) = 0, Dnλ(q) = 0, for n ∈ N. (53)

Let f1 : X → Xn+1, f1 = f + λen+1 be a perturbation of f , and its ”lifted” pair of
forward solution starting at p and backward solution starting at q:{

y1
1(t) = y1(t) +

∫ t

0
λ(y1(τ))dτen+1, t ∈ [0,∞)

y2
1(t) = y2(t)−

∫ 0

t
λ(y2(τ))dτen+1, t ∈ (−∞, 0]

(54)

Note that these solutions do not intersect with S because Pn(S) ⊂ S. It is also
clear from (52) and (49) that

lim
t→∞

φn+1(y1
1(t)) = ∞, and lim

t→−∞
φn+1(y2

1(t)) = −∞. (55)

Let θ : R → [0, 2] be an odd C∞-smooth function θ �[−1,1]= 0, |Diθ(t)| < K ′
i for

t ∈ R, θ(t) = 2 for t ≥ T . The values of K ′
i, T and further properties of θ will be

described later in the course of the proof. Choose a perturbation

f2(z) = f1(z) + θ(φn+1(z))e2n+2 (56)

Again, its ”lifted” pair of forward solution starting at p and backward solution
starting at q satisfy:{

y1
2(t) = y1

1(t) +
∫ t

0
θ(φn+1(y1

1(τ)))dτen+2, t ∈ [0,∞)
y2
2(t) = y2

1(t)−
∫ 0

t
θ(φn+1(y2

1(τ)))dτen+2, t ∈ (−∞, 0]
(57)

Note that these solutions do not intersect S because Pn+1(S) ⊂ S and using (55)

lim
t→∞

φn+2(y1
2(t)) = ∞, and lim

t→−∞
φn+2(y2

2(t)) = ∞. (58)

Observe that the perturbations f1, f2 satisfy P2(f1) = P2(f2) = f so they are still
G-positive mappings, and y1

2 , y
2
2 ⊂ X2. Choose T1 > 0 such that φn+2 ◦y1

2(T1) > 2,
φn+2 ◦ y2

2(−T1) > 2, and let p1 = y1
2(T1), q1 = y2

2(−T1). Clearly, p1, q1 ∈ X2.
We also denote by γ1 : [0, T1] → Xn+2 the solution curve of y1

2 from p to p1, and
γ3 : [T1 + 1, 2T1 + 1] → Xn+2 the reparametrized solution curve of y2

2 from q1 to q
(considered as a forward solution). In order to connect the initial and final parts
of the desired solution curve, we need the next lemma.
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Lemma 39. Let C > 0, a, b ∈ X2
n. Assume that

φk(a) > C, φk(b) > C and φk(S) < C for some k ≤ n (59)
Denote I = [0, 1]. Then there exists a C∞-smooth curve κ : I → X2

n such that:

κ(0) = a, κ(1) = b, φk(κ(t)) > C for all t ∈ I (60)

〈G(κ(t)), κ′(t)〉 > 0, for t ∈ I (61)
In particular κ ∩ S = ∅.

Proof. Denote a = (a1, . . . , an), b = (b1, . . . , bn). Let α, β ∈ [0, 2π) be such thatRe(exp(iα)) = a1

(a2
1+a2

2)
1
2
, Im(exp(iα)) = a2

(a2
1+a2

2)
1
2
,

Re(exp(iβ)) = b1

(b21+b22)
1
2
, Im(exp(iβ)) = b2

(b21+b22)
1
2
.

(62)

Assume WLOG that β > α. Using the coordinates we introduce κ as follows.
φ1 ◦ κ(t) = Re(exp(i(1− t)α+ itβ)((1− t)‖P2(a)‖+ t‖P2(b)‖)
φ2 ◦ κ(t) = Im(exp(i(1− t)α+ itβ)((1− t)‖P2(a)‖+ t‖P2(b)‖)
φi ◦ κ(t) = (1− t)ai + tbi for i ≥ 3

(63)

It is easy to verify that κ satisfies our conditions including (61). �

We now apply Lemma 39 in Xn+2 for the values a = p1, b = q1, C = 3
2 , k = n+ 1.

By a standard argument we adjust κ in small neighborhoods of the connection
points p1, q1 (contained in φ−1

k ([C,∞))) to obtain a C∞-smooth curve γ2 which
still satisfies (60) and (61) so that the curve from p to q:

γ̃ = γ_
1 γ_

2 γ3 : [0, 2T1 + 1] → Xn+2. (64)
is C∞-smooth, γ̃ ∩ S = ∅. From (50) and (51) it follows that γ̃ ∩Xn = {p, q}, and
from (53) it follows that

γ = γ̃_
1 γ̃_γ̃3 : [−t1, 2T1 + 1 + t2] → Xn+2. (65)

is C∞-smooth and γ ∩ S = ∅. Pick any v ∈ γ2. By using some standard extension
into the neighborhood theorem (e.g. [War72] Proposition 1.36), we know that
γ′ can be C∞-smoothly extended into a field f̃2 defined on γ + ζBXn+2 so that
f̃2(z) = f2(z) whenever φn+2(z) < 3

2 , and moreover 〈G(z), f̃2(z)〉 > 0. We have
that S1∩γ+ ζBXn+2 = ∅. Choose the partitions of unity ψ1, ψ2 on Xn+2 such that

supp(ψ1) ⊂ γ[−t1, 2T1 + 1 + t2] + ζBX and ψ1 �γ[−t1,2T1+1+t2]= 1. (66)

‖Diψ1‖Xn+2 < E(ζ, n) for i ≤ n, (67)
where the constants E(ζ, n) depend only on the values of ζ > 0 and n ∈ N, but not
on the curve γ or T . In this formula the norms of the derivatives are taken with
respect to Xn+2 together with the norm inherited from X. Since Xn+2 is finite di-
mensional (and so linearly isomorphic to the Euclidean space Rn+2), there exist con-
stants Ci independent of the function ψ1, such that ‖Diψ1‖Xn+2 < Ci‖Diψ1‖`n+2

2
.

So it suffices for us to obtain the result in the Euclidean space Rn+2. That is the
content of the next lemma.

Lemma 40. Let δ > 0, δ < 1
4 . The there exists Di > 0, i ∈ N, such that for

every compact set M ⊂ Rn there exists a C∞-smooth function φ : Rn → [0, 1],
supp(φ) ⊂M + δBRn , φ �M= 1 and such that ‖Diφ‖ < Di on Rn.
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Proof. Let ψ : Rn → [0,∞) be a C∞-smooth convolution kernel, i.e.∫
Rn

ψ(z)dz = 1, supp(ψ) ⊂ δ

4
BRn . (68)

By compactness, it holds ‖Diψ‖Rn < Di on Rn, for suitable Di > 0 and for every
i ∈ N. Let M̃ = M + δ

2BRn , and fix an indicator function χ = χ �M̃ . Let

φ(a) =
∫

Rn

χ(a− z)ψ(z)dz. (69)

It is well-known that

Diφ(a) =
∫

Rn

χ(a− z)Diψ(z)dz. (70)

and so

‖Diφ(a)‖Rn ≤
∫

Rn

‖Diψ(z)‖Rndz ≤ Di hold for every a ∈ Rn (71)

The remaining properties are obvious. �

We now introduce the G-positive mapping f3.

f3 = ψ1f̃2 + ψ2f, on Xn+2. (72)
This formula of course yields (47). In order to obtain (46), recall that Ki =
Ki(n, ρ′n, ζ), K

′
i = K ′

i(n, ρ
′
n, ζ) and ρ′′i = ρ′′i (n, ρ′n, ζ) can be chosen small enough

so that (by using that f̃2(z) = f2(z) whenever φn+2(z) < 3
2 ) we have an estimate

‖Di(f̃2 − f)(z)‖ < ρ′′n
E(ζ, n)

holds whenever φn+2(z) <
3
2
, 0 ≤ i ≤ n. (73)

and by applying the Leibnitz formula to (72), we finally obtain that

‖Di(f3 − f)(z)‖ < ρ′n holds whenever φn+2(z) <
3
2
, 0 ≤ i ≤ n. (74)

To finish, extend f3 from Xn onto the whole X by f3 = f3 ◦ Pn+2. �

For the purpose of the inductive argument, we introduce some more notation. We fix
a dense sequence {sn}∞n=1 inX, sn ∈ Xn. We denote xn : In → X6n, In = [0, t1n] the
periodic solution (with period t1n) with xn(0) = e1. We denote tn < t1n, Jn = [0, tn]
and pn = xn(tn). (The initial segments xn : Jn → X6n will be used to build the
sought solution x(t) : [0,∞) → X, x1(0) = p1, xn(tn) = pn,) By the construction
Ri

n → Rn is a decreasing sequence of sets, such that each point inside Rn determines
a periodic solution of f , and every solution for fm passing through a point in Rm

n

is periodic and stays in Rm
n .

We begin inductive construction at n = 1: Let ν1 = 1
4 , ρ1 = 1

8 , α1 = 1
4 , ϑ

1
1 = 1

8 , t1 =
2π − 1

4 , δ
1
0 = 1

8 , and r1 = 2e1. Let f1 : X → X6 be a G-positive field defined as
follows:

f1(
∞∑

i=1

ziei) = −z2e1 + z1e2 (75)

Note that every solution y to y′ = f1(y) with initial condition y(0) ∈ X2
2 is periodic

and lies in the 2-dimensional set y0 +X2. We choose a 2π-periodic solution x1 to
y′ = f1(y), y(0) = e1 = r1. We have I1 = [0, 2π], x1 : I1 → X2, and let t1 = 2π−ε1,
J1 = [0, t1], and p1 = x1(t1).
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We denote γ1 ⊂ X6n the solution curve representing periodic solution of f1 passing
through r1, dist(R1

0, R
1
1) > δ10 = 1

8 .

Inductive step from n to n + 1: Choose νn+1, αn+1 <
1

2n+1 . Choose ϑn+1
i , i ≤ n

small enough so that (41) is satisfied. Creation of Rn+1
n+1:

Choose rn+1 ∈ X2
6n \ (∪n

i=0R
n
i ), so that

‖rn+1−sn‖ ≤ 2dist(sn, X
2
6n\(xn(In)∪∪n

i=1R
n
i )), in case when sn /∈ ∪n

i=1Ri (76)

Such a choice will guarantee (at the end of the inductive process) that ∪∞n=1Rn is
norm dense in X. Indeed, if sn ∈ Rn

i , for some 1 ≤ i ≤ n, then using (41) and (42)
we find the desired rn+1 at a distance at most αn of sn.
Recall that fn = fn ◦ P6n, and moreover P6n(Rn

i ) ⊂ Rn
i for all 0 ≤ i ≤ n, as the

Schauder basis is monotone. Choose ρ′n < ρn such that

rn+1 /∈ {z ∈ X : z ∈ γn
r , r ∈ e1 + ρ′nBX}, (77)

and define fn-invariant sets:

S = {z ∈ X : z ∈ γn
r , r ∈ e1 + ρ′nBX} ∪ ∪n

i=1R
n
i . (78)

S1 = {z ∈ X : z ∈ γn
r , r ∈ e1 +

1
2
ρ′nBX} ∪ ∪n

i=1R
n,1
i . (79)

Find ζ > 0 such that S1 + ζBX ⊂ S, and consider the equation

y′ = fn(y), y(0) = rn+1 (80)
Find its forward solution y1 : [0,∞) → X6n and a backward solution y2 : (−∞, 0] →
X6n. Apply Lemma 38 in the setting of S, S1, ζ, ρ′ = νn+1

5 and fn : X → X6n,
p = rn+1, q 6= p, q ∈ X2

6n \ S, t1 = t2 = 0, in order to obtain a G-positive C∞-
smooth perturbation f3

n : X → X6n+2 with a periodic solution passing through
rn+1, and some point v ∈ X6n+2 with φn+2(v) > 3

2 . Apply Lemma 36 to f = f3
n,

p = v, r = rn+1 to obtain another G-positive perturbation f4
n : X → X6n+2 with a

solution curve γn+1 passing through rn+1, a small enough ϑn+1
n+1 so that the set

Rn+1
n+1 = {z ∈ X : z ∈ γr, r ∈ rn+1 + ϑn+1

n+1BX} (81)

consists of periodic orbits, and has a positive distance to S, f4
n = f on S1.

sup
z
‖Dif4

n(z)‖ <∞, ‖Dif4
n −Difn‖ <

νn+1

5
for i ≤ n holds on X6n+6 \Qn,

(82)
Next we repeat a similar procedure to above, in order to extend the partial solution
xn. Let us give just the main steps. Let S = ∪1≤i≤n+1R

n,1
i , S1 = ∪1≤i≤n+1R

n,2
i ,

and ζ > 0 such that (43) holds. Choose pn+1 ∈ X2
6n+2 \ (xn(In) ∪ S) following the

rules: if sn ∈ X2
6n+2 \ (xn(In) ∪ S), then pick rn+1 = sn, otherwise pick pn+1 so

that
‖pn+1 − sn‖ ≤ 2dist(sn, X6n+2 \ (xn(In) ∪ S)). (83)

Such choice guarantees (at the end of the inductive process) that {pn}∞n=1 is norm
dense inX\∪∞i=1Ri. Next we apply Lemma 38 to f = f4

n : X → X6n+2, ζ, ρ′ = νn+1
5 ,

p = pn, q = pn+1, t2 = 0, t1 = −tn (this choice guarantees that xn+1(t) = xn(t)
will hold for all t ∈ [0, tn]). We obtain a G-positive perturbation f5

n : X → X6n+4,
f5

n = P6n+4 ◦ f5
n such that the forward solution xn

1 : [0, tn+1] → X6n+4 (= xn on
Jn) passing through pn also passes through v and pn+1.
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Let S = ∪1≤i≤n+1R
n,2
i , S1 = ∪1≤i≤n+1R

n,3
i , and ζ > 0 so that (43) holds. Once

more we apply Lemma 38 to f = f5
n : X → X6n+4, ζ, ρ′ = νn+1

5 , p = e1, q =
pn+1, t2 = 0, t1 = −tn (this choice guarantees that xn+1(t) = xn

1 (t) will hold
for all t ∈ [0, tn+1]). We obtain a G-positive perturbation f6

n : X → X6n+6,
f6

n = P6n+6 ◦ f6
n such that the forward solution xn+1 is periodic and (= xn on

Jn) passing through pn passes through pn+1. Apply Lemma 36 to f = f6
n, p = v,

r = e1 to obtain the G-positive perturbation fn+1 : X → X6n+6 with a solution
curve γn+1

e1
, xn+1[0, tn+1] ⊂ γn+1

e1
passing through pn+1, a small enough ρn+1 so

that the set

Rn+1
0 = {z ∈ X : z ∈ γn+1

r , r ∈ e1 + ρn+1BX} (84)

consists of periodic orbits, and has a positive distance to ∪1≤i≤n+1R
n+1
i = S1.

At this point we may choose the values δm
n+1, m < n + 1, so that (42) holds.

By construction, properties (34) through (42) are satisfied. This completes the
inductive step. The limit f(z) = limn→∞ fn(z) is G-positive and has the solution
x(t) = limn→∞ xn(t). Since f is Lipschitz on bounded sets, if X admits a Ck-
smooth bump by Lemma 26 we may replace it with a Lipschitz Ck-smooth field
with the same solution curves. It remains to check that Ω(x) is of type III. By
construction we see that S = Ω(x) = X \∪∞n=1int(Rn), and x∩∂Rn = ∅, n ∈ N. Let
us see that every type III set S satisfies X \ S = ∪∞n=1Un where Un are nonempty
disjoint and connected. If there were only finitely many, then S = ∪k

i=1∂Un, so
x ∩ ∂Un 6= ∅, which is a contradiction by applying Theorem 10 in the usual way.
This ends the proof of Theorem 5.

6. Examples

Let us give an idea how to obtain a Lipschitz equation with ω-limit set S that has
non-empty interior, but S 6= intS. For simplicity, let X = `2, Y = {(αn)∞n=1 :
α1 = 0}, X = Y ⊕ [y]. In light of the construction in Theorem 4, it suffices to
construct an equation such that the solutions with initial conditions from BY form
a ”tubus” that is squashed into a ”flat stripe” and then again returns into the
original tubular shape. Such a body can be used in the constructions in Theorem
4 to replace the connecting piece between the respective trunks. The resulting ω-
limit set will have some ”flat handles”, i.e. handles with empty interior. It is also
possible to compose these equations, creating ω-limit sets whose interior has an
arbitrary (finite or infinite) number of open components. Let us describe now an
easy example of such a flow.
Choose C∞-smooth partitions of unity φ, ψ : R → [0, 1], φ(t) = 1 iff t ∈ R \ ( 1

6 ,
5
6 )

and φ(t) = 0 iff t ∈ [ 13 ,
2
3 ]. Consider the flow:

Ft(0, αn)∞n=1 = (t, φ(t)α1, ψ(t)α1 + φ(t)α2, ψ(t)α2 + φα3, . . . ) (85)

The corresponding C∞-smooth and Lipschitz differential equation is X the follow-
ing:

f(αn)∞n=0 = (1, φ′(t)α1, ψ
′(t)α1 + φ′(t)α2, ψ

′(t)α2 + φ′α3, . . . ) (86)

It is also easy to construct elementary examples of ω-limit sets and non-ω-limit sets
in a Banach space X. For example, SX is always a type I set, and so is a union of
separated spheres in X. Also, SX ∪ {λe : ‖e‖ = 1, 0 ≤ λ ≤ 1} is a type I set, but
SX ∪ {λe : ‖e‖ = 1, 0 ≤ λ} is not an ω-limit set. Indeed, it is not of type I, but its
complement has only two components.
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