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Abstract

We show a unified method of proving the existence of C1-Fréchet smooth
and Lipschitz mappings which are surjective or whose range of the deriva-
tive contains the whole dual unit ball. As an application, under Martin
Maximum axiom, we obtain a complete result for those spaces with density
character ω1.
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1. Introduction

In this paper we are concerned with the classical problem on existence of
(non-linear) mappings —having a certain degree of differentiability— from
a Banach space onto another. A variant of this problem consists of building
a bump function on a given Banach space having a derivative whose range
contains the entire dual unit ball. We provide here a unified treatment of
those two questions and show that, in the case of Banach spaces of density
ω1 and under an additional hypothesis of set theory (the so called “Martin’s
Maximum axiom”) both problems (the second in the unavoidable setting
of Asplund spaces) have a positive solution. We strongly rely on a deep
result of Todorčević on the existence of biorthogonal systems —under the
mentioned axiom— for every Banach space of density ω1. The situation
is different under CH. This completely describes the picture in the case of
Banach spaces of density ω1.

The notation is standard. If X is a Banach space, then BX denotes
its closed unit ball, SX its unit sphere. Given x ∈ X and r > 0, we put
B(x; r) := x+ rBX . A bump function on a Banach space is a real function
on it with a bounded non-empty support. For unexplained concepts we refer
to [1].

2. Technical results

Let X be Banach space endowed with a Fréchet differentiable norm ‖ · ‖
and which admits a normalized biorthogonal system {eγ , e∗γ}γ∈Γ such that
C := sup{‖e∗γ‖ : γ ∈ Γ} <∞ and card Γ = densX.

Since ‖ · ‖ is Fréchet, there exists a C1-Fréchet smooth and K-Lipschitz
function b : X → [0, 1], such that b(x) = 1 for every x ∈ (2/3)BX , and
b(x) = 0 for every x ∈ X \ BX . Indeed, take h : R → [0, 1] smooth,
K-Lipschitz, such that h(t) = 1 for all t ∈ [−2/3, 2/3], and h(x) = 0 for
|x| > 1. The function b can be taken to be the composition h ◦ ‖ · ‖.

For n ∈ N and τ ∈ (0, 1), consider the set {eσ : σ ∈ Γn} (⊂ X), where

eσ :=
n∑
i=1

τ i

3i−1
eσ(i). (1)

Note that ‖eσ‖ ≤ 3/2 for every σ ∈ Γn.
Consider, too, the set {bσ : σ ∈ Γn}, where bσ : X → IR is the function

defined by

bσ(x) :=
τ2n

3n
b

(
2C3n

τn
(x− eσ)

)
. (2)
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Obviously, for any σ ∈ Γn we have supp(bσ) ⊂ B
(
eσ; τn

2C3n

)
, |bσ(x)| ≤

3−nτ2n, and |b′σ(x)| ≤ 2CKτn. Observe too that, for σ ∈ Γn,

bσ(x) =
{

τ2n

3n , if ‖x− eσ‖ ≤ τn

C3n+1 ,

0, if ‖x− eσ‖ ≥ τn

2C3n .
(3)

Lemma 2.1. The supports of bσ and bσ′ are disjoint if σ 6= σ′ in Γn.

Proof. Let j be the first index in {1, 2, . . . , n} such that σ(j) 6= σ′(j). Put
f := e∗σ(j). If j < n,

‖eσ − eσ′‖ ≥
1
‖f‖
〈eσ − eσ′ , f〉

≥ 1
C

(
τ j

3j−1

)(
1−

∞∑
i=1

(τ
3

)i)
≥ 1

2C
τ j

3j−1
.

In case j = n we get

‖eσ − eσ′‖ =
τn

3n−1
‖eσ(n) − eσ′(n)‖ ≥

τn

3n−1

1
C
.

Then, in both cases,

‖eσ − eσ′‖ ≥
1

2C
τn

3n−1
. (4)

In particular, given σ and σ′ in Γn such that σ 6= σ′,

B

(
eσ;

τn

2C3n

)
∩B

(
eσ′ ;

τn

2C3n

)
= ∅.

Denote by ΓN the set of all sequences of elements in Γ. Given σ ∈ ΓN

we set

eσ =
∞∑
j=1

τ i

3i−1
eσ(i).

Observe that ‖eσ‖ ≤ 3/2. Denote by σn ∈ Γn the initial segment of length
n of σ. Then,

‖eσ − eσn‖ ≤ τ
∞∑

i=n+1

(τ
3

)i−1
= τ

(τ/3)n

1− (τ/3)
.
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Choose 0 < τ < 3
1+9C . Then 3τ

3−τ ≤
1

3C , and this implies

(‖eσ − eσn‖ ≤) τ
(τ/3)n

(1− τ/3)
≤ τn

C3n+1
. (5)

In view of (3) we get

bσn(eσ) =
τ2n

3n
. (6)

Denote by Tτ the set
{
eσ : σ ∈ ΓN} (⊂ (3/2)BX). The estimate (5)

implies that for n ∈ N,

Tτ ⊂
⋃
σ∈Γn

B

(
eσ;

τn

C3n+1

)
. (7)

Let {fγ}γ∈Γ be a family of continuous affine mappings from X into some
Banach space Y , such that

sup
γ∈Γ

sup
x∈BX

{‖fγ(x)‖, ‖f ′γ(x)‖} ≤ 1. (8)

Take n ∈ N. Lemma 2.1 shows that in the following expression, the
summands have mutually disjoint supports.

bn(x) :=
∑
σ∈Γn

bσ(x)fσ(n)(x), x ∈ X. (9)

In particular, for x ∈ X,

‖bn(x)‖ ≤ τ2n

3n
‖x‖, ‖b′n(x)‖ ≤

(
2CKτn +

τ2n

3n

)
‖x‖. (10)

Let

b̃ :=
∞∑
n=1

bn. (11)

Due to the estimations in (10), the series in (11) defines a Lipschitz and
C1-Fréchet smooth mapping b̃ from X to Y , and supp(̃b) ⊂ 2BX .

Take σ ∈ ΓN. Due to (5) and (3) we get, for all n ∈ N, bn(eσ) =
τ2n

3n fσ(n)(eσ), hence

b̃(eσ) =
∞∑
n=1

τ2n

3n
fσ(n)(eσ),

and

b̃′(eσ) =
∞∑
n=1

τ2n

3n
f ′σ(n)(eσ).
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Lemma 2.2. Let X be a Banach space endowed with a Fréchet smooth norm
‖ · ‖, which admits a biorthogonal system {eγ , e∗γ}γ∈Γ such that card Γ =
densX. Let Y be Banach space such that densY = card Γ.

(i) If fγ = yγ is a family of constant functions on X, where {yγ}γ∈Γ is
dense in BY , then τ2

3 BY ⊂ b̃(Tτ ).
(ii) If dens L(X,Y ) = densX, taking {fγ}γ∈Γ a dense subset of BL(X,Y ),

then τ2

3 BL(X,Y ) ⊂ b̃′(Tτ ).

(iii) If Y = IR, and {fγ}γ∈Γ is a dense subset of BX∗, then τ2

3 BX∗ ⊂ b̃
′(Tτ ).

Proof. The proofs of (i) and (ii) are similar, and clearly (iii) follows from
(ii). It is then enough to show (i). Let y ∈ τ2

3 BY . Choose γ1 ∈ Γ so
that ‖y − τ2

3 yγ1‖ <
τ4

32 . Then we can find γ2 ∈ Γ such that ‖y − τ2

3 yγ1 −
τ4

32 yγ2‖ < τ6

33 . Proceed inductively, at each step choosing γn ∈ Γ such that

‖y −
∑n

j=1
τ2j

3j yγj‖ < τ2(n+1)

3n+1 . Clearly, y =
∑∞

j=1
τ2j

3j yγj (= b̃(eσ), where
σ := (γ1, γ2, . . .)), and this shows (i).

3. Applications

In this section we give some applications of the results in the previ-
ous section, proving several known results on surjective mappings by using
Lemma 2.2.

Theorem 3.1. (S.M. Bates, [2, Theorem 1]) Let X, Y be separable infinite
dimensional Banach spaces. Then there exists a C1-Fréchet smooth and
Lipschitz mapping from X onto Y .

Proof. By a result of W.B Johnson and H.P. Rosenthal [3, Theorem 1.b.7],
there exists a linear quotient mapping Q : X → Z, where Z is a Banach
space with a Schauder basis {en}∞n=1. Assume, without loss of generality,
that the basis is seminormalized and contained in the image Q(BX). Denote
by I : Z → c0 the bounded linear operator I(

∑∞
i=1 aiei) := (ai)∞i=1. Fix

τ = 3/7 and the corresponding Tτ ⊂ c0. Note that Tτ ⊂ I ◦ Q(BX). By
Lemma 2.2 there exist a C1-Fréchet smooth and Lipschitz mapping b̃ from
c0 to Y , with supp(̃b) ⊂ 2Bc0 and a positive constant c > 0 such that
cBY ⊂ f(Tτ ). It is now easy to verify that f̃(x) =

∑∞
n=1 nb̃

(4ne1+I◦Q(x)
n

)
is

the sought surjective operator.

Theorem 3.2. (D. Azagra, R. Deville, [4, Theorem 1.3]) Let X be a sep-
arable infinite dimensional Asplund space. Then there exists a C1-Fréchet
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smooth and Lipschitz bump function whose range of the derivative contains
the whole BX∗.

Proof. It follows from Lemma 2.2, by using the fact that the X contains a
Schauder basic sequence, it admits a C1-Fréchet smooth and K-Lipschitz
bump function, and X∗ is separable.

The above theorem could be compared with James’ characterization of
reflexivity. Giles’ characterization of spaces with the Mazur intersection
property implies that the condition of having a nonempty interior for the
range of the derivative of a convex and C1-smooth function is equivalent to
the reflexivity of the underlying space. Thus Theorem 3.2 emphasizes the
crucial role of the convexity assumption. Note also that the Asplundness
condition is necessary.

We provide a proof of the following result when the space X is DENS,
i.e., dens(X)=w∗-dens(X∗).

Theorem 3.3. (D. Azagra, M. Jiménez-Sevilla, R. Deville, [5, Theorem
2.3]) Let X be a Banach space with a Fréchet smooth bump and Y a Banach
space so that densX = dens L(X,Y ). Then, there exists a Fréchet smooth
function g : X → Y so that g has bounded support and g′(X) = L(X,Y ).

Proof. By [6, Theorem 5.3], the space X is Asplund. Using a result of
M. Valdivia [7], there exists a biorthogonal system {xγ ;x∗γ}γ∈Γ in X ×X∗

such that spanw
∗{xγ ; γ ∈ Γ} = X∗ (hence dens(X) = card(Γ)) and such

that {xγ ;x∗γ
∣∣
E
} is a shrinking Markushevich basis in E × E∗, where E :=

span{xγ ; γ ∈ Γ}. By [1, Theorem 11.23], E has a C1-Fréchet smooth
equivalent norm. By Lemma 2.2 there exists a Lipschitz and C1-Fréchet
smooth function with the properties listed there. The rest of the proof is
similar to the proof of Theorem 3.2.

Remark. A complete proof of Theorem 3.3 can be given along the same
lines by reformulating Lemma 2.2 in terms of maximal separated subsets of
X.

3.1. New results
S. M. Bates identified in [2] some situations when smooth surjections

exist. We are going to obtain a complete result for density ω1, subject to a
strong additional axiom of set theory.

Theorem 3.4. (Martin’s Maximum axiom)
Let X,Y be infinite dimensional Banach spaces of density ω1. Then there

exists a C1-Fréchet smooth and Lipschitz mapping from X onto Y .
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Proof. By Todorčević’s results [8, Theorems 4.48, 4.49] there exists a linear
quotient mapping Q : X → Z, where Z is a Banach space with a long
Schauder basis {eα}α<ω1 . Assume, without loss of generality, that the basis
is seminormalized and contained in the image Q(BX). Denote by I : Z →
c0(ω1) the bounded linear operator I(

∑
α aαeα) = (aα)α<ω1 . Fix τ = 3/7

and the corresponding Tτ ⊂ c0(ω1). Note that Tτ ⊂ I ◦Q(BX). By Lemma
2.2 there exist a C1-Fréchet smooth and Lipschitz mapping f from c0(ω1) to
Y , with supp(f) ⊂ 2Bc0(ω1) and a positive constant c such that cBY ⊂ f(Tτ ).
It is now easy to verify that f̃(x) =

∑∞
n=1 nf

(4ne1+I◦Q(x)
n

)
is the sought

surjective operator.

Similarly, we can generalize Azagra and Deville theorem. However, note
that we are not assuming the existence of a C1 smooth bump function.
This is important, since the existence of such bumps is an open problem for
Asplund spaces of density ω1.

Theorem 3.5. Let X be a Asplund space of density ω1. Then there exists
a C1-Fréchet smooth and Lipschitz function whose range of the derivative
contains the whole BX∗.

Proof. Again, by Todorčević’s results [8, Theorems 4.48, 4.49] there exists a
linear quotient mapping Q : X → Z, where Z is a Banach space with a semi-
normalized long Schauder basis {eα}α<ω1 contained in the image Q(BX).
Denote by I : Z → c0(ω1) the bounded linear operator I(

∑
α aαeα) =

(aα)α<ω1 . Fix τ = 3/7 and the corresponding Tτ ⊂ c0(ω1). Note that
Tτ ⊂ I ◦Q(BX). By Lemma 2.2 there exist a C1-Fréchet smooth and Lips-
chitz mapping f from c0(ω1) to Y , with supp(f) ⊂ 2Bc0(ω1) and a positive
constant c such that cBX∗ ⊂ f ′(Tτ ). The function f̃ : X → Y defined by
f ◦ I ◦Q is the function we were looking for.

Remark 3.6. Note that the function f̃ defined in the previous proof is not
necessarily a bump function on X.

Finally, we generalize Hájek’s result on C2 smooth surjections, see [9].

Theorem 3.7. (Martin’s Axiom, MAω1)
There exists no surjective C1-smooth operator, with locally uniformly

continuous derivative, from c0(ω1) onto `2 (or more generally any separable
space which admits a noncompact operator into some `p, p <∞).

Proof. If we assume that there exists a surjective C1-smooth operator T :
c0(ω1) → `2, with locally uniformly continuous derivative, by P. Hájek’s
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result [9, Corollary 8], such operator is locally compact, which means that
`2 could be covered by a countable collection of norm compact sets. However,
MAω1 implies that the sigma ideal of all compact sets in a Polish space is
closed for ω1 unions, [10, Corollary 22J]. This is a contradiction.

Remark 3.8. Under MM, both Theorems 3.4, 3.5 and 3.7 hold, since Mar-
tin Maximum Axiom implies Martin’s Axiom, see [8, pag. 53]. It should be
pointed out that both axioms contradict the continuous hypothesis and that
assuming CH changes the situation.

Proposition 3.9. (CH) Every Banach space of density c = ω1 is a range
of a C∞ smooth and Lipschitz operator from c0(c).

Proof. Since densX = ω1 = c, then cardX = c. Taking {eγ}γ ∈ c the
standard basis of c0(c), define the operators Tγ : c0(c) → c0(c) defined by
Tγ(x) = 2(x − eγ). Consider a C∞ smooth and Lipschitz bump function
b : c0(c) → R such that b

(
2
3Bc0(c)

)
= 1 and b

(
c0(c) \ Bc0(c)

)
= 0. Consider

the family of smooth bumps {bγ = b ◦ Tγ : γ ∈ c}. Define the function
b̃(x) =

∑
γ∈c bγ(x)ϕ(γ), where ϕ : c → X is bijective. It is clear that b̃ is a

surjective C∞ smooth and Lipschitz map.

Let us estate some open questions in the direction of our results.

Question 3.10. Is it true that given density α, all spaces of this density
are C1 smooth images of each other?

Question 3.11. Is it true that for density c, question 3.10 holds even for
C∞ smooth operators?
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